
Planning Self-Adaption with Graph
Transformations

Matthias Tichy1 and Benjamin Klöpper2

1 Software Engineering Division, Chalmers University of Technology and University
of Gothenburg, Gothenburg, Sweden,

tichy@chalmers.se
2 National Institute of Informatics (NII), Tokyo, Japan,

kloepper@nii.co.jp

Abstract. Self-adaptive systems autonomously adjust their behavior in
order to achieve their goals despite changes in the environment and the
system itself. Self-adaption is typically implemented in software and of-
ten expressed in terms of architectural reconfiguration. The graph trans-
formation formalism is a natural way to model the architectural recon-
figuration in self-adaptive systems. In this paper, we present (1) how
we employ graph transformations for the specification of architectural
reconfiguration and (2) how we transform graph transformations into
actions of the Planning Domain Definition Language (PDDL) in order
to use off-the-shelf tools for the computation of self-adaptation plans.
We illustrate our approach by a self-healing process and show the results
of a simulation case study.

Keywords: Self-adaptive systems, graph transformations, planning, PDDL

1 Introduction

The complexity of today’s systems enforces that more and more decisions are
taken by the system itself. This is resembled by the current trend to systems
which exhibit self-x properties like self-healing, self-optimizing, self-adaption.
Self-x properties cause additional complexity and dynamics within the system.
Therefore, appropriate development approaches have to be employed. The archi-
tecture is one of the key issues in building self-x systems [18, 16]. In particular,
self-adaptation can be realized by adapting the architectural configuration by
adding and removing components as well as replacing them.

Kramer and Magee [16] presented a three-layer architecture for self-managed
systems consisting of the following layers: (1) goal management, (2) change man-
agement, and (3) component control. The component control layer contains the
architectural configuration of the self-adaptive system, i.e. the components and
their connections which are active in a certain state. Besides the execution of
the components, this layer is responsible for the execution of reconfiguration
plans. These plans, which describe the orderly adding, removing, and replacing

of components and connectors, are executed to transform the current configura-
tion into a new one in reaction to a new situation or event. They are stored in
the change management layer and computed by the goal management layer.

Several approaches [24, 17, 27, 4, 25] employ graph transformations for the
specification of architectural reconfiguration of self-adaptive systems. Graph
transformations enable the application of formal verification approaches (eg. [20,
3]) and code generation [8] for execution during runtime by providing a sound
formal basis. However, all of these approaches only address the modeling aspect
of reconfiguration and do not address the computation of reconfiguration plans
to meet the goals.

In this paper, we present how graph transformations can be integrated with
automated planning approaches [11] to compute reconfiguration plans. We model
the system structure using class diagrams and employ story patterns [8, 28] as
specific graph transformation formalism. Additionally, we extend story patterns
by modeling elements for temporal properties to enable temporal planning. Simi-
lar to [6], we translate these models to the Planning Domain Definition Language
[9] to enable the application of off-the-shelf planning software like SGPlan [5].

In the next section, we introduce the running example, which is about self-
healing as a special case of self-adaptation, which is used to illustrate our ap-
proach. Section 3 gives a short introduction how we model the structure and the
self-adaption behavior of our running example. The translation of the models to
the planning domain definition language is described in section 4. Thereafter, we
present an extension of our approach to durative actions and temporal planning
in Section 5. In Section 6, we present results of simulation experiments for our
self-healing application scenario. After a discussion of related work in Section 7,
we conclude with an outlook on future work in Section 8.

2 Example

As an application example, we consider the self-healing process in an automotive
application as presented in [15]. While it is currently not the case, we assume
that, in the future, it is possible that software components can be deployed,
started and stopped on electronic control units (ECU) at runtime. Currently, the
deployment of software components to ECUs is done at design time but online
reconfiguration gains interest and will eventually be realized. The AUTOSAR
standard [10] with its standardized interfaces and the run-time environment
(RTE) is the first step towards a system that can be reconfigured.

Our self-healing process reacts to failures of software components and hard-
ware nodes (ECUs) by, for example, starting failed software components on
working nodes, moving software components from a source to a target node,
disconnecting and reconnecting software components. While the original self-
healing process [15] considers redundant software components, we do not con-
sider redundancy in this paper in order to keep the examples smaller.

Figure 1 shows an example of our self-healing process. On the left hand side
of that figure, four nodes are shown which execute five component instances.

node1 has experienced a failure and, thus, component c1 is not working any-
more. The self-healing process now reacts to this failure by computation and
subsequently execution of a self-healing plan. This self-healing plan is comprised
of the actions transfer which transfers the code of a component to a node, the
action createInstance which instantiates the component of a node, and destroy
which destroys a component instance on a node. For this example, the plan ba-
sically results in moving component c2 from node2 to node3 in order to free up
space to subsequently instantiate the failed component c1 on node node2.

State after execution of self-healing planState after failure of node1

node2node1

c1

Self-Healing

Self-Healing Plan

1) Transfer(c2, node2, node3)
2) Destroy(c2)
3) CreateInstance(c2, node3)
4) CreateInstance(c1, node2)

c2

node4node3

c3

c5c4

node2node1

c1

node4node3

c3

c5c4 c2

Fig. 1. Self-healing a failure of node1.

A good example of a safety-relevant automotive subsystem is an adaptive
cruise control (ACC). An ACC is an advanced tempomat, its functionality is
to accelerate the car to the driver specified velocity, if no obstacle is detected.
If an obstacle is detected, the car is first decelerated and then controls the gap
between the car and the obstacle (mostly another car). The adaptive in its name
comes from this change of behavior. Figure 2 shows the software components
of a sample adaptive cruise control system. In this paper, we do not specifically
target the self-healing of this adaptive cruise control system but address the
general case of self-healing component-based systems as a running example.

SpeedSensor Tracking-SW TimeGapControl-SW BrakeControl-SW BrakeLight-SW

Radar ObjectDetection-SW VerlocityControl-SW EngineControl-SW

Fig. 2. Software components of an adaptive cruise control system [15].

3 Modeling with Graph Transformations

We employ the story pattern [8, 28] graph transformation formalism, which is
tightly integrated with the UML. It employs class diagrams for the specifica-

tion of structure (similar to typed graphs in graph transformations) and refined
collaboration diagrams for the specification of a graph transformation.

3.1 Specification of Structure

Figure 3 shows the class diagram for our self-healing scenario. Each component
represents a software component. Pairs of components may have to communicate
with each other. Nodes represent the computation hardware which are used to
execute the software components. Before a component can be started on a node,
the software code of the component has to be deployed to that specific node.
Nodes are connected to other nodes. Components which communicate with each
other must be executed either on the same node or on connected nodes. Each
connection provides a certain transfer rate.

+requiresMem:Int
+size:Int
+isDeployed:bool

Component

+avMem:Int

Node

+value:Int

TransferRate

*
isDeployedTo

0..1
isRunningOn

1

*
sender

1

*
receiver

* avCon*reqCon

ComponentInstance

0..1
instance

Fig. 3. Class diagram modeling the structure of the self-healing system

For the subsequent translation to PDDL, we require that for each class the
maximum number of instances is specified by the developer. For our example,
this maximum number of instances is known during design-time as the number
of component types is known as well as the number of nodes. The number of
component instances is equal to the number of component types as we specifically
choose to have only a single instance of each component type in the system. Thus,
this requirement is feasible for our scenario. This requirement is also typical in
embedded systems. However, in other applications or domains this requirement
might not hold.

3.2 Specification of Self-Adaption Actions

The reconfiguration actions are specified with story patterns which are typed
over the class diagram presented in Figure 3, i.e. they transform instances of
this class diagram.

Story patterns follow the single pushout [21] formalism. The left hand side
and the right hand side are merged into a single graph in story patterns. In
this graph, all nodes and edges which are in the left hand side but not in the
right hand side are marked as delete. These nodes and edges are deleted by
the execution of the rule. All nodes and edges which are in the right hand side

but not in the left hand side are marked as create. They are created by the
execution of the rule. Simple negative application conditions can be modeled by
appropriately annotating edges and nodes in the diagram. It is not allowed that
negative nodes are attached to negative edges [28]. In contrast to standard story
patterns, we do not support bound objects.

source:Node avMem >= c.requiresMem
avMem := avMem - c.requiresMem

k:Node

isDeployed := true

c:Component

isDeployedTo

isDeployedTo

isDeployedTo
<<create>>

Fig. 4. Story pattern which specifies the deployment of a component c to node k

Figure 4 shows a story pattern which specifies the transfer of the code of a
component c from a source node source to a target node k to enable starting the
component on that node. The fact that the code of a component is available on a
node is modeled as the existence of an isDeployedTo link between the component
and the node. Additionally, the story pattern specifies that the amount of avail-
able memory on node k must be greater than the required memory of component
c prior to execution. After execution the available memory is reduced.

isDeployedTocomp:Component node:Node
otherci

:ComponentInstance

ci
:ComponentInstance

<<create>>

isRunningOn

instance

instance

Fig. 5. Story pattern which specifies the instantiation of a component on a node

Figure 5 shows the story pattern concerning the instantiation of a component
on a node. This story pattern can be executed if (1) the component’s code has
been previously deployed to the node and (2) the component is not already
instantiated anywhere in the system. The first condition is expressed by the link
isDeployedTo between comp and node. The second condition is expressed by the
negative object otherci.

3.3 Specification of Goals

Finally, the goal has to be modeled for the self-healing system. Using only the
left hand side of story patterns as in [7], it is possible to model a concrete
situation which shall be reached by the computed plan. Though, this is rather

cumbersome, especially for a large number of objects. Instead we use enhanced
story patterns [23] which extend story patterns with subpatterns and quantifiers.
Figure 6 shows the specification of the goal that for every component there should
exist a component instance which is running on a node.

forall
exists

instancec:Component ci:ComponentInstance n:Node

isRunningOn

Fig. 6. Enhanced story pattern modeling the goal

We do not provide modeling support for the initial state as the initial state
is simply the current state of the self-adaptive system during runtime.

4 Translation to PDDL

There exist several different representations for planning problems [11]. Set-
theoretic approaches represent states by a set of propositions. Each action spec-
ifies which propositions have to hold in the state for the action to be applicable.
Additionally, an action specifies which propositions will be added and removed
to create a new state. The classical representation uses first-order literals and
logical operators instead of propositions.

The Planning Domain Definition Language (PDDL) has been developed as a
standard language for planning problems in order to compare different tools and
algorithms. In order to be applicable for a wide variety of planning problems and
tools, several extensions with respect to the classical representation have been
added to the PDDL, e.g., typing, durative actions for temporal planning, fluents
for representation of numerical values.

A planning problem in PDDL consists of two parts – the domain and the
problem. The domain defines the types, the predicates, the functions, and the
actions. A PDDL action is defined by a name, a list of parameters, a precondition
and an effect. All objects which are referred to in the precondition and the effect
have to be included in the list of parameters. The action can only be executed if
the precondition is satisfied. The effect holds after the execution of the action.
The problem defines the objects as well as the initial state and the goal state.
The planning system then tries to compute a sequence of actions (including the
arguments for the action parameters) which transforms the initial state into the
goal state.

The PDDL extension :typing enables the modeling of types and generaliza-
tion in the planning model. Thus, classes are translated to types in the domain
definition; the associations are translated to predicates over the types. Story pat-
terns are translated to actions in the planning domain. The left hand is translated

to the precondition and the right hand side to the effect. Although the elements
of both models map well to each other, there are details to consider.

4.1 Types, Predicates and Functions

Basically, classes are translated to types. Generalizations in the class diagrams
are translated as well. Listing 1 shows the types generated from the class diagram
of Figure 3. All types extend the general predefined type object denoted by the
suffix “- object”.

Listing 1: Mapping of classes to types in the PDDL
1 (:types
2 Component Node TransferRate ComponentInstance - object
3)

Associations are translated to predicates over the source and target types.
We support unidirectional and bidirectional associations. For example, the uni-
directional association isDeployedTo between Component and Node is translated
to the predicate (isDeployedTo ?component - Component ?node - Node). Listing
2 shows the predicates which are generated from the associations of the class
diagram. For bidirectional associations, only one direction is translated to pred-
icates in order to minimize the planning domain as bidirectional navigability is
already provided by an unidirectional reference in PDDL.

Listing 2: Translation of associations to predicates
1 (:predicates
2 (exist ?object - object)
3 (isRunningOn ?component - Component ?node - Node)
4 (reqConn ?component - Component ?component - Component)
5 (instance ?component - Component ?componentinstance - ComponentInstance)
6 (isDeployedTo ?component - Component ?node - Node)
7 (avConnections ?node - Node ?node - Node)
8 (sourceTransferRate ?node - Node ?transferrate - TransferRate)
9 (targetTransferRate ?node - Node ?transferrate - TransferRate)

10 (runningOn ?componentinstance - ComponentInstance ?node - Node)
11 (isDeployed ?component - Component)
12)

The PDDL prohibits the creation and deletion of objects to preserve a fi-
nite state space. As node creation and deletion is an important feature of graph
transformations, we decided to emulate object creation and deletion by using the
special predicate (exist ?object - object). We require a fixed number of objects of
each type in the initial state of the planning problem. We emulate object cre-
ation and deletion by setting the exist predicate appropriately. Finally, boolean
attributes are also translated to predicates, e.g., the attribute isDeployed.

Functions provide mappings from object tuples to the realm of real numbers.
This enables the translation of all numerical attributes from class diagrams.
For example, the function (avMem ?n - Node) stores the amount of that node’s
memory which is increased and reduced depending on the number of components
who are instantiated on a given node.

Listing 3: Translation of integer attributes to functions
1 (:functions
2 (requiresMem ?component - Component)
3 (size ?component - Component)
4 (avMem ?node - Node)
5 (value ?transferrate - TransferRate)
6)

4.2 Actions

In the following, we present how story patterns are translated to PDDL actions.
The preconditions and the effects of PDDL actions mirror naturally the left hand
side and right hand side of a graph transformation. Listing 4 shows the PDDL
action for the story pattern from Figure 4. We translate all nodes of the story
pattern to parameters of the action. The planner will bind these parameters to
objects in such a way that the precondition is satisfied. The action transfer has
three parameters for the two nodes source and k and the component c.

Listing 4: Transfer of component code from source to target node
1 (:action transfer
2 :parameters (
3 ?source - Node ?k - Node ?c - Component
4)
5 :precondition (and
6 (exist ?source) (exist ?k) (exist ?c)
7 (not (= ?source ?k))
8 (isDeployedTo ?c ?source)
9 (not (isDeployedTo ?c ?k))

10 (>= (avMem ?k) (requiresMem ?c))
11)
12 :effect (and
13 (isDeployedTo ?c ?k)
14 (isDeployed ?c)
15 (decrease (avMem ?k) (requiresMem ?c))
16)
17)

The precondition requires that all bound objects are indeed existing (line 6).
The story pattern formalism uses a graph isomorphism, i.e. that two nodes of
the graph transformation cannot be bound to the same node in the host graph.
Consequently, we check in line 7 that the two nodes source and k are different.
We translate the isDeployedTo-edge to the predicate in line 8.

The effect of the action simply states that the isDeployedTo predicate holds
for the component c and the node k as the semantics of PDDL effects are that
everything remains unchanged except the explicitly stated effect.

Attribute Expressions Arithmetic expressions are supported by PDDL func-
tions. The precondition can contain comparisons concerning functions. Values
are assigned to functions in the effect. Concerning the transfer action, the pre-
condition checks whether the available memory is greater or equal than the
memory required by the component in line 10. In line 15, the available memory
is decreased by this required amount of memory. Finally, the assignment of the
boolean variable isDeployed is part of the effect as well (line 14).

Negative Nodes and Edges Story patterns enable the specification of simple
negative application conditions by annotating nodes and edges that the node or
the edge must not match.

The story pattern of Figure 4 contains a negative edge isDeployedTo between
component c and node k. Thus, the story pattern is only applicable if the com-
ponent c has not been already deployed to the node k. This is translated to a
negated predicate as shown in line 9.

The case of a negative node is more complex. The semantics of a negative
node [28] is that the matching of the left hand side minus the negative node
must not be extendable to include a matching of the negative node as well. This
is translated to a negative existential quantification over the objects of this type
including the edges connected to the negative node as in lines 8 to 10 of listing
5 which is the PDDL translation of the story pattern shown in Figure 5.

Again, special care has to be taken concerning injective matching. If a node
is already positively matched, it will be excluded from the negative existential
quantification.

Object Creation and Deletion There exist several possibilities to emulate
object creation and deletion. Naively, objects can be emulated by predicates
which are set to true and false accordingly. This does only work for the case
that it is not required that an object is identifiable. This is typically not suitable
for graph transformations. As mentioned earlier, we decided to allocate a fixed
number of objects of each class and use the additional predicate exist to denote
whether the object exists or not.

Listing 5 shows the PDDL translation of Figure 5. Similar to listing 4, we
initially check for all nodes which are in the left hand side of the story pattern
whether they exist in line 6. The object which will be created by the story pattern
must not exist prior to the execution with the predicate in line 7. It is created
in the effect (line 16)

Listing 6 shows how objects are destroyed by an action. The story pattern
formalism follows the single pushout approach [21]. Therefore, we do not require
that the dangling condition is satisfied and simply delete all edges related to

Listing 5: Creating objects
1 (:action createInstance
2 :parameters (
3 ?comp - Component ?node - Node ?ci - ComponentInstance
4)
5 :precondition (and
6 (exist ?comp) (exist ?node)
7 (not (exist ?ci))
8 (not (exists (?otherci - ComponentInstance)
9 (instance ?comp ?otherci)

10))
11 (not (instance ?comp ?ci)) (not (runningOn ?ci ?node))
12)
13 :effect (and
14 (instance ?comp ?ci)
15 (runningOn ?ci ?node)
16 (exist ?ci)
17)
18)

the node (lines 6 and 7). The class diagram (s. Figure 3) holds the information
which edges we have to remove when destroying an object.

Listing 6: Destroying objects
1 (:action destroy
2 :parameters (?ci - ComponentInstance))
3 :precondition (and (exist ?ci))
4 :effect (and
5 (not (exist ?ci))
6 (forall (?o - Node) (not (runningOn ?ci ?o)))
7 (forall (?o - Component) (not (instance ?o ?ci)))
8)
9)

The model of the goal state shown in Figure 6 is translated to the PDDL in
a similar way as the left hand side of story pattern with appropriate handling of
the quantification.

5 Adding Temporal Properties

PDDL 2.1 [9] introduced syntax and semantics for temporal planning. Temporal
planning relaxes the assumption of classical planning that events and actions
have no duration. This abstraction is often not suitable as in reality actions do
occur over a time span. Therefore, durations can be annotated to actions in
temporal planning. As this allows concurrent actions, preconditions and effects
have to be annotated. Three different temporal annotations are supported which
can be combined: (1) at start, the precondition has to be satisfied at the beginning
of the action, (2) at end, the precondition has to be satisfied at the end of the
action, and (3), over all, the precondition has to be satisfied during the action.
Effects have to be annotated with at start or at end.

tr:TransferRatesource target

source:Node avMem >= c.requiresMem <<atstart>>,<<overall>>
avMem := avMem - c.requiresMem <<atstart>>

k:Node

isDeployed := true

c:Component

<<atstart>>,<<overall>>
isDeployedTo

isDeployedTo

isDeployedTo
<<create>>

duration = c.size / tr.value

Fig. 7. Story pattern which specifies the deployment of a component c to node k
including a duration

In general, story patterns do not consider time. Timed story patterns [13] are
only concerned with when the pattern is executed, but not about the duration
of its execution. We extend the story pattern by a duration fragment, which is
used for the specification of the duration. Figure 7 shows this extension. The
duration is computed based on the component size and the transfer rate for the
connection between the nodes in our example. We annotate elements of the story
pattern with the stereotypes �atstart�, �atend�, �overall� to specify the
required temporal properties.

Listing 7: durative-action transfer
1 (:durative-action transfer
2 :parameters (?c - component ?k - Node ?source - Node ?tr - TransferRate)
3 :duration (= ?duration (/ (size ?c) (value ?tr)))
4 :condition (and
5 . . .
6 (over all (isDeployedTo ?c ?source))
7 (at start (isDeployedTo ?c ?source))
8 (at start (sourceTransferRate ?rate ?source))
9 (at start (targetTransferRate ?rate ?target))

10 . . .
11)
12 :effect (and
13 (at end (isDeployedTo ?c ?k))
14 (at end (isDeployed ?c))
15 (at start (decrease (avMem ?k) (requiresMem ?c)))
16)
17)

In contrast to the PDDL, we assume the following defaults in the case that
the developer does not specify temporal stereotypes for the sake of visual clarity.
All elements of the left hand side are assumed to have the stereotype �atstart�
whereas all effects are assumed to have the stereotype �atend�.

Listing 7 shows an excerpt from the durative action generated from the story
pattern of Figure 7. The specification of the duration is shown in line 3. During
the whole execution of the action, the component c must be deployed to the
source node. As the temporal plan can schedule actions in parallel, we require

that at the beginning of the action the available memory of node k must already
be decreased by the required amount of component c.

6 Simulation Experiments

In order to show the feasibility of our approach, we conducted simulation ex-
periments for the self-healing scenario. The scenario has been extended by re-
sources which are required by components and provided by nodes, communica-
tion buses between the nodes as well as redundant allocation of components to
nodes. The discrete event-based simulation environment simulates (1) failures
of nodes, (2) repairs of nodes, and (3) periodic self-healing activities which are
comprised of computing and executing self-healing plans. We abstract from the
actual behavior of the components and restrict the simulation to the failures
and the self-healing process. The plans are computed by the SGPlan automated
planning software. The simulated system consists of 12 component types and 5
nodes connected by two communication buses. Node failures are randomly dis-
tributed by a negative exponential distribution fλ(x) = λe−λx with a failure
rate of λ = 0.0001. Every 5 time units, the self-healing part of the system checks
whether any component type is not instantiated. In that case the planner is
called and the resulting plan is executed.

 0

 2

 4

 6

 8

 10

 12

0k 20k 40k 60k 80k 100k

Pe
rc

en
ta

g
e

of
 A

va
ila

b
le

 C
om

p
on

en
ts

t

 0.995

 0.996

 0.997

 0.998

 0.999

 1

0k 20k 40k 60k 80k 100k

A
ve

ra
g
e

A
va

ila
b
ili

ty

t

 0

 10

 20

 30

 40

 50

 60

 70

Planning Times Plan Length
 0

 5

 10

 15

 20

 25

 30

 35

 40

t
in

 s
ec

N
r

of
 A

ct
io

ns

Fig. 8. Results from the simulation experiments.

On the left side of Figure 8, the number of available component instances
at each point of a single simulation run for 100.000 time units is shown. The
complete system is available if each component type is instantiated on a node,
i.e. if 12 component instances are available. At 53 points in time, a node fails
which results in the failure of the components which are instantiated on that
node. 10 of that 53 failures did happen to nodes which had no component types
instantiated and, thus, resulted in no reduction of the number of component
instances. After computing and executing the self-healing plan in reaction to a
node failure, the number of available component instances increases to 12 again.

In the middle of Figure 8, the average availability of the system during the
same simulation run is shown. We define availability as the probability that
all component types of the system are instantiated at a certain point of time.
The system starts with no instantiated components. Consequently, the average

availability rises at the start of the simulation and reacts heavily to node failures.
At the end of the simulation run, it is stable at 0.9995.

On the right side of that figure, we report the time taken by the planner
to compute the plan as well as the planning length based on 277 calls to the
planner. The planner is executed on an Intel Core2Duo with two cores at 2,53
GHz and 4Gb of ram. Though, the planner uses only one core.

7 Related Work

In [4], a model-driven approach for self-adaption has been presented which also
applied graph transformations for the specification of component reconfigura-
tions. The graph transformations are used to specify goals, but the approach
supports only the monitoring of these goals and not the computation of recon-
figuration plans to achieve them. In general, planning is an important method in
self-adapting and self-configuring systems. For instance, Arshad et al. [2] intro-
duced a PDDL planning domain for automated deployment and reconfiguration
of software in a distributed system. Satzger et al. [22] introduced a PDDL based
planning approach for organic computing systems. Sykes et al. present in [12]
an approach for planning architectural reconfiguration of component based sys-
tems based on the aforementioned three layer-architecture. They employ model
checking as a planning technique based on labeled transition systems. This al-
lows them to compute reactive plans, which generates actions sequence from
every state in the state spaces towards the goal state.

None of the approaches supports the system developer appropriately in defin-
ing the required planning domains and offer techniques to check the correctness
of the defined planning domain. A development process based on graph trans-
formation naturally enables the support of respective modeling and verification
tools and methods.

Vaquero et al. [26] present an approach for transforming UML models, use
cases, class diagrams, state machines, and timing diagrams, to Petri Nets as
well as PDDL in order to facilitate analysis and testing of requirements. The
shown mapping from class diagrams to PDDL is similar to the one presented
in this paper. In contrast to the approach by Vaquero et al., we use graph
transformations for the specification of behavior which are more suitable for the
specification of architectural reconfiguration.

There are only few tools and methodologies which support the designer in
developing a planning model that complies to certain properties. For instance,
Howey [14] et al. introduce VAL an automated tool that checks if plans gener-
ated by a planning system satisfy the specification made in the corresponding
PDDL domain. Differently, PDVer is a tool that can be applied to check the
correctness of Planning Domains [19]. However, PDVer does not formally verify
the state transitions enabled by the planning domain, but heuristically generates
and executes a number of test cases.

There are only a few approaches in the area of automated planning with graph
transformations [6, 7]. Edelkamp and Rensink present in [6] the combination

of graph transformation and planning. They report that the employed planner
(FF) can handle significantly bigger models than the graph transformation tool
Groove. In contrast to our paper, Edelkamp and Rensink do not present how
to automatically translate graph transformations to the input language of the
employed planner. Estler [7] uses an A* as well as a Best First search for the
computation of plans based on graph transformations. Instead of developing an
own algorithm for planning, we employ standard off-the-shelf planning software
which enables us to exploit their good performance and rich modeling properties,
e.g. for temporal planning.

8 Conclusions and Future Work

We presented how we use graph transformation to specify actions for self-adaptive
system and how we use standard off-the-shelf automated planners to compute
reconfiguration plans which order the execution of the reconfiguration actions.
As a specific case of self-adaption we illustrated our approach by a self-healing
process. We extended the employed story pattern formalism by several additional
annotations for the specific case of durative actions in temporal planning. Based
on this extensions, we showed how we translate story pattern to the Planning
Domain Definition Language (PDDL) which is the standard planning language.

We have partially implemented the translation using the Eclipse Modeling
Framework and Xpand as model-to-text translation environment. We used the
EMF-based version of Fujaba, which is currently under development. We are
currently working on finishing the implementation of the presented translation of
attribute expressions as well as all syntax elements which are related to temporal
planning.

Durative actions in the PDDL also include continuous effects which specify
the continuous change of values during execution of the action, e.g., the physical
position of an autonomous car based on its speed. It remains to be seen whether
it makes sense to add those aspects to story patterns. Adding this might lead to
a hybrid graph transformation formalism analogous to hybrid automata [1].

To reflect the specific strength and weaknesses of different planners as well
as the differing requirements of application domains, it is reasonable to provide
different translation schemes for story patterns to PDDL. The implementation
and comparison of these different translations with respect to their effect on
planners is an important part of our future research.

Story diagrams add control flow to story patterns. In order to use story di-
agrams for self-healing, we have to translate the control flow to PDDL as well.
For the case of non-temporal planning, this works by numbering all story pat-
terns and adding a sequence function which stores the current activity number.
The control flow is then translated to appropriately handling this function in
the precondition and the effect.

Acknowledgments We thank Steffen Ziegert, Julian Suck, Florian Nafz, and
Hella Seebach for discussions about the topic. We thank Christopher Gerking for

the implementation of the prototypical translation of story patterns to PDDL
as well as Alexander Stegmeier for the implementation of the simulation en-
vironment. Matthias Tichy was member of the software engineering group at
the University of Paderborn, Germany, and the organic computing group at the
University of Augsburg, Germany, while developing this approach. Benjamin
Klöpper is a visiting researcher at NII and scholarship holder of the German
Academic Exchange Service (DAAD).

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theor. Comput. Sci. 138(1), 3–34 (1995)

2. Arshad, N., Heimbigner, D., Wolf, A.: Deployment and dynamic reconfiguration
planning for distributed software systems. Software Quality Journal 15(3), 265–281
(2007)

3. Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic Invariant Ver-
ification for Systems with Dynamic Structural Adaptation. In: Proc. of the 28th

International Conference on Software Engineering (ICSE), Shanghai, China. pp.
72–81. ACM Press (2006)

4. Becker, B., Giese, H.: Modeling of correct self-adaptive systems: a graph transfor-
mation system based approach. In: CSTST ’08: Proceedings of the 5th interna-
tional conference on Soft computing as transdisciplinary science and technology.
pp. 508–516. ACM, New York, NY, USA (2008)

5. Chen, Y., Wah, B.W., Hsu, C.W.: Temporal planning using subgoal partitioning
and resolution in sgplan. J. Artif. Intell. Res. (JAIR) 26, 323–369 (2006)

6. Edelkamp, S., Rensink, A.: Graph transformation and ai planning. In: Edelkamp,
S., Frank, J. (eds.) Knowledge Engineering Competition (ICKEPS). Australian
National University, Canberra, Australia (September 2007)

7. Estler, H.C., Wehrheim, H.: Heuristic search-based planning for graph transforma-
tion systems. In: Proc. of the Workshop on Knowledge Engineering for Planning
and Scheduling (KEPS 2011) (2011)

8. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A new Graph
Rewrite Language based on the Unified Modeling Language. In: Engels, G.,
G.Rozenberg (eds.) Proc. of the 6th International Workshop on Theory and Ap-
plication of Graph Transformation (TAGT), Paderborn, Germany. LNCS 1764,
Springer Verlag (1998)

9. Fox, M., Long, D.: Pddl2.1: An extension to pddl for expressing temporal planning
domains. J. Artif. Intell. Res. (JAIR) 20, 61–124 (2003)

10. Fürst, S., Mössinger, J., Bunzel, S., Weber, T., Kirschke-Biller, F., Heitkämper,
P., Kinkelin, G., Nishikawa, K., Lange, K.: Autosar - a worldwide standard is on
the road. In: Proc. of the 14th International VDI Congress Electronic Systems for
Vehicles 2009, Baden-Baden (2009)

11. Ghallab, M., Nau, D., Traverso, P.: Automated Planning - Theory and Practice.
Morgan Kaufmann Publishers (2004)

12. Heaven, W., Sykes, D., Magee, J., Kramer, J.: A case study in goal-driven ar-
chitectural adaptation. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P.,
Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. Lecture Notes in
Computer Science, vol. 5525, pp. 109–127. Springer (2009)

13. Heinzemann, C., Suck, J., Eckardt, T.: Reachability analysis on timed graph trans-
formation systems. ECEASST 32 (2010)

14. Howey, R., Long, D., Fox, M.: Val: Automatic plan validation, continuous effects
and mixed initiative planning using pddl. In: ICTAI. pp. 294–301. IEEE Computer
Society (2004)

15. Klöpper, B., Honiden, S., Meyer, J., Tichy, M.: Planning with utilities and state
trajectories constraints for self-healing in automotive systems. In: Proc. of the
Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Sys-
tems Budapest, Hungary, September 27-October 1, 2010 (2010)

16. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: 2007
Future of Software Engineering (May 23 - 25, 2007). International Conference on
Software Engineering. pp. 259–268. IEEE Computer Society, Washington, DC,
USA (2007)

17. Métayer, D.L.: Describing software architecture styles using graph grammars. IEEE
Transactions on Software Engineering 24(7), 521–533 (1998)

18. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evo-
lution. In: Proceedings of the 20th international Conference on Software Engineer-
ing (Kyoto, Japan, April 19 - 25, 1998). pp. 177–186. IEEE Computer Society,
Washington, DC, USA (1998)

19. Raimondi, F., Pecheur, C., Brat, G.: Pdver, a tool to verify pddl planning domains.
In: Proceedings of ICAPS’09 Workshop on Verification and Validation of Planning
and Scheduling Systems (2009)

20. Rensink, A.: The GROOVE simulator: A tool for state space generation. In: Pfalz,
J., Nagl, M., Böhlen, B. (eds.) Applications of Graph Transformations with In-
dustrial Relevance (AGTIVE). Lecture Notes in Computer Science, vol. 3062, pp.
479–485. Springer Verlag (2004)

21. Rozenberg, G.: Handbook of Graph Grammars and Computing by Grah Transfor-
mation, Volume 1: Foundations. World Scientific (1997)

22. Satzger, B., Pietzowski, A., Trumler, W., Ungerer, T.: Using automated planning
for trusted self-organising organic computing systems. In: Autonomic and Trusted
Computing. p. 60–72. Springer (2008)

23. Stallmann, F.: A Model-Driven Approach to Multi-Agent System Design. Ph.D.
thesis, University of Paderborn, Germany (2009)

24. Taentzer, G., Goedicke, M., Meyer, T.: Dynamic change management by dis-
tributed graph transformation: Towards configurable distributed systems. In:
TAGT’98: Selected papers from the 6th International Workshop on Theory and
Application of Graph Transformations. pp. 179–193. Springer-Verlag, London, UK
(2000)

25. Tichy, M., Henkler, S., Holtmann, J., Oberthür, S.: Component story diagrams:
A transformation language for component structures in mechatronic systems. In:
Postproc. of the 4th Workshop on Object-oriented Modeling of Embedded Real-
Time Systems (OMER 4), Paderborn, Germany. HNI Verlagsschriftenreihe (2008)

26. Vaquero, T.S., Silva, J.R., Ferreira, M., Tonidandel, F., Beck, J.C.: From require-
ments and analysis to pddl in itsimple3.0. In: Proc. of the International Competi-
tion on Knowledge Engineering for Planning and Scheduling, Thessaloniki, Greece,
September 20 (2009)

27. Wermelinger, M., Fiadeiro, J.L.: A graph transformation approach to software
architecture reconfiguration. Sci. Comput. Program. 44(2), 133–155 (2002)

28. Zündorf, A.: Rigorous Object Oriented Software Development - draft- Version 0.3.
University of Paderborn (2002)

