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Abstract

Recently we demonstrated that genetic or pharmacological suppression of the central 

ghrelin signalling system, involving the growth hormone secretagogue receptor 1A 

(GHS-R1A), lead to a reduced reward profile from alcohol.  As the target circuits for 

ghrelin in the brain include a mesolimbic reward pathway that is intimately associated 

with reward-seeking behaviour, we sought to determine whether the central ghrelin 

signalling system is required for reward from drugs of abuse other than alcohol, 

namely cocaine or amphetamine. We found that amphetamine- as well as cocaine-

induced locomotor stimulation and accumbal dopamine release were reduced in mice 

treated with a GHS-R1A antagonist. Moreover, the ability of these drugs to condition 

a place preference was also attenuated by the GHS-R1A antagonist. Thus GHS-R1A 

appears to be required not only for alcohol-induced reward, but also for reward 

induced by psychostimulant drugs. Our data suggest that the central ghrelin signaling 

system constitutes a novel potential target for treatment of addictive behaviours such 

as drug dependence.
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Introduction 

Since its discovery in 1999 (Kojima et al. 1999), the stomach-derived hormone 

ghrelin has been studied extensively in the context of appetite and energy balance 

regulation (Nogueiras et al. 2006).  It seems clear that ghrelin exerts its orexigenic 

and pro-obesity effects by interacting with discrete hypothalamic cell groups that 

include leptin-responsive circuits in the arcuate nucleus, such as the neuropeptide Y 

cell group (Dickson and Luckman 1997; Hewson et al. 2002; Nogueiras et al. 2006).

Recently, however, we and others have reported that ghrelin also activates key CNS 

pathways involved in reward, that include the mesolimbic dopamine system (Abizaid 

et al. 2006; Jerlhag et al. 2006) and, more specifically, the cholinergic-dopaminergic 

reward link (Jerlhag et al. 2007; Jerlhag et al. 2008).  By this route, ghrelin may 

increase the incentive value of both natural and artificial rewards and hence, increase 

reward-seeking behaviour.

The emerging neurobiology of central ghrelin signalling system indicates that it may 

serve as a common denominator to enhance search for rewards such as drugs of abuse 

and rewarding foods. This is evidenced, in part, by human function imaging studies in 

which ghrelin was shown to alter the brain response to visual food cues, most 

markedly in the ventral striatum, an area also activated by psychostimulant drugs (see 

e.g. Wise and Bozarth, 1987; Malik et al. 2008).  In rodents, ghrelin has been shown 

to increase foraging for food (Keen-Rhinehart and Bartness 2004), to enhance 

cocaine-induced locomotor stimulation, to condition a place preference for cocaine 

and to induce cocaine-seeking behaviours (Wellman et al. 2005; Davis et al. 2007; 

Tessari et al. 2007).  Recently, we demonstrated that central ghrelin signalling system 

is required for alcohol reward; we found that the ability of alcohol to increase 
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locomotor activity, to induce accumbal dopamine release and to condition a place 

preference were abolished in ghrelin receptor (GHS-R1A) knockout mice and also in 

mice treated with two different GHS-R1A antagonists (Jerlhag et al. 2009).  In the 

present study, such tests were also used to determine whether the central ghrelin 

signalling system is required for the rewarding properties of cocaine and 

amphetamine in mice treated peripherally with a GHS-R1A antagonist.  
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Materials and Methods 

Animals

Adult post-pubertal age-matched male NMRI mice (8-12 weeks old and 25-40 g body 

weight; B&K Universal AB, , Sollentuna, Sweden) were used for studies of 

locomotor activity, dopamine release and conditioned place preference (CPP) testing 

as such studies are well documented in this strain (Jerlhag et al. 2006; Jerlhag et al. 

2007; Jerlhag et al. 2008; Jerhag 2008). All mice were maintained at 20°C with 50% 

humidity and a 12/12 hour light/dark cycle (lights on at seven am). Tap water and 

food (Normal chow; Harlan Teklad, Norfolk, England) were supplied ad libitum, 

except during the experimental setups. Studies were approved by the Ethics 

Committee for Animal Experiments in Gothenburg, Sweden  

Drugs

Dex-amphetamine sulphase (RBI; Natick, USA) was dissolved in vehicle (0.9% 

sodium chloride solution) and was administered i.p. at a dose of two mg/kg ten 

minutes prior to initiation of the experiment. Cocaine (Sigma; St Louise, USA) was 

dissolved in the vehicle (0.9% sodium chloride solution) and was administered i.p. at 

a dose of ten mg/kg ten minutes prior to initiation of the experiment. Similar doses 

have been used previously to induce an activation of the mesolimbic dopamine 

system as measured by locomotor activity and accumbal dopamine release in rats 

(Wise and Bozarth 1987). The selected dose of JMV2959 (synthesized at the Institut 

des Biomolécules Max Mousseron (IBMM), UMR5247, CNRS, Montpellier 1 and 2 

Universities, France), a GHS-R1A antagonist, was determined previously (six mg/kg, 

i.p.) (Jerlhag et al. 2009). This dose was used in all studies and was always 

administered ten minutes prior to drug exposure. Indeed, it has been established that 
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this compound, when administered peripherally, is a GHS-R1A antagonist and 

suppresses food intake induced by ghrelin or by the GHS-R1A agonist, hexarelin 

(Moulin et al. 2007; Salomé et al. 2009). Previous, radioligand binding studies have 

also established that JMV2959 is a GHS-R1A antagonist (Moulin et al. 2007). 

JMV2959 was dissolved in vehicle (0.9% sodium chloride solution). All drug 

challenges were part of a balanced design with regard to both the treatment order and 

the number of subjects per treatment. For all drug challenges 0.9% sodium chloride 

solution was used as vehicle.

Locomotor activity experiments 

Amphetamine- or cocaine-induced locomotor stimulation was measured as most 

drugs of abuse cause locomotor stimulation, an effect mediated, at least in part, by 

their ability to enhance the extracellular concentration of accumbal dopamine (Engel 

et al. 1988; Engel et al. 1992). Such parameters have been suggested to be 

homologous effects evolving from a common mechanism involving the dopaminergic 

reward system, implying that these parameters reflect reward induced by drugs of 

abuse (Engel et al. 1988; Imperato and DiChiara 1986; Wise and Bozarth 1987). It 

should however be emphasized that several other neurostransmitter systems may 

mediate drug-induced locomotor stimulation (Engel et al. 1992). Whereas CPP-testing 

demonstrates drug-induced reward more directly, locomotor stimulation provides an 

indirect yet supportive measure. Locomotor activity was recorded as described 

previously (Jerlhag et al. 2006).

Locomotor activity was registered in eight sound attenuated, ventilated and dim lit 

locomotor boxes (420 x 420 x 200 mm, Kungsbacka mät- och reglerteknik AB, 



7

Fjärås, Sweden). Five by five rows of photocell beams, at the floor level of the box, 

creating photocell detection allowed a computer-based system to register the activity 

of the mice. Locomotor activity was defined as the accumulated number of new 

photocell beams interrupted during a 60 minute period.  

Mice were allowed to habituate to the locomotor activity box one hour prior to drug 

challenge. In separate experiments, the effects of i.p. administered JMV2959 (6 

mg/kg) on amphetamine (2 mg/kg, i.p.) or cocaine (10 mg/kg, i.p.) locomotor 

stimulation was investigated in mice. All mice received drug treatment only twice 

(GHS-R1A antagonist/vehicle and psychostimulant drug/vehicle). Neither water nor 

food was available to the mice during the locomotor experiments. The activity 

registration started five minutes after the last injection and was subsequently 

measured for a 60 minute period 

In vivo microdialysis and dopamine release measurements 

For measurements of extracellular dopamine levels (that reflect dopamine release), 

mice were implanted unilaterally with a microdialysis probe positioned in the nucleus 

accumbens (N.Acc.). The surgery was preformed as described thoroughly elsewhere 

(Jerlhag et al., 2006). In brief, the mice were anesthetized with isofluran (Isofluran 

Baxter; Univentor 400 Anaesthesia Unit, Univentor Ldt., Zejtun, Malta), placed in a 

stereotaxic frame (David Kopf Instruments; Tujunga, CA, USA) and kept on a 

heating pad to prevent hypothermia. The scull bone was exposed and one holes for the 

probe and one for the anchoring screw were drilled. The probe was randomly 

alternated to either the left or right side. The coordinates for N.Acc. 1.5 mm anterior 

to the bregma, ±0.7 lateral to the midline and 4.7 mm below the surface of the brain 
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surface (Franklin and Paxinos 1996). The exposed tip of the dialysis membrane (20 

000 kDa cut off with an o.d./i.d. of 310/220 �m, HOSPAL, Gambro, Lund, Sweden) 

of the probe was 1 mm. All probes were surgically implanted two days prior to the 

experiment. After surgery the mice were kept in individual cages (Macrolon III).

In separate experiments, the effects of JMV2959 (i.p.) on amphetamine- or cocaine-

induced accumbal dopamine release using microdialysis in freely moving mice was 

investigated. On the day of the experiment the probe was connected to a 

microperfusion pump (U-864 Syringe Pump; AgnThós AB) and perfused with Ringer 

solution at a rate of 1.5 �l/minute. After one hour of habituation to the microdialysis 

set-up, perfusion samples were collected every 20 minutes. The baseline dopamine 

level was defined as the average of three consecutive samples before the first 

drug/vehicle challenge, and the increase in accumbal dopamine was calculated as the 

percent increase from baseline. After the baseline samples, mice were injected with 

JMV2959 (i.p.), which was followed by an amphetamine or cocaine (i.p.) injection in 

separate experiemnts. The dopamine levels in the dialysates were determined by 

HPLC with electrochemical detection. A pump (Gyncotec P580A; Kovalent AB; V. 

Frölunda, Sweden), an ion exchange column (2.0 x 100 mm, Prodigy 3 �m SA; 

Skandinaviska GeneTec AB; Kungsbacka, Sweden) and a detector (Antec Decade; 

Antec Leyden; Zoeterwoude, The Netherlands) equipped with a VT-03 flow cell 

(Antec Leyden) were used. The mobile phase (pH 5.6), consisting of sulfonic acid 10 

mM, citric acid 200 mM, sodium citrate 200 mM, 10% EDTA, 30% MeOH, was 

vacuum filtered using a 0.2 �m membrane filter (GH Polypro; PALL Gelman 

Laboratory; Lund, Sweden). The mobile phase was delivered at a flow rate of 0.2 



9

ml/minute passing a degasser (Kovalent AB), and the analyte was oxidized at +0.4 V 

(Blomqvist et al. 1993; Westerink, 1995). 

After completion of the microdialysis experiments, the locations of the probe were 

verified (Jerlhag et al. 2006). Only mice with probe placement in the N.Acc. were 

included in the statistical analysis. 

Verification of probe placement 

After the microdialysis experiments were completed, the location of the probe was 

verified. The mice were decapitated, probes were perfused with pontamine sky blue 

6BX to facilitate probe localization, and the brains were mounted on a vibroslice 

device (752M Vibroslice; Campden Instruments Ltd., Loughborough, UK). The 

brains were cut in 50 �m sections and the location of the probe was determined by 

gross observation using light microscopy. The exact position (some correct and some 

misplaced) of the probe and/or guide cannula/e was verified (Franklin and Paxinos 

1996).

Conditioned place preference 

To further evaluate the effects of GHS-R1A on the rewarding effects of amphetamine 

or cocaine, CPP tests were performed in mice. A two-chambered CPP apparatus, with 

distinct visual and tactile cues was used (Sanchis-Segura and Spanagel 2006; Jerlhag 

2008; Jerlhag et al. 2009). One compartment was defined by black and white striped 

walls and by a dark laminated floor whereas the other had a white unlaminated floor 

and walls of wooden texture. Compartments were illuminated by 45 lux. The 

procedure consisted of preconditioning (day 1), conditioning (days 2-5), and 
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postconditioning (day 6). On day 1 (preconditioning), mice were i.p. injected with 

vehicle and initial place preference was determined during 20 minutes, in order to 

determine which of the two compartments could be labelled “least preferred” for each 

mouse. Conditioning (20 minutes per session) was done using a biased procedure in 

which amphetamine or cocaine were paired to the least preferred compartment. In this 

biased procedure, it should be more difficult to obtain a positive CPP response. Mice 

received a total of two i.p. injections per day where amphetamine or cocaine were 

administered in the morning and vehicle conditioning in the afternoon, or vice versa.

After drug injection the mice were placed in the appropriate compartment. On day 6 

mice were placed between the two compartments and were thereafter given free 

access to both compartments for 20 minutes. Prior to this test session mice were 

acutely injected with JMV2959 (i.p.) or vehicle. As animals that receive vehicle (in 

both compartments) are not drug-conditioned and therefore have no drug-induced 

CPP response to block using an antagonist such experiments were not conducted. 

Previously, we have shown that JMV2959 has no effect per se on CPP (Jerlhag et al. 

2009). CPP was calculated as the difference in % of total time spent in the drug-

paired (i.e. least preferred) compartment during the post-conditioning and the pre-

conditioning session. 

Radioligand Binding assays

In order to study possible affinity of JMV2959 to the dopamine receptors (D1, D2S 

and D2L) radioligand binding assays were outsourced to Ricerca Biosciences, LCC 

(Taipei, Taiwan 112; study no AA94614).
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Statistical analyses  

All locomotor activity data were evaluated by a two-way ANOVA followed by 

Bonferroni post-hoc tests comparing treatments. The microdialysis experiments were 

evaluated by a two-way ANOVA followed by Bonferroni post-hoc test for 

comparisons between different treatments and specifically at given time points. The 

CPP data were evaluated by a one-way ANOVA followed by Bonferroni post-hoc 

tests comparing treatments. Data are presented as mean � SEM. A probability value 

of P< 0.05 was considered as statistically significant.
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Results

Effects of a GHS-R1A antagonist on amphetamine-induced locomotor stimulation, 

accumbal dopamine release and on its ability to condition a place preference in mice. 

As expected, amphetamine increased locomotor activity, accumbal dopamine release 

and induced a CPP.  All of these effects of amphetamine were attenuated by 

peripheral administration of JMV2959 (Figure 1A, 1B and 2A). Amphetamine-

induced locomotor stimulation (P<0.001) was blocked by a single injection of 

JMV2959 (P<0.001) in mice (F(3,28)=14.57, P=0.001). Amphetamine increased 

accumbal dopamine release relative to vehicle treatment (P=0.001) and this effect was 

attenuated by pre-treatment with JMV2959 (P=0.01) (treatment F(3,29)=13.31, 

P=0.001; time F(12,348)=15.98, P=0.001; treatment x time interaction 

F(12,348)=7.03, P=0.001). This difference was evident at time interval 60 minutes 

(P<0.01). Even though JMV2959 does not completely block the amphetamine-

induced dopamine release, this increase fails to reach statistical significance compared 

to vehicle treatment. The amphetamine-induced CPP was attenuated by an acute 

single injection of JMV2959 (F(1,14)=6.82, P=0.02).

Effects of a GHS-R1A antagonist on cocaine -induced locomotor stimulation, 

accumbal dopamine release and on its ability to condition a place preference in mice. 

In studies parallel to those described for amphetamine, we found that JMV2959 also 

suppressed the effect of the powerful psychostimulant drugs, cocaine on activation of 

the mesolimbic dopamine system (Figure 1C, 1D and 2B). Thus, locomotor activity 

was greatly increased by cocaine administration (relative to vehicle treatment) 

(P<0.001) and this stimulation was attenuated by JMV2959 pre-treatment (P<0.01)

(F(3,28)=28.94, P=0.001). JMV2959 does not completely block the cocaine-induced 
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locomotor stimulation compared to vehicle administration (P<0.001). Cocaine 

increased dopamine release in comparison to vehicle treatment (P=0.001) and this 

increase was also attenuated by JMV2959 (P=0.001) (treatment F(3,31)=11.89, 

P=0.001; time F(12,372)=18.86, P=0.001; treatment x time interaction 

F(12,372)=10.10, P=0.001). This difference was evident at time intervals 20-180 

minutes (P<0.01 or P<0.001). Even though JMV2959 does not completely block 

cocaine-induced accumbal dopamine release, this increase failed to reach statistical 

significance compared to vehicle treatment. The cocaine-induced CPP was attenuated 

by an acute single injection of JMV2959 (F(1,13)=8.22, P=0.01).

Control experiments showed that neither i.p. injection, volume infused nor the GHS-

R1A antagonist per se had any effect on locomotor activity (Figures 1A and 1C), 

accumbal dopamine release (Figures 1B and 1D) or CPP (Figures 2A and 2B).

Probe placements

After the experiment the location of the probe was verified and only mice with probe 

placement in the N.Acc. were included in the statistical analysis. It should also be 

emphasized that in a few mice the probe was located outside the N.Acc. and in these 

mice no effect of amphetamine/cocaine on accumbal dopamine release was observed 

(Figure 3). It should be emphasized that in a few mice the probe was located outside 

the N.Acc. shell and in these mice no effect of amphetamine or cocaine on accumbal 

dopamine release was observed (data not shown). Given that only amphetamine and 

cocaine increase accumbal dopamine compared to vehicle it appears less likely that 

the probes causes structural defects with in the N.Acc. that may influence the 

possibility to detect dopamine release.  
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Radioligand Binding

The radioligand binding studies show that JMV2959 does not bind to human 

dopamine D1, D2L and D2S receptors up to a concentration of 10 µM, whereas 

JMV2959 does bind to the human GHS-R1A with an IC50 of 32 nM (Moulin et al. 

2007). These data support the specificity of JMV2959 as a selective GHS-R1A 

antagonist.
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Discussion

The present study demonstrates that the ghrelin signalling system, involving GHS-

R1A, is required for indirect measures of the rewarding properties of the 

psychostimulant drugs, amphetamine and cocaine.  Hence, we found that the ability of 

these drugs to induce locomotor stimulation, accumbal dopamine release and to 

condition a place preference is reduced in mice treated peripherally with a GHS-R1A 

antagonist. These effects of drugs of abuse, considered to constitute part of the 

addiction process, are intimately associated with its reinforcing properties (Wise and 

Bozarth 1987). The GHS-R1A was administered peripherally in the present study, but 

it seems likely that it gains access to the CNS and acts at the level of the mesolimbic 

dopamine system (Jerlhag et al. 2009).  Taken together with our recent studies 

showing that the central ghrelin signalling system is required for alcohol- induced 

locomotor stimulation, accumbal dopamine release and CPP (Jerlhag et al. 2009), 

these data support the idea that GHS-R1A may play an important role in addiction 

processes. 

Supporting a role of ghrelin signalling in drug reinforcement are data demonstrating 

that food restriction, a state which is associated with elevated ghrelin levels, augments 

cocaine- as well as amphetamine-induced locomotor stimulation, facilitates 

acquisition of cocaine seeking behaviour and enhances self-administration of cocaine 

or amphetamine in rats (Carroll et al. 1979; Carroll and Stolz 1983; Bell et al. 1997; 

Carr et al. 2002; Gualillo et al. 2002). However, a role of stress should not be 

excluded. Moreover, in rats, elevated plasma level of ghrelin enhances cocaine-

seeking and augments cocaine-induced reward, assessed by locomotor stimulation as 

well as CPP testing (Wellman et al. 2005; Davis et al. 2007; Tessari et al. 2007). The 
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finding that GHS-R1A is constitutively active in the absence of ligand (Holst et al. 

2003) makes it difficult to determine to what extent drug-induced reward is dependent 

on signalling by endogenous ghrelin or by the activity of the GHS-R1A per se.

The ability of psychostimulant drugs to activate the mesolimbic dopamine system and 

thereby cause reinforcement may be due to increased dopamine synthesis, increased 

dopamine release and/or enhanced activity of the mesolimbic dopamine neurons. 

Neurotransmitters in areas such as the N.Acc. and the ventral tegmental area (VTA) 

collectively regulate this activation (Samson et al. 1991; White et al. 1995; Reith et al. 

1997; Zhang et al. 1997). Here it was shown that GHS-R1A, possibly at the level of 

the mesolimbic dopamine system, mediates the stimulatory, dopamine releasing and 

CPP properties of psychostimulant drugs.  In the VTA, GHS-R1A is expressed on 

dopaminergic neurons (Abizaid et al. 2006) and it has been suggested that GHS-R1A 

regulates the activity of tegmental dopamine neurons via heterodimeraziation of the 

GHS-R1A to the dopamine D1 receptor as well as by the constitutive activity of the 

GHS-R1A (Holst et al. 2003; Jiang et al. 2006). By this route GHS-R1A may 

modulate the ability and sensitivity of the mesolimbic dopamine neurons to be 

activated by psychostimulant drugs. The possibility that GHS-R1A influences the 

syntheses and release of dopamine should also be considered. In the N.Acc. the 

dopamine released by amphetamine and cocaine activates dopamine receptors and it 

should therefore be considered that the GHS-R1A antagonist attenuates 

psychostimulant-induced reinforcement by inhibiting the dopamine receptors in the 

N.Acc. This appears less likely since JMV2959 did not bind to any of the dopamine 

receptors (D1, D2L and D2S) in concentrations up to 10 �M, whereas it binds to the 

GHS-R1A with an IC50 of 32 nM (Moulin et al, 2007). GHS-R1A in the N.Acc. may 
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also be of importance for psychostimulant induced locomotor stimulation, dopamine 

release and CPP, even though they do not appear to regulate alcohol consumption 

(Schneider et al. 2007). Thus, it should be considered that the GHS-R1A antagonist 

might reduce the psychostimulant-induced reward via interruption of the reported

heterodimeraziation of the GHS-R1A to the dopamine D1 receptor (Jiang et al., 

2006). The possibility remains, however, that downstream mechanisms or 

independent of the mesolimbic dopamine system also may have important roles for 

the rewarding properties of cocaine and amphetamine. 

Our collective findings regarding the role of the central ghrelin signalling system, 

including the GHS-R1A, in alcohol (Jerlhag et al. 2009) as well as amphetamine- and 

cocaine-induced reward may also have clinical relevance since hyperghrelinemia is 

found in individuals with substance use disorder, for example, after 

methamphetamine use and in alcohol use disorder, specifically in those with high 

craving scores (Kim et al. 2005; Kraus et al. 2005; Addolorato et al. 2006; 

Hillemacher et al. 2007; Kobeissy et al. 2007). Furthermore., one study has 

demonstrated that a SNP in the GHS-R1A gene is associated with high alcohol 

consumption (Landgren et al. 2008). Collectively, these findings rise important 

questions regarding the physiological role of ghrelin influencing not only food intake 

and appetite but clearly also having a broader role in reward induced by addictive 

drugs such as alcohol, amphetamine and cocaine. Our data suggest that the central 

ghrelin signaling system, including the GHS-R1A, constitutes a novel potential target 

for treatment of addictive behaviours such as drug dependence.
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Figure legends 
Figure 1. Suppressed ghrelin signaling, by ghrelin receptor (GHS-R1A) antagonist 

(JMV2959), attenuates amphetamine- and cocaine-induced locomotor stimulation 

and accumbal dopamine release.

(A) Amphetamine-induced locomotor stimulation was attenuated by a single i.p. 

injection of JMV2959 to but not by vehicle injection in mice (n=8 in each group; 

***P<0.001, #P=n.s for Veh-Veh vs JMV-Amph). (B) The amphetamine-induced 

increase in accumbal dopamine release was absent in GHS-R1A antagonist 

(JMV2959, i.p.)- but not in vehicle-treated mice (n=8 in Veh-Veh (square), Veh-

Amph (filled triangle) and JMV-Veh (triangle) group and n=9 in JMV-Amph (circle) 

group). This difference was evident at time interval 60 min (**P<0.01, Bonferroni 

post-hoc test). Even though JMV2959 does not completely block the amphetamine-

induced accumbal dopamine release, this increase fails to reach statistical significance 

compared to vehicle treatment. (C) Cocaine-induced locomotor stimulation was 

attenuated by a single i.p. injection of JMV2959 to but not by vehicle injection in 

mice (n=8 in each group). (**P<0.01***P<0.001, ###P<0.001 for Veh-Veh vs JMV-

Coc). (D) The cocaine-induced increase in accumbal dopamine release was absent in 

GHS-R1A antagonist (JMV2959, i.p.)- but not in vehicle-treated mice (n=8 in Veh-

Veh (square) and JMV-Veh (triangle) group, n=9 in Veh-Coc (filled triangle) and 

n=10 in JMV-Coc group (circle). This difference was evident at time intervals 20-180 

min (**P<0.01, ***P<0.001). Even though JMV2959 does not completely block the 

cocaine-induced accumbal dopamine release, this increase fails to reach statistical 

significance compared to vehicle treatment.  

Figure 2. The ghrelin receptor (GHS-R1A) antagonist (JMV2959), attenuates 

amphetamine- and cocaine-induced conditioned place preference (CPP) 
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(A) The amphetamine-induced CPP (n=8) was attenuated by an acute single i.p. 

injection of the GHS-R1A antagonist, JMV2959 (n=8), in mice. (B) A cocaine-

induced CPP in mice pre-treated with vehicle (n=7) was obtained and pre-treatment 

with JMV2959 (n=8) attenuated this stimulation in mice (*P<0.05). All values 

represent mean � SEM. 

Figure 3. Verification of probe placement

A coronal mouse brain section showing ten representative probe placements 

(illustrated by vertical lines) in the N.Acc. of mice used in the present study (Franklin 

and Paxinos, 1996). Ten representative placements are illustrated, but all other 

placements were within the N.Acc. shell. The probe is not shown to scale and the 

outer diameter of the probe was 310 �m. Placements outside this area were not 

included in the statistical analysis. The number given in the brain section indicates 

millimetres anterior (+) from bregma.  
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