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Abstract 
The multitask cell at Volvo Aero Corporation is a flexible job shop containing ten 

resources aimed at being flexible with regard to product mix and processing types. 

Computing schedules for this type of job shop is an NP-hard problem. The computation 

times will therefore always be an issue, especially as the scheduling problem includes 

limited availability of fixtures and preventive maintenance planning. Computational 

results show that with the method developed we are able to produce optimal, or near-

optimal, schedules for real data instances within an acceptable time frame. The 

scheduling principle proposed shortens lead times and minimizes tardiness.  
 

Keywords: Production planning, Flexible job shop scheduling problem, Mathematical 

optimization 

 

 

Introduction 

The multitask cell at Volvo Aero Corporation is a flexible job shop containing ten 

resources aimed at being flexible with regard to both product mix and processing types. 

The production cell is intended to carry out a large variety of jobs, five of its resources 

being multi-purpose machines that are able to process three types of operations: turning, 

milling, and drilling. The production cell was built to increase the degree of machine 

utilization and to reduce product lead times, compared with the ordinary job shops at the 

production site. The capital tied up in the investment in the multitask cell is substantial; 

high machine utilization is therefore crucial. This is a demanding requirement as the 

scheduling of the cell is a highly complex combinatorial problem, recognized as the 
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flexible job shop scheduling problem (FJSP) in the literature of operations research 

(Baykasoglu and Özbakir, 2010). 

 The purpose of the work presented in this paper is to contribute to the goal of enabling 

the creation of optimal, or near-optimal, schedules for multi-purpose production cells 

similar to the one at Volvo Aero. The scheduling procedure must be fast and produce 

reliable and robust schedules, since the conditions are unceasingly changing with new 

jobs continuously arriving at the queue. The optimization objective is to minimize the 

mean throughput time and the total tardiness of the jobs. With a certain periodicity, a 

number of preventive maintenance activities need to be carried out in some of the 

resources of the cell, and should hence also be scheduled simultaneously, and optimally, 

with the production tasks.   

 

Related work 

A few decades ago it was not possible to employ exact mathematical optimization 

methods to instances of sizes relevant for real applications of the flexible job shop 

problem, since the computation times required for the solution process were too long. 

Therefore, a lot of research was concentrated on obtaining approximate solutions to job 

shop problems through the application of heuristic methods; see (Jain and Meeran, 1999) 

for a historical overview. However, during the past decades the development of theory 

and practice of mathematical optimization modeling and methods, together with the 

development of computer hardware, have decreased computation times by several orders 

of magnitude. Computing job shop schedules is an NP-hard problem; see (Brucker et al., 

1997), where it is shown that the multi-purpose machine (MPM) job shop problem 

(another name for the FJSP) is NP-hard for problems with more than three jobs and two 

machines. This means that computation times will always be an issue for complex 

problems such as that of scheduling the multitask cell including preventive maintenance 

planning and a limited availability of fixtures. 

 The methods proposed for obtaining feasible solutions to job shop problems are still 

dominated by various meta-heuristics, see e.g. (Bülbül, 2011), and (Beck et al., 2011) 

who propose a hybrid between the shifting bottleneck heuristic and tabu search, and a 

combination of constraint programming and local search, respectively. Some heuristic 

methods for tackling the FJSP are found in (De Giovanni and Pezzella, 2010), (Mati et al., 

2011) and (Hmida et al., 2010). The only article dealing with a FJSP with fixture 

constraints we have come across is (Rahimifard and Newman, 1997), who describe a 

simulation based scheduling approach. Articles considering FJSP including the 

scheduling of maintenance activities are for example (Wang and Yu, 2010) and 

(Golmakani and Namazi, 2012) who propose a so called filtered beam search algorithm 

and an artificial immune algorithm, respectively. In the latter a nonlinear mathematical 

model is presented, which is solved for small instances only (6 jobs and 6 machines). 

 There are few mixed integer linear programming (MILP) models proposed for the 

flexible job shop problem in the literature; examples are (Fattahi et al., 2007), (Özgüven 

et al., 2010) and (Mati and Xie, 2011). All models presented in these references are based 

on variables commonly used for job shop problems in text books in the field of 

operations research, i.e. variables similar to the ones first employed in (Manne, 1960); 

see, e.g., p. 365 in (Taha, 2007). In previous work (Thörnblad, 2011), we have presented 

three MILP models of a sub-problem to the problem of scheduling the multitask cell, 
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namely the problem of scheduling the jobs on the five multi-purpose machines. One of 

the models was based on Manne variables and this model was by far outperformed by our 

newly developed time-indexed model with respect to both computation times and the 

sizes of instances that can be solved using standard optimization software. In this paper 

we present a time-indexed model of the problem of scheduling the whole multitask cell 

including fixture availability constraints. 

 In the next section, the problem is described in detail and the notation needed for 

presenting the mathematical model is given. This section is followed by the presentation 

of the mathematical model. The article ends with a section of computational results based 

on real data, and conclusions. 

 

Problem description 

In addition to the ten resources in the multitask cell, denoted , there is an input/output 

conveyor, being the entrance for the parts arriving at the cell, a stocker crane for 

transporting the parts inside the cell, and a central tool storage to furnish the processing 

machines with the appropriate tools. Each job in the set of jobs to be scheduled 

consists of a set of {1, , }j jn so-called route operations, that are to be processed in 

a specific order. Since the multipurpose machines are similar but not identical, some 

route operations are allowed to be processed only by a subset of the resources. Hence, 

there are several possible routes for the completion of one job; see an example in Fig. 1. 

The processing time of route operation i of job j is denoted by pij. 
 

 
Figure 1 –A schematic overview of the multitask cell. A possible route for a part is indicated with 

dashed lines. 

 

 These are areas inside the cell dedicated to the storage of parts before and between 

processing. These storage areas have never been used to their full capacity since 

production started in the multitask cell, and are therefore assumed to be sufficiently large. 

The parts that are ready to be processed in the cell are those that are checked-in at the 

input conveyor but not yet put into a fixture at a set-up station; the release dates, rj, of the 

corresponding jobs are set to 0. The release dates of the remaining jobs to be scheduled 

are set to the corresponding part’s estimated time of arrival at the cell. All jobs have a due 

date, dj, which is the time when they are due to be completed. 

 Each part to be processed in the multitask cell is mounted into a fixture in one of the 

cell’s three setup stations. The fixtures are specially designed and manufactured for each 
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type of processing operation to be performed in one of the multi-purpose machines. The 

number of fixtures of each type is limited, and is thus a constraint to be considered when 

solving the scheduling problem. 

 The planning horizon of the schedule is divided into T + 1 intervals, each of length  

hours. Since the resources are often occupied by the processing of previous jobs at time 

0, we use the parameter ak to denote the first time a resource k is available. The value of 

the parameter T has to be large enough such that the time horizon [0, ( 1) ]T  contains an 

optimal schedule. A small value of T is, however desirable, since this means that the 

computation times become shorter. This is due to the fact that the number of variables 

and constraints in the time-indexed formulation is a multiple of the number of intervals. 

We determine a suitable value of T using a heuristic; see (Thörnblad, 2011). 

 The problem is thus to construct a feasible schedule for all route operations of all jobs 

considered within the planning horizon which minimizes (or maximizes) the objective 

function. The minimization of tardiness is considered the main objective, but since this 

model should work for all possible scenarios, there is a high probability that there will be 

some scenarios with no tardy jobs, and in order to produce good optimal schedules also 

for these scenarios, the minimization of flow time is a secondary objective. The objective 

function is thus to minimize 
 
 

(1) 
 

 

where Cj and Tj are the completion time and tardiness of job j, respectively, and t1j is the 
starting time of job j. It is important that the objective weight 

s
is much smaller than the 

other weights aj and bj, since this term strives to schedule the jobs as late as possible. It is 
included in the objective function in order to reduce the time each fixture is occupied. 
This objective function contributes to the generation of schedules that will satisfy the 
goals of low tardiness, short product lead times as well as high machine utilization. 

 In the next section we will present our time-indexed formulation of the problem of 

scheduling the multitask cell. 

 

The mathematical model 

The time-indexed model formulated in this section is expressed solely in the variables

ijkux , which are valued 1 if operation i of job j is scheduled to start processing in resource 

k in the beginning of time interval u, 0 otherwise. Since the starting time of an operation 

can be expressed in terms of these variables by 

 

,ij ijku

k u

t ux  

 

the objective function (1) given in the previous section can be rewritten as 

 
 

(2) 
 

 

 Throughout the article we define (z)+ := max{z;0}. The objective function (2) is linear 

since the max expression is used solely on parameters and not on the variables.   

1( ),j j j j j

j

a C b T ts
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 First we will present and explain the constraints for the so-called base model, before 

we move on to introduce some additional constraints. The base model is to minimize the 

function (2) with respect to the variables ijkux  subject to  

 
 

(3) 

 
  

(4) 
 

 

(5) 

 
 

(6) 

 
 

(7) 

 
 

 

(8) 

 
 

(9) 

 

The constraints (3) ensure that each operation i of job j is scheduled to be processed 

exactly once. The constraints (4) regulate that all operations are processed in an allowed 

resource k, since the parameter ijk is valued 1 if operation i of job j can be processed in 

resource k, and 0 otherwise. The ten processing resources are treated as eight when 

solving the problem, since the three set-up stations are identical and therefore treated as 

one resource, ks, with the capacity of processing three operations simultaneously, in order 

to avoid problems with symmetry. The constraints (5) and (6) ensure that one operation at 

a time is scheduled in each resource k, since the constraints consist of sums of all the 

decision variables for a specific resource k over all time periods of the same length as the 

processing time pij of an operation. The constraints (7) make sure that no operation i can 

start being processed before the previous operation for the same job has been completed. 

These are the so-called precedence constraints for the operations within a job j. The 

constraints (8) ensure that the first operation of a job is scheduled after the release date of 

the job in an available resource. Finally, the constraints (9) make sure that an operation is 

not scheduled to start at a time that would implicate that the operation in question or a 

succeeding operation would not be completed at the end of time interval T. 

 Some of the jobs considered are to be processed on the same physical part, and are 

hence subject to another type of precedence relationships than those described in (7). 

These jobs have to be separated by a time lag, vjq, which is the planned lead time between 

the completion of job j and the start of job q; this time period might solely include the 

internal transportation time within the multitask cell, but it might also be a longer time 

including several operations that are to be performed on the part in other workshops of 

the factory. These precedence constraints may be formulated as 1q j jqt C v ,where job j 

that has to precede job q by a time lag jqv , but their equivalent formulation (10) given 

below typically yields better LP bounds, enabling a faster resolution of the problem: 
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 (10) 
 

 

In (10) the set  consists of all pairs of adjacent jobs in the routing that are to be 

performed on the same physical part. 

 Each job occupies a fixture during the whole visit in the multitask cell. Each fixture 

type f  is specially designed and can only be used for a subset f of jobs. Since they 

are very expensive, only f fixtures of each type are available. The capacity constraints 

on the number of fixtures occupied at each time interval are formulated as 
 

 

 (11) 

 

 

where the sum over the resources of the expression within parentheses is 1 if job j is in 

process during time interval u, and 0 otherwise. 

 

The scheduling of preventive maintenance activities 

There are three types of preventive maintenance activities performed regularly: cleaning 

of the tool magazines, machine verification, and probe verification. A tool magazine is 

cleaned and a probe verification is carried out in each multipurpose machine on a regular 

basis during a time window of length M . Regarding the machine verification, there is a 

rolling schedule over two weeks where two of the multi-purpose machines are maintained 

during the first week, and three during the second week. 

 In order to schedule a maintenance activity m M
 of duration 

mkd  in resource k, we 

define the variable
mku

, which equals 1 if activity m is scheduled to start in resource k at 

the beginning of time interval u, and 0 otherwise. The constraints that 
mk

 activities (
mk

is integer-valued) is scheduled during a time window that starts at the beginning of time 

interval mk are formulated as 

 
 

 (12) 

 

 

where  the equality sign can be replaced by a  (which will then be referred to as (12 )), 

if we add a positive term with the sum of the maintenance decision variables with a small 

weight to the objective function: 

 
 

 (13) 
 

 

 The capacity constraints (5) of the base model also need to be altered when adding the 

scheduling of maintenance activities, since no job can be scheduled in the resource during 

maintenance. Preemption is not allowed in any operation or maintenance activity, i.e. the 

operations and maintenance activities must be completed before the resource can process 
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the next task. Hence, the constraints (5) need to be reformulated as 
 

 

 (14) 
 

 

 Instead of using time windows that begin at a certain time 
mk

 as in the constraints 

(12), another version of these constraints can be formulated where the time window is 

replaced by a rolling horizon, so that at any time two consecutive maintenance activities 

will never be separated by more than 
R

 hours. These constraints are well suited for 

situations when the maintenance of the resource is driven by restricted life lengths of 

crucial parts of the resource:  
 

 

 (15) 
 

 

Differentiated objective weights 

As pointed out in the problem description section, the scheduling algorithm should work 

for all possible scenarios, and among these are scenarios where some parts are late 

already when they arrive at the multitask cell, i.e., their respective jobs have negative due 

dates. This means that the job will have a positive tardiness, | |j j jT C d , since the 

definition of tardiness is ( )j j jT C d . Hence, if all jobs have negative due dates, then 

the objective to minimize the total tardiness will yield the same solutions as the objective 

to minimize the total flow time ( + the constant term | |jj
d ). 

 Since the solutions to the optimization model do not depend on the value of the 

negative due dates, the same solutions will be found if all negative due dates are set to 0. 

However, in the schedule one might wish that the jobs that are the most late are 

prioritized before not so late jobs. One way to accomplish this is to determine the 

tardiness objective weights, bj, for a job j so that a late job gets a higher weight than a job 

that is less late. Let B be the weight for the jobs with due date of 0. Then, the weight bj 

for a job j is defined as 
 

(16) 
 

where | |qd  is the due date of the job with the largest absolute due date that is not an 

outlier. In the computational tests below, we defined an outlier to be a job p for which 

20% of the job’s absolute due date exceed the median of | |jd , i.e., a job p such that  

0.2 | |pd d , d  being the median of | |jd . Instead of this simple definition we intend to 

use the definition that an outlier “is a point which falls more than 1.5 times the inter-

quartile range above the third quartile or below the first quartile” (Renze, 2012) in future 

research.  
 

Computational results 

Real data, from the site’s Enterprise Resource Planning (ERP) system, have been used to 

test and validate the model. Nine scenarios were collected from the multitask cell during 

a period of three months in the spring of 2012, and from these instances were created 

with 15 35n , where n is the number of jobs. In Table 1, all the models used in the 

( 1) ( 1)

1, { }, .
j ij mk

u u

ijk mk s

i j u p m u d

x k k u

min{ 1; 1 }
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mku T d
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u
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 8 

computational tests are defined. The computations were carried out using AMPL-

CPLEX12 on a computer with two 2.66GHz Intel Xeon 5650, each with six cores (24 

threads), and its total memory was 48 Gbyte RAM. 
 
Table 1 – Definition and notation of the model tested. 

Notation Description Model 

P Base model with precedence constraints Min (2) s.t.(3)-(10) 

PF Base model + fixture constraints Min (2) s.t. (3)-(11) 

PFMeq Base model + fixture constraints + maintenance 

constraints with time window 

Min (13) s.t. (3), (4), 

(6)-(11), (12), (14) 

PFMgeq Base model + fixture constraints + maintenance 

constraints with time window with  

Min (13) s.t. (3), (4), 

(6)-(11), (12 ), (14) 

PFR Base model + fixture constraints + maintenance 

constraints with “rolling time window” 

Min (13) s.t. (3), (4), 

(6)-(11), (14), (15) 

PFMgeqW As PFMgeq, but with differentiated objective tardiness 

weights 

Min (13) s.t. (3), (4), 

(6)-(11), (12 ), (14) 

 

 The model PFMeq was not tested for all instances, since the time required to solve this 

model to optimum was longer than that required to solve PFMgeq to optimum. When 

comparing the two models for an instance with 30 jobs, PFMeq quickly found a very 

good solution, although it took longer to reach an optimum; see Fig. 2. Both models find 

a solution with objective values within 3% from the optimal objective value within the 

first 5 minutes of computation time. 
 

 
Figure 2 – Lower and upper bound of the objective function for one instance with 30 jobs. The upper 

bound is the objective value of the best found feasible solution at this time point of the algorithm. The 

values are normalized with respect to the optimal objective value. 

 

 In Fig. 3 the computation time required to solve the models P, PF, PFMgeq, PFR, and 

PFMgeqW to optimality is plotted for all instances. A time limit of 2 h was set for the 

computation time (clocktime). The base model P was solved in just a few seconds for 

some instances but had trouble solving some other instances: it is the only model that 

reached the time limit of 7200 s for one instance of 20 jobs and two instances of 25 jobs. 

The time to compute the instances vary more between the different instances than 

between the models, hence the added fixture and maintenance constraints do not seem to 

complicate the solution algorithm too much, at least not for this sample of real instances. 
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The objective weights used for all models but PFMgeqW were aj =1, bj=10, 
s

= 0.001, 

and 
M

=0.0001, and the differentiated tardiness weights were calculated using the 

formula in (16), with B=10. 

 

 
Figure 3 – The computation times (clock time) required to solve the models P, PF, PFMgeq, PFR and 
PFMgeqW to optimality versus different instance sizes. The markers at 7200s indicate the instances 

when the time limit was reached before optimality was proven.  

 

 The instance sizes needed to schedule the coming shift for the test scenarios varies 

between 21 33n , i.e., all jobs with release dates 8jr h. In Table 2, the computation 

times required for the model PFMeqW to find a solution with a relative optimality gap of 

at most 1 and 5%, respectively, are listed. The average gap is also listed, since the 

algorithm often jumps to a solution much better than the limit set. 
 
Table 2 – Computation times in seconds required for the model PFMeqW to find a solution with a 

relative optimality gap of 1 and 5%, respectively. One of the instances with 35 jobs was terminated 

due to the time limit before the gap had decreased below 1%. 

 Gap 5% Gap 1% 

#jobs (n) min mean max Avg. gap min mean Max Avg. gap 

15 0.8 4.9 23.9 0.28% 0.8 5.0 23.8 0.14% 

20 4.0 29.3 149.1 1.40% 4.0 49.0 268.3 0.25% 

25 22.1 37.1 71.9 1.76% 22.1 128.6 529.1 0.69% 

30 70.9 192.5 737.9 2.37% 73.8 853.0 2773.7 0.80% 

35 67.8 477.3 1293.9 2.53% 144.0    − 7200.0 1.04% 

 

 The mean computation time for finding a schedule with 35 jobs is about 8 min 
(477.3 s), and the longest time required is a bit more than 20 minutes. We consider this a 
reasonable computation time to find a schedule for the coming shift, provided one can 
accept that the objective value of the solution found is at most 5% from the optimal 
objective value. The algorithm found an optimal solution in 12 (19) out of the 45 test runs 
when the termination criteria was an optimality gap of 5% (1%). 
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Conclusions 

We have shown that by employing the time-indexed model presented in this paper, we 

are able to produce optimal schedules for a real application within a reasonable amount of 

time, a task which is impossible when employing a model formulated with variables of 

the kind most frequently used in the literature for job shop problems. Employing the 

proposed scheduling algorithm will shorten lead times and minimize tardiness, and 

provide a more efficient use of the resources of the multitask cell than that of today. To 

our knowledge, this is the first time-indexed model presented for a flexible job shop 

problem including preventive maintenance and fixture availability. 
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