
Formalizing the Dialogue Move Engine

Peter Ljungl öf

Dept. of Computer Science
Chalmers University of Technology

412 96 G̈oteborg, Sweden
peb@cs.chalmers.se

Abstract
In this paper we present a calculus for reasoning mathematically about rule-based dialogue systems – so calleddialogue move engines
developed in the TRINDI project. The calculus is similar to term rewriting systems and dynamic logic. It is defined using monads, which
are used for describing programming languages, and in functional programming to capture computations with side-effects.

1. Introduction
In this paper we present a calculus for reasoning math-

ematically about rule-based dialogue systems – so called
dialogue move enginesdeveloped in the TRINDI, SDS and
INDI projects1 (Bohlin et al, 1999; Traum et al, 1999). The
calculus is similar to term rewriting systems (Visser and Be-
naissa, 1998) and dynamic logic (Harel, 1984). It is defined
using monads, which are used for describing programming
languages, and in functional programming to capture com-
putations with side-effects (Moggi, 1991; Wadler, 1995).
In the end we show how the calculus can be used to prove
properties of a dialogue system.

1.1. Preliminaries

Since we are only interested in the dialogue manager
part of a dialogue system, we assume that there exist good
translations between utterances and dialogue moves. With-
out loss of generality we can then assume that the dialogue
participants communicate using dialogue moves.

As a simplification we assume that the dialogue is se-
rial – that the participants make their utterances one after
another and that they never interrupt each other. Another
simplification is that each utterance can be translated into a
time-ordered list of dialogue moves, thus forgetting about
overlapping sub-utterances and so on.

In the discussion at the end we will try to argue that
these simplifications do not induce severe limitations on the
strength of the framework.

1.2. Notational conventions

In this paper we use a lot of terminology taken from pro-
gramming languages and type theory. For those not famil-
iar with our way of writing things, here are some informal
explanations.

We writea ∈ A to say that the objecta is of the type
A. The basic type constructors we are going to use are×,
→ and[]. Given two typesA andB, A×B is the type of
pairs ofA andB, A → B is the type of functions fromA
to B, and[A] is the type of lists of typeA.

1TRINDI (Task Oriented Instructional Dialogue),EC Project

LE4-8314. SDS (Swedish Dialogue Systems),NUTEK/HSFR Language

Technology Project F1472/1997. INDI (Information Exchange in Dia-
logue),Riksbankens Jubileumsfond 1997-0134.

There are some standard operations and predicates on
lists which we will use – thedeleteand add operations
deletes and adds elements to a list, theappendoperation
concatenates two lists, and thememberpredicate is a se-
quential member checking predicate, binding the second
argument to each element of the list. We will also use the
standard way of using lists to represent backtracking – com-
putations that can fail or return several results – with the
empty list representing failure (Wadler, 1985).

2. Defining the dialogue move engine
A dialogue move engine (DME for short) consists of a

description ofi) what the information state (infostate for
short) looks like,ii) what kinds of dialogue moves there are
andiii) how they are applied to the infostate,iv) a collection
of update rules on the infostate, andv) an update algorithm
which defines how the rules are used to update the infostate.

Parallel with the formalization, we introduce an exam-
ple DME to illustrate the principles. This is a small subset
of the information-seeking DME used in the GoDiS sys-
tem (Traum et al, 1999), but it is general enough for the
purposes of this paper.

2.1. The information state

The information stateis seen as a representation of an
agent’s current knowledge, especially the part that change
during the dialogue. In this formalism the infostate is a type
IS. For the example DME we will use a record with the
fields shown in table 1 below, whereplan is a list of things
to do in the future,bel is a list of beliefs,qud is a list of
questions currently under discussion, andlm is a list of the
dialogue moves that the other participant just uttered. We
do not further define propositions and questions as the for-
malization is independent of which notion of proposition or

plan ∈ [Move]
bel ∈ [Proposition]

qud ∈ [Question]
lm ∈ [Move]

Table 1: The information state used in the example

r1 : integratequestion
conditions

member(lm,Q)
isquestion(Q)

effects
delete(lm,Q)
add(qud,Q)

r2 : integrateanswer
conditions

member(lm,A)
isproposition(A)
member(qud,Q)
isanswerto(Q,A)

effects
delete(lm,A)
delete(qud,Q)
add(bel,A)

r3 : answerquestion
conditions

member(qud,Q)
member(bel,A)
isanswerto(Q,A)

effects
delete(qud,Q)
add(plan,inform(A))

s : selectmove
conditions

member(plan,M)
effects

delete(plan,M)
select(M)

Table 2: The update rules used in the example

question is chosen. In this simple example we have just two
kinds ofdialogue moves– to aska question and toinform
of a fact, represented as a proposition.

We view a dialogue move as a basic type, so we need
to know how to incorporate an utterance, represented as a
sequence of moves, into the infostate. This is done with
the functionapply ∈ IS× [Move] → IS which updates the
infostate with a list of moves. In our example theapply
function simply adds the moves to the end of thelm list.

2.2. Update rules

An update rulespecifies an update on the infostate
(called the effect), which is guarded by a condition – if
the condition holds, the effect can be applied. The effect
may also have a side effect: it can select one or several
dialogue moves to be performed. The conditions and ef-
fects are composed by combining basic operations on the
elements of the infostate. The update rules of our example
are listed in table 2 above. The first two rules interprets
the user’s last move – if it was a question, it will be added
as a question under discussion, and if it was an answer to
a question currently under discussion it will be added as a
belief. The third rule answers a question under discussion,
if the system knows the answer, and the fourth rule selects
the first move on the plan to be uttered to the user. Since
this last rule selects a dialogue move to be performed, we
call it aselection rule.

More formally we can say that an update rule is a func-
tion that given an infostate, returns either a failure if the
condition fails, or the different results of the effect ap-
plied to the infostate. This gives usrule ∈ Rule where
Rule= IS→ [IS×[Move]].

2.3. The update algorithm

Theupdate algorithmdefines how these rules should be
applied to an infostate; that is, given an infostate, the update
algorithm updates the infostate and selects a list of moves
to perform. This suggests that the update algorithm is a
functionupdate∈ IS→ IS×[Move].

The naive algorithm is to check the rules in order, and
as soon as a rule applies update the infostate accordingly
and then repeat the algorithm until there are no rules that
apply.

But if we use this naive algorithm on our example rules,
all the moves that are in theplan will be selected at once –
this is maybe not immediate from the definitions, but can be

proved using the formalism we will introduce later. Since
we want it to just say one thing at each turn, we have to
change the algorithm to first apply the rulesr1 . . . r3 until
this can no longer be done, and then apply the rules once,
selecting only one move.

With these definitions we can define thedialogue move
engineto be a function that, given a list of dialogue moves
uttered by the user, applies them to the infostate, and then
updates the infostate with the update algorithm, selecting
new moves to perform during the updating. We now finally
have a functiondme∈ IS×[Move] → IS×[Move], with the
very simple definitiondme= update◦ apply.

3. A calculus of update rules
In this section we introduce a calculus for the update al-

gorithm and show that this can be used to define the update
rules themselves. The calculus is similar to term rewrit-
ing systems (Visser and Benaissa, 1998) and dynamic logic
(Harel, 1984), with the main exceptions being that the rules
also has the ability to communicate to the outer world by
selecting dialogue moves to perform, and all the operators
are deterministic.

We have two trivial rules and three basic operators that
make new rules out of old ones:

• The identity rule 1 always succeeds without affecting
the infostate and without selecting any moves.

• Thefailure rule0 always fails.

• Thesequential compositionr ; r′ of two rules first ap-
pliesr, and if that succeeds, appliesr′ to the result of
r The composition selects all the moves selected by
eitherr or r′. It fails if either r or r′ fails. Composi-
tion has1 as an identity and0 as a zero, which gives
the laws1 ; r = r ; 1 = r and0 ; r = r ; 0 = 0.

• Thedeterministic choicer+r′ first appliesr, and only
if that fails it appliesr′. Choice has0 as an identity and
1 as a left zero, giving the laws0 + r = r + 0 = r and
1 + r = 1 (but not necessarily equal tor + 1).

• The repetition r∗ applies r and if that succeeds it
executesr∗ on the result (concatenating the selected
moves). Ifr fails, it succeeds leaving the infostate un-
changed and selecting nothing. The repetition can be
unfolded using the other operators:r∗ = (r ; r∗) + 1.

r1 = ∃q∈ lm. is question(q) ; delete(lm, q) ; add(qud, q)
r2 = ∃a∈ lm.∃q∈qud. is proposition(a) ; is answerto(q, a) ; delete(lm, a) ; delete(qud, q) ; add(bel, a)
r3 = ∃q∈qud.∃a∈bel. is answerto(q, a) ; delete(qud, q) ; add(plan, inform(a))
s = ∃m∈plan. delete(plan,m) ; select(m)

Table 3: Formal definitions of the update rules of the example

With these definitions the update algorithm of our example
can be defined as(r1 + r2 + r3)∗ ; s. This suggests that
the update algorithm is just a very complicated update rule.
But this definition of the update algorithm is not completely
correct; the type of theupdatefunction does not correspond
to the type of the update rules. The main difference is that
the update rules can fail, which the update algorithm is not
allowed to. But a correctly defined update algorithm will
never fail, which means that the list of results it returns will
be non-empty. Then we can use the standard list function
head∈ [A] → A, which gives the first item in a list, to
extract the result we want. This gives for our example the
resulting functionupdate= head((r1 + r2 + r3)∗ ; s).

3.1. Defining the update rules

Now it turns out that we can use the calculus to define
the update rules themselves. To apply an update rule we
first check the conditions, and if they hold we can apply the
effects. Both the conditions and the effects are ordered –
we apply them in the order they are written. This means
that an update rule is just a sequential composition of more
basic rules, the individual conditions and effects. There is
just one thing that needs to be taken care of – the special
memberpredicate which introduces some kind of choice
depending on the elements of the first argument. For that
purpose we introduce the operator∃x ∈ A. r(x), whereA
is a list andr(x) is a rule wheneverx is an element inA.
The idea is that ifA = [a1, a2, . . . , an] when the rule is
invoked, then∃x∈A. r(x) = r(a1) + r(a2) + · · ·+ r(an).

Another addition is to add the special selection rule
select(m), which leaves the infostate unchanged and selects
the single movem. With these additions to our calculus,
we can define the update rules of our example as in table 3
above. (We still have to give definitions of the basic rules
of course).

4. Interpreting the calculus
Monads are standard tools in functional programming

for capturing computations with side-effects, and they are
also used in denotational semantics for defining program-
ming languages (Wadler, 1995; Moggi, 1991). Here we are
going to use them to give a precise definition of our calcu-
lus.

4.1. Introducing monads

The standard example of a monad is the type construc-
tor [] which takes any typeA and gives back[A], the type
of lists of objects of typeA. A monadM is a type con-
structor with two operations:return ∈ A → M(A) and

bind∈ M(A)×(A→M(A)) → M(B), which also satisfy
three identity and associativity laws. Some monads also are
equipped with a zero element0 ∈ M(A), and a plus opera-
tion (+) ∈ M(A)×M(A) → M(A), which in turn satisfy
a couple of other laws.

An example of a monad is the state monadSM(A) =
IS→ IS×A, with the definitionsbind(f, k) = λs. k(a, s′)
where(s′, a) = f(s), andreturn(a, s) = (s, a). Another
example is the monad of lists[A] which is also a monad
with zero and plus; wherereturn returns a singleton list,
0 is the empty list, andl + l′ concatenates the listsl and
l′. The bind operation sends each element of the first list
to the second function, concatenating the results, and can
be defined by cases asbind([], k) = [] andbind(a:l, k) =
append(k(a), bind(l, k)).

The list monad is often used to represent backtracking,
which we will also do here. We can also combine monads
– e.g. combining the two monads above gives us the back-
trackable state monadBSM(A) = IS→ [IS×A], which is a
monad with zero and plus.

4.2. A dialogue monad

The backtrackable state monadBSMgives us a way to
define the rules and operators of our calculus, since the type
Rule of update rules is just an instance ofBSM([Move]).
The 0 rule and the(+) operator are exactly the same as
0 and (+) for the monad. The identity and selection
rules can be defined as1 = return([]) and select(m) =
return([m]) respecively. Sequentiation simply becomes
r ; r′ = appendM(r, r′), whereappendM is concatenation
of lists lifted to theBSMmonad,2 and repetition is defined
by the unfolding equationr∗ = (r ; r∗) + 1. For the(∃)
operator we have to use the fact that theBSMmonad is a
function that takes an infostate and gives a list as result:
∃x∈f. r(x) = λs. bind(f(s), r).3

Apart from giving us a precise definition of the calculus
of update rules, it also gives us all the properties of monads,
like the associativity and identity laws. These laws are free
for us to use when we want to prove statements about, or to
rewrite our dialogue move engine to a more efficient one.

2The precise definition of the lifting of a functionf to a monad
is fM(r, r′) = bind(r, λm. bind(r′, λm′. return(f(m, m′)))).

3Observe that thebind used here is the one in the list monad,
not in theBSMmonad. The field labelf is seen as the function on
the infostate that gives the current value of the fieldf .

5. Proving properties of the DME
If we have defined a collection of update rules together

with an update algorithm, we may want to show that some
desirable properties hold for this dialogue system. Most
important are to show that the system terminates, always
succeeds and always produces some moves to utter to the
user, but there are also other interesting properties.

5.1. Termination

To prove that the update algorithm terminates for ev-
ery given input, we have to show that all repetitions always
terminate. For this we can use induction on some parts of
the information state. In our example we can do induc-
tion on the total length of thelm andqud lists (to be more
precise,n = 2|lm| + |qud|), and notice that when any of
the rulesr1 . . . r3 is applied, the total length decreases (ac-
tually, it’s the numbern that decreases). This means that
(r1 + r2 + r3)∗ cannot continue forever, since thelm and
qud lists will finally be empty.

5.2. Non-failure

Since the repetitionr∗ always succeeds if it terminates,
the only thing we have to prove for our example is that the
selection rules always succeeds. In our example case there
is a possibility that theplan at some point gets empty, so
we have to change the update rules in some way – e.g. by
replacings with s + select(m) in the algorithm, wherem
is some default move.

5.3. Productivity

To show that the system is productive we have to show
that, whenever it terminates and succeeds, it executes a
selectrule. In our example it is easily shown just by looking
at thes rule.

We may also want to show that the system does not se-
lect too many dialogue moves at the same time (thus giv-
ing the user the opportunity to interrupt with e.g. clarifying
questions). In our first naive definition of the update al-
gorithm, the system selected all the moves that was on the
plan, but in the second algorithm the system selects only
one move at the time.

5.4. Other properties

Another interesting property is that the system is effi-
cient. There could be some of the basic conditions or ef-
fects that take time to execute (e.g. theis answerto pred-
icate which probably has to call a theorem prover). We
might want to show that the system never calls such a pred-
icate more than, say 5 times. In our example system, the
is answerto condition is called a number of times which
in the worst case can be in the order of|qud|·|bel|, which
in turn means that the system should probably have to be
optimized in some way.

A final example of a property of a well-designed dia-
logue move engine is that two rules are commutative with
respect to the choice operator, i.e.r + r′ = r′ + r. The rea-
son why this is a good property is that if a dialogue system
is on the form(r1 + r2 + · · · + rn)∗, where each pair of
rulesri, rj commute, then that system can be implemented
asynchronously, executing each ruleri in parallel.

6. Discussion and future work
In this paper we have introduced a calculus for building

and reasoning about dialogue move engines. With the use
of a simple example we have defined the basic constructors
of the calculus.

In the beginning we introduced some simplifications on
the dialogue system, and we will now try to argue that they
can be accounted for. The limitations were that the dialogue
is serial, and that each utterance can be translated into an
ordered list of dialogue moves. But that the participants
talk at the same time or interrupt each other can be coded
using special arguments to the dialogue moves, as can the
overlapping of moves, so these are not real limitations.

If one wants to work with something other thanlists of
moves, e.g. sets or partially ordered collections, one can re-
define the(;) andreturnoperations in an appropriate man-
ner. (Which means that one uses another monad in place
of the list monad). In the same way one can use another
definition of the(+) operation, as long as it still obeys the
monadic laws – e.g. one may want the choice to look at the
current infostate before it decides which of the rules to try.

This is very much work in progress. It remains to show
that the framework can be used in real-world problems,
where the infostate is much more complicated and there
are more than four update rules. One possible research is-
sue would be to see if the framework can be used to model
the dialogue behaviour of a system. Possibly the calculus
can be used to prove desired properties of the system as a
whole – e.g. that it in the end always gives a relevant answer
to a question, or that it fulfills given orders.

7. References
P. Bohlin, R. Cooper, E. Engdahl and S. Larsson. 1999.

Information states and dialogue move engines. Gothen-
burg Papers in Computational Linguistics GPCL 99-1.
URL http://www.ling.gu.se/publications/

D. Harel. 1984. Dynamic logic. In D. Gabbay and F. Guen-
thner, editors,Handbook of Philosophical Logic, vol. II.
Reidel.

E. Moggi. 1991. Notions of computation and monads.In-
formation and Computation, 93(1).

D. Traum, J. Bos, R. Cooper, S. Larsson, I. Lewin, C. Math-
eson and M. Poesio. 1999. A model of dialogue moves
and information state revision. Trindi Deliverable D2.1.
URL http://www.ling.gu.se/research/projects/trindi/

P. Wadler. 1985. How to replace failure by a list of suc-
cesses. In2nd Symposium on Functional Languages and
Computer Architecure. Lecture Notes in Computer Sci-
ence LNCS 273. Springer Verlag.

P. Wadler. 1995. Monads for functional programming.
In J. Jeuring and E. Meijer, editors,Advanced Func-
tional Programming. Lecture Notes in Computer Science
LNCS 925. Springer Verlag.

E. Visser and Z. Benaissa. 1998. A core language for rewrit-
ing. In C. Kirchner and H. Kirchner, editors,2nd Inter-
national Workshop on Rewriting Logic and its Applica-
tions. Electronic Notes in Theoretical Computer Science
15. Elsevier.

