
Link�oping Electronic Articles inComputer and Information ScienceVol. 3(2000): nr 7

Link�oping University Electronic PressLink�oping, Swedenhttp://www.ep.liu.se/ea/cis/2000/007/Revised version

Information states and dialoguemove enginesSta�an LarssonRobin CooperElisabet EngdahlPeter Ljungl�ofDepartment of linguisticsG�oteborg UniversityG�oteborg, Sweden

Revised version, published on February nn, byLink�oping University Electronic Press581 83 Link�oping, SwedenOriginal version was published on (date), 2000Link�oping Electronic Articles inComputer and Information ScienceISSN 1401-9841Series editor: Erik Sandewallc
2000 Sta�an Larsson, Robin Cooper, Peter Ljungl�of, Elisabet EngdahlTypeset by the author using LATEXFormatted using �etendu styleRecommended citation:<Author>. <Title>. Link�oping Electronic Articles inComputer and Information Science, Vol. 3(2000): nr 7.http://www.ep.liu.se/ea/cis/2000/007/. (date), 2000.The URL will also contain links to both the original version andthe present revised version, as well as to the author's home page.The publishers will keep this article on-line on the Internet(or its possible replacement network in the future)for a period of 25 years from the date of publication,barring exceptional circumstances as described separately.The on-line availability of the article impliesa permanent permission for anyone to read the article on-line,to print out single copies of it, and to use it unchangedfor any non-commercial research and educational purpose,including making copies for classroom use.This permission can not be revoked by subsequenttransfers of copyright. All other uses of the article areconditional on the consent of the copyright owner.The publication of the article on the date stated aboveincluded also the production of a limited number of copieson paper, which were archived in Swedish university librarieslike all other written works published in Sweden.The publisher has taken technical and administrative measuresto assure that the on-line version of the article will bepermanently accessible using the URL stated above,unchanged, and permanently equal to the archived printed copiesat least until the expiration of the publication period.For additional information about the Link�oping UniversityElectronic Press and its procedures for publication and forassurance of document integrity, please refer toits WWW home page: http://www.ep.liu.se/or by conventional mail to the address stated above.

Abstract
We explore the notion of information state in relation to dialoguesystems, and in particular to the part of a dialogue system we callthe dialogue move engine. We use a framework for experiment-ing with information states and dialogue move engines, whichis being implemented in the form of TRINDIKIT [14], a toolkitfor building dialogue move engines and dialogue systems. Wealso show how an experimental dialogue system (GoDiS) cur-rently being developed in G�oteborg within the framework canbe provided with rules to handle accommodation of questionsand plans in dialogue.

11 IntroductionAs we see it, there are currently two dominant approaches in dialogue mod-elling and dialogue systems design1. General planning and inference systemsrepresent one end of the complexity spectrum; at the other end we have sim-ple slot-�lling or �nite-state systems used in most practical dialogue systemapplications today. One of the ideas with the TRINDI architecture is tomake it possible to explore the rest of the spectrum. The idea is to avoidthe complexity problems that come with general reasoning and planning,but still be able to display complex and natural behaviour.We use the term information state to mean, roughly, the informationstored internally by an agent, in this case a dialogue system. A dialoguemove engine updates the information state on the basis of observed dia-logue moves and selects appropriate moves to be performed. In this paperwe use a formal representation of dialogue information states that has beendeveloped in the TRINDI2, SDS3 and INDI4 projects to explore the kindof information updates that can be associated with dialogue moves and inthe implementation of dialogue systems. The information state approachto dialogue management has been implemented in TrindiKit5, a toolkitfor building and experimenting with information states, dialogue move en-gines, and dialogue systems. A speci�c type of information state, based onGinzburg's notion of Questions Under Discussion (QUD) [6, 7, 8], has beenimplemented in GoDiS, an experimental dialogue system for information-seeking dialogue.The structure of this paper is as follows: First, we give a brief descriptionof the TrindiKit architecture. We discuss how rules formulated in terms ofconditions and operations on information states can be used to (1) updateinformation states based on observed dialogue moves and (2) select dialoguemoves based on the current information state. We then present a particularnotion of information state that we have been experimenting with, and givean overview of GoDiS. We look at the role of accommodation in informationstate transitions and point to examples of two kinds of accommodation:accommodation of questions under discussion and of dialogue plan. Wealso show how the implementation of these rules yields improved behaviourin the experimental dialogue system. Finally, we outline our view on therelation of our work to previous approaches to dialogue management.2 The TrindiKit architectureThe aim of TrindiKit is to provide a framework for experimenting withimplementations of di�erent theories of information state, information stateupdate and dialogue control. Key to the information state approach isidentifying the relevant aspects of information in dialogue, how they areupdated, and how updating processes are controlled. This simple view can1This paper reports the state of our research in 1999-2000. Since then, muchhas happened and the research reported here has been superseded e.g. by [16]. Wewould like to thank Johan Boye, Joris Hulstijn and Ingrid Zukerman for helpfulcomments and interesting discussions about earlier versions of this paper.2TRINDI (Task Oriented Instructional Dialogue), EC Project LE4-8314,www.ling.gu.se/research/projects/trindi/3SDS (Swedish Dialogue Systems), NUTEK/HSFR Language TechnologyProject F1472/1997, http://www.ida.liu.se/~nlplab/sds/4INDI (Information Exchange in Dialogue), Riksbankens Jubileumsfond 1997-0134.5http://www.ling.gu.se/research/projects/trindi/trindikit.html

2be used to compare a range of approaches and speci�c theories of dialoguemanagement within the same framework.The general architecture we are assuming is shown in Figure 1.

Resource Interface

Optional component

Obligatory component

IS :

...

module module

module

module

module
module module

module

resource variable

resource variable

resource variable

resource resource resource

m
od

ul
e

in
te

rf
ac

e
va

r.

m
od

ul
e

in
te

rf
ac

e
va

r.

m
od

ul
e

in
te

rf
ac

e
va

r.

m
od

ul
e

in
te

rf
ac

e
va

r.

m
od

ul
e

in
te

rf
ac

e
va

r.

m
od

ul
e

in
te

rf
ac

e
va

r.

Information State type

T
ot

al
 I

nf
or

m
at

io
n

S
ta

te

Controller

Dialogue Move Engine (DME)

Figure 1: TrindiKit architectureThe components of the architecture are the� the Total Information State (TIS), consisting of{ the Information State proper (IS){ module interface variables{ resource interfaces� the Dialogue Move Engine, consisting of one or more DME modules� additional (non-DME) modules, e.g. for getting input from the user,interpreting this input, generating system utterances, and providingoutput for the user.� a control module, wiring together the other modules, either in se-quence or through some asynchronous mechanism.Any useful system is also likely to need

3� Interface variables for modules, which are designated parts of the TISwhere the modules are allowed to read and write according to theirassociated TIS access restrictions.� Resources such as databases, plan libraries etc. The resources areaccessible from the modules through the resource interfaces, whichde�ne applicable conditions and (optionally) operations on the re-source.Apart from the general architecture shown in (2), the framework alsospeci�es formats for de�ning update rules, selection rules and dialoguemoves (see section 2.2), and provides a set of tools for experimenting withdi�erent information states, rules, and algorithms. Simple interpreters andgenerators are also provided.2.1 Building a system using the TrindiKitTo build a dialogue system using the TrindiKit toolkit, one needs to pro-vide de�nitions of rules, moves and update algorithms, as well as the struc-ture of the information state. Of course, to do this one needs some theory ofdialogue. One aim in the design of the TrindiKit is that the formalisationof such a theory should be as close as possible to the actual system as imple-mented in the TrindiKit, i.e. to isolate low-level implementation issues inthe TrindiKit implementation and allow a more high-level implementationof speci�c dialogue theories.Although this is not dictated by the TrindiKit architecture, it is alwaysa good idea to keep domain-independent and domain-speci�c componentsseparate. One way of achieving this is to build a generic6 system, and thenspecify a number of domain-dependent resources to make particular speci�cinstances of dialogue systems (see �gure 2). For example, the implementermay use TrindiKit to specify information state type, update rules, selec-tion rules and other modules external to the dialogue move engine (controlmodule, interpreter, generator, input and output modules). The collectionof these modules that we have speci�ed for GoDiS form such a generic di-alogue system. In the case of GoDiS, in order to make a fully instantiatedsystem one in addition needs a lexicon, a database and domain knowledge.The idea is that one should be able to substitute di�erent instances of thesemodules with the same update rules etc. and thus obtain di�erent instancesof generic GoDiS.2.2 Moves and rulesTraditionally, dialogue moves (or speech acts) are de�ned using precondi-tions, e�ects, and a decomposition [1]. From the perspective of implement-ing a dialogue move engine, we think it may be useful to think about whata dialogue system (or any dialogue participant) actually needs to do (notnecessarily in a sequential order):� interpret utterance from the user� update the information state according to the move(s) (supposedly)performed by the user� select a move/moves to be performed by the system6That is, generic at least given a certain kind of dialogue, e.g. information-seeking; of course one cannot require every system to handle any kind of dialogue.

4
software engineering
(basic types, control flow)

Domain-independent
DME

system
Domain-specific

TRINDIKIT

domain knowledge

(IS, rules, moves etc.)
dialogue theory

(resources)

Figure 2: Building a system� generate appropriate utterance to perform move(s)� update the information state according to the move(s) performed bythe systemInstead of de�ning the dialogue moves themselves in terms of precon-ditions and e�ects, we de�ne update rules (u-rules) and selection rules (s-rules) for updating the TIS based on the recognised move(s) and selectingthe next move(s), respectively.The update rules are rules that update the information state, e.g. whenthe user has input something to the system. The selection rules are rulesthat both update the information state and selects a dialogue move to beexecuted by the system. Both rule types have preconditions and e�ects. Thepreconditions are a list of conditions that must be true of the informationstate. The e�ects are a list of operations to be executed if the preconditionsare true. The preconditions must guarantee that the e�ects can be executed.Dialogue move de�nitions consist of a name, a type (optional) and a listof number and types of arguments (e.g., speaker, content, etc). Dialoguemoves are the output of analysis and input to generation. Also, they arethe objects selected by s-rules. U-rules may refer to them, and they may bepart of the information state.We also use the term tacit move to refer to the act of applying an updaterule, i.e. the act of updating the TIS.3 Question-based Information StateThe question about what should be included in the information state iscentral to any theory of dialogue management. The notion of informationstate we are putting forward here is basically a version of the dialoguegame board which has been proposed by Ginzburg. We want to stressthat the choice of this type of information state is speci�c to GoDiS; theTrindiKititself does not specify a particular type of informations state,rather it provides methods of specifying di�erent types of information states.Our general strategy has been to use as simple datastructures as possibleand make them successively more complicated as the need arises. This issomething that is possible given the kind of notational power and modularityprovided by TrindiKit. A change of data structures in successive versionsof the system does not involve a wholesale reimplementation of the system.Also, the choice of datatypes should itself be seen as a research issue wherethe appropriateness of di�erent data-structures for modelling attitudes and

5discourse units is investigated and explored. This means that the currentchoice of data-structures for GoDiS may be altered in future versions of thesystem if there are good reason for it.We represent information states of dialogue participants as records ofthe type in Figure 3.2666666664 private : 26664 plan : List(Action)agenda : Stack(Action)tmp : " bel : Set(Prop)qud : Stack(Question)lm : Move # 37775shared : " bel : Set(Prop)qud : Stack(Question)lm : Move # 3777777775Figure 3: GoDiS information state typeAs any abstract datatype, this type of information state is associatedwith various conditions and operations which can be used to check andupdate the information state. For example, fst(shared.qud,Q) succeedsif Q is uni�able with the topmost element on the shared QUD stack, andpop(shared.qud) will pop the topmost element o� the stack.The main division in the information state is between information whichis private to the agent and that which is shared between the dialogue par-ticipants. What we mean by shared information here is that which has beenestablished (i.e. grounded) during the conversation, akin to what Lewis in[18] called the \conversational scoreboard".The plan �eld contains a dialogue plan, i.e. is a list of dialogue actionsthat the agent wishes to carry out. The plan can be changed during thecourse of the conversation. For example, if a travel agent discovers that hiscustomer wishes to get information about a
ight he will adopt a plan toask her where she wants to go, when she wants to go, what price class shewants and so on. The plan must be ordered, since some actions need tobe performed before others. However, a stack is not su�cient since it doesnot allow checking membership of non-topmost elements. (As is explainedin Section 5, answers which do not match a question on QUD are matchedagainst questions in the plan, which requires the membership check notavailable for stacks.)The agenda �eld contains the short term goals or obligations that theagent has, i.e. what the agent is going to do next. For example, if theother dialogue participant raises a question, then the agent will normallyput an action on the agenda to respond to the question. This action may ormay not be in the agent's plan. For the agenda, order matters since recentissues are assumed to be more salient and important than older issues. Forexample, if one participant has an action on the agenda to ask a questionbut the other participant asks another question, the action to answer thelatter question will be pushed on the agenda. Thus, the latter question willbe asked �rst.We have included a �eld tmp that mirrors the shared �elds. This �eldkeeps track of shared information that has not yet been grounded, i.e. con-�rmed as having been understood by the other dialogue participant7. In7In discussing grounding we will assume that there is just one other dialogue

6this way it is easy to delete information which the agent has \optimisti-cally" assumed to have become shared if it should turn out that the otherdialogue participant does not understand or accept it. If the agent pursuesa cautious rather than an optimistic strategy then information will at �rstonly be placed on tmp until it has been acknowledged by the other dialogueparticipant whereupon it can be moved from tmp to the appropriate shared�eld.The shared �eld is divided into three sub�elds. One sub�eld is a setof propositions which the agent assumes for the sake of the conversation.Sets were chosen since no order is imposed on the beliefs, but membershipchecking is needed.The second sub�eld is for a stack of questions under discussion (qud).These are questions that have been raised and are currently under discus-sion in the dialogue. The stack structure is meant to re
ect the fact thatdialogues can be nested; a question q1 can be met by a counter-question q2,and only (the story goes) when q2 has been answered can q1 be answered.8Actually, there are two rather di�erent notions of QUD at issue here9:as a structure to be used in dialogue management on the one hand, andas a semantic structure (used e.g. for resolving ellipsis) on the other. Weare taking a simpli�ed view of Ginzburg's idea so that it can be applied tosimple implemented systems, and in this sense we are interested in de�n-ing QUD as a datastructure which will be used in dialogue management.However, we think it would be a mistake to separate semantics on the onehand from dialogue management on the other. A lot of what Ginzburgis talking about in his semantic approach is a theoretical approach to as-pects of dialogue management and that is a large part of the interest in it.What we see as the main distinction between the QUD that we have usedand Ginzburg's original notion is that ours is a local QUD. It representsthe precise questions that are currently under discussion, i.e. that are soto speak up front and have been explicitly introduced into the dialogue.Ginzburg's original notion, as you say, was much more of a "global" QUDrepresenting questions that arise from what has been said. We suspect thatboth notions of QUD will ultimately be necessary10, though perhaps ourplan does some of the work of a global QUD. For further discussion of QUDin relation to local and global discourse structure, see [5] and [16].The third �eld contains information about the latest move (speaker,move type and content).4 GoDiSIn G�oteborg, an experimental dialogue system called GoDiS (GothenburgDialogue System) is being developed based on the framework describedabove and using the type of information state described in Section 3.It should be emphasised that this type of information state is speci�c forGoDiS, and is not part of the TrindiKit architecture. The toolkit Trindi-participant.8Actually, this is a simpli�cation of Ginzburg's theory where the QUD is apartially ordered set. In the current implementation we do not rely on the factthat the QUD is a stack rather than, say, a set, since there is never more thanone question on the QUD.9Thanks to Joris Hulstijn for pointing this out.10In fact, the system reported in [16] uses two separate structures for global andlocal QUD.

7Kit speci�es a general architecture and a format for update rules, selectionrules, information states and modules that can be interfaced with the dia-logue move engine (control, interpreter, generator, input and output mod-ules). This allows the implementer to specify a number of modules to makea generic dialogue system that can be combined with di�erent resources tomake particular speci�c instances of dialogue systems. For example, theimplementer may use TrindiKit to specify information state type, updaterules, selection rules and processing modules external to the dialogue moveengine (control module, interpreter, generator, input and output modules).The collection of modules that we have speci�ed for GoDiS form a genericdialogue system for information-seeking dialogue. In order to make a fullyinstantiated system one in addition needs a lexicon, a database and domainknowledge. The idea is that one should be able to substitute di�erent in-stances of these modules with the same update rules etc and thus obtaindi�erent instances of generic GoDiS. So far, GoDiS has been experimentallyadapted for the travel agency and autoroute domains, for handling menunavigation in the Nokia 3210 mobile phone (both in Spanish and Swedish),and as an interface to a handheld computer [10].4.1 GoDiS architectureThe GoDiS architecture, seen in 4 is an instantiation of the general Trindi-Kit architecture. In addition to the control module, there are six modulesin GoDiS: input, interpret, generate, output, update and select. Thelast two are DME modules, which means that they together make up theDME in GoDiS. There are six module interface variables, three resourcesand a record structure for the information state.4.2 Interpretation, Generation, Semantics and databaseIn the current implementation, interpretation and generation are canned,which means that the range of input and output strings is very restricted.However, it is also possible to communicate using moves directly, e.g. bytyping ask(P^(price=P)) instead of 'What is the price?'.The semantics (if it deserves the name) represents propositions as pairsof features and values, e.g. (month=april), and questions are �-abstractsover propositions, e.g. �x(month = x). A set of propositions and a querytogether constitute a database query which is sent to the database oncethe system has received su�cient information to be able to answer thequestion. A question and an answer can be reduced to a proposition using�-reduction. For example, the question �x(month=x) and the answer aprilyield the proposition [�x(month = x)](april), i.e. (month = april).4.3 Rules, moves and algorithmsIn this section we describe some of the rules and algorithm de�nitions weuse. The current algorithms are very simple and the behaviour of the systemis therefore mainly dependent on the de�nitions of the update and selectionrules.Update algorithm:1. Are there any update rules whose preconditions are ful�lled in the currentIS? If so, take the �rst one and execute the updates speci�ed in the e�ectsof the rule. If not, stop.2. Repeat.

8

ou
tp

ut

private:

shared:

plan:
agenda:

bel
qud

StackSet(Action)

Set(Prop)
Stack(Question)

Stack(Action)
tmp: ...

lm:...

IS :

la
te

st
_s

pe
ak

er

ne
xt

_m
ov

es

in
pu

t

la
te

st
_m

ov
es

pr
og

ra
m

_s
ta

te

input update selectinterpret generate output

input_simpletext.pl interpret_simple1

update.pl
update_rules.pl

database

domain

lexicon

select.pl
selection_rules.pl

dme_adl.pldme_adl.pl generate_simple1 output_simpletext.pl

control

control.pl

control_adl.pl

database_traveldomain_travellexicon_travel
_english

database_
autoroute

domain_auto-
route

lexicon_travel
 _swedish

lexicon_auto-.
route_english

Dialogue Move Engine (DME)

Figure 4: GoDiS architecture

9Selection algorithm:1. Are there any selection rules whose preconditions are ful�lled in the currentIS? If so, proceed to step 2. If not, stop.2. Does the rule specify a dialogue move? If so, stop. If not, execute theupdates speci�ed in the e�ects of the rule.3. RepeatControl algorithm:1. Call the interpreter2. Call the update module3. Call the selection module4. Call the generator5. Call the update module6. RepeatThe update rules include rules for question and plan accommodation,as well as rules for handling grounding and rules for integrating the latestmove with the DIS. The latter rules look di�erent depending on whether theuser or the system itself was the agent of the move. As an illustration, in (1)we see the update rule for integrating an \answer" move when performedby the user, and in (2) the converse rule for the case when the latest movewas performed by the system11.(1) u-rule: integrateLatestMove(answer(usr))pre: (val(shared.lm, answer(usr,A))fst(shared.qud, Q),answer to(Q;A)eff: (pop(shared.qud)reduce(Q;A; P)add(shared.bel, P)(2) u-rule: integrateLatestMove(answer(sys))pre: val(private.tmp.lm, answer(sys;Q;A))eff: 8><>: set(shared.lm, answer(sys;Q;A))pop(shared.qud)reduce(Q;A; P)add(shared.bel, P)Here's a paraphrase of rule (1:) \If the latest move was a user answerwith content A , and the �rst question on QUD is Q , and A is an answerto Q, then pop Q o� the QUD, perform beta-reduction on Q and A to yieldthe resulting proposition P , and add P to the shared beliefs. For a moreconcrete paraphrase, A could be paris, Q "X^(to=X)" and P = Q(A) =to(paris). A shorter paraphrase is the following: if the user just answereda question on QUD, pop the question o� QUD and add the new fact toshared beliefs.The rule in (2) is the same, except for two things: since the systemknows which question it was answering, it is not necessary to check forquestion-answer relevance; the system only answers questions which aretopmost on QUD. A second complicating factor is that the rule in (2) alsoassumes that the system's move has not yet been grounded - it is stored inprivate.tmp.lm rather than shared.lm.11Note that this de�nition embodies an optimistic approach to grounding byputting answer(sys;Q;A) in shared.lm, thereby assuming the systems utterancewas understood by the user. Also, the system optimistically assumes that the useraccepts the resulting proposition P by adding it to shared.bel.

104.4 Dialogue plansIn our implementation, the domain resource includes, among other things,a set of dialogue plans which contain information about what the systemshould do in order to achieve its goals. Traditionally [2], it has been assumedthat general planners and plan recognizers should be used to produce co-operative behaviour from dialogue systems. On this account, the systemis assumed to have access to a library of domain plans, and by recognizingthe domain plan of the user, the system can produce cooperative behavioursuch as supplying information which the user might need to execute herplan. Our approach is to directly represent ready-made plans for engagingin cooperative dialogue and producing cooperative behaviour (such as an-swering questions) which indirectly re
ect domain knowledge, but obviatesthe need for dynamic plan construction.Typically, the system has on the agenda an action to respond to a ques-tion. However, the move for answering the question cannot be selected sincethe system does not yet have the necessary information to answer the ques-tion. The system then tries to �nd a plan which will allow it to answer thequestion, and this plan will typically be a list of actions to raise questions;once these questions have been raised and the user has answered them, thesystem can provide an answer to the initial question. This behaviour is sim-ilar to that of many natural language database interfaces, but the di�erenceis that the architecture of our system allows us to improve the conversa-tional behaviour of the system simply by adding some new rules, such asthe accommodation rules described below.5 AccommodationWe de�ne dialogue moves as updates to information states directly associ-ated with utterances. If one takes a dialogue or information update per-spective on Lewis' notion of accommodation, it corresponds to moves thatare tacit (i.e. not associated with an utterance). Tacit moves can be seen asapplications of update rules, which specify how the information state shouldbe updated given that certain preconditions hold. Tacit moves could alsobe called \internal" or \inference" moves. The motivation for thinking interms of accommodation has to do with generality. We could associate ex-pressions which introduce a presupposition as being ambiguous between apresuppositional reading and a similar reading where what is the presuppo-sition is part of what is asserted. For example, an utterance of \The kingof France is bald" can either be understood as an assertion of that sentenceand a presupposition that there is a king of France or as an assertion of thesentence \There is a king of France and he is bald". However, if we assumean additional tacit accommodation move before the integration of the in-formation expressed by the utterance then we can say that the utterancealways has the same interpretation.In a similar way we can simplify our dialogue move analysis by extend-ing the use of tacit moves so that the updates to the information statenormally associated with a dialogue move are actually carried out by tacitmoves. One argument for doing this is that very few (if any) e�ects of amove are guaranteed as a consequence of performing the move; rather, theactual resulting updates depend on reasoning by the addressed participant.Thus, we de�ne an update rule integrateLatestMove which, given thatthe latest move was accepted by the system, performs the appropriate up-date operations. The updates for a move are di�erent depending on whether

11it was the system or the user who made the move, but the same module isused in both cases.5.1 Accommodating a question onto QUDDialogue participants can address questions that have not been explicitlyraised in the dialogue. However, it is important that a question is availableto the agent who is to interpret it because the utterance may be elliptical.Here is an example from a recorded dialogue12:(3) $J: vicken m�anad ska du �aka(what month do you want to go)$P: ja: typ den: �a: tredje fj�arde april /n�an g�ang d�ar(well around 3rd 4th april / some time there)$P: s�a billit som m�ojlit(as cheap as possible)The strategy we adopt for interpreting elliptical utterances is to think ofthem as short answers (in the sense of Ginzburg [8]) to questions on QUD.A suitable question here is What kind of price does P want for the ticket? .This question is not under discussion at the point when P says \as cheapas possible". But it can be �gured out since J knows that this is a relevantquestion. In fact it will be a question which J has as an action in his plan toraise. On our analysis it is this fact which enables A to interpret the ellipsis.He �nds the matching question on his plan, accommodates by placing it onQUD and then continues with the integration of the information expressedby as cheap as possible as normal. Note that if such a question is notavailable then the ellipsis cannot be interpreted as in the dialogue in (4).(4) A. What time are you coming to pick up Maria?B. Around 6 p.m. As cheap as possible.This dialogue is incoherent if what is being discussed is when the childMaria is going to be picked up from her friend's house (at least understandard dialogue plans that we might have for such a conversation).5.2 Accommodating the dialogue planAfter an initial exchange for establishing contact the �rst thing that P saysto the travel agent in our dialogue is:(5) $P: flyg ti paris<
ights to Paris >This is again an ellipsis which on our analysis has to be interpreted asthe answer to a question in order to have content. As no questions have beenraised yet in the dialogue (apart from whether the participants have each12We will illustrate our discussion from a Swedish human-human dialoguein the travel booking domain that has been collected by the University ofLund as part of the SDS project. We quote the transcription done inG�oteborg as part of the same project. The full transcription is available fromhttp://www.ling.gu.se/SLSA/dialog.html.

12other's attention) the travel agent cannot �nd the appropriate question onhis plan. Furthermore, as this is the �rst indication of what the customerwants, the travel agent cannot have a plan with detailed questions. Weassume that the travel agent has various plan types in his domain knowledgedetermining what kind of conversations he is able to have. E.g. he is ableto book trips by various modes of travel, he is able to handle complaints,book hotels, rental cars etc. What he needs to do is take the customer'sutterance and try to match it against questions in his plan types in hisdomain knowledge. When he �nds a suitable match he will accommodatehis plan, thereby providing a plan to ask relevant question for
ights, e.g.when to travel?, what date? etc. Once he has accommodated this planhe can proceed as in the previous example. That is, he can accommodatethe QUD with the relevant question and proceed with the interpretation ofellipsis in the normal fashion.This example is interesting for a couple of reasons. It provides us withan example of \recursive" accommodation. The QUD needs to be accommo-dated, but in order to do this the dialogue plan needs to be accommodated.The other interesting aspect of this is that accommodating the dialogueplan in this way actually serves to drive the dialogue forward. That is, themechanism by which the agent interprets this ellipsis, gives him a plan fora substantial part of the rest of the dialogue. This is a way of capturing theintuition that saying
ights to Paris to a travel agent immediately makes anumber of questions become relevant.5.3 Associating accommodation with tacit movesUpdate rules can be used for other purposes than integrating the latestmove. For example, one can provide update rules which accommodate ques-tions and plans. One possible formalization of the accommodate questionmove is given in (6). When interpreting the latest utterance by the otherparticipant, the system makes the assumption that it was a replymove withcontent A. This assumption requires accommodating some question Q suchthat A is a relevant answer to Q. The check operator \answer-to(A;Q)" istrue if A is a relevant answer to Q given the current information state, ac-cording to some (possibly domain-dependent) de�nition of question-answerrelevance13.(6) u-rule: accommodateQuestion(Q;A)pre: (val(shared.lm, answer(usr,A)),in(private.plan, raise(Q))answer-to(A;Q)eff: � del(private.plan, raise(Q))push(shared.qud, Q)6 Accommodation in a dialogue systemIn this section we show an example of how the dialogue system describedabove can handle accommodation of questions and plans. The example isactual (typed) dialogues with the system, supplemented with information13The de�nition of relevance implemented in the current GoDiS is very simple;basically, it encodes for each question a set of possible (\relevant") answers. Forexample, any city name is a relevant answer to the question \Where do you wantto go?".

13about dialogue moves, tacit moves, and (partial) illustrations of the systemsinformation state at di�erent stages of the dialogue. The dialogue fragmentcan be seen in Figure 5 and the resulting information state in Figure 6.After interpreting the users utterance as an answer move with thecontent [how=plane,to=paris], the system starts checking if there areany u-rules which apply. Following the ordering of the rules given in thelist of rule de�nitions, it �rst checks if it can perform integrateLatest-Move(answer(usr)). However, this rule requires that the content of theanswer must be relevant to the topmost question on QUD. Since the QUDis empty, the rule does not apply. It then tries to apply the accommo-dateQuestion rule, but since the plan is empty this rule does not applyeither. However, accommodatePlan (7) does apply, since there is (in thedomain knowledge resource) a plan such that the latest move matches thatplan. More precisely, the latest move provides an answer to a question Qsuch that raising Q is part of the plan.(7) u-rule: accommodatePlanpre: 8>>><>>>: empty(private.plan)empty(shared.qud)empty(private.agenda)val(shared.lm, LM)domain::matches plan(LM; P lan)eff: � set(private.plan, P lan)Once this rule has been executed, the update algorithm starts fromthe beginning of the rule list. This time, it turns out the preconditions ofaccommodateQuestion hold, so the rule is applied. As a consequence ofthis, the preconditions of integrateLatestMove(answer(usr)) now hold,so that rule is applied. Actually, it turns out that the latest move is alsorelevant to a second question (concerning the destination) in the plan, sothat question is also accommodated and its answer integrated. Since noadditional u-rules apply, the system proceeds to perform the next action onthe plan: asking where the user wants to travel from. At the end of thedialogue fragment, the information state after the system has uttered thisquestion is shown.7 ConclusionWe would argue that general inference and/or planning may not be theultimate solution for dialogue management because of complexity problems.Simple slot-�lling strategies are too simple, and we argue that dialogue planscoupled with mechanisms for question and task accommodation operate ona level of complexity which is just right for many kinds of dialogue. We donot claim that the mechanisms we describe cannot be implemented in anyother architecture. Rather, we argue that the TRINDI approach providesnatural and intuitive means for implementing dialogue behaviours. As anexample, the mechanism of question accommodation in GoDiS only requiredadding one or two simple, domain-independent update rules. For furtherreading about TrindiKit and its relation to other approaches to dialoguemanagement, we refer to [17].

14$S: Welcome to the travel agency$U: flights to paris.2666664 private = " plan = hiagenda = hitmp = : : : #shared = " bel = fgqud = hilm = answer(usr,[how=plane,to=paris]) # 3777775# accommodatePlan# set(private.plan,[raise(A^(how=A)),raise(B^(to=B)),raise(C^(return=C)),raise(D^(month=D)),raise(E^(priceclass=E)),respond(F^(price=F))])# accommodateQuestion# del(private.plan,raise(A^(how=A)))# push(shared.qud,A^(how=A))# integrateLatestMove(answer(usr))# pop(shared.qud)# add(shared.bel,how=plane)# accommodateQuestion# del(private.plan,raise(A^(to=A)))# push(shared.qud,A^(to=A))# integrateLatestMove(answer(usr))# pop(shared.qud)# add(shared.bel,to=paris)# refillAgenda# pop(private.plan)# push(private.agenda,raise(A^(return=A)))private =agenda = [raise(A^(return=A))]plan = [raise(A^(month=A)),raise(B^(priceclass=B)),respond(C^(price=C))]shared =bel= [(to = paris)(how = plane)]lm = answer(usr,[how=plane,to=paris])$S: From where do you want to go?Figure 5: Sample GoDiS dialogue

15266666666664 private = 2666664 plan = h raise(R^(return=R)),raise(M^(month=M)),raise(C^(class=C)),respond(P^(price=P)) iagenda = hitmp = : : :
3777775shared = " bel = f(to=paris),(how=plane)gqud = hX^(from=X)ilm = ask(sys,Y^(from=Y)) #
377777777775Figure 6: Information state resulting from the exchange in Figure 5.8 Current and future researchLately, we have been experimenting with translating menu-driven interfacesinto dialogue systems by converting menu structures into dialogue plans.This requires a more complex plan representation, with conditionals andembedded subplans. While the dialogue plan presented in this paper is verysimple and very much like a slot-and-�ller frame, the menu-derived plans gobeyond what can be done with frames as standardly conceived. We claimthat his supports our view that the dialogue plan approach is more generalthan the frame-�lling approach, while still not being too computationallycomplex. GoDiS has also been modi�ed to handle instructional dialogue[15], where complex plans are also needed.We are currently extending the GoDiS DME to handle negotiative di-alogue, where e.g. several di�erent solutions to a problem (answers to aquestion) can be discussed and compared before one is settled on. By con-trast, the current GoDiS can only discuss one object (e.g.
ight) at a time.This extension will also require abandoning the simple feature-value seman-tics currently used, and adopting a semantics similar to �rst order logic.In future work we hope to investigate in more detail the relation be-tween the QUD-based approach to dialogue management, as implementedin GoDiS, and other approaches, including plan-based approaches such as[9], [12] and [19], strategies based on general reasoning such as [21] and [22],frame-based approaches such as [3], and obligation-based dialogue manage-ment ([11]).References[1] J. F. Allen. Natural Language Understanding. Benjamin Cummings,Menlo Park, CA, 1987.[2] J. F. Allen and C. Perrault. Analyzing intention in utterances. AIJ,15(3):143{178, 1980.[3] Jennifer Chu-Carroll. Mimic: An adaptive mixed initiative spoken di-alogue system for information queries. In Proceedings of the 6th Con-ference on Applied Natural Language Processing, pages 97{104, 2000.[4] R. Cooper and S. Larsson. Dialogue moves and information states. InProc. of the Third IWCS, Tilburg, 1999.

16[5] Robin Cooper, Elisabet Engdahl, Sta�an Larsson, and Stina Ericsson.Accommodating questions and the nature of qud. In Poesio and Traum[20], pages 57{61.[6] J. Ginzburg. Dynamics and the semantics of dialogue. In Seligmanand Westerst�ahl [23].[7] J. Ginzburg. Interrogatives: Questions, facts and dialogue. In TheHandbook of Contemporary Semantic Theory [13].[8] J. Ginzburg. Clarifying utterances. In J. Hulstijn and A. Niholt, ed-itors, Proc. of the Twente Workshop on the Formal Semantics andPragmatics of Dialogues, pages 11{30, Enschede, 1998. UniversiteitTwente, Faculteit Informatica.[9] B. J. Grosz and C. L. Sidner. Attention, intention, and the structureof discourse. Computational Linguistics, 12(3):175{204, 1986.[10] Rebecca Jonson. Agenda talk - a talking �lofax developed with thetrindikit toolkit. Master's thesis, Computational Linguistics, G�oteborgUniversity, 2000.[11] Jorn Kreutel and Colin Matheson. Information states, obligations andintentional structure in dialogue modelling. In Proceedings of the 3rdInternational Workshop on Human-Computer Conversation, 2000.[12] Lynn Lambert and Sandra Carberry. A triparite plan-based model ofdiscourse. In Proceedings of the 29th Annual Meeting of the Associationfor Computational Linguistics, pages 47{544, 1991.[13] ed. Lappin, Shalom. The Handbook of Contemporary Semantic Theory.Blackwell, Oxford, 1996.[14] S. Larsson, P. Bohlin, J. Bos, and D. Traum. Trindikit 1.0 manual.deliverable D2.2 D2.2 - Manual, TRINDI, 1999.[15] Sta�an Larsson. From manual text to instructional dialogue: an infor-mation state approach. In Poesio and Traum [20], pages 203{206.[16] Sta�an Larsson. Issue-based Dialogue Management. PhD thesis,G�oteborg University, 2002.[17] Sta�an Larsson and David Traum. Information state and dialoguemanagement in the trindi dialogue move engine toolkit. NLE SpecialIssue on Best Practice in Spoken Language Dialogue Systems Engineer-ing, pages 323{340, 2000.[18] D. K. Lewis. Scorekeeping in a language game. Journal of PhilosophicalLogic, 8:339{359, 1979.[19] D. J. Litman and J. F. Allen. Discourse processing and commonsenseplans. In P. R. Cohen, J. Morgan, and M. E. Pollack, editors, Intentionsin Communication, pages 366{388. The MIT Press, 1990.[20] Massimo Poesio and David Traum, editors. Proceedings of G�otalog2000, number 00-5 in GPCL (Gothenburg Papers Computational Lin-guistics), 2000.[21] B. Raskutti and I Zukerman. Generating queries and replies dur-ing information-seeking interactions. International Journal of HumanComputer Studies, 47(6):689{734, 1997.

17[22] D. Sadek, A. Ferrieux, and A. Cozannet. Towards an arti�cial agent asthe kernel of a spoken dialogue system: a progress report. In Proc. ofthe AAAI Workshop on Integration of Natural Language and Speech,1994.[23] Jerry Seligman and Dag Westerst�ahl, editors. Logic, Language andComputation, volume 1. CSLI Publications, 1996.

