Link6ping Electronic Articles in
Computer and Information Science

Vol. 3(2000): nr 7

Information states and dialogue
move engines

Staffan Larsson
Robin Cooper

Elisabet Engdahl
Peter Ljunglof

Department of linguistics
Goteborg University
Goteborg, Sweden

Linkoping University Electronic Press
Linkoping, Sweden

http: /www.ep.liu.se/ea/cis/2000/007/

Revised version

Revised version, published on February nn, by
Linképing University Electronic Press
581 83 Linkdping, Sweden
Original version was published on (date), 2000

Linkoping Electronic Articles in
Computer and Information Science
ISSN 1401-9841

Series editor: Erik Sandewall

©2000 Staffan Larsson, Robin Cooper, Peter Ljungldf, Elisabet Engdahl
Typeset by the author using BTEX
Formatted using étendu style

Recommended citation:
<Author>. < Title>. Linkdping Electronic Articles in
Computer and Information Science, Vol. 3(2000): nr 7.
http: /www.ep.liu.se/ea/cis/2000/007/. (date), 2000.

The URL will also contain links to both the original version and
the present revised version, as well as to the author’s home page.

The publishers will keep this article on-line on the Internet
(or its possible replacement network in the future)
for a period of 25 years from the date of publication,
barring exceptional circumstances as described separately.

The on-line availability of the article implies
a permanent permission for anyone to read the article on-line,
to print out single copies of it, and to use it unchanged
for any non-commercial research and educational purpose,
including making copies for classroom use.
This permission can not be revoked by subsequent
transfers of copyright. All other uses of the article are
conditional on the consent of the copyright owner.

The publication of the article on the date stated above
included also the production of a limited number of copies
on paper, which were archived in Swedish university libraries
like all other written works published in Sweden.

The publisher has taken technical and administrative measures
to assure that the on-line version of the article will be
permanently accessible using the URL stated above,
unchanged, and permanently equal to the archived printed copies
at least until the expiration of the publication period.

For additional information about the Linképing University
Electronic Press and its procedures for publication and for
assurance of document integrity, please refer to
its WWW home page: http: /www.ep.liu.se/
or by conventional mail to the address stated above.

Abstract

We explore the notion of information state in relation to dialogue
systems, and in particular to the part of a dialogue system we call
the dialogue move engine. We use a framework for experiment-
ing with information states and dialogue move engines, which
is being implemented in the form of TRINDIKIT [14], a toolkit
for building dialogue move engines and dialogue systems. We
also show how an experimental dialogue system (GoDiS) cur-
rently being developed in Goteborg within the framework can
be provided with rules to handle accommodation of questions
and plans in dialogue.

1 Introduction

As we see it, there are currently two dominant approaches in dialogue mod-
elling and dialogue systems design®. General planning and inference systems
represent one end of the complexity spectrum; at the other end we have sim-
ple slot-filling or finite-state systems used in most practical dialogue system
applications today. One of the ideas with the TRINDI architecture is to
make it possible to explore the rest of the spectrum. The idea is to avoid
the complexity problems that come with general reasoning and planning,
but still be able to display complex and natural behaviour.

We use the term information state to mean, roughly, the information
stored internally by an agent, in this case a dialogue system. A dialogue
move engine updates the information state on the basis of observed dia-
logue moves and selects appropriate moves to be performed. In this paper
we use a formal representation of dialogue information states that has been
developed in the TRINDI?, SDS?® and INDI* projects to explore the kind
of information updates that can be associated with dialogue moves and in
the implementation of dialogue systems. The information state approach
to dialogue management has been implemented in TRINDIKIT®, a toolkit
for building and experimenting with information states, dialogue move en-
gines, and dialogue systems. A specific type of information state, based on
Ginzburg’s notion of Questions Under Discussion (QUD) [6, 7, 8], has been
implemented in GoDiS, an experimental dialogue system for information-
seeking dialogue.

The structure of this paper is as follows: First, we give a brief description
of the TRINDIKIT architecture. We discuss how rules formulated in terms of
conditions and operations on information states can be used to (1) update
information states based on observed dialogue moves and (2) select dialogue
moves based on the current information state. We then present a particular
notion of information state that we have been experimenting with, and give
an overview of GoDiS. We look at the role of accommodation in information
state transitions and point to examples of two kinds of accommodation:
accommodation of questions under discussion and of dialogue plan. We
also show how the implementation of these rules yields improved behaviour
in the experimental dialogue system. Finally, we outline our view on the
relation of our work to previous approaches to dialogue management.

2 The TrindiKit architecture

The aim of TRINDIKIT is to provide a framework for experimenting with
implementations of different theories of information state, information state
update and dialogue control. Key to the information state approach is
identifying the relevant aspects of information in dialogue, how they are
updated, and how updating processes are controlled. This simple view can

1This paper reports the state of our research in 1999-2000. Since then, much
has happened and the research reported here has been superseded e.g. by [16]. We
would like to thank Johan Boye, Joris Hulstijn and Ingrid Zukerman for helpful
comments and interesting discussions about earlier versions of this paper.

*TRINDI (Task Oriented Instructional Dialogue), BC Project LE4-8314,
www.ling.gu.se/research/projects/trindi/

3SDS (Swedish Dialogue Systems), NUTEK/HSFR Language Technology
Project F1472/1997, http://www.ida.liu.se/"nlplab/sds/

“INDI (Information Exchange in Dialogue), Riksbankens Jubileumsfond 1997-0134.

*http://www.ling.gu.se/research/projects/trindi/trindikit.html

be used to compare a range of approaches and specific theories of dialogue
management within the same framework.
The general architecture we are assuming is shown in Figure 1.

A R GRREEN DialogueMoveEngin\e\z(DME) 4 SN e
| | | | ! i | [N |
: b : \ : y : bt :
| ! | ! - ! % | ! R |
- R K
" module | ! module ! ' ' module ‘:, : ' module | v module !
| | | | | module! ’r: module: ! | b |
| | | | | | | | | ¥ |
1 b b : 1 1 G ;
\77(:\7\7‘ 777777 ‘7‘7:\7 \7‘\:7‘ N \,/f,,,’ \/77777777 1\17/7':77777
L L o P P bt
- < F p - ;
SRR W g A
\?gu?B\ T8 - B - I v
T '3 '3 '3 | i
181181 181 181 181 181 ! !
‘ElE T e BT - ! !
T EVE B E = IR =R module !
oo o 'o, ro, 'e, | i
'S 3 3. =1 =1 =N | |
818 8 181 181 18 i !
TENEN I E! 1E! 1E! L E! [S
Q
8
2]
=
2
B
£ .
*E IS:: Information State type
B
°
=
resource varisble @ ---___
resource variable o. RN
; v
resourcevariable @ -, ’ N
o e - o/ @ Resource Interface
0 T 0 Th ___
A -0 R -0 i
' ' ' ' i~ - _. Optional component
' resource | ' resource |
.] .] l:l Obligatory component

Figure 1: TRINDIKIT architecture

The components of the architecture are the

e the Total Information State (TIS), consisting of
— the Information State proper (IS)
— module interface variables
— resource interfaces
e the Dialogue Move Engine, consisting of one or more DME modules

e additional (non-DME) modules, e.g. for getting input from the user,
interpreting this input, generating system utterances, and providing
output for the user.

e a control module, wiring together the other modules, either in se-
quence or through some asynchronous mechanism.

Any useful system is also likely to need

e Interface variables for modules, which are designated parts of the TIS
where the modules are allowed to read and write according to their
associated TIS access restrictions.

e Resources such as databases, plan libraries etc. The resources are
accessible from the modules through the resource interfaces, which
define applicable conditions and (optionally) operations on the re-
source.

Apart from the general architecture shown in (2), the framework also
specifies formats for defining update rules, selection rules and dialogue
moves (see section 2.2), and provides a set of tools for experimenting with
different information states, rules, and algorithms. Simple interpreters and
generators are also provided.

2.1 Building a system using the TrindiKit

To build a dialogue system using the TRINDIKIT toolkit, one needs to pro-
vide definitions of rules, moves and update algorithms, as well as the struc-
ture of the information state. Of course, to do this one needs some theory of
dialogue. One aim in the design of the TRINDIKIT is that the formalisation
of such a theory should be as close as possible to the actual system as imple-
mented in the TRINDIKIT, i.e. to isolate low-level implementation issues in
the TRINDIKIT implementation and allow a more high-level implementation
of specific dialogue theories.

Although this is not dictated by the TRINDIKIT architecture, it is always
a good idea to keep domain-independent and domain-specific components
separate. One way of achieving this is to build a generic® system, and then
specify a number of domain-dependent resources to make particular specific
instances of dialogue systems (see figure 2). For example, the implementer
may use TRINDIKIT to specify information state type, update rules, selec-
tion rules and other modules external to the dialogue move engine (control
module, interpreter, generator, input and output modules). The collection
of these modules that we have specified for GoDiS form such a generic di-
alogue system. In the case of GoDiS, in order to make a fully instantiated
system one in addition needs a lexicon, a database and domain knowledge.
The idea is that one should be able to substitute different instances of these
modules with the same update rules etc. and thus obtain different instances
of generic GoDiS.

2.2 Moves and rules

Traditionally, dialogue moves (or speech acts) are defined using precondi-
tions, effects, and a decomposition [1]. From the perspective of implement-
ing a dialogue move engine, we think it may be useful to think about what
a dialogue system (or any dialogue participant) actually needs to do (not
necessarily in a sequential order):

e interpret utterance from the user

e update the information state according to the move(s) (supposedly)
performed by the user

e select a move/moves to be performed by the system

®That is, generic at least given a certain kind of dialogue, e.g. information-
seeking; of course one cannot require every system to handle any kind of dialogue.

domain knowledge Domain-specific
(resources) system

dialogue theory Domain-independent
(IS, rules, moves etc.) DME

software engineering

(basic types, control flow) TRINDIKIT

Figure 2: Building a system

e generate appropriate utterance to perform move(s)

e update the information state according to the move(s) performed by
the system

Instead of defining the dialogue moves themselves in terms of precon-
ditions and effects, we define update rules (u-rules) and selection rules (s-
rules) for updating the TIS based on the recognised move(s) and selecting
the next move(s), respectively.

The update rules are rules that update the information state, e.g. when
the user has input something to the system. The selection rules are rules
that both update the information state and selects a dialogue move to be
executed by the system. Both rule types have preconditions and effects. The
preconditions are a list of conditions that must be true of the information
state. The effects are a list of operations to be executed if the preconditions
are true. The preconditions must guarantee that the effects can be executed.

Dialogue move definitions consist of a name, a type (optional) and a list
of number and types of arguments (e.g., speaker, content, etc). Dialogue
moves are the output of analysis and input to generation. Also, they are
the objects selected by s-rules. U-rules may refer to them, and they may be
part of the information state.

We also use the term tacit move to refer to the act of applying an update
rule, i.e. the act of updating the TIS.

3 Question-based Information State

The question about what should be included in the information state is
central to any theory of dialogue management. The notion of information
state we are putting forward here is basically a version of the dialogue
game board which has been proposed by Ginzburg. We want to stress
that the choice of this type of information state is specific to GoDiS; the
TRINDIKITitself does not specify a particular type of informations state,
rather it provides methods of specifying different types of information states.

Our general strategy has been to use as simple datastructures as possible
and make them successively more complicated as the need arises. This is
something that is possible given the kind of notational power and modularity
provided by TRINDIKIT. A change of data structures in successive versions
of the system does not involve a wholesale reimplementation of the system.
Also, the choice of datatypes should itself be seen as a research issue where
the appropriateness of different data-structures for modelling attitudes and

discourse units is investigated and explored. This means that the current
choice of data-structures for GoDiS may be altered in future versions of the
system if there are good reason for it.

We represent information states of dialogue participants as records of
the type in Figure 3.

r [PLAN : LisT(AcCTION)
AGENDA : STACK(ACTION) W
PRIVATE BEL : SET(PRrOP)
TMP [QUD : STACK(QUESTION)]
i LM : Move
[BEL : SET(PROP)
SHARED : QUD STACK(QUESTION)]
L L LM . MOVE J

Figure 3: GoDiS information state type

As any abstract datatype, this type of information state is associated
with various conditions and operations which can be used to check and
update the information state. For example, fst(SHARED.QUD,Q) succeeds
if @ is unifiable with the topmost element on the shared QUD stack, and
pop(SHARED.QUD) will pop the topmost element off the stack.

The main division in the information state is between information which
is private to the agent and that which is shared between the dialogue par-
ticipants. What we mean by shared information here is that which has been
established (i.e. grounded) during the conversation, akin to what Lewis in
[18] called the “conversational scoreboard”.

The PLAN field contains a dialogue plan, i.e. is a list of dialogue actions
that the agent wishes to carry out. The plan can be changed during the
course of the conversation. For example, if a travel agent discovers that his
customer wishes to get information about a flight he will adopt a plan to
ask her where she wants to go, when she wants to go, what price class she
wants and so on. The plan must be ordered, since some actions need to
be performed before others. However, a stack is not sufficient since it does
not allow checking membership of non-topmost elements. (As is explained
in Section 5, answers which do not match a question on QUD are matched
against questions in the plan, which requires the membership check not
available for stacks.)

The AGENDA field contains the short term goals or obligations that the
agent has, i.e. what the agent is going to do next. For example, if the
other dialogue participant raises a question, then the agent will normally
put an action on the agenda to respond to the question. This action may or
may not be in the agent’s plan. For the agenda, order matters since recent
issues are assumed to be more salient and important than older issues. For
example, if one participant has an action on the agenda to ask a question
but the other participant asks another question, the action to answer the
latter question will be pushed on the agenda. Thus, the latter question will
be asked first.

We have included a field TMP that mirrors the shared fields. This field
keeps track of shared information that has not yet been grounded, i.e. con-
firmed as having been understood by the other dialogue participant”. In

"In discussing grounding we will assume that there is just one other dialogue

this way it is easy to delete information which the agent has “optimisti-
cally” assumed to have become shared if it should turn out that the other
dialogue participant does not understand or accept it. If the agent pursues
a cautious rather than an optimistic strategy then information will at first
only be placed on TMP until it has been acknowledged by the other dialogue
participant whereupon it can be moved from TMP to the appropriate shared
field.

The SHARED field is divided into three subfields. One subfield is a set
of propositions which the agent assumes for the sake of the conversation.
Sets were chosen since no order is imposed on the beliefs, but membership
checking is needed.

The second subfield is for a stack of questions under discussion (QUD).
These are questions that have been raised and are currently under discus-
sion in the dialogue. The stack structure is meant to reflect the fact that
dialogues can be nested; a question ¢g; can be met by a counter-question g,
and only (the story goes) when ¢» has been answered can g; be answered.®

Actually, there are two rather different notions of QUD at issue here®:
as a structure to be used in dialogue management on the one hand, and
as a semantic structure (used e.g. for resolving ellipsis) on the other. We
are taking a simplified view of Ginzburg’s idea so that it can be applied to
simple implemented systems, and in this sense we are interested in defin-
ing QUD as a datastructure which will be used in dialogue management.
However, we think it would be a mistake to separate semantics on the one
hand from dialogue management on the other. A lot of what Ginzburg
is talking about in his semantic approach is a theoretical approach to as-
pects of dialogue management and that is a large part of the interest in it.
What we see as the main distinction between the QUD that we have used
and Ginzburg’s original notion is that ours is a local QUD. It represents
the precise questions that are currently under discussion, i.e. that are so
to speak up front and have been explicitly introduced into the dialogue.
Ginzburg’s original notion, as you say, was much more of a ”global” QUD
representing questions that arise from what has been said. We suspect that
both notions of QUD will ultimately be necessary'®, though perhaps our
plan does some of the work of a global QUD. For further discussion of QUD
in relation to local and global discourse structure, see [5] and [16].

The third field contains information about the latest move (speaker,
move type and content).

4 GoDiS

In Géteborg, an experimental dialogue system called GoDiS (Gothenburg
Dialogue System) is being developed based on the framework described
above and using the type of information state described in Section 3.

It should be emphasised that this type of information state is specific for
GoDiS, and is not part of the TRINDIKIT architecture. The toolkit TRINDI-

participant.

8 Actually, this is a simplification of Ginzburg’s theory where the QUD is a
partially ordered set. In the current implementation we do not rely on the fact
that the QUD is a stack rather than, say, a set, since there is never more than
one question on the QUD.

®Thanks to Joris Hulstijn for pointing this out.

0Tn fact, the system reported in [16] uses two separate structures for global and
local QUD.

KIT specifies a general architecture and a format for update rules, selection
rules, information states and modules that can be interfaced with the dia-
logue move engine (control, interpreter, generator, input and output mod-
ules). This allows the implementer to specify a number of modules to make
a generic dialogue system that can be combined with different resources to
make particular specific instances of dialogue systems. For example, the
implementer may use TRINDIKIT to specify information state type, update
rules, selection rules and processing modules external to the dialogue move
engine (control module, interpreter, generator, input and output modules).
The collection of modules that we have specified for GoDiS form a generic
dialogue system for information-seeking dialogue. In order to make a fully
instantiated system one in addition needs a lexicon, a database and domain
knowledge. The idea is that one should be able to substitute different in-
stances of these modules with the same update rules etc and thus obtain
different instances of generic GoDiS. So far, GoDiS has been experimentally
adapted for the travel agency and autoroute domains, for handling menu
navigation in the Nokia 3210 mobile phone (both in Spanish and Swedish),
and as an interface to a handheld computer [10].

4.1 GoDiS architecture

The GoDiS architecture, seen in 4 is an instantiation of the general TRINDI-
KIT architecture. In addition to the control module, there are six modules
in GoDiS: input, interpret, generate, output, update and select. The
last two are DME modules, which means that they together make up the
DME in GoDiS. There are six module interface variables, three resources
and a record structure for the information state.

4.2 Interpretation, Generation, Semantics and database

In the current implementation, interpretation and generation are canned,
which means that the range of input and output strings is very restricted.
However, it is also possible to communicate using moves directly, e.g. by
typing ask(P" (price=P)) instead of ’What is the price?’.

The semantics (if it deserves the name) represents propositions as pairs
of features and values, e.g. (month=april), and questions are A-abstracts
over propositions, e.g. Az(month = z). A set of propositions and a query
together constitute a database query which is sent to the database once
the system has received sufficient information to be able to answer the
question. A question and an answer can be reduced to a proposition using
B-reduction. For example, the question Ax(month=x) and the answer april
yield the proposition [Az(month = z)](april), i.e. (month = april).

4.3 Rules, moves and algorithms

In this section we describe some of the rules and algorithm definitions we
use. The current algorithms are very simple and the behaviour of the system
is therefore mainly dependent on the definitions of the update and selection
rules.

Update algorithm:

1. Are there any update rules whose preconditions are fulfilled in the current
IS? If so, take the first one and execute the updates specified in the effects
of the rule. If not, stop.

2. Repeat.

control

controlpl

- » Diglogue Move Engine (DYE) o ~ea
input interpret | update select | generate | | output
update.pl selectpl
update rulespl selection_rulespl
input_smpletedpl interpret_simplel dmeap dmeip || generate smplel output_smpletextpl

HHEEIE
=g |8 i g i
g;' 4 & H
B B g <
- =1
private: | plan: StackSet(Action)
agenda: Stack(Action)
tmp: ...
IS:
| bel Set(Prop)
shared: | g Stack(Question)
Im:...
otabase @
doman e~
lexicon @

lexicon travel
fish

Figure 4:

domain_travel

lexicon_auto-.|
route_english

autoroute

GoDiS architecture

Selection algorithm:

1. Are there any selection rules whose preconditions are fulfilled in the current
IS? If so, proceed to step 2. If not, stop.

2. Does the rule specify a dialogue move? If so, stop. If not, execute the
updates specified in the effects of the rule.

3. Repeat

Control algorithm:

Call the interpreter

Call the update module
Call the selection module
Call the generator

Call the update module
Repeat

B o A

The update rules include rules for question and plan accommodation,
as well as rules for handling grounding and rules for integrating the latest
move with the DIS. The latter rules look different depending on whether the
user or the system itself was the agent of the move. As an illustration, in (1)
we see the update rule for integrating an “answer” move when performed
by the user, and in (2) the converse rule for the case when the latest move
was performed by the system!!.

(1) u-rULE: integrateLatestMove(answer(usr))
val(SHARED.LM, answer(usr,A))
PRE { fst(SHARED.QUD, Q),
answer_to(@, A)
pop(SHARED.QUD)
EFF { reduce(@, 4, P)
add(SHARED.BEL, P)

(2) vU-RULE: integrateLatestMove(answer(sys))
PRE: val(PRIVATE.TMP.LM, answer(sys, @, A))

set(SHARED.LM, answer(sys, @, A))

pop(SHARED.QUD)

reduce(@, A, P)

add(SHARED.BEL, P)

Here’s a paraphrase of rule (1:) “If the latest move was a user answer
with content A , and the first question on QUD is @) , and A is an answer
to @, then pop @ off the QUD, perform beta-reduction on @ and A to yield
the resulting proposition P, and add P to the shared beliefs. For a more
concrete paraphrase, A could be paris, @ "X~ (to=X)” and P = Q(4) =
to(paris). A shorter paraphrase is the following: if the user just answered
a question on QUD, pop the question off QUD and add the new fact to
shared beliefs.

The rule in (2) is the same, except for two things: since the system
knows which question it was answering, it is not necessary to check for
question-answer relevance; the system only answers questions which are
topmost on QUD. A second complicating factor is that the rule in (2) also
assumes that the system’s move has not yet been grounded - it is stored in
PRIVATE.TMP.LM rather than SHARED.LM.

1Note that this definition embodies an optimistic approach to grounding by
putting answer(sys, @, A) in SHARED.LM, thereby assuming the systems utterance
was understood by the user. Also, the system optimistically assumes that the user
accepts the resulting proposition P by adding it to SHARED.BEL.

10

4.4 Dialogue plans

In our implementation, the domain resource includes, among other things,
a set of dialogue plans which contain information about what the system
should do in order to achieve its goals. Traditionally [2], it has been assumed
that general planners and plan recognizers should be used to produce co-
operative behaviour from dialogue systems. On this account, the system
is assumed to have access to a library of domain plans, and by recognizing
the domain plan of the user, the system can produce cooperative behaviour
such as supplying information which the user might need to execute her
plan. Our approach is to directly represent ready-made plans for engaging
in cooperative dialogue and producing cooperative behaviour (such as an-
swering questions) which indirectly reflect domain knowledge, but obviates
the need for dynamic plan construction.

Typically, the system has on the agenda an action to respond to a ques-
tion. However, the move for answering the question cannot be selected since
the system does not yet have the necessary information to answer the ques-
tion. The system then tries to find a plan which will allow it to answer the
question, and this plan will typically be a list of actions to raise questions;
once these questions have been raised and the user has answered them, the
system can provide an answer to the initial question. This behaviour is sim-
ilar to that of many natural language database interfaces, but the difference
is that the architecture of our system allows us to improve the conversa-
tional behaviour of the system simply by adding some new rules, such as
the accommodation rules described below.

5 Accommodation

We define dialogue moves as updates to information states directly associ-
ated with utterances. If one takes a dialogue or information update per-
spective on Lewis’ notion of accommodation, it corresponds to moves that
are tacit (i.e. not associated with an utterance). Tacit moves can be seen as
applications of update rules, which specify how the information state should
be updated given that certain preconditions hold. Tacit moves could also
be called “internal” or “inference” moves. The motivation for thinking in
terms of accommodation has to do with generality. We could associate ex-
pressions which introduce a presupposition as being ambiguous between a
presuppositional reading and a similar reading where what is the presuppo-
sition is part of what is asserted. For example, an utterance of “The king
of France is bald” can either be understood as an assertion of that sentence
and a presupposition that there is a king of France or as an assertion of the
sentence “There is a king of France and he is bald”. However, if we assume
an additional tacit accommodation move before the integration of the in-
formation expressed by the utterance then we can say that the utterance
always has the same interpretation.

In a similar way we can simplify our dialogue move analysis by extend-
ing the use of tacit moves so that the updates to the information state
normally associated with a dialogue move are actually carried out by tacit
moves. One argument for doing this is that very few (if any) effects of a
move are guaranteed as a consequence of performing the move; rather, the
actual resulting updates depend on reasoning by the addressed participant.
Thus, we define an update rule integrateLatestMove which, given that
the latest move was accepted by the system, performs the appropriate up-
date operations. The updates for a move are different depending on whether

11

it was the system or the user who made the move, but the same module is
used in both cases.

5.1 Accommodating a question onto QUD

Dialogue participants can address questions that have not been explicitly
raised in the dialogue. However, it is important that a question is available
to the agent who is to interpret it because the utterance may be elliptical.
Here is an example from a recorded dialogue!?:

(3) $J: vicken manad ska du aka
(what month do you want to go)
$P: ja: typ den: &: tredje fjdrde april /
nan gang dar
(well around 3rd 4th april / some time there)
$P: sa billit som mSjlit
(‘as cheap as possible)

The strategy we adopt for interpreting elliptical utterances is to think of
them as short answers (in the sense of Ginzburg [8]) to questions on QUD.
A suitable question here is What kind of price does P want for the ticket?.
This question is not under discussion at the point when P says “as cheap
as possible”. But it can be figured out since J knows that this is a relevant
question. In fact it will be a question which J has as an action in his plan to
raise. On our analysis it is this fact which enables A to interpret the ellipsis.
He finds the matching question on his plan, accommodates by placing it on
QUD and then continues with the integration of the information expressed
by as cheap as possible as normal. Note that if such a question is not
available then the ellipsis cannot be interpreted as in the dialogue in (4).

(4) A. What time are you coming to pick up Maria?
B. Around 6 p.m. As cheap as possible.

This dialogue is incoherent if what is being discussed is when the child
Maria is going to be picked up from her friend’s house (at least under
standard dialogue plans that we might have for such a conversation).

5.2 Accommodating the dialogue plan

After an initial exchange for establishing contact the first thing that P says
to the travel agent in our dialogue is:

(5) $P: flyg ti paris
< flights to Paris >

This is again an ellipsis which on our analysis has to be interpreted as
the answer to a question in order to have content. As no questions have been
raised yet in the dialogue (apart from whether the participants have each

2We will illustrate our discussion from a Swedish human-human dialogue
in the travel booking domain that has been collected by the University of
Lund as part of the SDS project. @~ We quote the transcription done in
Goteborg as part of the same project. The full transcription is available from
http://www.ling.gu.se/SLSA/dialog.html.

12

other’s attention) the travel agent cannot find the appropriate question on
his plan. Furthermore, as this is the first indication of what the customer
wants, the travel agent cannot have a plan with detailed questions. We
assume that the travel agent has various plan types in his domain knowledge
determining what kind of conversations he is able to have. E.g. he is able
to book trips by various modes of travel, he is able to handle complaints,
book hotels, rental cars etc. What he needs to do is take the customer’s
utterance and try to match it against questions in his plan types in his
domain knowledge. When he finds a suitable match he will accommodate
his plan, thereby providing a plan to ask relevant question for flights, e.g.
when to travel?, what date? etc. Once he has accommodated this plan
he can proceed as in the previous example. That is, he can accommodate
the QUD with the relevant question and proceed with the interpretation of
ellipsis in the normal fashion.

This example is interesting for a couple of reasons. It provides us with
an example of “recursive” accommodation. The QUD needs to be accommo-
dated, but in order to do this the dialogue plan needs to be accommodated.
The other interesting aspect of this is that accommodating the dialogue
plan in this way actually serves to drive the dialogue forward. That is, the
mechanism by which the agent interprets this ellipsis, gives him a plan for
a substantial part of the rest of the dialogue. This is a way of capturing the
intuition that saying flights to Paris to a travel agent immediately makes a
number of questions become relevant.

5.3 Associating accommodation with tacit moves

Update rules can be used for other purposes than integrating the latest
move. For example, one can provide update rules which accommodate ques-
tions and plans. One possible formalization of the accommodate_question
move is given in (6). When interpreting the latest utterance by the other
participant, the system makes the assumption that it was a reply move with
content A. This assumption requires accommodating some question) such
that A is a relevant answer to Q. The check operator “answer-to(4,Q)” is
true if A4 is a relevant answer to) given the current information state, ac-
cording to some (possibly domain-dependent) definition of question-answer

relevance!®.

(6) uU-rRULE: accommodateQuestion(Q, A)
val(SHARED.LM, answer(usr,A4)),
PRE in(PRIVATE.PLAN, raise(Q))
answer-to(4,Q)
del(PRIVATE.PLAN, raise(Q®))
EFF:
push(SHARED.QUD, Q)

6 Accommodation in a dialogue system

In this section we show an example of how the dialogue system described
above can handle accommodation of questions and plans. The example is
actual (typed) dialogues with the system, supplemented with information

13The definition of relevance implemented in the current GoDiS is very simple;
basically, it encodes for each question a set of possible (“relevant”) answers. For
example, any city name is a relevant answer to the question “Where do you want
to go?”.

13

about dialogue moves, tacit moves, and (partial) illustrations of the systems
information state at different stages of the dialogue. The dialogue fragment
can be seen in Figure 5 and the resulting information state in Figure 6.

After interpreting the users utterance as an answer move with the
content [how=plane,to=paris], the system starts checking if there are
any u-rules which apply. Following the ordering of the rules given in the
list of rule definitions, it first checks if it can perform integrateLatest-
Move(answer(usr)). However, this rule requires that the content of the
answer must be relevant to the topmost question on QUD. Since the QUD
is empty, the rule does not apply. It then tries to apply the accommo-
dateQuestion rule, but since the plan is empty this rule does not apply
either. However, accommodatePlan (7) does apply, since there is (in the
domain knowledge resource) a plan such that the latest move matches that
plan. More precisely, the latest move provides an answer to a question @
such that raising @) is part of the plan.

(7) U-RULE: accommodatePlan
empty(PRIVATE.PLAN)
empty(SHARED.QUD)
PRE: empty(PRIVATE.AGENDA)
val(SHARED.LM, LM)
domain::matches_plan(LM, Plan)
EFF: { set(PRIVATE.PLAN, Plan)

Once this rule has been executed, the update algorithm starts from
the beginning of the rule list. This time, it turns out the preconditions of
accommodateQuestion hold, so the rule is applied. As a consequence of
this, the preconditions of integrateLatestMove(answer(usr)) now hold,
so that rule is applied. Actually, it turns out that the latest move is also
relevant to a second question (concerning the destination) in the plan, so
that question is also accommodated and its answer integrated. Since no
additional u-rules apply, the system proceeds to perform the next action on
the plan: asking where the user wants to travel from. At the end of the
dialogue fragment, the information state after the system has uttered this
question is shown.

7 Conclusion

We would argue that general inference and/or planning may not be the
ultimate solution for dialogue management because of complexity problems.
Simple slot-filling strategies are too simple, and we argue that dialogue plans
coupled with mechanisms for question and task accommodation operate on
a level of complexity which is just right for many kinds of dialogue. We do
not claim that the mechanisms we describe cannot be implemented in any
other architecture. Rather, we argue that the TRINDI approach provides
natural and intuitive means for implementing dialogue behaviours. As an
example, the mechanism of question accommodation in GoDiS only required
adding one or two simple, domain-independent update rules. For further
reading about TRINDIKIT and its relation to other approaches to dialogue
management, we refer to [17].

$S: Welcome to the travel agency

$U: flights to paris.

PLAN = ()
PRIVATE = agenba = ()
TMP = ...
BEL = {}
SHARED = qupo = ()
LM = answer(usr, [how=plane,to=paris])

accommodatePlan
set(private.plan, [raise(A” (how=4)),
raise(B" (to=B)),
raise(C” (return=C)),
raise(D” (month=D)),
raise(E” (priceclass=E)),
respond(F” (price=F))])

accommodateQuestion
del(private.plan,raise(A” (how=A)))
push(shared.qud,A” (how=4))

integrateLatestMove(answer (usr))
pop(shared.qud)
add(shared.bel,how=plane)

accommodateQuestion
del(private.plan,raise(A” (to=4)))
push(shared.qud,A” (to=A4))

integrateLatestMove(answer (usr))
pop(shared.qud)
add(shared.bel,to=paris)

refillAgenda
pop(private.plan)
push(private.agenda,raise(A” (return=4)))

private =
agenda = [raise(A” (return=A))]
plan = [raise(A” (month=A)),
raise(B” (priceclass=B)),
respond(C” (price=C))]
shared =
bel= [(to = paris)
(how = plane)]
Im = answer(usr, [how=plane,to=paris])

$S: From where do you want to go?

Figure 5: Sample GoDiS dialogue

15

i raise(R" (return=R)),
PLAN - raise (M: (month=M)),) W
PRIVATE = raise(C” (class=C)),
respond(P” (price=P))
AGENDA = ()
| TMP = ...
[BEL = {(to=paris), (how=plane)}
SHARED = Qup = (X" (from=X))]
| | LM = ask(sys,Y" (from=Y)) J

Figure 6: Information state resulting from the exchange in Figure 5.

8 Current and future research

Lately, we have been experimenting with translating menu-driven interfaces
into dialogue systems by converting menu structures into dialogue plans.
This requires a more complex plan representation, with conditionals and
embedded subplans. While the dialogue plan presented in this paper is very
simple and very much like a slot-and-filler frame, the menu-derived plans go
beyond what can be done with frames as standardly conceived. We claim
that his supports our view that the dialogue plan approach is more general
than the frame-filling approach, while still not being too computationally
complex. GoDiS has also been modified to handle instructional dialogue
[15], where complex plans are also needed.

We are currently extending the GoDiS DME to handle negotiative di-
alogue, where e.g. several different solutions to a problem (answers to a
question) can be discussed and compared before one is settled on. By con-
trast, the current GoDiS can only discuss one object (e.g. flight) at a time.
This extension will also require abandoning the simple feature-value seman-
tics currently used, and adopting a semantics similar to first order logic.

In future work we hope to investigate in more detail the relation be-
tween the QUD-based approach to dialogue management, as implemented
in GoDiS, and other approaches, including plan-based approaches such as
[9], [12] and [19], strategies based on general reasoning such as [21] and [22],
frame-based approaches such as [3], and obligation-based dialogue manage-
ment ([11]).

References

[1] J. F. Allen. Natural Language Understanding. Benjamin Cummings,
Menlo Park, CA, 1987.

[2] J. F. Allen and C. Perrault. Analyzing intention in utterances. AlJ,
15(3):143-178, 1980.

[3] Jennifer Chu-Carroll. Mimic: An adaptive mixed initiative spoken di-
alogue system for information queries. In Proceedings of the 6th Con-
ference on Applied Natural Language Processing, pages 97-104, 2000.

[4] R. Cooper and S. Larsson. Dialogue moves and information states. In
Proc. of the Third IWCS, Tilburg, 1999.

[5]

[6]

[7]

[10]

[11]

[12]

13]
14]
15]
16]

[17]

[18]

[19]

[20]

[21]

16

Robin Cooper, Elisabet Engdahl, Staffan Larsson, and Stina Ericsson.
Accommodating questions and the nature of qud. In Poesio and Traum
[20], pages 57—61.

J. Ginzburg. Dynamics and the semantics of dialogue. In Seligman
and Westerstahl [23].

J. Ginzburg. Interrogatives: Questions, facts and dialogue. In The
Handbook of Contemporary Semantic Theory [13].

J. Ginzburg. Clarifying utterances. In J. Hulstijn and A. Niholt, ed-
itors, Proc. of the Twente Workshop on the Formal Semantics and
Pragmatics of Dialogues, pages 11-30, Enschede, 1998. Universiteit
Twente, Faculteit Informatica.

B. J. Grosz and C. L. Sidner. Attention, intention, and the structure
of discourse. Computational Linguistics, 12(3):175-204, 1986.

Rebecca Jonson. Agenda talk - a talking filofax developed with the
trindikit toolkit. Master’s thesis, Computational Linguistics, Géteborg
University, 2000.

Jorn Kreutel and Colin Matheson. Information states, obligations and
intentional structure in dialogue modelling. In Proceedings of the 3rd
International Workshop on Human-Computer Conversation, 2000.

Lynn Lambert and Sandra Carberry. A triparite plan-based model of
discourse. In Proceedings of the 29" Annual Meeting of the Association
for Computational Linguistics, pages 47-544, 1991.

ed. Lappin, Shalom. The Handbook of Contemporary Semantic Theory.
Blackwell, Oxford, 1996.

S. Larsson, P. Bohlin, J. Bos, and D. Traum. Trindikit 1.0 manual.
deliverable D2.2 D2.2 - Manual, TRINDI, 1999.

Staffan Larsson. From manual text to instructional dialogue: an infor-
mation state approach. In Poesio and Traum [20], pages 203-206.

Staffan Larsson. Issue-based Dialogue Management. PhD thesis,
Goteborg University, 2002.

Staffan Larsson and David Traum. Information state and dialogue
management in the trindi dialogue move engine toolkit. NLE Special
Issue on Best Practice in Spoken Language Dialogue Systems Engineer-
ing, pages 323-340, 2000.

D. K. Lewis. Scorekeeping in a language game. Journal of Philosophical
Logic, 8:339-359, 1979.

D. J. Litman and J. F. Allen. Discourse processing and commonsense
plans. In P. R. Cohen, J. Morgan, and M. E. Pollack, editors, Intentions
in Communication, pages 366-388. The MIT Press, 1990.

Massimo Poesio and David Traum, editors. Proceedings of Gétalog
2000, number 00-5 in GPCL (Gothenburg Papers Computational Lin-
guistics), 2000.

B. Raskutti and I Zukerman. Generating queries and replies dur-

ing information-seeking interactions. International Journal of Human
Computer Studies, 47(6):689-734, 1997.

17

[22] D. Sadek, A. Ferrieux, and A. Cozannet. Towards an artificial agent as
the kernel of a spoken dialogue system: a progress report. In Proc. of

the AAAI Workshop on Integration of Natural Language and Speech,
1994.

[23] Jerry Seligman and Dag Westerstahl, editors. Logic, Language and
Computation, volume 1. CSLI Publications, 1996.

