
Grammatical Framework and Multiple Context-Free Grammars

Peter Ljunglöf

March 10, 2004

Grammatical Framework (GF) [5] is a grammar for-
malism originating from logical frameworks for de-
pendent type theory. It is already known that the
parsing problem for GF is undecidable, which has
to do with the possibility to formulate undecidable
propositions. But for subclasses of GF, in particular
GF with a context-free backbone, parsing is decid-
able. Until now the parsing complexity of context-
free GF has been unknown, which we aim to change
with this article.

We show that there is a simple one-to-one corre-
spondence between Grammatical Framework with
context-free backbone and Multiple Context-Free
Grammars (MCFG) [7]. Since the parsing complexity
for MCFGs is known to be polynomial in the length
of the input, we get the same result for context-free
GF.

GF with dependent types is undecidable in general,
but the separation of abstract and concrete syntax
makes it possible to use a two-step process in parsing.
First a MCFG parser is used to create a chart, then
each item in the chart is converted to a Horn clause.
The resulting logic program then solves the parsing
problem.

1 Grammatical Framework

Grammatical Framework [5] is a grammar formalism
built upon a Logical Framework. What GF adds to
the logical framework is a possibility to define con-
crete syntax, that is, notations expressing formal con-
cepts in user-readable ways. Although GF grammars
are bidirectional, the perspective of GF is on gener-
ation rather than parsing. A difference from usual

grammar formalisms is the support for multilingual-
ity; it is possible to define several concrete syntaxes
upon one abstract syntax. The abstract syntax then
works as an interlingua between the concrete syn-
taxes. The development of GF as an authoring sys-
tem started as a plug-in to the proof editor ALF, to
permit natural-language rendering of formal proofs
[3]. The extension of the scope outside mathematics
was made in the Multilingual Document Authoring
project at Xerox [1]. In continued work, GF has been
used in areas like software specifications [2] and dia-
logue systems [6]. In this article we have changed the
notation somewhat, compared to other GF articles.
The reason for this is to make the comparison with
Generalized Context-Free Grammars simpler. There
are also some features of GF that we do not mention,
mainly syntactic sugar and some default notations.

1.1 GF with a context-free backbone

Grammatical Framework is a strongly typed func-
tional language; functional in the sense that a gram-
mar defines a set of functions, and strongly typed
in the sense that each function has a given typing,
known at compile-time. Basic types in GF are called
categories, and are specified by the grammar. For
now we assume that there are only a finite number of
categories – in section 1.3 we generalize the concept
to dependent and higher-order categories.

A function is specified by a typing, an (optional) defi-
nition and a linearization. To retain compositionality,
all terms of a given category A must linearize to the
same linearization type, written [[A]].

1

Function typings The typing of a function tells us
how many arguments it takes, what their categories
are and what category the result is.

f : A1 → . . .→ Aδ → A

The function may take no arguments; in which case it
is called a ground term. Given a grammar, we define
the abstract terms, or syntax trees, as follows. The
term f(t1, . . . , tδ) is of category A whenever each ti
is of category Ai.

Abstract definitions An abstract definition spec-
ifies a computation rule on terms, thereby defining a
notion of equality between terms. This equality is a
semantic equality, since it does not affect the concrete
linearizations; even though two terms are equal by
definition, they can be linearized to different strings.
Since they do not affect the concrete syntax, we do
not mention them further in this article.

Linearization terms and types Linearizations
are written as terms in a typed functional program-
ming language, which is limited to ensure decidabil-
ity in generation and in parsing. The language has
records and finite-domain functions (called tables);
and the basic types are terminal lists (called strings)
and finite data types (called parameter types). There
are also local definitions, lambda-abstractions and
global function definitions. The parameters are de-
clared by the grammar; they can be hierarcical but
not recursive, to ensure finiteness.

Linearization definitions The linearization of a
function term f is a function (also written f) from
the linearization types of the argument categories to
the linearization type of the result category; or as a
functional typing, f : [[A1]] → . . .→ [[Aδ]] → [[A]].

f(x1, . . . , xδ) = φ

The linearization φ must of course be of type [[A]]
(written φ : [[A]]), given that each xi is of type [[Ai]].
Note that a limitation on the linearization is that it
is not possible to examine the structure of variables
by e.g. case analysis; which is one way of defining
compositionality for grammars.

1.2 Canonical GF

The concrete syntax of any GF grammar can be par-
tially evaluated to a grammar in canonical form, as
shown in [5]. In canonical form, all local and global
definitions disappear, as well as function applications;
and all tables are fully expanded. Hierarcical param-
eters can be flattened; thus we can assume that the
parameters are declared by giving a finite set Par of
parameter types, each P ∈ Par being a set of parame-
ters p1, . . . , pn. A linearization term in canonical GF
is of the following form:

• A string constant is of type Str; and a concate-
nation s1 · s2 : Str, whenever s1, s2 : Str.

• A constant parameter p : P, whenever p ∈ P.

• A record { r1 = φ1 ; . . . ; rn = φn } is of type
T = { r1 : T1 ; . . . ; rn : Tn }, whenever each
φi : Ti.

• A record projection φ.ri : Ti, whenever φ is of
the record type T above.

• A table [p1 ⇒ φ1 ; . . . ; pn ⇒ φn] is of type
P ⇒ T , whenever P = { p1, . . . , pn }, and each
φi : T .

• A table selection φ !ψ : T , whenever φ : P ⇒ T
and ψ : P.

• An argument variable xi : [[Ai]].

Together with this there are computation rules for
string concatenation, record projection and table se-
lection.

An example grammar In figure 1, there is a sim-
ple example GF grammar, which is not entirely in
canonical form. The linearization of q contains a non-
expanded table [n ⇒ x.s !n · y.s], whose canonical
form is [Sg ⇒ x.s !Sg · y.s ; Pl ⇒ x.s !Pl · y.s].

2

[[S]] = { s : Str }
[[N]] = { s : Str ; n : Num }
[[V]] = { s : Num ⇒ Str }
p : N → V → S

p(x, y) = { s = x.s · y.s ! (x.n) }
q : V → N → V

q(x, y) = { s = [n⇒ x.s !n · y.s] }
a : N = { s =“animals”; n = Pl }
b : N = { s =“Bernie”; n = Sg }
l : V = { s = [Sg ⇒“loves”; Pl ⇒“love”] }

Figure 1: Example GF grammar

1.3 GF with dependent categories

Full GF have a much more expressive abstract syn-
tax than above; categories can depend on other cate-
gories. E.g. the grammar could specify that category
A depends of category B, meaning that A(x) is a
category whenever x is a term of category B.

Another extension is that arguments to function typ-
ings (and dependent categories) can be functions and
not just of a basic category.

These extensions turn the abstract syntax into a log-
ical framework, where e.g. undecidable propositions
can be formulated, thus giving a very expressive for-
malism. A natural question is then how to parse and
linearize terms with these extensions, which will be
addressed in section 4.1.

2 Generalized CFG

Generalized Context-Free Grammars (GCFG) were
introduced by Pollard in the 80’s as a way of formally
describing Head Grammars [4]. Later people have
used GCFG as a framework for describing many other
formalisms, such as Linear Context-Free Rewriting
Systems [?] and Multiple Context-Free Grammars [7];

and here we will use it to describe GF with a context-
free backbone.

There are several definitions of GCFG in the litter-
ature, and we introduce yet another one, in which
a Generalized Context-Free Grammar consists of an
abstract grammar together with a concrete interpre-
tation.

Abstract grammar The abstract grammar is a
tuple (C,S, F,R), where C and F are finite sets of
categories and function symbols respectively, S ∈ C
is the starting category, and R ⊆ C×F×C∗ is a finite
set of abstract syntax rules. For each function sym-
bol f ∈ F there is an associated context-free syntax
rule.

A → f(A1, . . . , Aδ)

The tree rewriting relation A ⇒ t is defined as A ⇒
f(t1, . . . , tδ) whenever A1 ⇒ t1, . . . , Aδ ⇒ tδ.

Concrete interpretation To each category A is
associated a linearization type [[A]], which is not fur-
ther specified. To each function symbol f is associ-
ated a partial linearization function (also written f),
taking as many arguments as the abstract syntax rule
specifies.

f ∈ [[A1]] → . . .→ [[Aδ]] → [[A]]

The linearization of a syntax tree is defined as
[[f(t1, . . . , tδ)]] = f([[t1]], . . . , [[tδ]]), if the application
is defined. Note that we impose no restrictions on
the linearization types or the linearization functions;
this is left to the actual grammar formalism.

2.1 GF with a context-free backbone

Grammatical Framework with a context-free back-
bone is obviously an instance of GCFG, where the
abstract GF rule f : A1 → . . . → Aδ → A is
just another way of writing the abstract GCFG rule
A→ f(A1, . . . , Aδ).

3

2.2 Multiple Context-Free Grammars

Multiple Context-Free Grammars [7] were introduced
in the late 80’s as a very expressive formalism, incor-
porating Linear Context-Free Rewriting Systems and
other mildly context-sensitive formalisms, but still
with a polynomial parsing algorithm. MCFG is an
instance of GCFG, with the following restrictions on
linearizations:

• Linearization types are restricted to tuples of
strings.

• The only allowed operations in linearization
functions are tuple projections and string con-
catenations.

Since records can be seen as syntactic sugar for tu-
ples, we can use records in this article without chang-
ing the definition of MCFG.

Comparison with GF Obviously MCFG is an in-
stance of context-free GF, but without tables and ta-
ble selections. The fact that GF can have nested
records does not change anything – all nestings can
be flattened. Also, an expanded table

[p1 ⇒ φ1 ; . . . ; pn ⇒ φn] : P ⇒ T

is equivalent to a record

{ p1 = φ1 ; . . . ; pn = φn } : { p1 : T ; . . . ; pn : T }

and an instantiated selection φ ! pi is equivalent to a
record projection φ.pi.

There are two fundamental differences:

• MCFG cannot have parameters as linearization
values.

• A table selection in GF does not necessarily have
to be an instantiated parameter; it can be any
term of the correct linearization type.

In the example grammar, the linearization of p
contains a selection y.s ! (x.n), which is not in-
stantiated.

3 Converting GF to MCFG

In this section we show that it is possible to convert
a GF grammar into an equivalent grammar where
all table selections are instantiated, and containing
no parameters. By the argument above, this means
that context-free GF and MCFG are equivalent. This
conversion is done in two steps, described later in
sections 3.2 and 3.3, and the following theorem is a
consequence.

Theorem 1 Any GF grammar with a context-free
backbone can be reduced to an equivalent MCFG
grammar.

3.1 Preliminaries

A linearization term φ is in η-normal form if the
structure follows the structure of its linearization
type; i.e. φ is a record if the type is a record type,
and φ is an expanded table if the type is a table type.
The subterms of φ which are of the basic lineariza-
tion types, Str or P ∈ Par, are called the leaves of φ.
A path is a sequence of record projections and table
selections; meaning that ε, σ.r and σ !φ are paths if
σ is a path. A path that does not contain any ar-
gument variables xi is called instantiated; in which
case the selections φ can only be parameters. A non-
instantiated path is called nested; this is because if a
path contains an argument variable xi, then that vari-
able is always followed by a (possibly empty) path.

A linearization type T as well as a linearization φ can
be partitioned into parameter paths and string paths:

T Str = {σ : Str | T.σ = Str }
TPar = {σ : P | T.σ = P ∈ Par }
φStr = {σ = φ.σ | φ.σ : Str }
φPar = {σ = φ.σ | φ.σ : P ∈ Par }

Note that we equate nestings of tables/records and
sets of path-value pairs, and that we extend paths
to linearization types in the obvious way. Also note
that there are only a finite number of instantiated pa-
rameter records π : TPar, since there are only finitely
many parameters.

4

The example grammar For the term a : [[N]] in
the example grammar we have that

[[N]]Str = { s : Str }
[[N]]Par = {n : Num }
aStr = { s =“animals”}
aPar = {n = Pl }

3.2 A normal form for linearizations

Definition 1 A GF linearization is in table normal
form if it is of the form

f(x1, . . . , xδ) = [π1 ⇒ φ1 ; . . . ; πn ⇒ φn] ! ξ

and the following hold:

• ξ contains all parameter paths of the arguments
x1, . . . , xδ; in other words ξ = (xPar

1 , . . . , xPar
δ).

• Each πk is a possible parameter instantiation of
ξ; in other words πk : [[A1]]Par × · · · × [[Aδ]]Par.

• Each φk is in η-normal form where the leaves are
either parameters or concatenations of constant
strings and instantiated string paths.

The following algorithm converts any GF lineariza-
tion in canonical form into normal form.

Algorithm 1 First, add the outer table as in the def-
inition of table normal form:

f(x1, . . . , xδ) = [π1 ⇒ φ ; . . . ; πn ⇒ φ] ! ξ
ξ = (xPar

1 , . . . , xPar
δ)

πk : [[A1]]Par × · · · × [[Aδ]]Par

Second, for each instantiation πk, convert φ to φk, by
repeating the following substitution until there are no
parameter paths left:

• Substitute each instantiated parameter path xi.σ
for its πk-instantiation (πk)i.σ.

Lemma 1 The algorithm, together with the standard
computation rules, yields an equivalent linearization
in table normal form.

The example grammar There are two lineariza-
tions in the example that are not in table normal
form, and this is how they look after conversion:

p(x, y) = [Sg ⇒ { s = x.s · y.s !Sg } ;
Pl ⇒ { s = x.s · y.s !Pl }] ! x.n

q(x, y) = [Sg ⇒ { s = [Sg ⇒ x.s !Sg · y.s ;
Pl ⇒ x.s !Pl · y.s] } ;

Pl ⇒ { s = [Sg ⇒ x.s !Sg · y.s ;
Pl ⇒ x.s !Pl · y.s] }] ! y.n

3.3 Refining the abstract syntax

To get an MCF grammar, we have to get rid of the
parameters in some way; and this we do by moving
them to the abstract syntax. Each table row πk ⇒ φk

above will then give rise to a unique function symbol
with linearization φk.

Algorithm 2 Given a GF grammar where all lin-
earizations are in table normal form, create a gram-
mar with the following categories, function symbols
and linearizations:

• For each cateogry A and each instantiated pa-
rameter record π : [[A]]Par, create a new category
Â = A[π]. The linearization type is the same as
the string paths of the original linearization type,
[[Â]] = [[A]]Str

• For each syntax rule A → f(A1, . . . , Aδ), and
all new categories Â, Â1, . . . , Âδ, create a new
syntax rule Â → f̂(Â1, . . . , Âδ); where f̂ is a
unique function symbol, f̂ = f [Â→ Â1 . . . Âδ].

• For each linearization function

f(x1, . . . , xδ) = [π1 ⇒ φ1 ; . . . ; πn ⇒ φn] ! ξ

and each table row πk ⇒ φk, create a new lin-
earization function for f̂ = f [Â→ Â1 . . . Âδ]:

f̂(x1, . . . , xδ) = φStr
k

Â = A[φPar
k]

Âi = Ai[(πk)i] (1 ≤ i ≤ δ)

where we by (πk)i mean the ith component of πk.

5

[[N̂1]] = [[N̂2]] = [[Ŝ]] = { s : Str }
[[V̂]] = { s !Sg : Str ; s !Pl : Str }
p̂1 : N̂1 → V̂ → Ŝ

p̂1(x, y) = { s = x.s · y.s !Sg }
p̂2 : N̂2 → V̂ → Ŝ

p̂2(x, y) = { s = x.s · y.s !Pl }
q̂1 : V̂ → N̂1 → V̂

q̂1(x, y) = { s !Sg = x.s !Sg · y.s ;
s !Pl = x.s !Pl · y.s }

q̂2 : V̂ → N̂2 → V̂

q̂2(x, y) = q̂1(x, y)
â : N̂2 = { s =“animals”}
b̂ : N̂1 = { s =“Bernie”}
l̂ : V̂ = { s !Sg =“loves”; s !Pl =“love”}

Figure 2: Grammar after conversion to MCFG

Obviously the resulting grammar is an MCF gram-
mar, since all linearizations are records of strings.

Lemma 2 The resulting grammar is equivalent to
the original.

The example grammar Figure 2 shows how
the example grammar looks like after conversion to
MCFG.

3.4 Non-deterministic reduction

There is a more direct conversion, using a non-
deterministic substitution algorithm. This can also
reduce the size of the resulting grammar, when argu-
ment parameters are not mentioned in linearizations.

Algorithm 3 Assume the following abstract syntax
rule, together with its linearization function:

A → f(A1, . . . , Aδ)
f(x1, . . . , xδ) = φ

Repeat the following non-deterministic substitution
until there are no instantiated parameter paths left,
accumulating the parameter records π1, . . . , πδ:

• Substitute each instantiated parameter path
xi.σ : P with any p ∈ P, such that adding the
row σ = p to πi is consistent.

Supposing that the final substituted linearization is ψ,
we can add the following rule for the new function
symbol f̂ :

Â → f̂(Â1, . . . , Âδ)

f̂(x1, . . . , xδ) = ψStr

Â = A[ψPar]
Âi = Ai[πi] (1 ≤ i ≤ δ)

The algorithm is non-deterministic, and we get the
final grammar by finding all solutions for each func-
tion symbol f ; which can be done by a standard all-
solutions predicate, such as findall in Prolog.

Coercions between categories There is a dif-
ference between algorithm 3 and the previous algo-
rithms; if an argument parameter xi.σ is not men-
tioned in φ, then there will be no σ-row in the con-
straint record πi. This means that the new category
Âi = Ai[πi] will only contain a subrecord of Ai[φPar

i],
where φi is a linearization of type [[Ai]].

Algorithm 4 Given two reduced syntax rules,

Â → f̂(. . . B̂1 . . .)
B̂2 → ĝ(. . .)

where B̂1 = B[π1] and B̂2 = B[π2]. If π1 is a sub-
record of π2, add the coercion function ĉ = c[π1π2]:

B̂1 → ĉ(B̂2)
ĉ(x) = x

6

The example grammar One function symbol
gets a different linearization from algorithm 3 than
in figure 2; the functions q̂1 and q̂2 get merged into
one function q̂.

q̂ : V̂ → N̂ → V̂

q̂(x, y) = { s !Sg = x.s !Sg · y.s ;
s !Pl = x.s !Pl · y.s }

where N̂ = N []. This yields coercions for the more
specific types N̂1 = N [n = Sg] and N̂2 = N [n = Pl]:

N̂ → ĉi(N̂i) (i = 1, 2)
ĉi(x) = x

4 Implications to Parsing

Definition 2 A chart for a GCFG is a finite set of
tuples (f, φ, φ1, . . . , φδ), where φ = f(φ1, . . . , φδ).

A tree t = f(t1, . . . , tδ) is represented by the chart if
it contains (f, [[t]], [[t1]], . . . , [[tδ]]), and each subtree ti
is represented by the chart.

The following lemma is just another way of saying
that GCFG grammars are compositional:

Lemma 3 The set of GCFG trees { t | [[t]] = φ }, for
a given φ, can be represented by a single chart.

In other words, a correct parsing algorithm for
GCFGs does not have to return anything more than
a chart.

If we have translated a context-free GF grammar into
MCFG using algorithm 1+2, it is straight-forward to
translate back a chart for the MCFG into a chart for
the original grammar. Each item (f̂ , φ, φ1, . . . , φδ),
where f̂ = f [Â→ Â1 . . . Âδ] and Âi = Ai[πi], can be
converted to the item (f, φ ∪ π, φ1 ∪ π1, . . . , φδ ∪ πδ).
Back-translation of trees are even simpler; just strip
off the extra information from the nodes – each tree
node f̂ = f [. . .] is converted to f .

If we have converted using algorithm 3+4, back-
translation is only slightly more complicated; if there
is a coercion Âk → ĉ(Âk), where Â′

k = Ak[π′k], use
the linearization φk ∪ π′k instead of φk ∪ πk.

4.1 Dependent categories

If we have a GF grammar with dependent categories,
there is a straight-forward two-step parsing process
for that grammar. First we simply remove all depen-
dencies form the abstract syntax, thereby getting a
grammar with a context-free backbone. This gram-
mar is over-generating, so when parsing we get a
chart containing all parse trees we want, but perhaps
also some unwanted trees.

The second step is to convert the chart into Horn
clauses, which can be solved by any proof search, e.g.
standard Prolog. This conversion is done one item at
the time; suppose the following chart item:

(f, φ, φ1, . . . , φδ)

where f has the following abstract typing:

f : (x1 : A1) → . . .→ (xδ : Aδ(x1, . . . , xδ−1))
→ A(x1, . . . , xδ)

From this we can create the following Horn clause
(where t : A[φ] is just syntactic sugar for a 3-tuple):

f(x1, . . . , xδ) : A(x1, . . . , xδ)[φ] :−
x1 : A1[φ1], . . . , xδ : Aδ(x1, . . . , xδ−1)[φδ]

Finally, the query :− x : S[φ], where x is a logic
variable, will result in all possible parse trees x of
category S, linearizing to the input string φ.

4.2 Functional categories

In full GF, arguments to functions can themselves be
functions. This gives rise to the question of how to
linearize an “incomplete” category B1 → . . .→ Bδ →
B. This is solved in GF by pairing the linearization
of the result category B with linearizations of the
variable bindings representing objects of category B1,
. . . , Bδ.

Formally, each occurence of a function category B1 →
. . .→ Bδ → B as an argument in a typing is replaced
by the new category B̂, with linearization type

[[B̂]] = [[B]]× [[Var]]δ

7

where Var is a unique category for recognizing vari-
able bindings, specified by the grammar. In GF, the
default linearization type of variables is [[Var]] = Str,
and it recognizes strings looking like ordinary math-
ematical variables (“x”, “y”, “z”, . . .).

For each new category B̂ we also need a coercion b̂:

b̂ : B → Var → . . .→ Var → B̂

b̂(x, y1, . . . , yδ) = (x, y1, . . . , yδ)

This conversion show that adding function arguments
to abstract typings does not change the expressive
power of GF, and that they are possible to handle
with the parsing algorithms described in this paper.

References

[1] Marc Dymetman, Veronica Lux, and Aarne
Ranta. XML and multilingual document author-
ing: Convergent trends. In COLING, pages 243–
249, Saarbrücken, Germany, 2000.

[2] Reiner Hähnle, Kristofer Johannisson, and Aarne
Ranta. An authoring tool for informal and for-
mal requirements specifications. In R.-D. Kutsche
and H. Weber, editors, Fundamental Approaches
to Software Engineering, volume 2306 of LNCS,
pages 233–248. Springer, 2002.

[3] Thomas Hallgren and Aarne Ranta. An exten-
sible proof text editor. In M. Parigot and A.
Voronkov, editors, LPAR-2000, volume 1955 of
LNCS/LNAI, pages 70–84. Springer, 2000.

[4] Carl Pollard. Generalised Phrase Structure Gram-
mars, Head Grammars and Natural Language.
PhD thesis, Stanford University, 1984.

[5] Aarne Ranta. Grammatical Framework, a type-
theoretical grammar formalism. Journal of Func-
tional Programming, 14(2):145–189, 2004.

[6] Aarne Ranta and Robin Cooper. Dialogue sys-
tems as proof editors. Journal of Logic, Language
and Information, 13(2):225–240, April 2004.

[7] Hiroyuki Seki, Takashi Matsumara, Mamoru Fu-
jii, and Tadao Kasami. On multiple context-
free grammars. Theoretical Computer Science,
88:191–229, 1991.

8

