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Abstract: Within the last decade important automotive OEMs have created and released
the system architecture standard AUTOSAR, and tools to support the development
process are widely available. However, the resulting system architecture, which is
logically modeled in the Virtual Functional Bus (VFB) and realized by generating a
Runtime Environment (RTE), which corresponds to the concrete network of ECUs, is
static in terms of runtime adaptability. As long as vehicle functions dominate which are
executed exclusively on separated ECUs, there is only a limited demand for runtime
adaptation. However, as soon as several vehicle functions are grouped to run on
one ECU, which is enabled by AUTOSAR, or one vehicle function is composed of
several independent software components, runtime adaptation is getting increasingly
interesting. Potential use cases are for example energy-level based function adaptation
or vehicle-to-X communication related function adaptation. In this paper, a concept of
self-adaptation for AUTOSAR is outlined on the example of a collision detection and
warning system, for which the timing correctness during the self-adaptation process is
verified with timed automata and the model checking tool UPPAAL.

1 Introduction and Motivation

Modern vehicle functions are developed more and more according to AUTOSAR [FMB+09]
to benefit from the standardization effort from the last decade. The reason is that all in-
volved partners may profit at different stages during the development: AUTOSAR enables
an OEM to define and simulate a logical communication architecture between different
software-intense vehicle functions without considering the final ECU network at the early
stages; next, a vehicle software function supplier can develop more independently its soft-
ware components (SwC) according to consistent and standardized application programming
interfaces (API); and finally, an ECU supplier can design and optimize its ECU operating
system and the hardware abstraction layer which is realized in the basic software (BSW) as
described in the AUTOSAR standard. Thus, on the one hand, all participants can develop
with a greater flexibility and independence, and on the other hand, all resulting parts can
be integrated more easily because their interaction can be simulated at first to get more
information about runtime performance for example.

However, AUTOSAR’s concept, the static architecture at design time and its manifestation
at runtime through RTE generation, prevents the realization of vehicle functions which are



meant to be structurally adaptive to parameters which are available only at runtime. For
example, self-adaptation [C+09] by structural reconfiguration [OMT98] at runtime would
enable to start components only when necessary. A potential use case for example is to
modify the complexity of the running vehicle functions to react on the available remaining
vehicle’s energy. Another example would be the modification of vehicle functions by data,
which is available from vehicle-to-X (V2X) communication channels: E.g., an intersection
assistant could base in its standard variant on the vehicle’s surroundings’ sensors only but if
the vehicle is approaching an intersection that is equipped with a V2X system, the vehicle
could enhance its internal intersection’s representation by using data from its environment
to get a more reliable world model.

Within AUTOSAR, the logical system architecture is modeled within the VFB. Thus, it is
static in terms of modifications during the runtime of the involved components. At first,
this property leads to a greater confidence that the resulting architecture complies with the
confirmed requirements specification and the predefined task scheduling. But this property
may prevent adaptations in the aforementioned examples when parameters have to be
considered that are available only at runtime. In the following, selected reasons are outlined,
which make runtime adaptation difficult for vehicle functions that are implemented with
AUTOSAR.

RTE Generation. AUTOSAR follows a component-based software architecture and a
layered architectural style to enable a high decoupling between the different components
of the automotive software. This approach yields the advantages that components can be
easily deployed to different ECUs or can be easily connected by third-parties to build new
systems for example. The AUTOSAR standard enables this by combining the component-
based approach with a code generation step where all decisions about, e.g., component
deployment and component connections, are hard-wired into the generated RTE code. This
enables to reap the benefits from a component-based software development approach and
still results in a system which is optimized with respect to performance, memory footprint,
etc. Unfortunately, the resulting component system is static, i.e., it cannot be structurally
adapted as is typically done in self-adaptive systems.

Basic Software. The BSW contains application independent software which may be reused
in different applications. Examples are the operating system, the microcontroller abstraction
layer, and the watchdog driver. Especially, the watchdog places heavy constraints on
implementing self-adaptation. The watchdog is awaiting periodic keep alive signals from
the software components. Depending on the configuration, when one or more signals are
missing, the watchdog will perform a reset or a functional degradation. In the case of a
reconfiguration that takes several periods the watchdog might misinterpret the omission of
keep alive signals as a failure. Consequently, the watchdog either has to know about the
impeding reconfiguration and best and worst case execution times, or keep alive signals
have to be sent even during the reconfiguration.

Verification and Validation. Verification and validation is of utmost importance in cars
as in all safety-critical systems; especially during the development and testing for safety-
critical vehicle functions in the context of ISO-26262 [SHGB11]. Reconfiguration adds
another degree of freedom to the resulting system as the system may behave differently
with respect to the different configurations. Additionally, the reconfiguration itself may



contain failures. Consequently, the standard verification and validation activities have to
account for the different configurations and the reconfiguration itself.

In our contribution, we focus only on the last two aspects whereas we will address the
first aspect in future works. Thus, we present reconfiguration principles for one single
single-threaded SwC with respect to supervision of the BSW’s watchdog. Furthermore,
we address transactional behavior in terms of a failsafe rollback when the reconfiguration
unexpectedly fails. We model our reconfiguration behavior using timed automata [BY03]
and formally verify it by using UPPAAL [BLL+95]. As the running example, we utilize a
collision detection and warning system (CDW) inspired by [BCG+09] which is depicted
in Fig. 1. The system consists of three data processing stages S1, S2, and S3 which
are composed into two adaptable systems SA = S1

⊕
S2 and SB = S1

⊕
S2

⊕
S3. SA

system continuously localizes the own vehicle within a given annotated map while detecting
unclassified obstacles within the current driving trajectory by using a LIDAR scanner. The
annotated map provides information about the current vehicle’s surroundings like rural or
highway environments or positions of crosswalks.
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Figure 1: Context-adaptable collision detection and warning system.1

The system SB relies additionally on a vision system to validate the data from the LIDAR
system. Therefore, the detected obstacles are used by the vision system to narrow the region
of interest for the computationally intense image processing algorithms. However, this
classification depends on information from the annotated map to use the vision system
only while not driving on highways. Finally, a symbolic warning is used to alert the driver.
Let’s assume that according to the VFB both vehicle functions SA and SB are deployed
to one single ECU which should execute only one system configuration at the same time
due to energy-efficiency reasons for example. Therefore, SA must be transformed into SB

depending on the information from the GPS.

The remaining paper is structured as follows: First, we discuss approaches which are
related to our concept. Next, we present our approach for a hierarchical, transactional
self-adaptation in the context of AUTOSAR. We propose a possible architecture and discuss
the necessary behavior during the reconfiguration stage. Afterwards, we apply that concept

1Thanks to KDE-Look for the contribution of symbols.



to our running example and show in a sequence chart the information and control flow
during a successful and an unexpectedly failing reconfiguration, respectively. Finally, we
prove the timing correctness of our concept and ruled out that there were not deadlocks.

2 Related Work

As mentioned in the introduction, a once deployed VFB is not reconfigurable anymore. Thus,
reconfiguration is actually not supported by AUTOSAR and connections between SwCs
which are generated within an RTE cannot be changed at runtime. Becker et al. propose
to model as many different models as necessary to cover all required reconfigurations and
subsequently merge them into a single deployable configuration [BGN+09]. However, this
proposal creates many very similar models which differ only slightly.

Haber et al. present an approach [HRR+11] which addresses this problem by focusing on
the similarity of the required reconfigurations and modeling only their differences to manage
them more easily. Nevertheless, all possible reconfigurations are loaded into memory and,
thus, are available during runtime which causes an overhead in the required resources like
memory and energy. Instead of having all reconfigurations statically available at any time,
it is more efficient to have only those components loaded into memory which are required
at runtime and modify the runtime model when necessary.

First steps towards a self-adaptation during runtime in the context of AUTOSAR are
described by [THP+07]. The authors propose a so-called organic middleware which is
similar to AUTOSAR and realizes self-configuration and self-healing features. In contrast
to our approach, Trumler et al. focus on application independent self-adaptive behavior.
However, we focus on reconfiguration of the application, e.g., in response to changed
contexts. Similarly, Zeller et al. also address the application independent self-adaptation
[ZPW+11]. They focus on the formal specification of constraints which the adapted system
has to satisfy with respect to the correct deployment of software components to ECUs.

Weiss et al. address in [WZEK09] self-organization for infotainment systems in the car.
They note similar restrictions in AUTOSAR and current automotive software systems as we
did in the introduction. However, their proposed system targets the infotainment domain.
Thus in contrast to our approach, they do not have to meet hard real-time requirements nor
are concerned with safety.

3 Hierarchical, Transactional Self-Adaptation

We outline in this section our approach for the hierarchical and transactional self-adaptation
for AUTOSAR systems. We first describe the architectural structure. Then, we present how
the reconfiguration is executed.



3.1 Architectural Design

Several different architectural patterns for self-adaptive systems have been proposed in
the past, e.g., MAPE-K [KC03] for business information systems, the Operator-Controller-
Module (OCM) for mechatronic systems [HOG04], or the Three-Layer-Architecture
[KM07] as an application of the three layer architecture from robotics to self-adaptive
software systems. All these architectural approaches have in common that they follow the
separation of concerns design principle by separating the application behavior from the
adaptation behavior. Additionally, they all draw from the field of control engineering by
incorporating a feedback control loop into their adaptation behavior, i.e., they measure the
state of the application behavior, plan appropriate adaptation actions, and finally execute
these adaptation actions on the application behavior.

Automotive software systems have specific non-functional requirements, e.g., hard real
time and safety. The OCM has been particularly designed for these systems. It decouples
the hard real time application behavior from the soft real time adaptation behavior as well
as the safety-critical behavior from the non safety-critical behavior.

We propose to employ a similar kind of architecture for the structural reconfiguration of
AUTOSAR systems based on the architecture outlined in [HPB12] for mechatronic systems.
Particularly, we propose to separate the reconfiguration behavior from the application be-
havior and to employ a hierarchical approach for the reconfiguration because the application
is typically hierarchically structured. A non-hierarchical approach to reconfiguration would
break the capsulation of components [HPB12, THHO08].

Basic Software

CDW

RECONF WD

FUNC

Application Layer

Reconfiguration Layer

VISION

RECONF WD

FUNC

Application Layer

Reconfiguration Layer

WD

Figure 2: Architectural design for our running example.

Fig. 2 shows an overview of our proposed architecture with respect to our running example.
Each component (CDW, VISION) contains two layers – one for the application itself and
one for the reconfiguration behavior. Communication with respect to reconfiguration
is restricted to the reconfiguration layers. Each component contains a reconfiguration
component which is concerned with the reconfiguration of each local component. We
restrict our example in Fig. 2 to a single hierarchy level but it can be naturally extended to
multiple levels.

As mentioned in the introduction, we particularly consider the BSW watchdog as a very
important part to achieve a reliable system. Thus, every component contains an internal
watchdog proxy (WD) in addition to the reconfiguration component. This internal proxy



sends keep alive signals to the BSW watchdog even during the reconfiguration. It knows
about the reconfiguration, the affected components as well as the worst case execution time
for the reconfiguration. Therefore, it has all required knowledge to, on the one hand, act as
a proxy for sending keep alive signals and, on the other hand, detect when a reconfiguration
failed and stop sending keep alive signals.

3.2 Behavioral Design

Architectural reconfiguration has been introduced in [OMT98]. Component addition,
component removal, component replacement, and reconnection of existing components
have been presented as basic actions during the architectural configurations. These basic
actions are rather low-level. Instead, it is beneficial to group several of these basic actions
into higher-level actions. In the past, we presented approaches to either use a state-based
reconfiguration [BGT05] or a rule-based reconfiguration using Component Story Diagrams
[THHO08]. We abstract in the following from the reconfiguration approach but focus on
the process of reconfiguration.

FUNC WD FUNC WDRECONF

 period  period t
FUNC WD

 period t
WD

a) omit functional behavior b) reliable functional behavior

 period

RECONF

Figure 3: Alternatives for scheduling reconfigurations.

Fig. 3 shows two single-threaded alternatives to schedule the reconfiguration behavior
(denoted as RECONF) in addition to functional behavior (FUNC) and the watchdog proxy
(WD). On the left hand side, a variant is shown which omits the functional behavior in case
of a reconfiguration. This enables to use the complete time reserved for functional behavior
for the reconfiguration which results in faster reconfigurations but also loss of functional
behavior in that period. On the right hand side, the reconfiguration is interlaced with the
regular functionality consuming several periods. It is even possible that a reconfiguration
spans more than one slice. For both, best and worst case execution times of all components
and behaviors have to be known to validate the scheduling.

4 Realizing Self-Adaptation for an AUTOSAR-based Vehicle Func-
tion

In the previous section, theoretical principles for the runtime reconfiguration are outlined.
These are now applied to the introductory example of the CDW system. For example due to
energy-efficiency reasons, the vision system, necessary data structures, and computationally
intense algorithms should be created or activated only when necessary.



4.1 Schematic Sequence Chart

In Fig. 4, the regular information and control flows between the BSW watchdog (BSW WD),
the CDW system which itself consists of three modules (internal watchdog (WD), actual
functionality (FUNC), and reconfiguration component (RECONF)), the localization compo-
nent (LOC), and the vision are depicted; for the sake of clarity the scheduler within the RTE
is omitted. Furthermore, the reconfiguration is issued by FUNC for the sake of simplicity–
another possibility would be to use a dedicated component within CDW for this purpose.
The diagram is divided into different stages. First, the data is processed with LIDAR only by
carrying out p lidar: After completing that computation cycle, FUNC sends a ping to the
CDW’s internal WD; afterwards, WD itself sends a ping to BSW WD which validates that
CDW is alive and its time slice consumption ∆t is within the specification; otherwise, CDW
would be deactivated.
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Figure 4: Schematic sequence chart which shows the regular LIDAR-based processing, the successful
reconfiguration for using the vision system, and the reconfiguration to disable the vision system again.

The second stage shows exemplarily the reconfiguration after entering an urban environment.
Due to CDW’s single-threaded architecture with a predefined scheduling according to
Fig. 3a), FUNC requests its reconfiguration from RECONF which itself awakes VISION.
Let’s assume the reconfiguration consumes more than one computation cycle, RECONF’s
internal state remains reconfiguring; however, to fulfill the overall timing specification,
RECONF signals its liveliness to BSW WD using WD. In the following computation cycle,
FUNC delegates the control flow back to RECONF due to the single-threaded architecture,
and RECONF completes the reconfiguration to provide p vision object structures to



FUNC for computation in the next turn; technically, this could be done by setting a binary
flag in FUNC. The deactivation of the vision is carried out in an analogous manner.
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... 
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pong 
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data processing 
(LIDAR) 

... 
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Figure 5: Schematic sequence chart which shows the failing attempt to activate the vision system.

However, to react appropriately on a malfunctioning VISION, and thus to realize a transac-
tional behavior for CDW, Fig. 5 shows the corresponding information and control flows.
In contrast to the previous sequence, RECONF does not receive the proper operating state
from VISION which itself signals to FUNC. Therefore, FUNC requests a rollback from
RECONF in the next cycle to fallback to p lidar.

4.2 Verification of Model Properties using UPPAAL

It is important to verify that the timing constraints are fulfilled at anytime to prevent deacti-
vation by BSW WD. Therefore, we have modeled CDW, a rudimentary vision component,
and the BSW watchdog with timed automata and used the UPPAAL tool to formally verify
its timing correctness and to rule out deadlocks. For further inspection, we provided the
UPPAAL model at http://goo.gl/iPe62.

Component BCET [ticks] WCET [ticks]
LIDAR data processing 210 215
vision data processing 230 250
enabling vision 425 440
disabling vision 410 420
rollback 430 445
processing watchdog signals 6 10
permitted scheduling from BSW WD 200 260

Table 1: Estimation of timings for the CDW’s components.

According to Sec. 3.2, we had to specify best case and worst case execution times (BCET,
WCET). For our verification we assumed the values as outlined in Tab. 1; additionally,



the last row describes the periodic processing time slice within which the algorithms of
the CDW must be successfully computed; otherwise the independently running watchdog
BSW WD deactivates the component due to an unexpected behavior. It can be easily seen
that the reconfiguration processes need more than one time slice and thus, they must be
divided into two slices as outlined in Sec. 3.2. Based on this timing specification we could
successfully verify that the modeled CWD does not cause a deadlock and thus fulfills
the defined timing. Furthermore, we showed that the system performed a rollback after
detecting a malfunctioning vision to transition to a safe operating state again.

5 Conclusion and Future Work

In this paper, we have outlined concepts to realize self-adaptation within the widely used
AUTOSAR system architecture. Therefore, we have discussed principle limitations within
the standard and possibilities for circumvention. On the example of a collision detection
system, we have shown the general information and control flow with respect to a predefined
scheduling; finally, we have modeled the system alongside with a watchdog and vision
component by using UPPAAL to verify its timing correctness during the self-adaptation
stage and for a failed reconfiguration attempt. As outlined in Sec. 3.2, there are different
scheduling policies possible; for our example we decided to use the single-threaded model
with a predefined scheduling for timing correctness verification. Future work should
both analyze the timing correctness in a multi-threaded environment and interlace the self-
adaptation process with the regular execution of the SwC’s functionality for an optimal usage
of the available time slice. Furthermore, the results should be validated by implementing a
proof-of-concept in a demonstration vehicle. Next, a more generic self-adaptation approach
could be derived in an abstract manner at the design stage while its realization could be
achieved during the generation of the corresponding RTE. Thus, even a distributed and
complex self-adaptation in which several ECUs are involved could be realized in a safe
way.
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