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Abstract. We investigate the electromechanics of a freely suspended
semiconducting carbon nanotube subjected to a magnetic field H in the current-
biased regime and show that self-excitation of mechanical nanotube vibrations
can occur if H exceeds a critical value Hc of the order of 10–100 mT. The
effect can be detected by measuring the magnetic field dependence of the time-
averaged voltage drop across the nanotube, which has a singularity at H = Hc.
We discuss the applications of the device as an active, tuneable radiofrequency
oscillator.
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Nanoelectromechanical systems (NEMS) containing a suspended carbon nanotube (CNT)
vibrating at radiofrequencies (RF) have received increasing attention recently. The advantages
of CNT mechanical resonators include their high resonance frequencies (up to the GHz range),
their low dissipative losses [1] and the possibility of tuning the resonance frequency by adjusting
the tension in the tube [2, 3]. CNT-based NEMS devices have already shown a great potential
for a plethora of technological applications, including mass sensing [4, 5] and tunable high-
frequency electronics [2, 3, 6, 7]. However, most of the devices that have been realized so far
are passive resonators, which perform frequency filtering of the incoming RF-signal [2, 3, 6, 7].
Here, we propose an active oscillator based on a current-biased doubly-clamped CNT for which
the conductance depends monotonically on the nanotube deflection. Such a deflection-sensitive
resistance has been demonstrated for semiconducting single-walled CNTs suspended over a
gate electrode [2]–[4, 8] and has been used for the detection of their vibrations [2]–[4]. The
active feedback is provided by the Lorentz force induced by a constant magnetic field directed
perpendicular to the current-carrying CNT. We show that, by applying a constant external
current in a sufficiently high magnetic field, we obtain mechanical instability leading to self-
excitation of mechanical oscillations at a frequency close to the mechanical resonance frequency
of the doubly-clamped nanotube. Furthermore, we show that the mechanical instability results in
oscillations of the voltage drop across the tube accompanied by a deviation of the time-averaged
voltage from the value obtained for a static nanotube.

The proposed oscillator device is shown in figure 1. A semiconducting CNT is suspended
over a gate electrode and subjected to a homogeneous magnetic field H perpendicular to the
nanotube and parallel to the gate electrode. The separation between the gate and the nanotube
depends on the deflection z(t, x) of the tube from its equilibrium straight configuration (x is
the coordinate along the nanotube). We will assume that the nanotube mechanics is completely
characterized by the amplitude of its fundamental bending mode u(t), and, consequently, let the
time dependence of the mechanical deflection have the form z(t, x) = u(t)ϕ0(x), where ϕ0(x)

is the normalized profile of the fundamental mode [9]. This assumption captures the essence
of the physics behind the phenomena to be considered below, for which the dependence of the
mutual capacitance CG(u) between the nanotube and gate on the amplitude of the fundamental
mode is central. This is because the concentration of charge carriers in the semiconducting CNT
ρ(CG(u), Vg) is a function of both the gate voltage VG and CG(u), which means that ultimately
the resistance R(ρ(CG(u), VG)) of the nanotube will depend on its deflection.

When an external current-source feeds a current I0 to one of the leads, a Lorentz force
proportional to the current through the CNT and the magnetic field causes a deflection of the
tube. For displacements on a scale much smaller than the length of the nanotube, its curvature
is negligible and consequently one can consider the Lorentz force to be the same at every point.
Since the force is almost uniform over the tube, it is mainly the fundamental bending mode that
will be affected, which provides another justification for our assumption that all higher modes
can be neglected. Assuming the CNT to be an elastic beam whose motion can be described by
linear continuum mechanics, we arrive at the following set of equations6 for the time evolution
of the voltage drop V (t) across it and the amplitude of the fundamental mode u(t):

mü(t) + γ u̇(t) + κu(t) = L H I,

CV̇ (t) = I0 − I, I = V/R(u(t)).
(1)

6 Since the voltage bias across the trench needs to be relatively high, typically a few mV, a simple estimation
shows that the magnetically induced electromotive force can be ignored.
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Figure 1. Sketch of the proposed active oscillator device. A semiconducting CNT
is suspended over a gate electrode and connected to an external dc current source.
An external magnetic field, applied perpendicular to the direction of the current,
gives rise to a Lorentz force that deflects the tube towards the gate, which affects
the resistance and provides a feedback mechanism that for large enough magnetic
fields leads to self-sustained nanotube oscillations (see text). The inset shows an
equivalent electric circuit of the device.

Here, m and L are the effective mass and length of the suspended part of the nanotube, κ and γ

are the effective spring and damping constants and C is the capacitance of the junction.
The system of equations (1) has a time-independent solution given by

u(t) = u0 = L H I0/κ, (2)

V (t) = V0 = R

(
L H I0

κ

)
I0. (3)

A linear stability analysis of this solution yields a secular equation for the Lyapunov exponents
λ of the form

P(λ, β) = (λ2 + Q−1ω0λ + ω2
0)(λ + ωR) − βω2

0λ = 0, (4)

where ω0 =
√

κ/m is the eigenfrequency of the fundamental mode, ωR = 1/R(u0)C , and
Q =

√
κm/γ is the quality factor. The parameter

β =
L H I0

κ`R
, where `R ≡

(
−1

R(u)

∂ R(u)

∂u

∣∣∣∣
u=u0

)−1

, (5)

is proportional to the Lorentz force and will be referred to as the magnetomechanical coupling
parameter of the system.

A rough estimate of the characteristic length `R can be obtained from the Drude-model
conductance of a fourfold degenerate one-dimensional (1D) semiconducting CNT of length L
and radius r0. Assuming that the CNT is suspended over a large gate electrode that is kept at a
fixed voltage V g, we follow Zhou et al [15] and approximate the conductance in the limit of low
carrier densities as

G ≈ G0

(
3πr0

4e
cgVg

)2

. (6)
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Here, cg is the gate capacitance per unit length and G0 = (2e2/π h̄)(l0/L), where l0 is
the electronic scattering length at high energies. Since cg = cg(u) depends on the distance
Lg = h − u between the nanotube and gate, it is the only parameter in (6) that varies with
the deflection u. Because R(u) = 1/G(u) it follows that the characteristic length can be
expressed as

`R ≡

(
2

cg(u)

∂cg(u)

∂u

∣∣∣∣
u=u0

)−1

. (7)

In this approximation, the characteristic length is entirely defined by the geometry of the system
and does not depend on the gate voltage Vg.

The capacitance of a CNT suspended a distance h above the gate electrode can be
approximated by that of a cylinder above an infinite plate. Provided that r0 � h � L and
assuming that the bending, u, of the CNT is small compared to h one finds that cg =

2πε0/ln(2h/r0). Using this result in (7), we estimate that `R ∼ (h/2) ln(2h/r0), which for the
reasonable experimental parameters r0 = 1 nm and h = 0.2 µm yields `R = 0.6 µm.

It turns out that there is a simple relation between the value of the coupling parameter β

and the sign of the differential resistance in the static regime. Indeed, from the time-independent
solution (3), we obtain the relation

dV0

dI0
= R(u0)(1 − β), (8)

from which we see that the differential resistance in the time-independent regime is positive if
β < 1, while for β > 1 it is negative.

For a high quality factor, Q � 1, and weak magnetomechanical coupling, β � 1, the
(approximate) solutions of equation (4)—together with a third root that is always real and
negative—are

λ1,2 =
ω0

2

(
ω0ωR

ω2
R + ω2

0

β −
1

Q

)
± iω0

(
1 −

β

2

ω2
0

ω2
R + ω2

0

)
. (9)

From equation (9) it follows that the two Lyapunov exponents λ1,2 have a positive real part when

β > βc =
1

Q

(
ω0

ωR
+

ωR

ω0

)
. (10)

This means that for large quality factors, Q � max(ω0/ωR, ωR/ω0), the regime of time-
independent charge transport through a static CNT becomes unstable with respect to self-
excitation of mechanical vibrations if the coupling parameter β exceeds the critical value βc.
The natural way of reaching this self-excitation regime is to increase the magnetic field H , since
increasing I0 could lead to overheating. Hence, we choose to characterize a particular setup by
the critical magnetic field Hc above which the system will be unstable. From equation (10) it
follows that for large quality factors and ω0 = ωR the critical magnetic field is7

Hc =

(
2`R

L

)
κ

Q I0
. (11)

7 Using the estimate ω0/2π ≈ 0.1– 1 GHz the optimal value of the capacitance, Copt, is found to lie approximately
in the interval 1–100 fF.
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If we take `R ≈ 0.1–1 µm, L ≈ 1 µm, κ ≈ 10−5 N m−1, Q ≈ 1000 and I0 ≈ 0.1 µA, we obtain
a critical magnetic field of the order of Hc ∼ 10–100 mT.

So far we have analyzed the situation when the mechanical friction was very small. It turns
out that the time-independent regime becomes unstable for large enough magnetomechanical
coupling even if the mechanical subsystem is overdamped, that is, if Q � 1. Indeed, the system
becomes unstable when the real part of the Lyapunov exponents changes sign from negative to
positive. It means that at a certain critical point β = βc, the secular equation (4) has two purely
imaginary roots λ1,2 = ±iωc. These are obtained from the two equations

Re P(iωc, βc) = ωRω2
0 − ω2

c(ωR + Q−1ω0) = 0,

Im P(iωc, βc) = −ωc(ω
2
c − Q−1ω0ωR − ω2

0(1 − βc)) = 0,
(12)

whose general solution is

βc =
1

Q

ω0ωR + Q(ω2
0 + ω2

R)

ω0(ω0 + QωR)
,

ωc = ω0

√
QωR

ω0 + QωR
.

(13)

It is important to note that βc is always positive. In particular, from this it follows that the
instability can occur only when the direction of the magnetic field is such that it deflects the
nanotube towards decreasing resistance. In our geometry, it means that the Lorentz force must
be directed towards the gate electrode.

From equations (13) it follows that for small quality factors, Q � max(1, ω0/ωR), and
when the coupling parameter β has just overcome the critical value βc

∼= ωR/(Qω0), the static
regime becomes unstable with respect to oscillations at angular frequency ωc ≈

√
ω0ωR Q,

which is always smaller than the mechanical resonance frequency. It is worth noting that, for an
overdamped mechanical system, the critical value of the coupling parameter is bigger than unity,
and as discussed previously this implies that the instability in this regime could be considered
to be caused by a negative differential resistance. Estimating the critical magnetic field with the
same parameters as before, but now with Q = 0.1, we obtain H c ≈ 100–1000 T, which is too
large for experimental observation. Therefore, for the remaining part we will focus our attention
on the low-dissipation regime, which can be achieved at least at low temperatures [1, 10].

The way in which the instability evolves is largely dependent on the magnitude of β. For a
coupling parameter just above the threshold, βc / β � 1, we may analyze the development of
the instability with the ansatz u(t) = u0 + A(t) sin(ω0t), assuming A(t) to be a slowly varying
function on the scale 1/ω0. Substituting this ansatz into equation (1) and averaging over the
rapid oscillations [11], we obtain an equation for Ȧ,

Ȧ(t) = a1ω0 A(t)

[(
β − βc

β

)
+ b1

A2(t)

(2`R)2

]
, (14)

where

a1 =
β

2

ω0ωR

ω2
0 + ω2

R

,

(15)

b1 =
4ω4

0 − 5ω2
0ω

2
R + 3ω4

R

2(ω2
0 + ω2

R)(4ω2
0 + ω2

R)
+

1

2

(
3ω2

R − ω2
0

ω2
0 + ω2

R

)
∂`R

∂u0
−

1

2
`R

∂2`R

∂u2
0

.
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Figure 2. Saturation amplitude As for self-excited vibrations of a semiconducting
CNT of quality factor Q = 100, normalized to the characteristic length `R, as
calculated from equations (1) and (17) using the initial conditions u(0) = 0,
u̇(0) = 0 and V (0) = 0. Results in the ‘soft’ instability regime (ωR = ω0) for
different values of the magnetomechanical coupling parameter β, which are all
larger than but close to the critical onset value βc, are marked by solid circles,
while solid squares are used to mark results in the ‘hard’ instability regime
(ωR = 2ω0). The solid lines are a guide to the eye.

From equation (14) it follows that for β > βc (H > H c) an initially small amplitude A(t = 0) �

2`R will at first increase exponentially in time. There are then two different scenarios for the
further development, depending on the sign of the coefficient b1. If b1 < 0 and β − βc � βc the
amplitude saturates at the value

As = 2`R

√
H − Hc

|b1|Hc
, (16)

which vanishes for β = βc (H = Hc) and corresponds to a ‘soft’ instability. For b1 > 0, the
amplitude may saturate at a finite value, which does not vanish as β → βc (from above). This
is called a ‘hard’ instability. To illustrate the different scenarios of soft and hard instabilities
we have performed a number of computer simulations of the system of equations (1) using the
expression

R(u)/R0 = (1 + e−2(u−u0)/`R)/2, (17)

where u0/`R = β, to model the deflection dependence of the nanotube resistance. In the first
series of simulations, we chose ωR = ω0, for which formulae (15) predict a soft instability,
whereas in the second series of simulation we chose ωR = 2ω0, for which formulae (15) predict
a hard instability. The results for the saturation values of the mechanical oscillation amplitude
As, plotted for different values of β in figure 2, confirm the behavior found in the approximate
analytical analysis above.
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We note in passing that in the case of a hard instability, self-excitation results in a large
amplitude ∼`R of the mechanical oscillations and hence nonlinear effects in the nanotube
dynamics become important. Therefore, to analyze this regime in detail one would have to
consider nonlinear continuum mechanics. This would, however, take us too far outside the scope
of this paper.

The result of the instability discussed above is a stationary regime that is characterized
not only by an oscillating mechanical displacement of the nanotube, but also by an oscillating
voltage across the trench. In the regime of high quality factors, or more precisely when
ωR � ω0/Q, the oscillation frequency will be very close to the mechanical resonance frequency
ω0/2π , typically of the order of 0.1–1 GHz. Detecting such rapid voltage oscillations may
pose serious experimental challenges. The nonlinearity of the system does, however, result in a
nonzero deviation of the time-averaged voltage V (H) from the static value V0(H). If As � `R,
the time-averaged voltage can be approximated to lowest order with the formula

V (H) − V0(H)

V0(H)
=

(
∂`R

∂u0
+

ω2
R − ω2

0

ω2
R + ω2

0

)(
As

2`R

)2

. (18)

Thus, in the case of a soft instability, the square of the saturation amplitude, A2
s , can be calculated

from formula (16) and is found to be proportional to (H − Hc)/Hc. Accordingly, in this case,
one finds that

V − V0

V0
∝

H − H c

Hc
θ(H − Hc), (19)

where θ(x) is the Heaviside step function. Thus, at the critical point H = Hc, a soft instability
manifests itself as a jump in the derivative ∂V /∂ H , whereas a hard instability would show
up as a discontinuous jump in V . Hence, the instability could be detected by measuring the
time-averaged voltage drop across the suspended nanotube as a function of magnetic field. To
illustrate this phenomenon we again performed computer simulations, the results of which are
shown in figure 3.

It is important to note that for our geometry the characteristic length is of the order of the
distance between the nanotube and the gate. Therefore, one can expect strong nonlinear effects
in the nanotube dynamics to start to dominate at an amplitude that is just a small fraction of
the characteristic length. Hence, the validity of formula (14) is rather limited. However, we
believe that formula (18) could still be valid as an approximate relation between the voltage
drop and the saturation amplitude. At the other extreme, one could consider systems with a
very short characteristic length, for example with a scanning tunneling microscope (STM)-tip
positioned above the CNT (see for example, [12, 17]). In this case, the current is determined by
the probability for electrons to tunnel from the STM-tip into the CNT, and one could expect a
characteristic length of about 0.1 nm.

To conclude, we expect that mechanical vibrations of a suspended CNT can be self-excited
in the dc current-biased regime when a sufficiently large external magnetic field is applied
perpendicular to the nanotube axis, provided that the resistance of the tube is displacement de-
pendent. We support this claim with an analysis of a classical model of such a system and show
that when the dissipation is sufficiently low, the static profile of the nanotube becomes unstable
at reasonably weak (10–100 mT) magnetic fields. This magnetomotive instability develops
into a steady state characterized by pronounced nanotube vibrations. We also demonstrate
that the CNT vibrations change the magnetic field dependence of the time-averaged voltage
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A

B

Figure 3. Time evolution of (A) the mechanical deflection of a suspended CNT
and (B) the voltage drop over a vibrating nanotube of quality factor Q = 100,
as calculated from equations (1) and (17) for the RC frequency ωR = ω0, the
coupling parameter β = 1.1βc = 0.0219, and the initial conditions u(0) = 0,
u̇(0) = 0 and V (0) = 0. The gray areas span the envelopes of the unresolved
oscillations, while the dashed lines mark their time-averaged values. As can be
seen, the time-averaged voltage drop provides a measurable signature of the
oscillations since it deviates more and more from the static value V0 as the
amplitude of the mechanical oscillation increases. The upper and lower insets
display zoom-ins on the oscillations at their onset when the magnetic field has
been turned on and when the stationary regime has been reached, respectively.

drop across the nanotube. This phenomenon may be used for the experimental detection of the
magnetomotive instability.

Other types of active oscillator based on the sustained self-oscillations of a suspended CNT
have been proposed theoretically [17] and have recently been realized experimentally [18].
The approach in [17] relies on the distance-dependent electron injection from an STM-tip
into a doubly clamped CNT, whereas in [18] distance-dependent field emission of electrons
from a singly clamped CNT to the electrode provides a feedback mechanism that leads to
controllable mechanical self-oscillations from a single dc voltage supply. The drawbacks of
both these devices are that they require very precise geometry control to obtain self-sustained
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oscillations and that the short distance between the CNT and the controlling electrode limits the
amplitude of vibration. In contrast, the device that we consider is a suspended-channel CNT field
effect transistor—a device that has been successfully fabricated and shown to work in several
experimental laboratories [2]–[4]—which does not require short separation between the CNT
and the gate electrode (the typical gap is several hundreds of nanometers) and which allows
for direct tuning of the mechanical resonance frequency by changing the dc voltage on the gate
electrode.

Finally, we note that magnetomotive instability can occur in other suspended semi-
conducting nanostructures such as nanowires and graphene; moreover, the conductance of a
single-walled CNT can be modulated by its displacement through mechanical stretching [19],
even in the absence of a gate electrode. The analysis presented in this paper can be readily
applied to all such structures, and the critical magnetic field Hc calculated for any particular
device.
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