
978-1-4673-0311-8/12/$31.00 ©2012 IEEE

Runtime Safety Analysis for Safe Reconfiguration

Claudia Priesterjahn, Christian Heinzemann,
Wilhelm Schäfer

Heinz Nixdorf Institute and Department of Computer
Science, Software Engineering Group

University of Paderborn
Paderborn, Germany

[cpr|c.heinzemann|wilhelm]@upb.de

Matthias Tichy
Software Engineering Division,

Chalmers University of Technology and University of
Gothenborg

Gothenborg, Sweden
tichy@chalmers.se

Abstract—Modern technical systems are increasingly built to
exhibit self-x properties as, e.g., self-healing or self-optimization.
For this, they require adaptation at runtime. This is even true for
embedded or mechatronic systems which often operate in safety-
critical environments. There, the effects of the adaptation with
respect to safety must be analyzed carefully. However, not all
parameters needed for safety analyses, e.g., the concrete system
architecture, are known at design time. Consequently, safety
analyses need to be executed during runtime.
Current approaches of runtime safety analysis typically react to
anomalies that already occurred in the system. Thus, unsafe
system states cannot be excluded completely. We present a
runtime safety analysis that prevents system states with an
unacceptable risk that have not yet occurred. For this, we
generate the reachable component structures at runtime and
analyze them with respect to risk. The system is modified such
that component structures with an unacceptable risk are not
reachable any more and are thus prevented.

Keywords—security and safety applications, self adaptive
technologies, robust systems

I. INTRODUCTION

The value creation in today's technical systems is mostly
driven by embedded software. Self-x techniques as an example
of innovative functionality have become a major trend in
engineering complex systems [1]. Self-x postulates that
systems adapt autonomously to changes in the environment or
the system itself, e.g., error occurrences. Self-x systems are
often embedded real-time systems that interact with the real
world, where they are employed in safety-critical contexts.
Even in the case that the system does not contain any design
errors, hazardous situations may be caused by random errors
that happen, e.g., due to the wear of physical components.
Consequently, these systems have to be analyzed with respect
to potential hazards and risks.

Hazard analysis determines which combinations of random
errors lead to hazards and the probability of the hazards'
occurrences. The system developer uses this information to
implement the system and in particular its software such that
the risk, i.e., the probability of the occurrence combined with
the severity of a hazard, is acceptable1.

1 Acceptability is the trade-off between the hazard's probability and consequences and the costs of

reducing the probability of the hazard [2].

Self-x systems pose a challenge to safety analysis as they
change their component structure during runtime. The
structural change modifies the influence of hardware faults on
the system and the occurrence probabilities of these faults. This
affects the probabilities of hazardous situations. The severity
that results from accidents may change as well, e.g., due to a
changing amount of passengers in a car. Both parameters affect
the associated risks. To guarantee safety, this analysis has to be
applied to all component structures that are created in the self-x
system. But not all component structures are known at design
time, e.g., when the system connects to another system of
which the system model is unknown at design time, e.g., the
other system was made by an unknown manufacturer.
Consequently, risk analysis has to be performed during
runtime.

Cars that are driving autonomously, e.g., on a highway, are
an example of Self-x systems. These cars can drive in a convoy
in order to reduce air resistance and, thus, save energy. For this,
they control their driving speed autonomously. Speed sensors
measure the current speed of a car. Depending on this, the
embedded software determines the required de-/acceleration to
ensure the vehicle's drive speed. If at least one of the speed
sensors fails, it propagates a wrong current speed to the
embedded software. This results in a wrong de-/acceleration
which, in turn, leads to the hazard wrong speed. A wrong speed
may lead to the accident collision. The severity caused by this
collision may be the injury of several people and severe
property damage.

Standard development approaches for safety-critical
computer systems require hazards to be identified and the
associated severity to be defined in order to assess the systems
risk [2]. Existing approaches of runtime analysis [3], [4], [5]
focus on the detection of anomalies in the executed system
behavior and try to lead the system back to its intended
behavior. Detection cannot be applied if we want to prevent
unwanted situations, e.g. unacceptable risks, before they
actually happen.

In this paper, we present an extension of our runtime risk
analysis [6]. That approach determines the risk of all future
component structures at design time and prevents them from
being created during runtime if their risk is unacceptable. That
approach does not work for the aforementioned case when
systems are connected during runtime which are not known at

design time. In contrast to that previous work, we now compute
hazard probabilities during runtime instead of using hazard
probabilities which are pre-computed at design time.

Based on the system's current component structure, we
compute each reachable component structure for a fixed
number of subsequent structural changes. We then compute the
hazard probabilities of the reachable component structures and
combine them with the current severity encoded in numerical
values to obtain the risks. If the risk of a reachable component
structure exceeds the system's acceptable risk, the structural
change that would result in this component structure is blocked.

The remainder of this paper is structured as follows. We
first present the models that we use for modeling the
component structure and structural changes in Sec. II. Our
approach for risk analysis at design time follows in Sec. III.
The risk analysis that is applied during runtime is presented in
Sec. IV. Sec. V contains a discussion of related work. We
conclude and give an outlook on future work in Sec. VI.

II. SYSTEM MODELS

In this section, we present the models that specify the
systems structure and behavior. The models that we use in this
paper are specified in MechatronicUML [7]. We describe the
specification of the system architecture and the specification of
the structural changes, called reconfiguration, in Sec. II-A and
the behavior specification in Sec. II-B.

A. System Architecture

In our approach, the system's software architecture is
specified by an initial software component structure over a
component model and a set of graph transformation rules for
the specification of the architectural reconfiguration.
MechatronicUML uses a component model where components
communicate via ports and the component's behavior is
specified by real-time statecharts -- an extension of UML State
Machines which support more powerful concepts for the
specification of real-time behavior. The components are
connected via their ports by connectors. We call the resulting
component structure a configuration [7].

We use UML deployment diagrams extended by hardware
ports to specify and analyze the influence of hardware faults to
the software components. Fig. 1 shows a deployment diagram
of a simplified subsystem that controls the speed of an
autonomous car. Software components are represented by
rectangles and hardware components by boxes. Squares depict
ports and arrows connectors. The orientation of the arrow
specifies the direction of the communication. We will refer to
this deployed component structure as vehicle1. This subsystem
is a safety-critical part as a wrong speed can lead to harmful
accidents like collision.

vehicle 1

sw1 : Vehicle_SW

sca1 : SpeedCalc sct1 : SpeedCtrl

s11 : SpeedSensor1

s12 : SpeedSensor1

Figure 1. Deployment Diagram of the Speed Control Subsystem

The speed control subsystem consists of the component
sw1:Vehicle_SW representing the vehicle's software and two
speed sensors s11:SpeedSensor and s12:SpeedSensor. The
speed sensors measure the vehicle's speed. The software
compares and combines both speed values in sca1:SpeedCalc
and subsequently sets the values for the engine controller in
sct1:SpeedCtrl.

For the specification of reconfiguration, we consider
configurations as graphs, i.e., components and ports as nodes
and connectors as edges. We then model a reconfiguration as a
graph transformation rule [8], [9]. A graph transformation rule
consists of a left hand side and a right hand side. The left hand
side identifies the part of the configuration in which the rule
can be applied, i.e., the graph contains an isomorphic image of
the left hand side as a sub graph. The right hand side defines
the result of the application, i.e., the changes to be made to that
sub graph such that it is an isomorphic image of the right hand
side.

For a short hand notation, left and right hand side are
depicted in one single graph using the notation «create» or
«destroy» for components and connectors which are created or
deleted during rule application.

Graph transformation rules change the system structure,
i.e., create and delete components, ports, and connectors during
runtime. They can be applied arbitrarily often. Additionally,
new configurations are created by the connection of beforehand
isolated systems as in our car convoy example. Thus, the
concrete configurations that actually exist in the system are
only known at runtime.

Fig. 2 shows the graph transformation rules that create a
connection between two vehicles. Both graph transformation
rules create a port that communicates to the vehicle in front and
the vehicle in the back of the respective vehicle. During the
creation of the ports, the connection between the vehicles is
created as well.

Figure 2. Graph Transformation Rules that Create a Connection between the
two Vehicles

Fig. 3 shows a configuration which is the result of the graph

transformation rules of Fig. 2 connecting two vehicles. It shows
the connection between vehicle1 and vehicle2 when both
vehicles drive in a convoy. Both vehicles run the same
software, but they use speed sensors of different types – type
SpeedSensor1 in vehicle1 and type SpeedSensor2 in vehicle2 –
that have different probabilities of failing. Via this connection,
vehicle2 sends reference data, e.g., reference speed to vehicle1.
vehicle1 takes these data into account when calculating its
target speed. Thus a failure in, e.g., s21:SpeedSensor2 of
vehicle2 now also affects the hazard wrong speed of vehicle1.

Figure 3. Component Instance Configuration in Convoy Mode

B. System Behavior

We specify the real-time behavior of software components
by real-time statecharts [7]. Real-time statecharts are an
extension of UML State Machines which support more
powerful concepts for the specification of real-time behavior.
They contain clocks and constraints over these clocks. In this
paper, we will use real-time statecharts without time.
Reconfiguration is connected to the system behavior by
attaching graph transformation rules to transitions of real-time
statecharts as side effects.

Fig. 4 shows an excerpt of the real-time statechart that
specifies the reconfiguration behavior of the component
sw1:Vehicle_SW. The real-time statechart has four states.
noConvoy is the state when the vehicle is not driving in a
convoy. This is the initial state. In the states convoyFront,
convoyRear, and convoyInside, the vehicle is driving as first
vehicle, last vehicle, and inside a convoy. When switching
between any of the four states, a port is either created or deleted
by the graph transformation rule executed as a side effect of a
transition. E.g., when switching from noConvoy to
convoyFront, the side effect {createRearPort()} creates a port
that communicates with the vehicle that is driving behind the
current vehicle.

Figure 4. Real-time Statechart of the Vehicle Software

III. RISK ANALYSIS

The risk is the combination of the probability of a hazard
and the severity associated to an accident that results from the
hazard. Thus, for risk analysis we first compute the probability
of a hazard by a hazard analysis. We then combine the
probability with the severity value.

Our hazard analysis approach [10] computes hazards'
probabilities based on configurations. In this section, we

describe how the hazard analysis is performed for one
configuration.

We follow the terminology of Laprie [11] by associating
failures – the externally visible deviation from the correct
behavior – to the ports where the components interact with
their environment. Errors – the manifestation of a fault in the
state of a component – are restricted to the internals of the
component.

For each component, we determine the errors and the
failures and build a failure propagation model manually as a set
of fault trees formalized using Boolean logic, which relates
failures at the ports of the components to internal errors.
Internal errors are annotated with the probability of their
occurrence. Failure propagation models for the connectors are
automatically generated. Connecting the failure propagation
models of all components by the connectors forms the failure
propagation of a configuration. Using this failure propagation
model, we compute cut-sets -- combinations of errors that make
a hazard occur -- and probabilities of hazards.

Fig. 5 shows the failure propagation model of the
component structure of Fig. 1. In each speed sensor, an error,
e.g., wrong value can occur, illustrated by the errors e1 and e2.
The failure f9 at the outgoing port of the component
sct1:SpeedCtrl occurs, if there occurs an error in either of the
speed sensors. This is visualized by the symbol ≥1 that
represents a logical or.

Figure 5. Failure Propagation Model of the Configuration of Fig. 1

We define a hazard in form of a Boolean formula that
combines the outgoing failures of components. In our example,

we define the hazard wrong speed by wrong_speed ⇔ f9. The
speed sensors s11:SpeedSensor and s12:SpeedSensor each fail

at a probability of 5 · 10-5. The probability of the hazard wrong
speed is (due to the logical or) thus approx. 10-4.

The risk of an accident is computed by multiplying the
probability of the hazard with numerical values associated to
the severity that results from the accident related to the hazard
[2]. In our example, a collision that results from a wrong speed
of vehicle1 has a severity of 1 because vehicle1 transports
neither passengers nor cargo. The risk of vehicle1 for the

accident collision is thus 1 · 10-4 = 10-4.

IV. SAFE RECONFIGURATION

We now show how we guarantee that configurations built
during runtime do not have an unacceptable risk. For this, we
extend the system architecture by components that execute the
risk analysis at runtime and manage the component's
reconfiguration, i.e., block reconfigurations in case the risk
would become unacceptable. To make reconfigurations
blockable, we extend real-time statecharts. These two model

extensions are addressed in Sec. IV-A. On the other hand, we
need to compute the possible configurations of the system
during runtime, because we can only analyze dependencies
between errors correctly if we know how components are
connected. This is presented in Sec. IV-B.

A. Model Extensions

Each autonomous component 2 is extended by the
subcomponent RiskManager. Its subcomponent Manager
manages the safe reconfiguration of its autonomous component
with respect to risk, i.e., it blocks reconfigurations in case the
risk of the subsequent configuration would not be acceptable.
One autonomous component is chosen, of which the risk
manager performs the risk analysis of the system and acts as
the autonomous component's risk manager at the same time. In
this case, the risk manager is extended by the subcomponent
RiskAnalyzer. The risk analyzer can be deployed on any
autonomous component. Leader election protocols [12] can be
employed to determine at runtime which autonomous
component will contain the RiskAnalyzer subcomponent. In
systems where the computing hardware resources are limited,
the risk analyzer may be deployed on an external unit, e.g.,
desktop computer.

Figure 6. Component Structure Extended with Risk Coordinator Components

Fig. 6 shows a configuration of two vehicles driving in a

convoy. v2:Vehicle coordinates the convoy, i.e., sets reference
data, e.g., speed. v1:Vehicle drives as a member and performs
the risk analysis.

For risk analysis, all autonomous components send their
current configuration, graph transformation rules, and failure
propagation models to the risk analyzer. The risk analyzer
computes the reachable configurations of the system for a fixed
number of steps from the current configuration and the graph
transformation rules (cf. Sec. IV-B). For each reachable
configuration, it computes the risks of all system hazards as
described in Sec. III. Subsequently, each autonomous
component receives the risk values and hazard probabilities
associated with any of its reachable configurations. Based on
this data, the risk manager of each autonomous component
checks whether the risk of the subsequent configuration is
acceptable before executing a reconfiguration.

2 Autonomous components are components that are not embedded into higher level components. We call

all other components ``subcomponent''.

After each reconfiguration, the risk analyzer is updated
about the changed configuration of the system by the risk
manager of the autonomous component that has executed a
reconfiguration. Every time the severity of a hazard changes,
e.g., due to a changed amount of passengers, the risk managers
update the risk values according to the hazard probabilities.

The risk analyzer not only needs to know which autonomous
components are part of the system, but also how they are
connected to each other. Each time an autonomous component
wants to join the system, e.g., a vehicle intends to enter the
convoy, the risk analyzer needs to be informed about which
connections this component intends to establish to other
autonomous components. With this ID the Risk Analyzer
reconstructs which autonomous component is connected to
which other autonomous components. The structure is needed
for the hazard analysis (cf. Sec. III).

The new component requests an ID from the risk analyzer and
from the components it wishes to connect to. This information
is transmitted to the risk analyzer that judges whether the
resulting risk of the system is acceptable or not. The
communication between the new vehicle and the vehicle
executing the risk analyzer is shown in Fig. 7.

Figure 7. Communication for a Component Connecting to the System

In our example, the new vehicle, namely vehicle3, first
requests the ID of the vehicle it wants to establish a connection
to, namely vehicle2. After this, vehicle3 sends its request to
entry at vehicle1 that acts as the Risk Analyzer. The Risk
Analyzer either permits the connection or rejects the request. If
the connection is allowed, both vehicles connect and vehicle3
stores the ID of vehicle2 for possible later reconfiguration
requests.

In order to stop reconfigurations from being executed, we
must block the transition that carries this reconfiguration as a
side effect. For this, we introduced blockable transitions for
real-time statecharts [6]. The engineer has to annotate whether
a transition is blockable or not. These transitions are only

executed, if the RiskManager has allowed this. Otherwise, they
are blocked by the RiskManager.

In some cases, blocking transitions is not acceptable, e.g.,
reconfiguration in case of a component failure. Consequently,
not all transitions that have a graph transformation rule attached
can be blockable transitions. In order to still guarantee safe
reconfigurations, we analyze all configurations that are
reachable on paths between blockable transitions. If an unsafe
configuration is reachable, the whole path is blocked by
blocking its first transition which is a blockable transition. For
further information we refer to [6].

B. Runtime Risk Computation

The runtime risk computation consists of two steps. First,
we compute all configurations of the system that are reachable
from the current configuration by graph transformation rules.
Second, for each reachable configuration we compute the
probability of each hazard and combine it with the severity that
is associated to this hazard. We take the highest risk value and
compare it to the acceptable risk of the system in order to judge
whether the configuration is safe or not.

For computing the reachable configurations, we perform a
reachability analysis on the reconfiguration behavior. As
described in Sec. II, the reconfiguration behavior consists of
real-time statecharts that execute graph transformation rules as
side effects of their transitions.

We compute the reachable configurations using the
reachability analysis introduced in [13]. Based on the current
system configuration and the set of graph transformation rules,
the reachability analysis computes all possible successive
configurations. The result is a labeled transition system whose
states are configurations and whose transitions correspond to
applications of graph transformation rules. The labels of the
transitions are the names of the applied rules.

Fig. 8 shows the labeled transition system for the
configuration of Fig. 1 and the graph transformation rules of
Fig. 2. The labeled transition system consists of four configura-
tions, namely c1, c2, c3, and c4. In the initial configuration c1,
sw1 and sw2 do not have any ports. Then, either sw1 may
instantiate its rear port by executing the reconfiguration
createRearPort or sw2 may instantiate its front port by
executing the reconfiguration createFrontPort. That leads to
configurations c2 and c3, respectively. After that, the second
port may be created which establishes the connections between
sw1 and sw2. Of course, they are far more configurations
reachable in the system indicated by the arrows leaving c4. Due
to lack of space, we only present this excerpt.

For improving the efficiency of the analysis, we use a depth
limited search and identify isomorphic configurations similar to
GROOVE [14]. The depth limitation restricts the length of a
path in the labeled transition system to a predefined number of
states. Thus, we only investigate the next n configurations that
are possible in the system.

A further reduction of the labeled transition system is
achieved by identifying isomorphic configurations. If we reach
a configuration which is identical up to isomorphism to a
configuration that is already contained in the labeled transition

system, we identify both configurations and do not investigate
the isomorphic configuration a second time.

c1

sw1 : Vehicle_SW sw2 : Vehicle_SW

c2

sw1 : Vehicle_SW sw2 : Vehicle_SW

c3

sw1 : Vehicle_SW sw2 : Vehicle_SW

c4

sw1 : Vehicle_SW sw2 : Vehicle_SW

createRearPort

createRearPort

createFrontPort

createFrontPort

...createFrontPort createRearPort deleteRearPort

Figure 8. Labeled Transition System

In our example in Fig. 8, the configuration c4 has been

obtained by identifying isomorphic configurations. Applying
reconfiguration createFrontPort to c2 leads to exactly the same
configuration which is obtained by applying createRearPort to
c3. If we did not identify isomorphic configurations in our
algorithm, the two configurations would be considered as two
states which would lead to a larger labeled transition system.

For each reachable configuration, we compute the risk of
each hazard as described in Sec. III. For our example
configuration in Fig. 3 which is reachable from the initial
configuration of vehicle1 Fig. 1, we assume an acceptable risk

of 5·10-4. All speed sensors of vehicle1 and vehicle2 may emit
failures. The difference between the speed sensors of both
vehicles is their probability of failing. The speed sensors of

vehicle1 fail at a probability of 5·10-5 and those of vehicle2 at a

probability of 5·10-4.

When the vehicles are not connected, the probability of the
hazard wrong speed is 10-4 for vehicle1 (cf. Sec. III) and 10-3
for vehicle2. In our example, a collision of vehicle1 has a
severity of 1 and the risk of vehicle1 for the accident collision
is 10-4 (cf. Sec. III). The collision of vehicle2 has a severity of 4
because it has loaded 4 passengers. In case of a collision there
is the possibility of multiple injured persons or even fatalities.

The risk of vehicle2 for the accident collision is thus 4·10-3.

Fig. 9 shows the failure propagation model of the two
vehicles in convoy mode. The outgoing failure f9 of vehicle1
now also depends on the errors of the speed sensors of
vehicle2, namely e3 and e4. This affects the probability of the

hazard wrong speed of vehicle1 which is now (1-(1-10-4)·(1-10-

3)) = 11·10-3. The risk of a collision of vehicle1 is now 4·11·10-3

= 44·10-3. We take 4 as the severity value as it is the highest
severity value in the system. This risk is higher than the

acceptable risk of this system as 44·10-3 > 5·10-4. Consequently,
the reconfiguration connecting both vehicles must be blocked.

Figure 9. Failure Propagation Model in Convoy Mode

V. RELATED WORK

Most approaches in the field of runtime safety analysis
focus on the detection of anomalies in the executed behavior of
the system and try to lead the system back to its intended
behavior [3], [4]. We look into the reachable future states of the
system and prevent it from unsafe states with respect to risk.
However, this is only possible, because we know these
potential anomalies beforehand and it only works for known
hazards and risks.

Typically, for each safety property, that is to be tracked, a
monitor is generated at runtime [3]. In our approach, we have
one monitor that keeps track of the risk value of the system.
The monitor is not generated but implemented offline. It
becomes system specific by loading the system specific models
at runtime.

The conditional safety certificates by Schneider et al. [15]
model a relationship between required preconditions and safety
guarantees in a fault tree like manner. During runtime, based on
the current system properties, evidence is given whether the
safety guarantees can be fulfilled. An adaptation is carried out
accordingly. In contrast to our method, the analysis can only
react to the current system properties. An analysis for several
system states is not possible.

VI. CONCLUSION

In this paper, we presented an approach for a runtime risk
analysis for self-adaptive systems. In particular, we discussed
the architectural extensions that are necessary to perform such
runtime analysis as well as an algorithm for computing the risk.
The algorithm applies a graph-based reachability analysis for
computing all possible successive configurations of the system.
The risks of these configurations are computed. The results of
this analysis are then used to identify unsafe configurations
which must be prevented.

In our future work, we will work on a concept for a
compositional hazard analysis. Such an analysis eliminates the
need for a central risk analyzer. Instead, each autonomous
component computes its hazard probabilities by itself and the

autonomous components only exchange hazard probabilities
instead of behavioral models.

Further, performing a risk analysis during runtime opens up
possibilities for risk management. We would like to reduce
probabilities of hazard occurrences pro-actively by
reconfiguring into a configuration with lower hazard
probabilities.

ACKNOWLEDGMENTS

This work was developed in the course of the Special
Research Initiative 614 - Self-optimizing Concepts and
Structures in Mechanical Engineering - University of
Paderborn, and was published on its behalf and funded by the
Deutsche Forschungsgemeinschaft.

Christian Heinzemann is supported by the International
Graduate School Dynamic Intelligent Systems.

REFERENCES

[1] B. Cheng, R. Lemos, P. Inverardi und J. Magee, Software Engineering
for Self-Adaptive Systems, Springer Berlin Heidelberg, 2009, pp. 1 - 26.

[2] N. Storey, Safety Critical Computer Systems, Addision Wesley, 1996.

[3] K. Sen, G. Rosu und G.Agha, „Online Efficient Predictive Safety
Analysis of Multithreaded Programs,“ in Tools and Algorithms for the
Construction and Analysis of Systems, LNCS, Springer
Berlin/Heidelberg, 2004, pp. 123-138.

[4] J. Rushby, Runtime Verification, Springer Berlin/Heidelberg, 2008.

[5] T. Vogel und H. Giese, „Adaptation and abstract runtime models,“ in
Proceedings of the 2010 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems, Capetown, South Africa, 2010.

[6] C. Priesterjahn und M. Tichy, „Modeling safe reconfiguration with the
FUJABA Real-time Tool Suite,“ in Proc. of the 7th International
Fujaba Days, Eindhoven, The Netherlands, 2009.

[7] S. Becker, S. Dziwok, T. Gewering, C. Heinzemann, U. Pohlmann,
C.Priesterjahn, W. Schäfer, O. Sudmann und M. Tichy,
„MechatronicUML - Syntax and Semantics,“ University of Paderborn,
Paderborn, Germany, 2011.

[8] G. Rozenberg, Handbook of graph grammars and computing by graph
transformation, River Edge, NJ, USA: World Scientifc Publishing Co.,
Inc., 1997.

[9] T. Eckardt, C. Heinzemann, S. Henkler, M. Hirsch, C. Priesterjahn und
W. Schäfer, „Modeling and verifying dynamic communication
structures based on graph transformation,“ in Computer Science -
Research and Development, Springer, 2011.

[10] H. Giese und M. Tichy, „Component-based hazard analysis: Optimal
designs, product lines, and online reconfiguration,“ in Proc. of the 25th
SafeComp, Gdansk, Poland, 2006.

[11] A. Avizienis, J.-C. Laprie, B. Randell und C. Landwehr, „Basic
concepts and taxonomy of dependable and secure computing,“ IEEE
Trans. Dependable Secur. Comput., pp. 11-33, 2004.

[12] A. Tanenbaum und M. v. Steen, Distributed Systems: Principles and
Paradigms, Prentice Hall International, 2008.

[13] C. Heinzemann, J.Suck und T. Eckardt, „Reachability analysis on timed
graph transformation systems,“ in Proc. of the Fourth International
Workshop on Graph-based Tools, Enschede, The Netherlands, 2010.

[14] A. Rensik, „Isomorphism Checking in GROOVE,“ in Graph-Based
Tools (GraBaTs), Natal, Brazil, 2007.
57-60.

[15] D. Schneider und M. Trapp, „Conditional safety certificates in open
systems,“ in EDCC-CARS, 2010, pp.

