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Abstract—Modern technical systems are increasingly built to 
exhibit self-x properties as, e.g., self-healing or self-optimization. 
For this, they require adaptation at runtime. This is even true for 
embedded or mechatronic systems which often operate in safety-
critical environments. There, the effects of the adaptation with 
respect to safety must be analyzed carefully. However, not all 
parameters needed for safety analyses, e.g., the concrete system 
architecture, are known at design time. Consequently, safety 
analyses need to be executed during runtime. 
Current approaches of runtime safety analysis typically react to 
anomalies that already occurred in the system. Thus, unsafe 
system states cannot be excluded completely. We present a 
runtime safety analysis that prevents system states with an 
unacceptable risk that have not yet occurred. For this, we 
generate the reachable component structures at runtime and 
analyze them with respect to risk. The system is modified such 
that component structures with an unacceptable risk are not 
reachable any more and are thus prevented. 

Keywords—security and safety applications, self adaptive 
technologies, robust systems 

I.  INTRODUCTION 

The value creation in today's technical systems is mostly 
driven by embedded software. Self-x techniques as an example 
of innovative functionality have become a major trend in 
engineering complex systems [1]. Self-x postulates that 
systems adapt autonomously to changes in the environment or 
the system itself, e.g., error occurrences. Self-x systems are 
often embedded real-time systems that interact with the real 
world, where they are employed in safety-critical contexts. 
Even in the case that the system does not contain any design 
errors, hazardous situations may be caused by random errors 
that happen, e.g., due to the wear of physical components. 
Consequently, these systems have to be analyzed with respect 
to potential hazards and risks. 

Hazard analysis determines which combinations of random 
errors lead to hazards and the probability of the hazards' 
occurrences. The system developer uses this information to 
implement the system and in particular its software such that 
the risk, i.e., the probability of the occurrence combined with 
the severity of a hazard, is acceptable1. 

                                                           
1 Acceptability is the trade-off between the hazard's probability and consequences and the costs of 

reducing the probability of the hazard [2]. 

Self-x systems pose a challenge to safety analysis as they 
change their component structure during runtime. The 
structural change modifies the influence of hardware faults on 
the system and the occurrence probabilities of these faults. This 
affects the probabilities of hazardous situations. The severity 
that results from accidents may change as well, e.g., due to a 
changing amount of passengers in a car. Both parameters affect 
the associated risks. To guarantee safety, this analysis has to be 
applied to all component structures that are created in the self-x 
system. But not all component structures are known at design 
time, e.g., when the system connects to another system of 
which the system model is unknown at design time, e.g., the 
other system was made by an unknown manufacturer.  
Consequently, risk analysis has to be performed during 
runtime. 

Cars that are driving autonomously, e.g., on a highway, are 
an example of Self-x systems. These cars can drive in a convoy 
in order to reduce air resistance and, thus, save energy. For this, 
they control their driving speed autonomously. Speed sensors 
measure the current speed of a car. Depending on this, the 
embedded software determines the required de-/acceleration to 
ensure the vehicle's drive speed. If at least one of the speed 
sensors fails, it propagates a wrong current speed to the 
embedded software. This results in a wrong de-/acceleration 
which, in turn, leads to the hazard wrong speed. A wrong speed 
may lead to the accident collision. The severity caused by this 
collision may be the injury of several people and severe 
property damage. 

Standard development approaches for safety-critical 
computer systems require hazards to be identified and the 
associated severity to be defined in order to assess the systems 
risk [2]. Existing approaches of runtime analysis [3], [4], [5] 
focus on the detection of anomalies in the executed system 
behavior and try to lead the system back to its intended 
behavior. Detection cannot be applied if we want to prevent 
unwanted situations, e.g. unacceptable risks, before they 
actually happen.  

In this paper, we present an extension of our runtime risk 
analysis [6]. That approach determines the risk of all future 
component structures at design time and prevents them from 
being created during runtime if their risk is unacceptable. That 
approach does not work for the aforementioned case when 
systems are connected during runtime which are not known at 



         

design time. In contrast to that previous work, we now compute 
hazard probabilities during runtime instead of using hazard 
probabilities which are pre-computed at design time.  

Based on the system's current component structure, we 
compute each reachable component structure for a fixed 
number of subsequent structural changes. We then compute the 
hazard probabilities of the reachable component structures and 
combine them with the current severity encoded in numerical 
values to obtain the risks. If the risk of a reachable component 
structure exceeds the system's acceptable risk, the structural 
change that would result in this component structure is blocked. 

The remainder of this paper is structured as follows. We 
first present the models that we use for modeling the 
component structure and structural changes in Sec. II. Our 
approach for risk analysis at design time follows in Sec. III. 
The risk analysis that is applied during runtime is presented in 
Sec. IV. Sec. V contains a discussion of related work. We 
conclude and give an outlook on future work in Sec. VI. 

II. SYSTEM MODELS 

In this section, we present the models that specify the 
systems structure and behavior. The models that we use in this 
paper are specified in MechatronicUML [7]. We describe the 
specification of the system architecture and the specification of 
the structural changes, called reconfiguration, in Sec. II-A and 
the behavior specification in Sec. II-B. 

A. System Architecture 

In our approach, the system's software architecture is 
specified by an initial software component structure over a 
component model and a set of graph transformation rules for 
the specification of the architectural reconfiguration. 
MechatronicUML uses a component model where components 
communicate via ports and the component's behavior is 
specified by real-time statecharts -- an extension of UML State 
Machines which support more powerful concepts for the 
specification of real-time behavior. The components are 
connected via their ports by connectors. We call the resulting 
component structure a configuration [7].  

We use UML deployment diagrams extended by hardware 
ports to specify and analyze the influence of hardware faults to 
the software components. Fig. 1 shows a deployment diagram 
of a simplified subsystem that controls the speed of an 
autonomous car. Software components are represented by 
rectangles and hardware components by boxes. Squares depict 
ports and arrows connectors. The orientation of the arrow 
specifies the direction of the communication. We will refer to 
this deployed component structure as vehicle1. This subsystem 
is a safety-critical part as a wrong speed can lead to harmful 
accidents like collision.  

vehicle 1

sw1 : Vehicle_SW

sca1 : SpeedCalc sct1 : SpeedCtrl

s11 : SpeedSensor1

s12 : SpeedSensor1

 
Figure 1. Deployment Diagram of the Speed Control Subsystem 

 

The speed control subsystem consists of the component 
sw1:Vehicle_SW representing the vehicle's software and two 
speed sensors s11:SpeedSensor and s12:SpeedSensor. The 
speed sensors measure the vehicle's speed. The software 
compares and combines both speed values in sca1:SpeedCalc 
and subsequently sets the values for the engine controller in 
sct1:SpeedCtrl. 

For the specification of reconfiguration, we consider 
configurations as graphs, i.e., components and ports as nodes 
and connectors as edges. We then model a reconfiguration as a  
graph transformation rule [8], [9]. A graph transformation rule 
consists of a left hand side and a right hand side. The left hand 
side identifies the part of the configuration in which the rule 
can be applied, i.e., the graph contains an isomorphic image of 
the left hand side as a sub graph. The right hand side defines 
the result of the application, i.e., the changes to be made to that 
sub graph such that it is an isomorphic image of the right hand 
side.  

For a short hand notation, left and right hand side are 
depicted in one single graph using the notation «create» or 
«destroy» for components and connectors which are created or 
deleted during rule application. 

Graph transformation rules change the system structure, 
i.e., create and delete components, ports, and connectors during 
runtime. They can be applied arbitrarily often. Additionally, 
new configurations are created by the connection of beforehand 
isolated systems as in our car convoy example. Thus, the 
concrete configurations that actually exist in the system are 
only known at runtime. 

Fig. 2 shows the graph transformation rules that create a 
connection between two vehicles. Both graph transformation 
rules create a port that communicates to the vehicle in front and 
the vehicle in the back of the respective vehicle. During the 
creation of the ports, the connection between the vehicles is 
created as well. 

 
Figure 2. Graph Transformation Rules that Create a Connection between the 
two Vehicles 

 
Fig. 3 shows a configuration which is the result of the graph 

transformation rules of Fig. 2 connecting two vehicles. It shows 
the connection between vehicle1 and vehicle2 when both 
vehicles drive in a convoy. Both vehicles run the same 
software, but they use speed sensors of different types – type 
SpeedSensor1 in vehicle1 and type SpeedSensor2 in vehicle2 – 
that have different probabilities of failing. Via this connection, 
vehicle2 sends reference data, e.g., reference speed to vehicle1. 
vehicle1 takes these data into account when calculating its 
target speed. Thus a failure in, e.g., s21:SpeedSensor2 of 
vehicle2 now also affects the hazard wrong speed of vehicle1.  



         

 
Figure 3. Component Instance Configuration in Convoy Mode 

B. System Behavior 

We specify the real-time behavior of software components 
by real-time statecharts [7]. Real-time statecharts are an 
extension of UML State Machines which support more 
powerful concepts for the specification of real-time behavior. 
They contain clocks and constraints over these clocks. In this 
paper, we will use real-time statecharts without time. 
Reconfiguration is connected to the system behavior by 
attaching graph transformation rules to transitions of real-time 
statecharts as side effects.  

Fig. 4 shows an excerpt of the real-time statechart that 
specifies the reconfiguration behavior of the component 
sw1:Vehicle_SW. The real-time statechart has four states. 
noConvoy is the state when the vehicle is not driving in a 
convoy. This is the initial state. In the states convoyFront, 
convoyRear, and convoyInside, the vehicle is driving as first 
vehicle, last vehicle, and inside a convoy. When switching 
between any of the four states, a port is either created or deleted 
by the graph transformation rule executed as a side effect of a 
transition. E.g., when switching from noConvoy to 
convoyFront, the side effect {createRearPort()} creates a port 
that communicates with the vehicle that is driving behind the 
current vehicle. 

 
Figure 4. Real-time Statechart of the Vehicle Software 

III. RISK ANALYSIS 

The risk is the combination of the probability of a hazard 
and the severity associated to an accident that results from the 
hazard. Thus, for risk analysis we first compute the probability 
of a hazard by a hazard analysis. We then combine the 
probability with the severity value.  

Our hazard analysis approach [10] computes hazards' 
probabilities based on configurations. In this section, we 

describe how the hazard analysis is performed for one 
configuration. 

We follow the terminology of Laprie [11] by associating 
failures – the externally visible deviation from the correct 
behavior – to the ports where the components interact with 
their environment. Errors – the manifestation of a fault in the 
state of a component – are restricted to the internals of the 
component. 

For each component, we determine the errors and the 
failures and build a failure propagation model manually as a set 
of fault trees formalized using Boolean logic, which relates 
failures at the ports of the components to internal errors. 
Internal errors are annotated with the probability of their 
occurrence. Failure propagation models for the connectors are 
automatically generated. Connecting the failure propagation 
models of all components by the connectors forms the failure 
propagation of a configuration. Using this failure propagation 
model, we compute cut-sets -- combinations of errors that make 
a hazard occur -- and probabilities of hazards. 

Fig. 5 shows the failure propagation model of the 
component structure of Fig. 1. In each speed sensor, an error, 
e.g., wrong value can occur, illustrated by the errors e1 and e2. 
The failure f9 at the outgoing port of the component 
sct1:SpeedCtrl occurs, if there occurs an error in either of the 
speed sensors. This is visualized by the symbol ≥1 that 
represents a logical or. 

 
Figure 5. Failure Propagation Model of the Configuration of Fig. 1 

 

We define a hazard in form of a Boolean formula that 
combines the outgoing failures of components. In our example, 

we define the hazard wrong speed by wrong_speed ⇔ f9. The 
speed sensors s11:SpeedSensor and s12:SpeedSensor each fail 

at a probability of 5 · 10-5. The probability of the hazard wrong 
speed is (due to the logical or) thus approx. 10-4. 

The risk of an accident is computed by multiplying the 
probability of the hazard with numerical values associated to 
the severity that results from the accident related to the hazard 
[2]. In our example, a collision that results from a wrong speed 
of vehicle1 has a severity of 1 because vehicle1 transports 
neither passengers nor cargo. The risk of vehicle1 for the 

accident collision is thus 1 · 10-4 = 10-4. 

IV. SAFE RECONFIGURATION 

We now show how we guarantee that configurations built 
during runtime do not have an unacceptable risk. For this, we 
extend the system architecture by components that execute the 
risk analysis at runtime and manage the component's 
reconfiguration, i.e., block reconfigurations in case the risk 
would become unacceptable. To make reconfigurations 
blockable, we extend real-time statecharts. These two model 



         

extensions are addressed in Sec. IV-A. On the other hand, we 
need to compute the possible configurations of the system 
during runtime, because we can only analyze dependencies 
between errors correctly if we know how components are 
connected. This is presented in Sec. IV-B. 

A. Model Extensions 

Each autonomous component 2  is extended by the 
subcomponent RiskManager. Its subcomponent Manager 
manages the safe reconfiguration of its autonomous component 
with respect to risk, i.e., it blocks reconfigurations in case the 
risk of the subsequent configuration would not be acceptable. 
One autonomous component is chosen, of which the risk 
manager performs the risk analysis of the system and acts as 
the autonomous component's risk manager at the same time. In 
this case, the risk manager is extended by the subcomponent 
RiskAnalyzer. The risk analyzer can be deployed on any 
autonomous component. Leader election protocols [12] can be 
employed to determine at runtime which autonomous 
component will contain the RiskAnalyzer subcomponent. In 
systems where the computing hardware resources are limited, 
the risk analyzer may be deployed on an external unit, e.g., 
desktop computer. 

 
Figure 6. Component Structure Extended with Risk Coordinator Components 

 
Fig. 6 shows a configuration of two vehicles driving in a 

convoy. v2:Vehicle coordinates the convoy, i.e., sets reference 
data, e.g., speed. v1:Vehicle drives as a member and performs 
the risk analysis. 

For risk analysis, all autonomous components send their 
current configuration, graph transformation rules, and failure 
propagation models to the risk analyzer. The risk analyzer 
computes the reachable configurations of the system for a fixed 
number of steps from the current configuration and the graph 
transformation rules (cf. Sec. IV-B). For each reachable 
configuration, it computes the risks of all system hazards as 
described in Sec. III. Subsequently, each autonomous 
component receives the risk values and hazard probabilities 
associated with any of its reachable configurations. Based on 
this data, the risk manager of each autonomous component 
checks whether the risk of the subsequent configuration is 
acceptable before executing a reconfiguration. 

                                                           
2 Autonomous components are components that are not embedded into higher level components. We call 

all other components ``subcomponent''. 

After each reconfiguration, the risk analyzer is updated 
about the changed configuration of the system by the risk 
manager of the autonomous component that has executed a 
reconfiguration. Every time the severity of a hazard changes, 
e.g., due to a changed amount of passengers, the risk managers 
update the risk values according to the hazard probabilities. 

The risk analyzer not only needs to know which autonomous 
components are part of the system, but also how they are 
connected to each other. Each time an autonomous component 
wants to join the system, e.g., a vehicle intends to enter the 
convoy, the risk analyzer needs to be informed about which 
connections this component intends to establish to other 
autonomous components. With this ID the Risk Analyzer 
reconstructs which autonomous component is connected to 
which other autonomous components. The structure is needed 
for the hazard analysis (cf. Sec. III).  
 
The new component requests an ID from the risk analyzer and 
from the components it wishes to connect to. This information 
is transmitted to the risk analyzer that judges whether the 
resulting risk of the system is acceptable or not. The 
communication between the new vehicle and the vehicle 
executing the risk analyzer is shown in Fig. 7. 
 

 
Figure 7. Communication for a Component Connecting to the System 
 

In our example, the new vehicle, namely vehicle3, first 
requests the ID of the vehicle it wants to establish a connection 
to, namely vehicle2. After this, vehicle3 sends its request to 
entry at vehicle1 that acts as the Risk Analyzer. The Risk 
Analyzer either permits the connection or rejects the request. If 
the connection is allowed, both vehicles connect and vehicle3 
stores the ID of vehicle2 for possible later reconfiguration 
requests. 

In order to stop reconfigurations from being executed, we 
must block the transition that carries this reconfiguration as a 
side effect. For this, we introduced blockable transitions for 
real-time statecharts [6]. The engineer has to annotate whether 
a transition is blockable or not. These transitions are only 



         

executed, if the RiskManager has allowed this. Otherwise, they 
are blocked by the RiskManager.  

In some cases, blocking transitions is not acceptable, e.g., 
reconfiguration in case of a component failure. Consequently, 
not all transitions that have a graph transformation rule attached 
can be blockable transitions. In order to still guarantee safe 
reconfigurations, we analyze all configurations that are 
reachable on paths between blockable transitions. If an unsafe 
configuration is reachable, the whole path is blocked by 
blocking its first transition which is a blockable transition. For 
further information we refer to [6]. 

B. Runtime Risk Computation 

The runtime risk computation consists of two steps. First, 
we compute all configurations of the system that are reachable 
from the current configuration by graph transformation rules. 
Second, for each reachable configuration we compute the 
probability of each hazard and combine it with the severity that 
is associated to this hazard. We take the highest risk value and 
compare it to the acceptable risk of the system in order to judge 
whether the configuration is safe or not. 

For computing the reachable configurations, we perform a 
reachability analysis on the reconfiguration behavior. As 
described in Sec. II, the reconfiguration behavior consists of 
real-time statecharts that execute graph transformation rules as 
side effects of their transitions.  

We compute the reachable configurations using the 
reachability analysis introduced in [13]. Based on the current 
system configuration and the set of graph transformation rules, 
the reachability analysis computes all possible successive 
configurations. The result is a labeled transition system whose 
states are configurations and whose transitions correspond to 
applications of graph transformation rules. The labels of the 
transitions are the names of the applied rules.  

Fig. 8 shows the labeled transition system for the 
configuration of Fig. 1 and the graph transformation rules of 
Fig. 2. The labeled transition system consists of four configura-
tions, namely c1, c2, c3, and c4. In the initial configuration c1, 
sw1 and sw2 do not have any ports. Then, either sw1 may 
instantiate its rear port by executing the reconfiguration 
createRearPort or sw2 may instantiate its front port by 
executing the reconfiguration createFrontPort. That leads to 
configurations c2 and c3, respectively. After that, the second 
port may be created which establishes the connections between 
sw1 and sw2. Of course, they are far more configurations 
reachable in the system indicated by the arrows leaving c4. Due 
to lack of space, we only present this excerpt. 

For improving the efficiency of the analysis, we use a depth 
limited search and identify isomorphic configurations similar to 
GROOVE [14]. The depth limitation restricts the length of a 
path in the labeled transition system to a predefined number of 
states. Thus, we only investigate the next n configurations that 
are possible in the system.  

A further reduction of the labeled transition system is 
achieved by identifying isomorphic configurations. If we reach 
a configuration which is identical up to isomorphism to a 
configuration that is already contained in the labeled transition 

system, we identify both configurations and do not investigate 
the isomorphic configuration a second time. 

c1

sw1 : Vehicle_SW sw2 : Vehicle_SW

c2

sw1 : Vehicle_SW sw2 : Vehicle_SW

c3

sw1 : Vehicle_SW sw2 : Vehicle_SW

c4

sw1 : Vehicle_SW sw2 : Vehicle_SW

createRearPort

createRearPort

createFrontPort

createFrontPort

...createFrontPort createRearPort deleteRearPort

 
Figure 8. Labeled Transition System 

 
In our example in Fig. 8, the configuration c4 has been 

obtained by identifying isomorphic configurations. Applying 
reconfiguration createFrontPort to c2 leads to exactly the same 
configuration which is obtained by applying createRearPort to 
c3. If we did not identify isomorphic configurations in our 
algorithm, the two configurations would be considered as two 
states which would lead to a larger labeled transition system. 

For each reachable configuration, we compute the risk of 
each hazard as described in Sec. III. For our example 
configuration in Fig. 3 which is reachable from the initial 
configuration of vehicle1 Fig. 1, we assume an acceptable risk 

of 5·10-4. All speed sensors of vehicle1 and vehicle2 may emit 
failures. The difference between the speed sensors of both 
vehicles is their probability of failing. The speed sensors of 

vehicle1 fail at a probability of 5·10-5 and those of vehicle2 at a 

probability of 5·10-4. 

When the vehicles are not connected, the probability of the 
hazard wrong speed is 10-4 for vehicle1 (cf. Sec. III) and 10-3 
for vehicle2. In our example, a collision of vehicle1 has a 
severity of 1 and the risk of vehicle1 for the accident collision 
is 10-4 (cf. Sec. III). The collision of vehicle2 has a severity of 4 
because it has loaded 4 passengers. In case of a collision there 
is the possibility of multiple injured persons or even fatalities. 

The risk of vehicle2 for the accident collision is thus 4·10-3. 

Fig. 9 shows the failure propagation model of the two 
vehicles in convoy mode. The outgoing failure f9 of vehicle1 
now also depends on the errors of the speed sensors of 
vehicle2, namely e3 and e4. This affects the probability of the 

hazard wrong speed of vehicle1 which is now (1-(1-10-4)·(1-10-

3)) = 11·10-3. The risk of a collision of vehicle1 is now 4·11·10-3 

= 44·10-3. We take 4 as the severity value as it is the highest 
severity value in the system. This risk is higher than the 

acceptable risk of this system as 44·10-3 > 5·10-4. Consequently, 
the reconfiguration connecting both vehicles must be blocked. 



         

 
Figure 9. Failure Propagation Model in Convoy Mode 

 

V. RELATED WORK 

Most approaches in the field of runtime safety analysis 
focus on the detection of anomalies in the executed behavior of 
the system and try to lead the system back to its intended 
behavior [3], [4]. We look into the reachable future states of the 
system and prevent it from unsafe states with respect to risk. 
However, this is only possible, because we know these 
potential anomalies beforehand and it only works for known 
hazards and risks. 

Typically, for each safety property, that is to be tracked, a 
monitor is generated at runtime [3]. In our approach, we have 
one monitor that keeps track of the risk value of the system. 
The monitor is not generated but implemented offline. It 
becomes system specific by loading the system specific models 
at runtime. 

The conditional safety certificates by Schneider et al. [15] 
model a relationship between required preconditions and safety 
guarantees in a fault tree like manner. During runtime, based on 
the current system properties, evidence is given whether the 
safety guarantees can be fulfilled. An adaptation is carried out 
accordingly. In contrast to our method, the analysis can only 
react to the current system properties. An analysis for several 
system states is not possible. 

VI. CONCLUSION 

In this paper, we presented an approach for a runtime risk 
analysis for self-adaptive systems. In particular, we discussed 
the architectural extensions that are necessary to perform such 
runtime analysis as well as an algorithm for computing the risk. 
The algorithm applies a graph-based reachability analysis for 
computing all possible successive configurations of the system. 
The risks of these configurations are computed. The results of 
this analysis are then used to identify unsafe configurations 
which must be prevented. 

In our future work, we will work on a concept for a 
compositional hazard analysis. Such an analysis eliminates the 
need for a central risk analyzer. Instead, each autonomous 
component computes its hazard probabilities by itself and the 

autonomous components only exchange hazard probabilities 
instead of behavioral models. 

Further, performing a risk analysis during runtime opens up 
possibilities for risk management. We would like to reduce 
probabilities of hazard occurrences pro-actively by 
reconfiguring into a configuration with lower hazard 
probabilities. 
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