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Online monitoring is needed to detect outbreaks of diseases such as influenza. Surveillance is also needed
for other kinds of outbreaks, in the sense of an increasing expected value after a constant period. Information
on spatial location or other variables might be available and may be utilized. We adapted a robust method
for outbreak detection to a multivariate case. The relation between the times of the onsets of the outbreaks
at different locations (or some other variable) was used to determine the sufficient statistic for surveillance.
The derived maximum-likelihood estimator of the outbreak regression was semi-parametric in the sense
that the baseline and the slope were non-parametric while the distribution belonged to the one-parameter
exponential family. The estimator was used in a generalized-likelihood ratio surveillance method. The
method was evaluated with respect to robustness and efficiency in a simulation study and applied to spatial
data for detection of influenza outbreaks in Sweden.

Keywords: exponential family; generalized likelihood; ordered regression; spatial data; surveillance

1. Introduction

Online surveillance is used to give an alert signal as soon as possible after an important change
has occurred. Overviews of the inferential issues in surveillance are given in [8,9,25,34,43] and
others.

Here, we will consider the detection of an outbreak, defined as a change from a (possibly
unknown) baseline to a monotonically increasing (or decreasing) regression. Other definitions of
outbreaks are discussed in Section 7.

The motive for this study was the spatial surveillance of influenza outbreaks. The detection of
outbreaks of epidemiological diseases is an important area of online surveillance. Surveillance
in public health is reviewed in, e.g. [23,26,37,39,42]. By monitoring incidences, outbreaks of
reoccurring diseases may be detected, for example, the yearly influenza epidemic. Such monitoring
is also useful to detect new diseases, such as SARS, avian flu and swine influenza, as well as effects
of bioterrorism. Early detection of the onset of an outbreak is useful in order for health authorities
to act timely and also for the planning of health care. Epidemics, such as influenza, are for several
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2 L. Schiöler and M. Frisén

reasons very costly to society and it is therefore of great value to monitor the epidemic period in
order to properly allocate medical resources [2].A semi-parametric method for detecting the onset
of a monotonic increase was suggested for univariate surveillance by Frisén and Andersson [10].
It was successfully applied to the incidence of influenza in Sweden as a whole in [12].

As information on the incidence in different regions of the country is available, we will here
generalize the univariate method to utilize this information. Spatial surveillance is a special case
of multivariate surveillance, as pointed out, for example, in [22,40]. The relation between different
variables (here locations) is important in the monitoring of the onset of the outbreak. We will use
information from a study in [35] on the spread of influenza in Sweden. The spreading pattern is
described in Section 6.1. We will investigate how information on time lags in the onset at different
locations should be used in an outbreak surveillance system. Another case where a time lag might
be relevant is when you have an early but rough indicator which might be combined with a later
and more accurate one. In [16,20], it was shown that data of search patterns on the Internet could
be used as a proxy for influenza incidence. In [16], it was found that the lag in reporting was
about 1 day compared with between 1 and 2 weeks for traditional data from the U.S. Centers for
Disease Control and Prevention. The method suggested in this paper may possibly be useful also
for situations like that one, where the lag is in the reporting rather than in the onset of the outbreak
at various locations.

In Section 2, we will specify univariate and multivariate models for outbreaks in order to clarify
which changes we aim to detect. In Section 3, we will derive a sufficient reduction in the data
for multivariate outbreak situations. This reduces the complexity without loss of information.
Sufficient reduction for detection of step changes was earlier derived in [14] but here it is derived
for the detection of gradual outbreaks. In Section 4, we will discuss general approaches of how
multivariate surveillance can be constructed from univariate surveillance and construct a simple
multivariate outbreak detection method, based on the univariate method in [10]. In this section,
we will also derive the recommended method. This is done by deriving the maximum-likelihood
estimators based on the multivariate monotonicity restrictions and using these in a generalized
likelihood ratio (GLR) method. In Section 5, we evaluate the suggested method by a simulation
study, where properties such as predictive value and robustness are examined. The robustness is
important since you never can expect assumptions to be exactly fulfilled. In the comparison with
other methods, we will use the evaluation metrics suggested by Frisén et al. [13] for multivariate
surveillance. In Section 6, the method is applied to data for several influenza seasons in Swe-
den, and the efficiency of the suggested multivariate outbreak detection method is demonstrated.
Concluding remarks are given in Section 7.

2. Specification of the outbreak model

Since the method for outbreak detection depends on the specification of the model, we start with
this specification. At each time point, t , a new observation is made on a process Y. We state the
model for discrete time. Weekly data are available for influenza in Sweden. We want to detect
the change from one state to another as soon as possible after it has occurred, in order to give
warnings and to take corrective actions.

2.1 Univariate outbreak

In [1], Swedish influenza data from six seasons (2001–2007) were analyzed, and it was sug-
gested that a non-parametric approach based on monotonicity restrictions (the outbreak regression)
should be used. It was also suggested that the outbreak could be modeled using a Poisson distribu-
tion for the incidence. The localization parameter λ(t) of the distribution at time t has a constant
value λ0 before the outbreak but depends on time after the onset of the outbreak. We will use τ to
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Journal of Applied Statistics 3

denote the unknown time of the onset. Thus,

λ(t) =
{

λ0, t < τ

λt−τ+1, t ≥ τ,

with λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λs . This situation where the regression is constant at first and then
monotonically increasing will be named “outbreak regression”. The aim at decision time s is to
determine whether or not the outbreak has started yet, thus if τ ≤ s or τ > s. The state at the
outbreak is characterized by a monotonically increasing expected incidence.

2.2 Multivariate outbreak

In multivariate surveillance, the process under surveillance is a p-variate vector, denoted by Y =
{Y(t), t = 1, 2, . . .}, where Y(t) = {Y1(t), Y2(t), . . . , Yp(t)}. The components of the vector
represent, for example, the incidence of a disease at different locations. For the influenza in
Sweden, described in Section 6, we have p = 2. Each component Yi(t) is distributed with a
location parameter λ(t) with the same properties as described in Section 2.1. The time of the
onset may differ for the components and will be denoted τi for component i. At decision time
s, we base the decision whether an outbreak has occurred or not on the available information,
Ys = {Y(1),Y(2) · · ·Y(s)}.

The time τi of the onset of the outbreak of process Yi may not be the same for all i = 1, . . . , p.
The relation between the times is important since totally different methods will be optimal for
different relations. The aim here is to detect an outbreak in any of the processes, which means
that we aim at detecting the first one. We will concentrate on the case of a known time lag. This
can be the case for spatial data and data from several sources (possibly including proxy data). The
case where the lag is mis-specified is examined in Section 5.5. Since the time lags are assumed
to be known, for notational convenience, we will order the processes according to which changes
first. Hence, τ1 ≤ · · · ≤ τp. The time lag for process Yi will be denoted by qi , where qi = τi − τ1

for i = 1, . . . , p. The case where the onsets are simultaneous, that is, τi = τ for i = 1, . . . , p,
is of special interest. In this case, qi = 0, i = 1, . . . , p. We denote this by lag = 0. In numerical
examples and applications, we will also use the special cases of only two processes with q2 = 1
or 2. We denote this by lag = 1 and lag = 2, respectively. For the influenza in Sweden, lag = 0,
which is a total over the country, has previously been used. In Section 6, we examine possible
benefits of combining different parts of the country with lag = 1.

We assume that the distributions of the processes all belong to the one-parameter exponential
family. In the application to influenza data in Section 6, the Poisson distribution is relevant. We
do not assume a parametric outbreak pattern here. Instead, we assume that the different processes
are identically distributed, except for the time of the onset.

In order to derive a good method for outbreak detection for the model described in this section,
we will first examine possibilities to reduce the data without loss of information. In Section 3, we
will explore the possibility of such a sufficient reduction.

3. Sufficient reduction at multivariate outbreaks

Due to the complexity of multivariate problems, we will now examine the possibilities, for out-
break detection, to minimize the complexity without loss of information. A sufficient reduction
will not reduce the information and still allows a joint solution to the full surveillance problem.
In [13], it was demonstrated that the relation between the change points affects the properties of
different surveillance methods in different ways. It is thus necessary to consider any knowledge
on the relation between changes. Without any information about this relation, it is not possible to
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4 L. Schiöler and M. Frisén

derive a good method. In most papers on multivariate surveillance, it is implicitly assumed that
the changes occur simultaneously. It is thus of special interest to study a simultaneous outbreak
at all locations and its implications. We will also study a time lag in the onset of the outbreaks.
This situation is of interest for influenza in Sweden as described in Section 6. Robustness when
the time lag is only approximately known is studied in Section 5.5.

3.1 Simultaneous change at all locations

Many evaluations of multivariate surveillance methods are made by the zero-state average run
length (ARL) (see Section 5.3), where the change occurs at the start. When all processes change
at the start, it follows that they change simultaneously.

In [14,41], it was demonstrated that if all processes have the same change points, i.e. τ1 = τ2 =
· · · = τp = τ , then the univariate vector of partial-likelihood ratios, {L(s, t), t = 1, . . . , s} where
L(s, t) = f (Y ; τ = t ≤ s)/f (Y ; τ > s), is sufficient for the sequence of distributional families.
Thus, in order to monitor a simultaneous fully specified change in distribution, it is possible
to construct a univariate surveillance procedure based on the sufficient sequence of likelihood
ratios. This result was used in [45] for the simultaneous shifts of mean and variance in a normal
distribution. For the case with no lag between the change points of two processes (lag = 0), the
sufficient statistic is denoted by SuffR0. We will use this notation in the application of spatial
surveillance of Swedish influenza outbreaks. In this case, SuffR0 corresponds to the total incidence
in the country as a whole. The statistic OutbreakPSuffR0 of the method in the application is hence
equivalent to the statistic of the univariate surveillance of influenza in Sweden reported in [10,12].

3.2 Changes with a time lag between locations

The case of a known time lag for independent normal distributions with equally sized shifts in
the expected value at the change points was studied in [21], where it was demonstrated that a
sufficient reduction to univariate surveillance exists. In [14], the case of changes in the general
one-parameter exponential family was studied, but also only for step changes. Different levels
of the parameter before the change as well as differences in shift size were considered. These
earlier results on sufficiency are only valid for step changes, and hence inadequate for our aim
to detect changes from a constant level to a monotonically increasing one. Theorem 1 shows
that a sufficient reduction to a univariate statistic exists for the situation where each process Yi

increases monotonically from the onset of the outbreak τi and onwards, and there is a known time
lag between the onsets of each process. The indices of the observation vectors {y1, y2, . . . yp}
are ordered according to ascending time lag, i.e. the change occurs first in Y1. The theorem is
illustrated for a simple case in Example 1 (after Theorem 1). A numerical illustration is given in
Example 2 in Section 4.6.

Theorem 1 For p processes Y1, Y2, . . . , Yp which all belong to the one-parameter (for
localization) exponential family and which are independent and identically distributed, con-
ditional on the change points and time lags (independent over time as well as across processes),
there exists a sufficient reduction of the set of observation vectors to a univariate statistic for
the detection of outbreaks with equal (but possibly unknown) parameter values from the onset
of the outbreak when the changes occur with known time lags (q1 = 0, q2, q3, . . . , qp) where
qi = τi − τ1. A sufficient statistic for inference on the first onset τ1 is the sequence

∑
i∈It

Yi(t + qi), t = 1, . . . , s, where It = {i : qi ≤ s − t, 1 ≤ i ≤ p}.
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Journal of Applied Statistics 5

This is true both for the situation when the time of change is fixed but unknown and for a stochastic
time of change.

The proof is given in Appendix 1.
Since any one-to-one function of a sufficient statistic also is sufficient, the sequence

∑
i∈It

Yi(t + qi)

|It | , t = 1, . . . , s,

where |It | denotes the cardinality of It , is sufficient. This transformed statistic is useful when
dealing with the monotonicity restrictions of the outbreak regression, since this statistic preserves
the monotonicity properties.

When we have two processes, we will use a simpler notation, SuffRq(s, t) = ∑
i∈It

Yi(t +
qi)/|It | : t = 1, . . . , s, where q = q2 is the lag between the two processes.

Example 1 For two processes Y1 and Y2 with time lag q = 1, the index set is It = {i : qi ≤ s − t,

1 ≤ i ≤ p}. For s = 1, we have I1 = {i : qi ≤ 0, 1 ≤ i ≤ 2} = {1}. For s = 2, we have
I1 = {i : qi ≤ 1, 1 ≤ i ≤ 2} = {1, 2} and I2 = {i : qi ≤ 0, 1 ≤ i ≤ 2} = {1}. For s = 3, we
have I1 = {i : qi ≤ 2, 1 ≤ i ≤ 2} = {1, 2}, I2 = {i : qi ≤ 1, 1 ≤ i ≤ 2} = {1, 2} and I3 = {i :
qi ≤ 0, 1 ≤ i ≤ 2} = {1}. Hence, the sufficient reduction is

{∑
i=1 Yi(t) : t = 1

} = {Y1(1)

at s = 1,
{∑

i∈It
Yi(t + qi) : t = 1, 2

} =
{∑

i∈{1,2} Yi(1 + qi),
∑

i∈{1} Yi(1 + qi)
}

= {Y1(1) +
Y2(2), Y2(2)} at s = 2, {Y1(1) + Y2(2), Y1(2) + Y2(3), Y1(3)} at s = 3 or more generally
{Y1(1) + Y2(2), Y1(2) + Y2(3), . . . , Y1(s − 1) + Y2(s), Y1(s)} at s. A numerical example is given
in Section 4.6.

The sufficient statistic at decision time s is SuffRq(s, t), t = 1, . . . , s, where SuffRq(s, t) =
(Y1(t) + Y2(t + q))/2 for t ≤ s − q and SuffRq(s, t) = Y1(t) for t > s − q. In Example 1,
we have {SuffR1(1, t)} = {{Y1(1)} at s = 1. At s = 2, we have {SuffR1(2, t)} =
{[Y1(1) + Y2(2)]/2, Y2(2)}. At s = 3, we have {SuffR1(3, t)} = {[Y1(1) + Y2(2)]/2, [Y1(2) +
Y2(3)]/2, Y1(3)}. More generally, we have {SuffRp(p, t)} = {[Y1(1) + Y2(2)]/2, . . . , [Y1(2) +
Y2(3)]/2, . . . , [Y1(s − 1) + Y2(s)]/2, Y1(s)}.

4. Surveillance methods for multivariate outbreak detection

In this section, we will first describe the univariate outbreak detection method, OutbreakP, sug-
gested by Frisén and Andersson [10]. Then, we will review common approaches to adapting
univariate surveillance to multivariate surveillance and show how OutbreakP can be adapted by
these approaches. After that, we will derive a joint multivariate method based on the sufficiency
principle. Finally, we will give the maximum-likelihood estimator of the parameters and a GLR
method for outbreak detection.

4.1 Univariate outbreak detection

For the outbreak detection situation, one way to specify the in-control state versus the outbreak is
to use a parametric model of the outbreak curve. This requires extensive modeling as in, e.g. [17].
Here, we will use a non-parametric univariate method as a base for the suggested adaption to a
multivariate situation. When seasonal or other components are important, it might be useful to
apply the non-parametric method to the residuals of a more complex model.

As we have unknown parameters, GLR where parameters are substituted with the maximum-
likelihood estimates is used. This general approach was introduced to surveillance in [25], where
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6 L. Schiöler and M. Frisén

it was suggested that in the CUSUM method, GLR should be used to handle unknown parameters
after the change. This approach was also used by Höhle and Paul [19] for Poisson and negative
binomial distribution at surveillance of infectious diseases. In [10], our method for outbreak
detection was suggested. The method utilized the GLR approach by using the maximum-likelihood
estimators under the monotonicity restrictions in Section 2.1, as derived in [11] for the one-
parameter exponential family. The method was derived for the normal and Poisson distributions
and was named the OutbreakP method for the Poisson distribution. Here, we will only consider
the Poisson distribution, which is suitable for the application in Section 6. However, the same
technique was used for a normal distribution with known variance in [11] for the univariate case.
The method is semi-parametric since the distribution is parametric, but the regression is non-
parametric since the only restriction on the regression on the parameter of the one-parameter
exponential family is by monotonicity. A user-friendly computer program can be downloaded at
www.statistics.gu.se/surveillance. The method is also available in the R package Surveillance,
described in [18] and available on CRAN, and the open JAVA package CASE described in [4].

For the univariate surveillance of the influenza incidence in Sweden as a whole, the OutbreakP
method was evaluated in [10,12]. We will now adapt this method for a multivariate situation.

4.2 General approaches to adapting univariate surveillance to multivariate surveillance

There are several approaches to multivariate surveillance. The most commonly used approach
is the reduction to one scalar statistic, such as the sum for each time. This will be described in
Section 4.3.Another approach is to use several univariate systems in parallel, one for each process.
An intermediate approach is vector accumulation, for example, MEWMA suggested by Lowry
et al. [28]. When the multivariate distribution is available, as in, e.g. [30], this might be used as a
base for a surveillance method [3,40].

4.3 Reduction to one scalar statistic for each time

Dimension reduction is always a reasonable choice in multivariate problems provided that it does
not reduce important information. The most far-going reduction is the reduction to a scalar for
each time. This is the most common way to handle multivariate surveillance. The observations
at each time point consist of a vector, and we can first transform the vector from the current time
point into a scalar statistic, which we then accumulate over time.

One example of scalar accumulation is when, for each time point, a statistic representing the
spatial pattern is constructed. This statistic is then used in a surveillance method. The reduction to
a univariate variable can be followed by univariate monitoring of any kind. In [32,33], statistics
measuring clustering were used for each time, and the information was accumulated by the
univariate CUSUM method.

In [44], the spatial pattern was characterized by a Bayesian model for each time, and the statistic
was then monitored by the EWMA method.

For the influenza incidence, a commonly used reduction is the sum, even though information
on different parts of the country is available. Using the sum means that no regional information
is used. Instead, the surveillance is based on total data for the country as a whole, as in [10].
However, other reductions may be more efficient, as is seen in Section 3. In our evaluations in
Section 5, the reduction to a scalar is included.

4.4 Parallel outbreak detection

To illustrate a frequently used approach to multivariate surveillance, we will include a parallel
system in our evaluations. Here, each process is monitored separately and an overall alarm is
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Journal of Applied Statistics 7

called if some condition is fulfilled. The most common condition is that one of the systems calls
an alarm. We will use this condition when the univariate OutbreakP method is applied to each
process. The method is called OutbreakPParallel. Results for this method, when compared with
others, are given in Section 5.3.

4.5 Outbreak surveillance based on sufficient reduction and known parameters

The partial-likelihood ratio of an outbreak versus no outbreak with onsets of the outbreaks at τ1,
τ2, . . . , τp is

L(s, t1, . . . , tp) = f (Ys |τ1 = t1, . . . ., τp = tp)

f (Ys |τ1 > s, . . . , τp > s)
.

For known time lags (q1 = 0, q2, q3, . . . , qp), this can be written as

L(s, t1) = f (Ys |τ1 = t1)

f (Ys |τ1 > s)
.

For the detection of an outbreak as defined in Section 2, L(s, 1) is the relevant statistic [10]. For
the Poisson distribution and known values of the parameters of the regressions, we have that

L(s, 1) =
p∏

i=1

s∏
t=1+qi

exp(λ0 − λt−qi
)

(
λt−qi

λ0

)Yi (t)

=
s∏

t=1

e|It |(λ0−λt )

(
λt

λ0

)∑
i∈It

Yi (t+qi )

,

where It = {i : qi ≤ s − t, 1 ≤ i ≤ p}.
For two processes, we have

L(s, 1) =
s−q∏
t=1

e2(λ0−λt )

(
λt

λ0

)Y1(t)+Y2(t+q) s∏
t=s−q+1

eλ0−λt

(
λt

λ0

)Y1(t)

.

In Section 4.7, we will use the generalized maximum likelihood and substitute the unknown
parameters with their maximum-likelihood estimators derived in Section 4.6.

4.6 Maximum-likelihood estimation of the multivariate outbreak regression

If the distribution of the processes is not fully specified, the approach of the GLR can be used.
Hence, we need estimates for the likelihood ratio in Section 4.5, both for the situation with
an outbreak and for the situation with no outbreak. When we have no outbreak, and thus all
observations are independent and identically distributed, the maximum-likelihood estimator of
λ0 is the average of all observations. We have

λ̂0 =
s∑

t=1

p∑
i=1

yi(t)

sp
.

In the outbreak situation, we have the monotonicity restriction described in Section 2. A useful
technique to find least-squares estimates, which here are maximum-likelihood estimates, is the
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8 L. Schiöler and M. Frisén

pool adjacent violator algorithm (PAVA), described, for example, by Robertson et al. [31]. This
algorithm was introduced to surveillance in [5]. However, both their models and aim of the
surveillance differ from ours.

Theorem 2 For the multivariate outbreak regression in Section 2.2 with processes which all
belong to the regular one-parameter (for localization) exponential family and which are inde-
pendent and identically distributed, conditional on the change points and known time lags
(independent over time as well as across processes), the maximum-likelihood estimators of λt ,

for the increasing phase are obtained by the PAVA algorithm with weights proportional to the
number, |It |, of processes used for the specific component of the sufficient statistic.

The proof is given in Appendix 2.

Example 2 To illustrate how the sufficient reduction and the PAVA algorithm are used, we give a
simple example for two processes with lag q = 1. SuffRq(s, t) is the sufficient reduction described
in Section 3.2, where q indicates the lag between the two processes and s is the decision time.
In Table 1, we illustrate how the sufficient statistic and the maximum-likelihood estimators are
calculated for a numerical example.

The estimate of λ̂0 is the average of all observations. At s = 5, we have. To estimate λ̂t at time
s = 5, we apply the PAVA to the sequence SuffR1(5,t), t = 1, . . . , 5. We see that the first violation
of the order restriction occurs at t = 2, and hence we replace the observations by the weighted
average, (2.5 · 2 + 2 · 2)/4 = 2.25. This does not violate the first observation, Y2(1), since 2 ≤
2.25. The observation at t = 4 constitutes a violation, and hence we use (3 · 2 + 1.5 · 2)/4 = 2.25,
which does not violate the order restriction of the previous observations.

4.7 GLR surveillance of multivariate outbreaks

We will use the GLR, i.e. substitute parameter values by their maximum-likelihood estimators,
in our semi-parametric multivariate method.

By substituting the parameters of the outbreak regression in L(s, 1) in Section 4.5 with the
maximum-likelihood estimators in Section 4.6, we get the alarm statistic of the multivariate
OutbreakPSuffR method. Here P stands for the Poisson distribution while SuffR stands for the
sufficient reduction in the multivariate case. The general method depends on the set of lags
(q1 = 0, q2, q3, . . . , qp) and has the alarm statistic

p∏
i=1

s∏
t=1+qi

exp(λ̂0 − λ̂t−qi
)

(
λ̂t−qi

λ̂0

)Yi (t)

=
s∏

t=1

e|It |(λ̂0−λ̂t )

(
λ̂t

λ̂0

)∑
i∈It

Yi (t+qi )

,

Table 1. For an example of observations on two processes, we give the sufficient statistic SuffR1 for s = 1,
2, 3, 4, 5 and the maximum-likelihood estimate λ̂t at s = 5.

t y1 Y2 SuffR1(1,t) SuffR1(2,t) SuffR1(3,t) SuffR1(4,t) SuffR1(5,t) λ̂t

1 4 2 4 2.5 2.5 2.5 2.5 2.25
2 3 1 3 2 2 2 2.25
3 3 1 3 3 3 2.25
4 1 3 1 1.5 2.25
5 6 2 6 6

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
r
i
s
é
n
,
 
M
a
r
i
a
n
n
e
]
 
A
t
:
 
1
8
:
0
9
 
2
5
 
M
a
y
 
2
0
1
1



Journal of Applied Statistics 9

where It = {i : qi ≤ s − t, 1 ≤ i ≤ p}. For two processes with time lag q, we use the notation
OutbreakPSuffRq for the method and OutbreakPSuffRq(s) for the alarm statistic. For this case,
we have

s−q∏
t=1

e2(λ̂0−λ̂t )

(
λ̂t

λ̂0

)Y1(t)+Y2(t+q) s∏
t=s−q+1

eλ̂0−λ̂t

(
λ̂t

λ̂0

)Y1(t)

.

In the case q = 0, this simplifies to the univariate OutbreakP statistic described in [10,12].

Example 3 For the situation of Examples 1 and 2, we have for s = 5 the alarm statistic

OutbreakPSuffR1(5) =
4∏

t=1

e2(λ̂0−λ̂t )

(
λ̂t

λ̂0

)Y1(t)+Y2(t+1) 5∏
t=5

eλ̂0−λ̂t

(
λ̂t

λ̂0

)Y1(t)

= 6.14.

5. Simulation study to determine the properties of the multivariate OutbreakP method

In a multivariate situation, some reduction in the dimensionality of data is often useful, but it is
important that no information is lost. This could be achieved by the use of a sufficient statistic.
If the outbreaks appear simultaneously for the different processes, then we have a univariate
sufficient statistic with one change point. However, when the outbreaks appear at different times,
the sufficient statistic has more than one change point in the distribution. Even though each
component has one change point, the distribution of the sufficient statistic is not constant either
for t < τi or for t ≥ τi . The proofs commonly used for minimax or expected delay optimality
require that there is only one change between two distributions.

Since exact optimality cannot be expected, the properties of the OutbreakP method are presented
by the results from a simulation study. In Section 6, the method will be evaluated by the application
of the method to observed Swedish influenza data.

5.1 Model for simulations

The suggested method is non-parametric with respect to the shape. However, to examine the
properties of the method by a simulation study, a parametric model was used to generate data.
We used a model that is relevant for the application to the influenza data described in Section 6.
In the model, we have two independent processes, Y1 and Y2, generated as

Yi(t) ∼ Poisson(λi(t))

λi(t) =
{

0.5 t < τi

exp(β0 + β1(t − τi + 1) t ≥ τi,

where β0 = −0.622 and β1 = 0.826. In accordance with Section 2.2, we have τmin = τ1 and
τ2 = τ1 + q, where q denotes the time lag. For each value of and t , we generated 106 replicates.

The model is based on the studies in [1,35] on the seasonal influenza in Sweden. The parameters
were estimated from Swedish influenza data from the season 2003–2004, which was not extreme
in any sense but “typical”. This model also fits rather well for many seasons; see [35] for further
details.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
r
i
s
é
n
,
 
M
a
r
i
a
n
n
e
]
 
A
t
:
 
1
8
:
0
9
 
2
5
 
M
a
y
 
2
0
1
1



10 L. Schiöler and M. Frisén

5.2 False alarms

The most commonly used measure for false alarms is the in-control, ARL0, E[tA|τ = ∞]. This
can be used also in a multivariate situation. A similar measure is the median run length, MRL0.
Because of the skewness of the run-length distribution, the median might be easier to interpret. In
addition, considerably less computer time is necessary for the same accuracy, since good estimates
of the low frequency of long runs are needed forARL0 but not for MRL0. We determined the alarm
limits so that we have the same MRL0 (780) in all comparisons in this paper. It was used also for
the univariate OutbreakP method in [10]. The technique chosen by Frisén and Sonesson [15] was
used to ensure that the alarm limit was determined with enough accuracy to make the error in the
curves of delay less than the line width.

5.3 Delay

One measure of the detection ability is the average run length, given that the change occurs imme-
diately (τ = 1). This is widely used in univariate surveillance and often named zero-state ARL
or ARL1. Zero-state ARL is the most commonly used evaluation measure also in the multivari-
ate case. However, it is seldom explicitly defined. The definition implicit in most publications
is E[tA|τ1 = τ2 = · · · τp = 1], where tA is the time of the alarm. Here, it is assumed that all
processes change at the same time. As seen in Section 3.1, a sufficient reduction to a univariate
problem exists when all processes change at the same time. Zero-state ARL is thus questionable
as a formal measure for comparing methods for genuinely multivariate problems. Instead, we will
here use a measure which allows different change points.

The conditional expected delay CED(τ ) = E[tA − τ |τ ≤ tA] can be generalized for multi-
variate surveillance to CED(τ1, τ2, . . . , τp) = E[tA − τmin|τmin ≤ tA] [13]. For a given lag, this
depends on only one of the change points. Thus, we can write CED(τmin) = E[tA − τmin|τmin ≤
tA]. When we have lag = 0, i.e. simultaneous outbreaks, this reduces to the univariate CED.
In Figure 1, we can see that the OutbreakPParallel method has a worse delay than the Out-
breakPSuffR0 method for simultaneous outbreaks. OutbreakPSuffR0 is based on SuffR0, which
corresponds to the total incidence. In Figure 2, with Monte Carlo estimates, we can see that the
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OutbreakPSuffR0

OutbreakPParallel

Figure 1. The CED for the OutbreakPParallel and OutbreakPSuffR0 methods for two processes with
simultaneous onset of the outbreak (lag = 0) as a function of τmin = t .
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t

OutbreakPSuffR1
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Figure 2. The delay in the detection of the outbreak for the OutbreakPParallel and OutbreakPSuffR1 methods
for two processes with lag = 1 as a function of τmin = t .

delay for the parallel method is worse than that for the OutbreakPSuffR1 method based on SuffR1
when lag = 1.

5.4 Predictive value

If a method calls an alarm, it is important to know whether this alarm is a strong or weak indication
of a change. The predictive value is a well-established measure in epidemiology. In surveillance,
however, we need a variant that also incorporates time. The difference in surveillance, when
compared with situations involving only one decision, is that we can get an alarm at any time
point, and therefore we need a measure of the predictive value at each of them. In order to judge
to what degree an alarm at time tA can be trusted, it is necessary to consider the balance between
the risk of false alarms, the detection ability and the probability of a change. This can be done by
calculating the probability of an outbreak, at an alarm:

PV(t) = P(τmin ≤ t |tA = t)

=
∑t

i=1 (P (tA = t |τmin = i)P (τmin = i))∑t
i=1 (P (tA = t |τmin = i)P (τmin = i)) + P(tA = t |τmin > t)P (τmin > t)

as suggested in [7,13]. The components in the formula depend in general on the relation between
the change points. Here, the known lags have been used to simplify the calculations. The predictive
value depends also on whether outbreaks appear frequently or rarely. Knowledge of the exact
distribution of τmin is seldom available, but we will nevertheless try to give a rough indicator.
In the simulation study, τmin was assumed to be geometrically distributed, i.e. P(τmin = i) =
(1 − ν)i−1ν. This may not give the closest fit of the onset times in Sweden, but in order to detect
outbreaks which occur at unexpected times we did not want to include information on which
week is the most common one for the onset. The level of intensity was roughly estimated from
all available historical data on seasonal influenza to be ν = 0.1. This value is thus consistent with
the application in Section 6. With this intensity, the PV is above 0.99, and for a lower intensity,
ν = 0.01, which weakens the PV, it is above 0.95. The method and alarm limit used in the
simulation study were considered potentially useful for practical application since the predictive
value was high.
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12 L. Schiöler and M. Frisén

5.5 Robustness to mis-specified time lag

Some models and assumptions are needed in order to efficiently make inferences from data.
Hence, it is important to make assumptions which are suitable for the application. Here, we will
concentrate on robustness related to a possible time lag. First, we will describe the effect of using
the method but with a wrong lag, then we will describe the consequences of different population
sizes of different regions.

The lag between the outbreaks is seldom exactly known. For situations of interest for the
application in Section 6, we examine the effect of using the sufficient statistic for lag = 1 when
in fact lag = 2, and vice versa and we also examined the case where the true lag is between 1 and
2. For comparison, we also included the use of a statistic based on a lag further away from the
true one. In Figure 3, we have simulated influenza outbreaks where the true lag is 1. We can see
that when we used the method OutbreakPSuffR1, which is based on the true lag, we got the best
results. When we used the method for lag = 2 or lag = 0, the results were slightly worse while it
is much worse when we used the method for lag = 4. In Figure 4, we report simulated outbreaks
where the true lag is 1.5. Here, we can see that the methods based on lag = 1 and lag = 2 both
works fine while those for lag = 0 and lag = 4 are clearly worse. In Figure 5, we have simulated
outbreaks with the true lag 2. When we used the outbreak detection method based on the true
lag, we got the best results, except for a very minor advantage for SuffR1 at τ = 1 and 2. In
this complex situation, the method based on the sufficient statistic is not always exactly optimal,
but it usually works very well. When we used the statistic for lag = 1, the results were similar
to those for the true lag. However, when the lag was two steps away from the true one and we
used the sufficient statistic for lag = 0 or lag = 4, while the true lag was 2, we got clearly worse
results. The conclusion is that an approximate lag may work well, for the case of the application
of Section 6, provided that it is not too far away from the true one. Improvements from the present
use of lag = 0 seem possible.

In the simulation model used above, we assumed equal distributions given the possibly different
times of onset. In practice, however, the two processes may be based on different population sizes
or otherwise have different parameters. If the difference is large, this should be handled by the
adjustment of the weights and the alarm limit. The ratio in size between the two areas analyzed
in Section 6 is approximately 1.17, and a suitable simulation model for this case was derived
in [35]. We examined what would happen if no adjustments were made and the same weights and
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Figure 3. The delay, as a function of τmin = t , for outbreak detection by OutbreakPSuffR0, OutbreakPSuffR1,
OutbreakPSuffR2 and OutbreakPSuffR4 when the true lag is 1.
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Figure 4. The delay, as a function of τmin = t , for outbreak detection by OutbreakPSuffR0, OutbreakPSuffR1,
OutbreakPSuffR2 and OutbreakPSuffR4 when the true lag is 1.5.
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Figure 5. The delay, as a function of τmin = t , for outbreak detection by OutbreakPSuffR0, OutbreakPSuffR1,
OutbreakPSuffR2 and OutbreakPSuffR4 when the true lag is 2.

alarm limit were used, as if the population sizes were the same. The OutbreakPSuffR methods
performed slightly worse if different population sizes were used. However, the predictive value
of an alarm was still greater than 0.99 for the intensity 0.10. The conclusion is that the predictive
value did not change much and that the interpretation of the results would not be dramatically
changed.

6. Application of the multivariate OutbreakP method to Swedish regional influenza data

There are several national and international institutes that collect data on epidemic diseases, for
example, the European Centre for Disease Prevention and Control in Europe and the Centers for
Disease Control and Prevention in the USA. Monitoring influenza in Sweden is mostly based
on reports from all Swedish laboratories providing laboratory diagnoses of influenza (LDI). We
will use these LDI data to illustrate the proposed method. In Sweden, data of infectious diseases
are collected by the Swedish Institute for Infectious Disease Control, SMI. Descriptions of the
collection of these data are given in [1,2]. Here, we use the laboratory-confirmed incidences of
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14 L. Schiöler and M. Frisén

influenza type A or B. For some purposes, it may be of interest to monitor each location separately.
However, the aim here is to get an alarm when the influenza epidemic has reached any part of
Sweden. This means that the aim is to detect the first outbreak.

6.1 The spreading pattern of influenza in Sweden

The spatial pattern of how a disease spreads between regions is important. Spatial clustering of
adverse health events is discussed, for example, in [24,27,29,33,38]. However, in some situations,
such as in the case of influenza in Sweden, the outbreak pattern is not characterized by clustering.

The spread of epidemic diseases, such as influenza, often follows geographical patterns. Schiöler
[35] searched for geographical patterns in the spread of influenza in Sweden (for example, a pattern
from South to North or from West to East). No such pattern was found. Instead, it was found that
influenza epidemics tend to start in the larger cities and then spread to the smaller ones. Data
from areas classified as metropolitan areas generally showed an earlier outbreak than those from
the locality areas. The metropolitan areas have major international airports nearby (Arlanda,
Landvetter, Umeå and Kastrup), and commuting to other countries is common. This is a plausible
explanation for the early start of the influenza season in these areas. This is also in accordance
with the results of Crepey and Barthelemy [6], who investigated the relation between traveling
and influenza in the USA and in France and found a stable impact.

The time difference in the onset of the influenza outbreak was about 1 week. This information
will be used to increase the efficiency of our surveillance system.

6.2 Outbreak detection of influenza in Sweden

Based on the results on sufficiency in Section 3, the maximum-likelihood estimation in Section 4.6,
the GLR in Section 4.7 and the choice of alarm limit in Section 5 to give MRL0 = 780 and a
predictive value greater than 95%, we applied the OutbreakPSuffR1 to 11 seasons of influenza.

Figure 6 shows the results for the season 2006–2007. By accumulating the information by the
OutbreakPSuffR1 alarm statistic, the outbreak is more clearly seen than when by the statistic
based on the total number of cases in Sweden.

1
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OutbreakPSuffr0
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Figure 6. The alarm statistic of the OutbreakPSuffR1 method compared with that of the OutbreakPSuffR0
up to the week of alarm during the season 06–07.
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Table 2. Results for 11 influenza seasons in Sweden.

Season SuffR0 SuffR1 First

1999–2000 49 49 Same
2000–2001 52 52 Same
2001–2002 2 2 Same
2002–2003 1 1 Same
2003–2004 46 46 Same
2004–2005 50 48 SuffR1
2005–2006 1 1 Same
2006–2007 47 46 SuffR1
2007–2008 51 51 Same
2008–2009 48 48 Same
2009–2010 No alarm 24 SuffR1

Notes: The week of alarm is given for the methods based on the SuffR0
and SuffR1, respectively. The last column shows which method gave the
first indication of an outbreak.

The situation varies from year to year. In Table 2, the week of the alarm is given for OutbreakP-
SuffR0 and OutbreakPSuffR1 for all years with available data. The OutbreakP based on SuffR1
gives an alarm the same week or earlier compared with OutbreakP based on the SuffR0, the total.
As can be seen from the table, the alarm is given at the same time for eight seasons and earlier
for three seasons for OutbreakP based on SuffR1 when compared with SuffR0. Note that the last
season differs from the earlier ones due to the new H1N1 influenza. The incidences (of influenza
type A or B) were very low this season and highly dominated by the metropolitan areas. This
explains why there was an alarm of an outbreak by the OutbreakSuffR1 method, which utilizes
information on the metropolitan areas, but not by OutbreakSuffR0, which uses only the total for
the country as a whole.

7. Discussion

In recent years, there have been several events that highlight the importance of outbreak detection.
The outbreaks of new kinds of influenza (SARS, avian and H1N1) are such recent examples.

The semi-parametric method used here detects outbreaks defined as a monotonic increase
following the constant level before the onset of the outbreak. Such outbreaks are of interest in
connection with several diseases and syndromes. Often, the information about the baseline is
limited. Errors in the estimation of the baseline can have serious effect, as demonstrated, for
example, by Frisén and Andersson [10]. Therefore, it can be of value to have access to a method,
which does not require knowledge about the baseline but is focussed on the increasing incidence
at an outbreak. A semi-parametric maximum-likelihood ratio surveillance method was derived
in [10] for the regular exponential family and applied and compared in [12]. The likelihood
principle makes it possible to include knowledge on the probability of an outbreak depending
on the season. However, here we chose a non-informative approach, since it may be valuable to
detect outbreaks that occur at unexpected times.

When data from different sources are available, multivariate surveillance should be applied. This
is the case for detection of influenza outbreaks on the basis of data from different regions. The two
simplest approaches of multivariate surveillance are the reduction to a suitable univariate statistic
and parallel surveillance with due concern to the multiplicity. We included these approaches
in our evaluations by simulations. We also suggested a joint GLR method based on maximum
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16 L. Schiöler and M. Frisén

likelihood under multivariate monotonicity restrictions. The properties depend heavily on the
relation between the times of onset in the different processes.

The relation between different processes is important in multivariate surveillance, as demon-
strated by, for example, Frisén et al. [13]. The method that is optimal for simultaneous changes
is not efficient at a time lag. The exact relation between the onset on different location is seldom
exactly known. However, there can be some information as demonstrated in, e.g. [35] where it
was found that the influenza outbreak in Sweden in general started a week earlier in major cities
than the rest of the country. In the application to the Swedish influenza data, it was demonstrated
that the performance of the surveillance was improved by utilizing this knowledge. The simu-
lation study demonstrated that even if the true time lag is only approximately known, it was an
improvement to use it in the method for the case studied.

Most theory of statistical surveillance is based on a change between two distributions – one for
the times before the change point and the other for the times after it. For simultaneous changes,
we demonstrated that the sufficient statistic has one change point and that the suggested method
is optimal. However, when changes occur at different times, we can have several changes in
the multivariate distribution. Thus, we cannot expect optimality. Here, we demonstrated that the
suggested method gave good results both in the simulation study and when applied to spatial
information on influenza in Sweden. We used a simulation model mimicking the behavior of
Swedish influenza data, based on the results of Andersson et al. [1], where a discussion on data
quality problems was included. When evaluating methods for online monitoring, it is important
to use measures that incorporate the time issue, i.e. the fact that there are repeated decisions, not
just one decision as in hypothesis testing. Here, we used evaluation measures by Frisén et al. [13],
which are better suited for multivariate online surveillance than the conventional ones.

The primary motive for this paper was the need for spatial surveillance of influenza outbreaks
in Sweden. The suggested method may also be useful for other applications. The case of proxy
data for influenza was discussed in Section 2.2. The detection of a change from a constant level
to a monotonic trend is of special interest in connection with outbreaks of epidemic diseases.
However, it may be useful also in other areas. For example, Schiöler and Frisén [36] discussed
the application of the outbreak method for detecting a decline in the results of financial managers.
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Appendix 1. Proof of Theorem 1

Since the observations are independent given the values of the change points, the density can
be written as a product. We will first consider a fixed but unknown value of τ1. The likelihood
expressions for the one-parameter exponential family can be written as

f (Y ; τ1 ≤ s) = exp

{
p∑

i=1

min(τi−1,s)∑
t=1

[yi(t)(ϕ0) + g(ϕ0) + h(yi(t))]

+
p∑

i=1

s∑
t=τi

[yi(t)(ϕt−τi+1) + g(ϕt−τi+1) + h(yi(t))]
}

and

f (Y ; τ1 > s) = exp

⎧⎨
⎩

s∑
t=1

p∑
j=1

[yj (t)(ϕ0) + g(ϕ0) + h(yj (t))]
⎫⎬
⎭ .

Thus, we have the partial log-likelihood ratio

L(s, τ1) = log
f (Y ; τ1 ≤ s)

f (Y ; τ1 > s)
=

p∑
i=1

min(τi−1,s)∑
t=1

[yi(t)(ϕ0) + g(ϕ0) + h(yi(t))]

+
p∑

i=1

s∑
t=τi

[yi(t)(ϕt−τi+1) + g(ϕt−τi+1) + h(yi(t))]

−
s∑

t=1

p∑
i=1

[yi(t)(ϕ0) + g(ϕ0) + h(yi(t))]
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=
p∑

i=1

s∑
t=τi

[yi(t)(ϕt−τi+1) − yi(t)(ϕ0) + g(ϕt−τi+1) − g(ϕ0)]

=
p∑

i=1

s∑
t=τ1+qi

[yi(t)(ϕt−(τ1+qi )+1 − ϕ0)] + z(ϕ0, . . . , ϕs−τ1+1)

=
p∑

i=1

s−qi∑
t=τ1

[yi(t + qi)(ϕt−τ1+1 − ϕ0)] + z(ϕ0, . . . , ϕs−τ1+1)

=
s∑

t=τ1

∑
i∈It

[yi(t + qi)(ϕt−τ1+1 − ϕ0)] + z(ϕ0, . . . , ϕs−τ1+1)

=
s∑

t=τ1

(ϕt−τ1+1 − ϕ0)
∑
i∈It

[yi(t + qi)] + z(ϕ0, . . . , ϕs−τ1+1),

which depends on the observations only through the statistic in the theorem. Since the likelihood
ratio is sufficient for the problem, by Halmos factorization criterion, the statistic is also sufficient.
This completes the proof when τ1 is fixed but unknown.

If τ1 is stochastic with some density g, then the partial log-likelihood ratio can be written as

L(s) =
∞∑

r=1

g(r)L(s, r) =
s∑

r=1

g(r)L(s, r) +
∞∑

r=s+1

g(r)L(s, r),

where for each τ1 > s no change occur and the partial-likelihood ratio is one and thus L(s, r) = 0.
Thus,

L(s) =
s∑

r=1

g(r)

⎡
⎣ s∑

t=r

(ϕt−r+1 − ϕ0)
∑
i∈It

[yi(t + qi)]
⎤
⎦ + z∗(ϕ0, . . . , ϕs) + 0,

and again we have, by the factorization theorem, that the statistic in Theorem 1 is sufficient for
the problem.

Appendix 2. Proof of Theorem 2

In order to obtain the maximum-likelihood estimators of the expected values λt for τ1 = 1, we
utilize the assumption λ0 ≤ λ1 · · · ≤ λs . In [11], it was demonstrated that in the univariate case,
the maximum-likelihood estimators of the expected values λt of the outbreak regression can be
obtained by the PAVA algorithm. For p processes, with known lags (q1 = 0, q2, q3, . . . , qp), any
observation of Yi(t) such that t < τi is an observation with the expected value λ0. In the same
way, any observation of Yi(t) such that τi = t has the expected value λ1 and so on until the last
observations of Y1(s) and any other Yi(s) such that τi = τ1, which are observations with the
expected value λs . Thus, the number of processes observed, |It |, with expectation λt depends on
t and (q2, q3, . . . , qp).

Now we use results on isotonic regression, with different numbers of observations for different
values of the independent variable. We reformulate Theorem 1.5.2 in [26] for the one-parameter
case and our parameterization. It states that, assuming independent random samples from each of s
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populations characterized by regular exponential densities of the form f (yi(t); ϕt ) = yi(t)(ϕt ) +
g(ϕt ) + h(yi(t)), the maximum-likelihood estimates under the order restriction Yi(1) ≤ · · · ≤
Yi(s) is given by applying the PAVA algorithm to n−1

j

∑nj

j=1 Yi(t) with weights nj , where nj

denotes the sample size of population j . We utilize this theorem by observing that by our definition
we at each time t observe |It | iid processes (i.e. a sample of |It | observations) characterized by
the exponential density above with parameter ϕt . We observe the processes at s different time
points (i.e. we have s populations) and hence we obtain the maximum-likelihood estimates under
the order restriction Yi(1) ≤ · · · ≤ Yi(s) by the PAVA algorithm.
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