
Towards Model-Driven Evolution of Performance Critical Business

Information Systems to Cloud Computing Architectures

Steffen Becker
Model-Driven Software Engineering
Heinz Nixdorf Institute, Paderborn

steffen.becker@upb.de

Matthias Tichy
Software Engineering,

Computer Science and Engineering,
Chalmers University of Technology, Göteborg

mtt@tichy.de

Abstract Migrating legacy applications to todays
emerging cloud infrastructures is still challenging. In
this paper, we sketch an approach, that combines re-
verse engineering and performance analyses for appli-
cations evolving to the cloud.

1 Motivation

Long-living software systems undergo permanent evo-
lution during their lifetime. These evolutions are trig-
gered by a changing system context (system usage and
technology stacks) and/or changing system require-
ments. Examples of such context or requirements
changes include evolving functional or non-functional
requirements, e.g., the capability of the system to deal
with increasing system workload. The latter is often
a consequence of opening the access to existing sys-
tems over the Internet, e.g., for the integration of the
systems into novel service compositions.

Especially the latter scenario imposes major chal-
lenges for long-living software systems as their soft-
ware architecture is often not prepared to deal with
a high system load. Cloud computing offers a new
technology which is supposed to address this issue
by selling almost unlimited amounts of compute or
storage resources. In order to utilize this new tech-
nological environment which is able to cope with the
mentioned changing environment, usually long-living
software systems have to be migrated to new envi-
ronments. Often this implies major changes to the
system structure for which no systematic engineering
process is available today. This lack of understanding
can lead to high risks or even project failures. For
example, the migration of SAP R3 to SAP’s ByDe-
sign SOA solution almost failed as the legacy system
architecture was unable to work properly in the new
environment 1. The consequence was that the per-
formance was unacceptably low and the system went
through a costly redesign process deferring product
release by approximately 3 years.

The current state of the art for this kind of prob-

1http://www.v3.co.uk/v3-uk/news/1970547/

sap-update-business-bydesign-plans

lems is twofold. On the one hand, classical architec-
tural styles and patterns document best practices for
systems built in the past. As an example, consider the
three-tier layered architecture style often used success-
fully for business information systems. On the other
hand, we can find new architectural styles that enable
the efficient use of the almost unlimited computational
resources in the cloud. Here, we find for example the
multi-tenant architectural style (or SPOSAD style)
that allows massive replication of the business logic
which is enabled by a smart physical data distribu-
tion. Their aim is to support various load situations
efficiently.

However, there is currently a lack of approaches
that systematically bridge these two types of architec-
tures, i.e., there is no systematic engineering support
for migrating from one architecture type to the other
to gain the benefits provided by the latter. A special
focus of such systematic engineering support has to be
the performance and scalability gained by migrating
to the cloud architectural styles as these are the main
drivers for the migration needs.

2 Solution Sketch

In this paper, we propose a systematic engineering
approach to migrate long-living legacy software sys-
tems (which we assume will follow one of the classi-
cal architectures) to the conceptual and technological
context provided by the emerging cloud architectures.
We focus on supporting performance and scalability
predictions.

In general, our proposed process is as follows (cf.
Figure 1). First, existing systems have to be re-
verse engineered to obtain a performance prediction

Evolved 
Palladio Model 

Architectural 
Patterns 

Legacy 
System 

Performance 
Model 

Cloud Evolution 
Patterns 

Evolved 
Performance Model 

Evolution 
Reverse 

Engineering 

Performance 
Evaluation 

Evolution 
Recommendation 

Figure 1: Solution Process Outline

1



model. These models contain static aspects, e.g., com-
ponents and their connections, behavior, e.g., control
flow and resource demands, and deployment aspects.
Second, the software architect has to select a set of
potential target architecture styles or patterns which
have to be appropriately formalized. For example,
the architect plans to evaluate the impact of migrat-
ing the classical system architecture to Map-Reduce
or to the SPOSAD [Koz11] style and, thus, he semi-
automatically adapts the reverse engineered perfor-
mance prediction models by the selected architectural
styles. Third, the performance of the target architec-
tures is evaluated to get a final ranking and to come to
a recommendation for the migration. Finally, based
on the analyzed target architecture, the system’s im-
plementation has to be adapted. Note that some (most
prominently the final step) of the illustrated steps can-
not and should not be fully automated, i.e., human
intervention has to be supported for all these steps.

3 State of the Art

The major foundations for the sketched process are
already in place, i.a, software architectural patterns,
software performance engineering, architecture evolu-
tion, and model transformations. We will sketch some
selected state of the art in the following.

Software Architecture Patterns In the follow-
ing, we discuss some examples of typical architectural
styles or patterns used to implement today’s Cloud-
based applications. One example is the Map-Reduce
style used by the Google search engine. It has been
implemented for example in supporting frameworks
like Hadoop 2. Another example is a tuple oriented
abstraction where data portions to be worked on are
put into a tuple space which several nodes access and
process accordingly. The SPOSAD style [Koz11] uses
classical application tiers but ensures that the data
access layer can be scaled by an appropriate physical
distribution of the data.

Software Performance Engineering Software
Performance Engineering aims at predicting the per-
formance of software systems before their implementa-
tion to avoid costly redesigns. For Cloud systems the
data flow often is the limiting factor as the data needs
to be distributed among the manifold server available
in the cloud. While all performance engineering ap-
proaches support the specification of control flow as-
pects, the handling of data flow varies significantly in
its level of detail.

Hamlet [Ham09] proposed one of the first mod-
els where the data sent from one component to the
next had an impact on the called component’s perfor-
mance. Drawing upon that, for example the Palladio
component model [BKR09] for business information

2http://hadoop.apache.org/

systems consider data flow impact on loop iteration
counts, branch probabilities or parameters passed on
to called required services. We plan to extend these
models to reflect the cloud requirements in our re-
search.

Architecture Evolution The CloudMIG ap-
proach [FH10] is closely related to our sketched pro-
cess. Frey and Hasselbring develop an approach for
the migration of software systems to cloud systems.
The approach uses formal constraints to determine
whether the target software satisfies or violates con-
straints imposed by the cloud environment. However,
CloudMIG does not offer performance analyses.

4 Conclusion and Future Work

Many legacy applications are currently and will be
even more in the future migrated to cloud architec-
tures. To reap the benefits from cloud architectures
and to avoid costly failures, this process should be
appropriately supported. We sketched a software en-
gineering process which supports this migration by
employing formal patterns for cloud architectures and
performing performance estimations.

While the foundations for the major parts of the
proposed process are already laid by the software en-
gineering community, there exists no related work
which appropriately supports the outlined steps. Con-
sequently, we will develop an implementation of the
sketched process in the future.

References

[BKR09] Steffen Becker, Heiko Koziolek, and Ralf
Reussner. The Palladio component model
for model-driven performance prediction.
Journal of Systems and Software, 82:3–22,
2009.

[FH10] Sören Frey and Wilhelm Hasselbring.
Model-based migration of legacy software
systems to scalable and resource-efficient
cloud-based applications: The cloudmig ap-
proach. In Cloud Computing 2010: Proceed-
ings of the 1st International Conference on
Cloud Computing, GRIDs, and Virtualiza-
tion, 2010.

[Ham09] Dick Hamlet. Tools and experiments sup-
porting a testing-based theory of compo-
nent composition. ACM Trans. Softw. Eng.
Methodol., 18:12:1–12:41, June 2009.

[Koz11] Heiko Koziolek. The SPOSAD Archi-
tectural Style for Multi-tenant Software
Applications. In Proc. 9th Working
IEEE/IFIP Conf. on Software Architec-
ture (WICSA’11), Workshop on Architect-
ing Cloud Computing Applications and Sys-
tems, pages 320–327. IEEE, July 2011.


