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The feasibility of using remotely sensed data jointly with shipboard measurements to estimate the carbon
dioxide fugacity in the surface water (fCO2sw) of the Pacific sector of the Southern Polar Ocean (S>60°S)
is evaluated using a data set obtained during austral summer 2006. A comparison between remotely sensed
chlorophyll a (chl a) and sea-surface temperature (SST) with in-situ measurements, reveals the largest bias in
areas with rapid and large concentration changes such as at the ice edge, the polar front and in the Ross Sea
Polynya. The correlation between fCO2sw and SST, chl a, biological productivity estimates and mixed layer
depth (MLD) are evaluated, and single and multiple regression methods are used to develop fCO2sw
algorithms. Single regressions between the study parameters and fCO2sw show that most of the fCO2sw
variability is explained by chl a. The Multi-Parameter Linear regressions were used to create fCO2sw
algorithms derived from field measurements, and using solely remote-sensing products. Based on the best
fits from the two data sets fCO2sw estimates have a root means square deviation of ±14 μatm and coefficient
of determination of 0.82. The addition of satellite derived estimates of biological productivity in the algorithm
does not significantly improve the fit. We use the algorithm with remotely sensed chl a and SST data to
produce an fCO2sw map for the entire high-latitude Southern Ocean south of 55°S. We analyze and discuss
the seasonal and spatial robustness of the algorithm based on the remotely sensed data and compare with
climatologic fCO2sw data.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

The global oceans act as buffers for carbon dioxide (CO2) with an
annual uptake corresponding to approximately one-quarter of the
anthropogenic emissions (Takahashi et al., 2009). The Southern
Ocean is, in particular, recognized as one of the most important
regions for the globalmarine carbon cycle. The response of the Southern
Ocean to climate change such as global warming and increased wind
induced upwelling of CO2-rich subsurface waters are predicted to have
a large impact on the global oceanic CO2 uptake (Le Quéré et al., 2007;
Sarmiento et al., 1998). The large CO2 uptake of this region is due to its
sheer size coupled with strong heat loss, as well as strong winds and
rough seas that favor air–sea CO2 gas exchange (Robertson & Watson,
1995; Takahashi et al., 2009). At present, the SouthernOcean is generally
considered to be a net sink for atmospheric CO2 (Bakker et al., 1997;
Hoppema et al., 2000; Metzl, 2009; Robertson & Watson, 1995;
-9296, Tromsø, Norway.
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Takahashi et al., 2009). In the confluence between the warmer subtrop-
ical waters and the sub-Antarctic waters, a strong CO2-sink zone has
been observed between 40°S and 55°S (e.g. Barbero et al., 2011;
Chierici et al., 2004; Inoue-Yoshikawa & Ishii, 2005; McNeil et al., 2007;
Metzl, 2009; Metzl et al., 1999; Poisson et al., 1993; Takahashi et al.,
1993), likely due to the effect of the strong cooling of warm subtropical
waters and the resulting increase of CO2 solubility. However, the magni-
tude of this sink, and in particular its degree of inter-annual variability,
are not well known (e.g. Takahashi et al., 2009). The challenges to esti-
mate oceanic CO2 uptake trends from observations are also seen in the
long-term data set (1969 to 2002) in the area south of Australia, where
no trend could be estimated due to a large bloom in January (Inoue-
Yoshikawa & Ishii, 2005). In the seasonally sea-ice covered areas (>
60°S), rapid biological CO2 uptake, during and upon ice melt, offsets
the winter time CO2 supersaturation, and creates a summertime CO2

sink in theWeddell Sea gyre (Bakker et al., 2008). The fugacity of carbon
dioxide in the surface water (fCO2sw) of large areas of the Southern
Ocean, in particular the high-latitude polar (>60°S) waters in the Pacific
sector, are still largely unknown (Fig. 1). Even in the relatively well stud-
ied Ross Sea, Arrigo and van Dijken (2007) point out the few air–sea CO2
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Fig. 1. Summary of the former expeditions (red lines) of underway fCO2swmeasurements that have been performed in the circumpolar Southern Ocean south of 60°S between 1970
and 2005, based on the Surface Ocean CO2 Atlas (SOCAT, www.socat.info). The IB Oden cruise track for 2006 is shown as the black line. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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flux estimates. These values show that the Ross Sea acts as a CO2 sink,
mainly due to biological CO2 drawdown during photosynthesis
(Sweeney et al., 2000). Consequently, estimates of the net mean annual
sea–air CO2 flux in the high-latitude Southern Ocean (> 60°S) are few
and have low spatial coverage (Chierici et al., 2004; McNeil et al., 2007;
Takahashi et al., 2009). To overcome this,methods formapping scattered
fCO2sw datamust be devised. The use of Multi-Parameter Linear Regres-
sion (MLR) equations are one such approach that have been developed
over the last decade. This approach takes advantage of empirical
relationships that exist between fCO2sw and remotely sensed mapped
variables (sea surface temperature and chlorophyll a in many regions),
to generate maps of fCO2sw. Its application areas include, for instance,
the Pacific (Boutin et al., 1999; Rangama et al., 2005; Stephens et al.,
1995) and the Caribbean Sea (Olsen et al., 2004). Recently Mixed Layer
Depth (MLD) derived from Ocean reanalysis models was introduced as
another promising fCO2sw proxy by Olsen et al. (2008), and its potential
was further enlightened by Chierici et al. (2009) and Telzewski et al.
(2009). For complete ocean coverage there is a strong need to explore
the development of algorithms in other oceanic regions as well.

Relationships of fCO2sw to sea surface temperature (SST) and
chlorophyll a (chl a) in the region between 45°S and 60°S south of
Tasmania and New Zealand were developed and used to create
fCO2sw fields by Rangama et al. (2005). They used linear regressions
between fCO2sw and either SST or chl a, and estimated fCO2sw with
the accuracy of approximately 10 μatm. The present paper explores
the feasibility of developing fCO2sw algorithms even further south,
(>60°S) in the seasonally ice covered Pacific sector of the Southern
Ocean. The region is to a large extent unexplored due to harsh
sampling conditions and the need for icebreakers. Satellite sensors
have superior spatial and temporal resolution, and it is of great inter-
est to use remotely sensed data to produce algorithms to estimate
fCO2sw in the surface water in this climatically sensitive region. This
is a first attempt to systematically evaluate the ability of several
parameters (namely chl a, SST, and MLD) acting as proxies for
fCO2sw in this region, both on their own and combined in MLR equa-
tions. For this purpose, we include the assessment of the applicability
of satellite derived primary productivity. We also compare field data
and remotely sensed products.

2. Study area

Our study area covers part of the region between Punta Arenas,
Chile and the McMurdo station, at the coast of Ross Sea, Antarctica,
which was traversed by the IB Oden between the 12th and 26th of
December 2006 (dashed line in Fig. 1). Fig. 2a to d show remotely
sensed SST (SSTrmt

, Sect 3.3), salinity (SSS) and MLD from the HYbrid
Coordinate Ocean Model, HYCOM, (Sect. 3.2), and remotely sensed
chl a (chlrmt, Sect. 3.3), and the black line represents the underway
sampling locations onboard the IB Oden. The ship ventured through
both ice-covered areas (sea-ice zone, SIZ) and the permanently
open ocean zone (POOZ, Fig. 2). The approximate extent of the sea-
ice cover in winter (winter ice edge) is shown as the dashed white
line in Fig. 2. Strong salinity and temperature gradients were defined
as fronts according to previous protocols (Orsi & Whitworth, 2005;
Orsi et al., 1995). Frontal systems, such as the sub-Antarctic Front
(SAF), the Antarctic Polar Front (APF), as well as the ice edge in the
Southern Ocean are strongly associated with high primary production
(e.g. Moore & Abbott, 2000, Fig. 2d). POOZ denotes the area with no
seasonal sea-ice cover, which is located north of the Sea Ice Zone
(SIZ). SIZ is defined as the region between the summertime minimum
and wintertime maximum sea-ice extent. Large seasonal changes
occur in the sea-ice cover from summer to winter (Arrigo et al.,
1998). The SAF marks the northern frontier of the Antarctic Circum-
polar Current (ACC), where warm and salty subtropical surface

http://www.socat.info
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Fig. 2. The extension and variability of the a) remotely sensed sea surface temperature, SST, (°C), b) sea surface salinity (SSS), c) the modeled mixed layer depth, MLD (m), and the
d) remotely sensed chlorophyll a (chl, μg L−1) along the cruise track (black line) in large parts of the Pacific sector of the Southern Ocean from ~50°S to 80°S. The HYCOM products
SSS and MLD are from December 2006 and the remotely sensed chl image is December climatology (1997–2008) to avoid cloud masking of the entire region. The major fronts and
zones are marked and are denoted as follows; the Permanently Open Ocean Zone (POOZ), Subantarctic Front (SAF), Antarctic Polar Front (APF), the Sea Ice Zone (SIZ). The Ross Sea
Polynya is denoted RSP. The white dashed line shows the approximate location of the winter ice edge (August).
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water mixes with cold and fresher sub-Antarctic water, and is generally
defined as the location where the temperature decreases southwards
from 9 °C to 5 °C. The Ross Sea Polynya (RSP) is the largest polynya in
Antarctica, approximately 105 km2 (Arrigo & van Dijken, 2003). The
RSP is formed by upwelling of warm modified circumpolar deep
water (CDW) that reduces the ice formation during the winter in
combinationwith catabaticwinds (which formover the inland glaciers)
that move newly formed ice to the north and away from the fixed ice
edge or the coastline (Arrigo & Van Dijken, 2007). Thesewinds together
with currents help to maintain the polynya open during the summer.

2.1. In-situ observations

Based on the SST from this study and the definitions by Orsi et al.
(1995), we found the SAF to be located between 56° and 58°S (Figs. 2
and 3). Here, we observed cooling from 8 °C to 5 °C. The northern
boundary of the Antarctic Front (APF) was found at ~63°S, which is
marked by a sharp temperature gradient from 4.1 °C to 1.2 °C. At
approximately 65°S and 66°S, we observed two chl a peaks coinciding
with drastic fCO2sw decrease and rapid cooling from 2 °C to −0.1 °C,
as we entered the Antarctic Zone (AZ). This implied enhanced biolog-
ical production associated with the APF, which has been reported
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Fig. 3. The latitudinal variability of : a) fCO2sw (μatm, black cross), in situ chlorophyll a (blac
thick line, °C), HYCOM SST (SSTH, thin black line, °C) and satellite SST (SSTrmt, gray line, °C). M
the Antarctic Front (APF) is found at ~63°S. The arrow shows the approximate location of t
previously (e.g. Arrigo et al., 1998; Chierici et al., 2004). In the AZ,
the ice edge was reached at 67.5°S, 102°W. In the SIZ, the salinity
varied (from 33.65 to 34.00) and SST was just above the freezing
point (−1.1 to −1.7°C). Entering the RSP, both salinity and SST
increased remarkably to 34.3 and 0.5 °C, respectively. The mean
extent of the sea-ice cover in December 2006 with the overlay of
cruise track and daily mean location of the ship is shown in Fig. 4.
For more detailed description of the sea-ice conditions, we refer to
the study by Ozsoy-Cicek et al. (2008). The ship stayed mainly in
the POOZ or in the SIZ, and spent only a few days in heavy sea-ice
conditions before the opening of the RSP.

3. Data

3.1. Field data

Seawater for underway measurements was drawn from a water
intake placed at the depth of approximately eight meters at the bow
of IB Oden. The water was pumped through stainless steel tubing to
the instruments, and on-line measurements were made every minute
for surface water fugacity of CO2 (fCO2sw), chl a fluorescence (chlfluo),
SST and SSS.
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Fig. 4. The sea-ice concentration and extent along the cruise track of IB Oden in December 2006. The red, yellow, and green colors denote 90 to 100%, 50% and 30% ice coverage,
respectively. The dates (MM-DD-2006) are shown for each station location along the cruise track. Courtesy: Burcu Ozsoy-Cicek, University of San Antonio, Texas, USA. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.1.1. Fugacity of carbon dioxide in the surface water
For the continuous fCO2sw measurements, seawater was pumped

at the flow rate of approximately 15 L min−1 into a CO2 equilibrator
(tandem type combined with a static mixer type manufactured by
Kimoto Electric Co., LTD (Harashima et al., 1997; Kimoto &
Harashima, 1993)). Prior to analysis, the air was treated and dried
in several steps, which included aerosol filters, a Peltier cooling
element, and Nafion tubing. Raw voltage readings of the non-
dispersive infrared detector (NDIR, LiCOR®, model 6262, Lincoln,
USA) were continuously measured every 10 s and converted to the
mole fraction of CO2 in dry air (xCO2, ppm) using four CO2 standard
gasses and zero gas (0, 250, 350, 450, 550 ppm, supplied by Strand-
möllen, Denmark) used for calibration every 12th hour. These gas
calibration standards were used for the accurate characterization of
the non-linear response curve from the NDIR detector to changing
CO2 concentrations (Dickson et al., 2007). The accuracy of the CO2-gas
standards was between 0.5% (for the 250 and 350 ppm concentrations)
and 1% (450 and 154 550 ppm). The xCO2 in dry air was converted to
fCO2 in moist air (in the equilibrator) using temperature, salinity and
pressure in the equilibrator as described by Weiss and Price (1980).
Subsequently, the fCO2 of moist air at sea surface conditions (fCO2sw,
μatm) was estimated from the in-situ temperature in the surface
water (SST), salinity, and air pressure (Beer, 1983; Weiss et al., 1982).
The fCO2sw data varied between 165 and 412 μatm and showed rapid
changes at the APF, the ice edge and in the Ross Sea (Fig. 3a).

In addition to underway fCO2swmeasurements,we collecteddiscrete
surface samples at 37 locations for the measurements of total alkalinity
(AT) and total inorganic carbon (CT). All AT and CT sampleswere analyzed
onboard the ship. AT was determined by potentiometric titration in an
open cell with 0.05 M HCl, according to Haraldsson et al. (1997). CT
was analyzed by coulometric titration. Analytical methods for the AT

and CT determinations have fully been described in more detail else-
where [i.e. Dickson et al., 2007]. The precision was computed from
three replicate analyses of one sample at least twice daily andwas deter-
mined to ±2 μmol kg−1 (±0.1%). Routine analyses of Certified Refer-
ence Materials (CRM, provided by A. G. Dickson, Scripps Institution of
Oceanography) ensured the accuracy of the measurements, which was
better than ±1 μmol kg−1 and ±2 μmol kg−1 for CT and AT,
respectively.

Total alkalinity, CT, salinity and temperature were used as input
parameters in a CO2-chemical speciation model (CO2SYS program,
Pierrot et al., 2006) to calculate fCO2 (fCO2swcalc). This allowed an
internal consistency check of the underway fCO2sw. We used the
CO2-system dissociation constants (K*1 and K*2) estimated by Roy
et al. (1993, 1994), since a previous study showed these constants
to be the most suitable constants for cold and fresher surface waters
(Chierici & Fransson, 2009). The calculations were performed on the
total hydrogen ion scale, and we used the HSO4- dissociation constant
of Dickson (1990). The linear regression between the measured
underway fCO2sw data and the calculated data (fCO2swcalc=0.972x
fCO2sw, N=37, zero-intercept) resulted in a coefficient of determina-
tion (r2) of 0.999, and a root mean square error (rms) of ±9 μatm.
Thus, the error in fCO2sw of ±9 μatm was considered the lower
limit of the expected error in further calculations.
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3.1.2. Sea surface temperature and salinity
SST (Fig. 3b) and SSS (not shown) were continuously measured

using a thermosalinograph SBE-21 (Seabird Electronics Inc.). The
accuracy and precision for SST and SSS were ±0.01 °C and ±0.001,
respectively. Another temperature sensor was located at the seawater
intake, upstream of the pump, for the accurate temperature measure-
ments of incoming water (SST). The temperature difference between
the equilibrator and the seawater intake was 0.65±0.09 °C, which
was corrected for in the fCO2sw calculation (see 3.1.1).

3.1.3. Chlorophyll a
High frequency measurements of chlfluo were obtained with a chl a

fluorescence sensor installed in a flow-through manifold (MiniTracka
II, Chelsea Technologies Group). The MiniTracka II used an excitation
wavelength centered at 470 nm and the bandwidth of 30 nm, and an
emission wavelength centered at 685 nm and at 30 nm bandwidth.
The accuracy of the MiniTrackaII is ±0.02 μg L−1. Seawater was
pumped through the manifold at the speed of 1 L min−1 and voltage
data were recorded every 10 s, which were averaged to 1-minute
data. The MiniTracka was calibrated against the total of 35 chl a mea-
surements (chlextr) obtained fromdiscrete samples, whichwere collect-
ed and analyzed after extraction using the acetone-spectrofluorometric
method (Holm-Hansen & Riemann, 1978). The linear correlation
between the MiniTracka sensor fluorescence voltage (Vfluo) and the
extracted chl a, chlextr=1.9854 x Vfluo−0.1013 (r2=0.902, N=35)
was used to convert the voltage signal to in-situ chl a (chlin situ, Fig. 3a).

3.2. Ocean analysis data

The HYCOM+NCODA (HYbrid Coordinate Ocean Model+NRL
Coupled Ocean Data Assimilation) system is a data-assimilative
hybrid isopycnal-sigma-pressure (generalized) coordinate ocean
model system that uses satellite sea-surface height, in-situ salinity
and temperature data from numerous sources (e.g. the Argo buoy
program, PIRATA moorings) to provide reconstructions of the ocean
state such as MLD (Hurlburt et al., 2009). We extracted the daily 1/12
degree SST, SSS and MLD products from the HYCOM+NCODA global
hind cast analysis (from November 2003 to present) from the nearest
points within 0.05° of longitude and 0.1° of latitude, and averagedwith-
in that distance. The data were obtained from http://tds.hycom.org/
thredds/global_combined/glb_analysis_catalog.html?dataset=GLBa0.08/
glb_analysis. The HYCOM SST data are evaluated alongwith the satellite
SST product in Section 3.3.

The HYCOM MLD (MLDH) product was compared with mixed layer
depth estimates derived from temperature profiles from Expendable
Bathythermographs (XBT), deployed at 47 locations between 68°S
and 74°S. The MLD from XBT's (MLDXBT) was defined as the depth
where the temperature differed by 0.2 ° C from the surface temperature
(upper 5 m) according to Lorbacher et al. (2006). The MLDH was
shallower than the MLDXBT (Fig. 5) by about 7 m. The r2 from a linear
fit was 0.69 and rms was ±10 m.

3.3. Remotely sensed chl a and SST

We used the 8-Day Level 3 merged SeaWiFS/MODIS chl a product
created and distributed by the Ocean Biology Processing Group
(OBPG, http://oceancolor.gsfc.nasa.gov) using the satellite measure-
ments from Moderate Resolution Imaging Spectroradiometer, MODIS,
(OC3M algorithm), in orbit on the Aqua satellite, and the Sea-viewing
Wide Field-of-view Sensor (SeaWIFS, OC4V4 algorithm), in orbit on
the OrbView-2 platform. This product has increased coverage over the
single mission products, which is important for high-latitude regions.
For SST, we used the mapped 8-Day product from MODIS, which has a
resolution of 9 km.

The satellite data were collocated with the fCO2sw data (Fig. 3a)
obtained from the IB Oden expedition with the mean distance
separation of 4.0 km and the standard deviation of ±5.6 km.
Satellite-derived chl a estimates cannot be obtained in the presence
of cloudy skies and in completely sea-ice covered regions. Satellite
chl a data was not recovered between December 23 and December
25 in 2006, when the ship was in sea ice.

In general terms, the remotely sensed chl a concentrations (chlrmt,
μg L−1) showed lower values than the in-situ measurements (Figs. 3a
and 6a, c). For the whole study area, the mean residual between
chlrmt and chl in situ showed that chlrmt was lower by 0.19 μg L−1.
The r2 from a linear fit was 0.86, and the rms was ±1 μg L−1. Partic-
ularly large residuals (>1 μg L−1) were observed at the polar front
region, at the ice edge in the area (65 to 68°S, Fig. 6a), and in parts
of the RSP. It is clear from this exercise that the satellite chl a product
cannot resolve the localized areas of high chl a associated with fronts,
and the ice edge, at the spatial and temporal resolutions we were
compelled to use to minimize the cloud effects (8 days, 9 km compos-
ites). Similar to the chl a product, the SST from HYCOM (SSTH) and
remotely sensed (SSTrmt) deviated from the SST in situ (SSTin situ).
Both SST products had a negative residual median (−0.15 °C, −
0.16 °C), meaning that the SSTH and SSTrmt were warmer than ship-
board SST (Table 1). The linear fit between SSTin situ and SSTH resulted
in r2 of 0.96 and the rms of ±0.53 °C. Stronger correlation was found
between in-situ SST and SSTrmt, and r2 and the rms were 0.97 and ±
0.43 °C, respectively. As for chl a, the residuals between SST insitu and
SSTH and SSTrmt, were much larger in localized areas where rapid
changes occurs, such as fronts, at the ice edge, and in the RSP
(Fig. 6b and d). The largest bias in the SST products was found in
the RSP, where SSTH was up to 2 °C colder compared to the SSTin situ

(Fig. 6d). This bias would result in 12 μatm to 32 μatm lower
predicted fCO2sw, using the fCO2sw and temperature relationship of
0.0423 °C−1 (Takahashi et al., 1993). This suggests that the predictive
capacity of the parameters involved in the algorithms cannot resolve
the drastic changes that occur in these localized areas, and that the
satellite and model products need to be further developed and
optimized with higher resolution.

3.4. Satellite-derived primary productivity

Ocean primary productivity was investigated using a satellite
derived Vertically Generalized Production Model (VGPM), which
uses a function of chlorophyll a, SST, the daily photoperiod, Photosyn-
thetically Active Radiation (PAR), and euphotic zone depth. We used
the hybrid model that employs the basic model structure and param-
eterization of the standard “Eppley”-curve (Eppley-VGPM) according
to Behrenfeld and Falkowski (1997). The Eppley-VGPM differs from
the standard VGPM by replacing the polynomial description of
Pb_opt (physiological variability based on daily integrated production
measurements) with the exponential relationship described by Morel

http://tds.hycom.org/thredds/global_combined/glb_analysis_catalog.html?dataset=GLBa0.08/glb_analysis
http://tds.hycom.org/thredds/global_combined/glb_analysis_catalog.html?dataset=GLBa0.08/glb_analysis
http://tds.hycom.org/thredds/global_combined/glb_analysis_catalog.html?dataset=GLBa0.08/glb_analysis
http://oceancolor.gsfc.nasa.gov
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(1991). This relationship is based on the curvature of the temperature-
dependent growth function described by Eppley (1972). We derived
PPsat estimates using the Eppley-VGPM model (PPsatEpp) and satellite-
derived products as inputs from 8-Day, 9 km Standard Mapped Image
(SMI) SeaWiFS chl a, PAR, and K490 composites and MODIS SST.

4. Evaluation of fCO2sw algorithms

4.1. Single linear regression relationships

To develop algorithms describing the fCO2sw in the surface water,
we used proxies that represent the main drivers of fCO2sw variations:
Table 1
Summary of statistics of the comparison between SSTin situ and the remotely sensed SST
(SSTrmt) and HYCOM SST SSTH. The root mean error and the coefficient of determination
are denoted rms and r2, respectively. A negative mean denotes a warmer SST than the
SSTin situ measured onboard the IB Oden, and a positive a colder. The 25th percentile
value (also referred as the lower quartile) indicates the limit where 25% of the residuals
fall below the value in the table. Similarly, the 75th percentile (upper quartile) denotes
the value where 75% of the residuals fall below. N denotes the number of data points
used in the analysis.

HYCOM (°C) MODIS (°C)

25th percentile −0.52 −0.39
Median residual −0.11 −0.18
75th percentile 0.18 0.01
mean −0.15 −0.16
r2 0.96 0.97
rms 0.53 0.43
N 10284 10284
temperature, biological processes, and physical mixing. As previously
mentioned, the use of chl a and MLD as proxies for fCO2sw in the
high-latitude ocean have been investigated for the northern North
Atlantic, which showed great potential (Chierici et al., 2009; Olsen
et al., 2008). In the present paper, we explored algorithms to compute
fCO2sw in the high-latitude Pacific sector of the Southern Ocean,
using SST (in situ and remotely sensed), chl a (in situ and remotely
sensed), MLD (HYCOM model), and PPsatEpp. Single linear regressions
between fCO2sw and proxy parameters were used to identify suitable
predictors for fCO2sw. These are included in Multi-Parameter Linear
Regression relationships based on the Marquardt Levenberg routine
(Press et al., 1986), implemented in the STATISTICA software. The
range of the fCO2sw and the independent variables chl a, SST, MLD,
and PPsatEpp (NB: PPsatEpp is dependent of chl a) are summarized in
Table 2.

In order to obtain the fundamental understanding of the relation-
ship between fCO2sw and its potential predictors, single linear regres-
sion analyses were carried out according to the schematic equation:
fCO2sw=kx+m, where x denotes the potential predictor variable
and k is the slope and m is the intercept. The independent variables
(predictors) are SSTin situ, chl ain situ, PPsatEpp and MLD. For some of the
parameters, we also investigated the performance of the quadratic
(SSTin situ) and logarithm (chl a in situ andMLD) of the predictor variable
since such functional relationships have been identified elsewhere
(Chierici et al., 2009; Olsen et al., 2008). However, the logarithm func-
tion of SSTin situ can only be performed on SST >0 and was not applica-
ble in this study. The exponential function of SSTin situ showed less
predictable power than the quadratic function. The results from the
single regression analysis are summarized in Table 3. The performance



Table 2
The range of the fCO2sw and the independent variables SSTin situ, chl ain situ, MLDH, and
PPsat.

fCO2
sw

(μatm)
SSTin situ

(°C)
chl ain situ

(μg L−1)
MLDH

(m)
PPsatEpp¤
(mg C m−2 d−1)

Minimum value 165 −1.90 0.08 3 148
Maximum value 412 7.60 10.16 152 2368
Mean 355 0.52 0.87 16 310
Standard deviation ±32 ±2.50 ±1.64 ±16 ±285

¤ This study using Eppley-VGPM model based on calculation described in Section 3.4.
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of the fit was assessed statistically and evaluated from criteria recom-
mended by Allen et al. (2007), which has been used to evaluate the
quality on oceanic CO2 system data sets (Nondal et al., 2009). For the
assessment, we used: 1) the r2, which is the measure of the percentage
of the variability in the in-situ measurements that can be accounted for
by the fit (e.g. Allen et al. 2007), 2) the rms of the fit, and 3) the normal-
ized regression coefficients (β) as indicators for the predictive capacity
ofMLD, SST, chl a, and PPsatEpp to estimate fCO2sw. Theβ coefficients are
the regression coefficients when all variables are standardized to the
mean value of 0 and standard deviation of 1. All variables were stan-
dardized by subtracting the mean and dividing by the standard devia-
tion. Thus the β coefficients allowed for the direct comparison of the
relative contribution of each independent variable in the prediction of
the dependent variable (i.e. fCO2sw).

We found strong relationships (r2 of 0.79 and β of 0.9) between
fCO2sw and chl a in situ, as well as between fCO2sw and PPsatEpp

(Table 3). This suggests that biological processes explain large parts
of the fCO2sw variability in our study. Rangama et al. (2005) also
found a strong biological influence on the fCO2sw in a region further
north. The SST in situ showed weak r2 (b 0.01) although the β coeffi-
cient was moderate (0.09). Another evaluation method for predictive
power is to use the residuals (observed-predicted) in a set of step-
wise equations to analyze the individual contribution of each predic-
tor variable. For example, the residuals from the single regression
fCO2sw=354.5616+0.9821xSST in situ, showed a correlation (r) of
0.18 with quadratic SST in situ values (SST 2 in situ). The positive resid-
uals indicated that the predicted fCO2sw was lower than the observed
fCO2sw. Next, we studied the residuals when the quadratic function
of SSTin situ (SST2 in situ) was included in the algorithm
(fCO2sw=342.9543 -8.465×SST+2.4745×SST2 in situ). In this case the
residuals showed no bias with SST or SST2 in situ (r=1x10−7), meaning
that SST2 in situ adds predictive power to the fCO2sw fit, and the r2

improved from b0.01 to 0.13. The improvement by a second term was
also found in the regression between fCO2sw and chl a. The residuals
from this function showed a negative correlation (r=−0.26) meaning
that the predicted fCO2sw was too high relative to the in-situ fCO2sw.
By including ln chl a in the fit, the residuals showed insignificant bias
(r=1×10−8). Single regression between fCO2sw and PPsat showed
lower prediction capability than chl a and ln chl a, respectively. The resid-
ual analysis did not reveal a significant addition to the prediction of
fCO2sw (rb0.01, residuals versus PPsatEpp). This implied that VGPM did
not add additional information to the effect of biological processes on
the variability of fCO2sw, and were excluded in our further evaluation
Table 3
Single regression diagnostics for the type of equation: fCO2sw=kx+m, where x denotes
either of the variables: SSTin situ, chl a in situ, PPsatEpp, and MLD.

Variable (x) k m r2 β

SST in situ 1.064 394.9695 0.007 0.09
SST2 in situ 0.6998 350.9468 0.059 0.22
chl a in situ 18.5155 370.4756 0.792 0.90
ln chl a in situ 27.1275 332.0621 0.665 0.82
PPsatEpp 0.093 381.3324 0.673 0.87
MLD 0.0528 354.3733 0.007 0.03
ln MLD 2.1323 360.4107 0.003 0.04
of suitable fCO2swpredictors. In the case ofMLD, r2 forMLD and logarith-
mic MLD (ln MLD) showed low correlation in combination with the
lowest β coefficients (0.03 and 0.04, respectively). Furthermore, the
residuals based on each of the independent variables showed little corre-
lation when plotted against MLD and lnMLD. This may be due to the fact
that HYCOM MLD was not representative of our study area (r2=0.69),
and also because MLD possessed little impact on the fCO2sw during our
study period. Barbero et al. (2011), found that the deepestMLD coincided
with highest fCO2sw (i.e. total inorganic carbon, CT) in late winter in the
sub-Antarctic zone (SAZ) of the Pacific Ocean (between 40°S and 55°S).
Similar to our study, the correlation was weak during summer and vari-
able CT values were associated with shallow MLD. Moreover, our study
was performed in the area south of the SAZ, where the influence of sum-
mer ice-meltwater likely leads to further stabilization of the surface layer
resulting in shallow MLD.

4.2. Multi-Parameter Linear Regression relationships

According to the analysis in Section 3.3, it was evident that SST
from HYCOM showed the largest bias to in situ SST and had the
potential to introduce large errors to the predicted fCO2sw. The single
linear regression analysis (Section 4.1) showed that both MLD and
PPsat showed small contributions to the prediction of fCO2sw. This
concludes that we considered the in-situ and remotely sensed SST
and chl a data as variables in further analysis. Three sets of combina-
tions were evaluated; 1) the full-field data set (SST in situ and chl ain
situ, N=9735) and, 2) field measurements collocated with remotely
sensed data. The data set in Eq. (2) were about 700 data-points smal-
ler than the field-data set, since more than 700 data points were
excluded when remotely sensed products were not available due to
cloud or ice cover (SST in situ and chl ain situ). In Eq. (3) we used the
remotely-sensed chl a and SST products (chl rmt and SSTrmt). An addi-
tional evaluation criteria are used in this section; the Cost function
(CF, Holt et al., 2005) given as

CF ¼ 1
nσ2

XN

n¼1

E−Fð Þ2

Where E are the calculated values based on thefit, F isfieldmeasure-
ments, σ is the standard deviation of the field measurements, N is the
number ofmeasurements. The CF enables the comparison of the accura-
cy of the estimated variables, and lower values indicate better perfor-
mance than higher values. The best fits from the three combinations
are presented in Eqs. (1) to (3), togetherwith the coefficient of determi-
nation (r2), root mean square error (rms), the Cost Function (CF), and
the total number of data points (N):

fCO2sw ¼ 355:3001 �0:3156ð Þ–3:1895 �0:1282ð Þ
�SSTinsituþ0:8959 �0:0303ð Þ
� SSTinsitu
� �2−13:7579 �0:1364ð Þ � chlinsitu–8:1605 �0:2264ð Þ

�lnchlinsitur2 ¼ 0:837; rms ¼ �13:2μatm;CF ¼ 0:16;N ¼ 9735
ð1Þ

fCO2sw ¼ 355:5750 �0:3370ð Þ–3:1088 �0:1322ð Þ
� SSTinsituþ0:8687 �0:0310ð Þ � SSTinsitu

� �2

−13:5593 �0:1522ð Þ � chlinsitu–8:1740 �0:2420ð Þ � lnchlinsitu

r2 ¼ 0:818; rms ¼ �13:6μatm;CF ¼ 0:18;N ¼ 8970 ð2Þ
fCO2sw ¼ 353:6715 �0:3264ð Þ–2:5417 �0:1509ð Þ

�SSTrmt
þ0:7291 �0:0337ð Þ � SSTrmt

� �2−11:5646 �0:1361ð Þ
�chlrmt–10:0477 �0:2418ð Þ � lnchlrmt

r2 ¼ 0:815; rms ¼ �14:1μatm;CF ¼ 0:19;N ¼ 8970

ð3Þ
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Little difference was seen in the statistical analysis between the
three equations. The full in-situ data set (Eq. 1) resulted in a slightly
lower CF, better fit based on r2 of 0.84 and rms of ±13 μatm com-
pared to Eqs. (2) and (3). The strong chl a contribution was similar
in all three equations, and r2 greatly improved from 0.13 (using
only SST and SST2) to r2 of 0.82, using SST, SST2 and chl a. Moreover,
the rms decreased from ±29 μatm to ±14 μatm using SST, SST2 and
chl a.

We used the variance inflation factors (VIF=1/(1-r2i) for co-
linearity diagnostics to check for unwanted cross-correlation between
chl a (µg L-1) 

SST (oC) 

fCO2sw (µatm) 

a  

b 

c 

October to December 

Fig. 8. Mean values from October to December 2006 in a 1°×1° grid for the circumpolar h
remotely sensed chl a (μg L−1); b) SSTrmt (°C), and c) the computed fCO2sw (μatm) from
Antarctic Polar Front (APF) based on the SSTrmt.
the independent variables. VIF >5 indicates the presence of cross-
correlation between independent parameters (Belsley et al., 1980).
Our approach resulted in VIF for SST, SST2, chl a, and ln chl a of 4.8,
5.0, 2.6, 2.8, respectively, indicating that our variables did not cross-
correlate significantly.

4.3. Comparison between measured and predicted fCO2sw

The predictive power was further examined using the residuals
between the fCO2sw measured in the field and the calculated
fCO2sw from all three equations. In Fig. 7, the residuals from in-situ
and calculated fCO2sw based on Eq. (3) are shown. Similar patterns
were seen in Eqs. (1) and (2) (not shown). Positive residuals indicate
that the predicted fCO2sw values were too low relative to the mea-
sured. The residuals were similar in all three algorithms, which indi-
cated that both field and remotely sensed products have limitations,
and did not give a realistic representation of the summer situation.
The largest residuals (approximately ±50 μatm, Fig. 7) were found
in the RSP (73°S to 77°S) and at the ice edge (68°S). Given that chl
a showed significant influence on the predicted fCO2sw, we would
expect the largest residuals in areas with large chl a bias between
the measured and the remotely sensed product. This was the case at
the ice edge (Fig. 6a) and in the RSP between 75°S and south of
76.5°S (Fig. 6c).

4.4. Creation of fCO2sw maps from the algorithm based on remotely
sensed data

We created October to December mean values of chlrmt and SSTrmt

in grids of 1°×1° by merging the 8-day MODIS-SeaWiFS 9 km chl a
SST  

chl a  

fCO2sw 

igh latitude sector of the Southern Ocean (179.5°E to 179.5°W, and 55°S to 80°S of: a)
Eq. (3) in this study. The white dashed line indicates the approximate location of the
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and MODIS Aqua SST data for 2006. We computed the 1°×1° averages
from 179.5°E to 179.5°W and between latitude 54.5°S and 80.5°S. The
October to December mean values of chlrmt (Fig. 8a) and SSTrmt

(Fig. 8b) in each grid were used to calculate the mean fCO2sw for Octo-
ber to December 2006 based on Eq (3) (Fig. 8c). Large areas were near
the atmospheric CO2 (fCO2air) level of 376 μatm (GLOBALVIEW-CO2).
In the warm POOZ region, between 55°S and 60°S and 160°E and
80°W, the fCO2sw was slightly supersaturated relative to the atmo-
spheric level (Fig. 8c). In this region, the mean chl a levels were low
and SST relatively high, indicating that SST may be the major control
on fCO2sw. In a large area, south of the polar front, fCO2swwas between
340 and 360 μatm and undersaturated by 10 μatm to 20 μatm relative to
the fCO2air level suggesting that this area was a summertime atmo-
spheric CO2 sink. The lowest fCO2sw values of approximately
100 μatm to 200 μatm below fCO2air were found in the RSP, and along
theWest Antarctic Peninsula (WAP). These areas showedhigh chl a, im-
plying that biological processes play a major role in explaining the
fCO2sw change in these areas, which agrees with the study of
Rangama et al. (2005).
Fig. 9. The fCO2sw values in four periods based on: a) calculated fCO2sw (μatm) based on Eq
in the climatology data (Takahashi et al., 2009) corrected to the reference year 2006 (Tref20
cember (bottom panel).
4.5. Validation of the fCO2sw algorithm with fCO2sw climatology on a
seasonal time scale

The limitations of the spatial and seasonal robustness of the algo-
rithm were investigated by comparing the calculated fCO2sw values
with the fCO2sw climatology data set (Takahashi et al., 2009). This en-
abled a check of the applicability of the algorithm to other regions and
at other times, or whether it was strictly valid to the area where data
originated. We created mean values for chlrmt and SSTrmt for four pe-
riods, and binned at a 1°×1°, and calculated fCO2sw values from the
algorithm (Eq. 3). The climatology data was corrected to the reference
year 2006 using the atmospheric fCO2air growth function estimated
to 1.588 μatm year−1 based on the GLOBALVIEW CO2 from Halley
Station, Antarctica (75.58°S, 26.5°W, GLOBALVIEW-CO2, 2009). This
data set is hereafter denoted Tref2006 data. The four periods were di-
vided into the following months: 1) January-March, 2) April to June,
3) July to September, and 4) October to December. The seasonal
map based on the calculated fCO2sw is shown in Fig. 9a, and the sea-
sonal fCO2sw from Tref2006 are shown in Fig. 9b. The white areas in
. (3) and seasonal mean values of chlrmt and SSTrmt, and b) the fCO2sw (μatm) included
06). From top: January to March; April to June, July to September, and October to De-
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Fig. 9 are locations with sea-ice cover or no data. The Pacific sector
north of 60°S (170°E to 100°W), was supersaturated in fCO2sw rela-
tive to the atmospheric CO2 level of 390 ppm throughout the year,
particularly evident in January to March (Fig. 9a). This area in the
POOZ had the warmest SST and lowest chl a (Fig. 8, for Oct–Dec).
This implies that SST was the main driver on the seasonal fCO2sw
and that biological processes play a minor role in this part of the
Pacific sector. In the southern Pacific sector and in the Indian Ocean
sector, the fCO2sw was generally close to or undersaturated relative
to the atmospheric CO2 level for the whole year. In the southern
Western Antarctic Peninsula (WAP), the Amundsen Sea, the Ross
Sea, and the Prydz Bay (~80°E), the fCO2sw decreased at the onset
of sea-ice retreat in October to December (Fig. 9a). In January to
March, fCO2sw was at a minimum in these regions, which may be
due to biological CO2 uptake during biological primary production
as a consequence of the opening of coastal polynyas. In these areas,
the climatology showed similar seasonal cycle, but with lower
fCO2sw values in January to March than the calculated fCO2sw data.
This implies that the algorithm captured the seasonal fCO2sw trend
relatively well in these areas.

The high calculated fCO2sw in the Pacific sector of the POOZ in
January to March (170°E to 100°W, Fig. 9a, top panel) were not
detected in the climatology data (Fig. 9b, top panel). One possible
explanation is that the SSTrmt data used in the algorithm was unreal-
istically high, which resulted in biased fCO2sw values. The Tref2006
data showed the lowest fCO2sw values in January to March, which
agrees with the timing of maximum phytoplankton production
(Arrigo et al., 1998). The high climatological fCO2sw values close to
the WAP (Fig. 9b) in the fall were likely due to physical mixing of
CO2-rich subsurface water, which was not found in the calculated
fCO2sw.

5. Summary

We predicted the fCO2sw to a standard error within 14 μatm for
December 2006 in the high-latitude Pacific sector of the Southern
Ocean. The full in-situ data set resulted in a slightly improved fit
(r2=0.84 and rms=±13 μatm) relative to the algorithm derived
from remotely-sensed data. This may be due to the better representa-
tion of areas with large bias between in-situ and satellite products
such as at the ice edge. However, the relatively small difference
between the r2 and rms of the three algorithms are probably because
our data set was limited to December and did not capture the full
CO2-system dynamics. It is likely that physical processes such as
changes in the mixed layer depth have had larger influence on the
surface fCO2sw during spring and fall than that from biological pro-
cesses. The largest bias between in-situ SST and chl a data was
observed in areas with large variability such as at the ice edge, in
the Polar Front region, and in the Ross Sea Polynya. Clearly, the satel-
lite chl a product could not resolve the localized areas of high chl a
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values, associated with fronts and the sea-ice edge at the spatial and
temporal resolutions that are available in this area. This implies the
need for both technical developments for increased sensitivity and
refinement of the algorithms used to be able to improve estimates
and understanding of the biogeochemical processes behind the vari-
ability of CO2 in the surface water. Efforts should concern the devel-
opment and optimization of remote-sensing capabilities both on the
regional and global scale. We believe that the use of field measure-
ments with seasonal coverage together with remotely sensed prod-
ucts and ocean data model products to create fCO2sw algorithms
greatly improve the oceanic CO2 uptake estimates for the relatively
unexplored Southern Ocean.
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