Trans effects in the Heck reaction – A model study

Carina Bäcktorp and Per-Ola Norrby*

Department of Chemistry, University of Gothenburg, SE-412 96 Göteborg, Sweden

Email: pon@chem.gu.se

Abstract

The selectivity-determining step in Heck arylation of styrene, the migratory insertion, has been modeled by DFT. In particular, the regioselectivity has been studied as a function of the trans effect of several sets of small model ligands with different σ-donor and π-accepting abilities. It has been shown, both by analyzing the geometries and comparing the activation energies, that the TS for branched product formation is more sensitive than the TS leading to linear product, although most ligand combinations give a preference for the linear product. The branched TS is strongly destabilized by any strong ligand in a position trans to the alkene in the pre-insertion intermediate. For the ligand trans to the migrating group, a strong trans effect accelerates the reaction, more for the branched than for the linear product formation. On electronic grounds, the regio-selectivity and rate can be adjusted by considering not only the trans effect of a ligand, but also by controlling the position they will have in the migratory insertion step. Very importantly, the trans effect change in the selectivity-determining TS will be expected to give rise to Halpern-type selectivity, with the consequence that product distributions cannot be reliably predicted from observable intermediates.

Introduction

Palladium-catalyzed arylation and vinylation of alkenes has been used for more than 30 years in organic synthesis. This methodology is known as the Mizoroki-Heck reaction,\(^1\) or sometimes just the Heck reaction, and since its discovery, it has become one of the most important tools for complex building in organic chemistry.\(^2,3\) It allows formation of new carbon-carbon bonds under relatively mild conditions, and with a high functional group tolerance. Furthermore, it is formally a C–H activation, and as such, more atom economical than most other Pd-catalyzed coupling reactions. However, like many other C–H activations,\(^4\) the selectivity can be a problem in the Heck reaction. Depending on the substrate, selectivity issues can include regiochemistry of the newly formed C–C bond, position and stereochemistry of the product alkene, and possibly also stereochemistry of newly formed asymmetric centers.

The scope and mechanism of the Heck reaction has been thoroughly studied.\(^5\) The basic steps are schematically exemplified in Scheme 1. In particular the investigations by Cabri in the 90's have outlined empirical rules for selecting appropriate reaction conditions with various substrate combinations.\(^2\) The experimental observations have also been augmented by detailed computational studies that help aid the understanding of the reaction at an atomic level.\(^6,7,8,9\)

![Scheme 1 A schematic representation of Heck arylation of styrene.](image)

The Heck reaction can broadly be divided into two classes. When the reaction is run with monodentate ligands (e.g., PR\(_3\)) in the presence of coordinating anions like halides, the alkene substrate will substitute a neutral ligand, leading to an overall neutral intermediate and subsequent transition state for the selectivity-determining carbopalladation step. In this mode, the so-called neutral Heck, the insertions tend to favor linear products.\(^2\) On the other hand, the Heck reaction can be run in cationic mode by using bidentate neutral ligands (usually bis-phosphines), and excluding coordinating anions by using, for example, triflates as leaving groups. In this case, the pre-insertion square planar complex and the insertion TS will be cationic, with two neutral ligands, the alkene, and an aryl group coordinating to Pd\(^2\). When the substrates are very electron rich alkenes, like vinyl ethers, the cationic Heck reaction frequently yields good selectivity for branched products.\(^2\) However, the inherent regioselectivity is not very strong, and the final product distribution is easily
influenced by other factors, like solvent, steric repulsion, substrate electron density, subtle changes in ligand structure, ligand bite angle, or intramolecular geometry constrains.

We have recently undertaken computational and experimental studies of the reaction mechanism of the Heck reaction, aimed at increasing our understanding of the factors influencing product selectivity, and thereby facilitating the choice of reaction conditions for any substrate. In particular, it has been shown that DFT calculations can explain the observed product distribution from competing β-hydride elimination and elimination-readdition pathways, and also that the stereoselectivity in asymmetric Heck can be rationalized at the same level of theory. As the next step in our continuing investigations, we here return to the fundamental level of ligand electronic influence on the carbopalladation, the selectivity-determining step in many applications of the Heck reaction. In order to aid future reaction design, we want to separate the effects influencing the selectivity, and here we have chosen to neglect steric factors in order to clarify the purely electronic effects. We have therefore selected to study only small ligand models, where the steric repulsions have been eliminated. When the underlying electronic effects are clarified, suitable experimental systems can then be designed by also considering steric factors.

The electronic properties of a ligand are mainly manifested as trans influences or trans effects in metal complexes. In square planar or octahedral complexes, the trans influence (sometimes called the steric trans effect) is understood as the elongation of a particular coordination bond caused by the ligand in a trans position, whereas the trans effect (or the kinetic trans effect) is a weakening of the same coordination, manifested as a lower barrier to substitution. In here, we will use the term “trans effect” also for structural effects in transition states. In structurally similar situations, longer bonds are usually weaker, and therefore the trans influence and effect are closely correlated, but not identical. However, both can be most easily understood in terms of the 3-center-4-electron bond (ω-bond). Two ligands in a trans relationship σ-donate to the same metal-centered ds-hybrid orbital (similar in shape to the familiar dz^2 orbital, Figure 1), and any increase in bonding to one ligand must therefore be accompanied by a bonding decrease with the trans ligand. Thus, strong trans effects result from very basic lone pairs, like in alkyl groups which need a strong overlap with the central metal to stabilize the localized carbanion, or from lone pairs in orbitals of optimum size for maximizing the overlap with the metal, like phosphines. Attenuating factors include the ability of the ligand to accept π-backbonding, like in CO and to a lesser extent in phosphines, where the backdonation allows a stronger σ-donation without causing charge separation. Two strongly π-accepting ligands in a trans relationship will of course also compete for the same filled orbital on the metal, but this factor is probably less important than the σ-donation, and it is not obvious that only ligands in trans positions will compete.
The trans effect is usually seen as a property of an isolated ligand, but in reality it is a pair function; a strongly trans influencing ligand will reduce the influence of a second ligand trans to itself, and vice versa.\cite{15} In terms of stability, when two strong ligands are trans to each other, the complex will be destabilized, and thus be disfavored in equilibria with geometries where only weak ligands are trans to strong ones. However, it should be realized that in Curtin-Hammett situations,\cite{18} where all complexes are in rapid equilibrium compared to the rate of subsequent reactions, the destabilized complexes could still be important, since they also have a much higher reactivity. In fact, it was recently shown in the asymmetric Heck reaction that most of the observed product arose from the unstable and unobservable isomer intermediate.\cite{8} This is an example of Halpern selectivity,\cite{19} that is, that the major product arises from a preceding minor intermediate.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{Two ligand lone pairs competing for the same orbital on Pd, an ω-bond.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2.png}
\caption{Trans effect changes in the carbopalladation step.}
\end{figure}

The Halpern selectivity in the asymmetric Heck reaction can be understood in terms of how the trans effect changes during the course of the reaction. Figure 2 illustrates this change in a selectivity-determining step of the Heck reaction, the carbopalladation (or migratory insertion). It is easily seen that a strong ligand in any position must destabilize either the reactant or the product. Since the transition state is somewhere between these two states, it is not self-evident what the total effect on the barrier will be. In the previously studied case,\cite{8} it turned out that, from the aspect of trans effects, the TS was more product-like, despite the strong exothermicity of the step. This is an indication that the TS is asynchronous, with the different bonds formed to unequal degree at the TS. From Figure 2, it is obvious that for any case where the TS is product-like, the reaction will show Halpern selectivity, that is, the destabilized and less populated isomer of the intermediate will give rise to most of the observed product. However, it is by no means certain that the earlier result can be generalized to other types of systems. We have therefore embarked upon a study of how the regioselectivity of both the cationic and neutral versions of the Heck reaction
will be expected to vary with ligands of different trans-inducing power. As a model system, we have chosen to work with an experimentally well-studied reaction, phenylation of styrene. The system is interesting because the trans influences in the two carbopalladated intermediates leading to the regioisomeric products will be quite different (Figure 3). In the intermediate leading to the linear product, the alkyl group is stabilized by conjugation with the styrene phenyl, giving a moderate trans influence, whereas in the intermediate leading to the branched product, the unstabilized alkyl group is a very strong σ-donor. Thus, we can expect sensitivity to the nature of the ligand. In any experimental system, the analysis will be complicated by the fact that we cannot a priori know which ligand is preferred in which position in the TS, but in a computational study, all preferences can be easily separated. In line with the earlier study,8 we will assume Curtin-Hammett conditions. In computational terms, this means that no intermediates have to be calculated since all selectivities are obtained directly from the TS energies.

![Figure 3](image-url) Alkyl trans influence in carbopalladation products from styrene.

Methods

Presentation of Model Systems

The purpose of the present study is to elucidate how the trans effect of the ligand affects the regio-selectivity in the Heck reaction. Therefore, we want to exclude other factors that influence the regio-selectivity as much as possible. It is obvious that steric effects will have an important influence on the regio-selectivity. Therefore, we have chosen as small ligands as possible – still with significant differences in trans effects – to exclude the steric effects as a factor of regio-selectivity. Also, the ligands should have similar sizes so that the interchange of two ligands will not affect the palladium complex from a structural point of view. We also desire a system that has a limited number of possible conformations, in order to minimize the necessary conformational scanning.

As our model system, we have chosen a well-studied reaction, phenylation of styrene, Scheme 1. The investigation includes both the cationic and neutral Heck reaction, and we concentrate on small systems that can be seen as models of bidentate ligands. For the cationic system, we have selected a series of three different ligands with different trans-influencing capacities: phosphine (PH$_3$), carbon monoxide (CO) and ammine (NH$_3$). PH$_3$ is a relatively strong σ donor and a modest π acceptor, that is, a relatively strong trans influencing ligand. CO is a strongly π-accepting ligand but a modest σ donor; generally, it shows strong trans effects. NH$_3$ is the weakest ligand, with relatively poor σ-donating and negligible π-accepting ability.15 The square
planar pre-insertion intermediate for all cationic systems are depicted in Figure 4. Experimentally, the most frequently used ligands are phosphines. Structure 1 is used as a model for bidentate phosphines as well as for an excess of monodentate phosphines in the absence of coordinating anions. Structure 2 simulates replacing one of the phosphines with a neutral carbenoid, like the popular N-heterocyclic carbene ligands, whereas 3 represents the frequently employed PN-ligands.

![Chemical Structures](image)

Figure 4 Cationic pre-insertion intermediates.

In the neutral Heck reaction, one neutral and one formally anionic ligand coordinates to Pd in the insertion step. We have herein investigated the case of cyanide (CN) and alkyl (CH₃) as the negatively charged ligand. These anionic ligands where combined with the same series of ligands as in the cationic Heck reaction (CO, PH₃ and NH₃). The cyanide can be seen as an anionic analogue of CO, exhibiting a somewhat stronger σ-donating but slightly weaker π-accepting capacity (4-6). In contrast, CH₃ is a very strong σ-donor, with no π-accepting ability (7-9). In particular, the combination of CH₃ with PH₃ (8) can be seen as a model of cyclometallated phosphine ligands. [21]
Figure 5 Neutral pre-insertion intermediates.

Computational Method

All calculations herein were performed with Jaguar22 using the hybrid functional B3LYP23 in combination with the LACVP* basis set.24 All optimized geometries were characterized and saddle points were verified by frequency calculation. Harmonic vibrational frequencies have been used to calculate the thermodynamic contributions to the enthalpies and free energies.

Results and Discussion

The migratory insertion step in the cationic and neutral Heck reactions has been investigated for 17 different model systems (Figure 4 and Figure 5). The bond lengths and the full geometries can be found in Supporting Information. Starting with system 1 (Figure 4), the symmetrically substituted intermediate where both ligands are PH\textsubscript{3}, the transition states leading to branched and linear products are shown in Figure 6.
It can be seen from the Table 1 that the two transition states are very similar in energy. This agrees well with the observation that phenylation of styrene is relatively unselective when sterically unencumbered phosphines (e.g., dppp) are employed. When analyzing the geometries in Figure 6, we notice that the length of the developing Pd–C bond differ substantially. In the branched case, the new bond is forming to the β-carbon, where a free negative charge would be very unstable, and as a result the interaction with Pd is strong. In the linear TS, the forming negative charge on the α-carbon can be stabilized by conjugation, and therefore the interaction with Pd is weaker and the forming bond is longer by 0.115 Å.

We also see that the Pd–P bond trans to the forming Pd–C bond is longer in the branched TS (by 0.032 Å), in good agreement with the qualitative picture in Figure 3. On the other hand, the breaking bond between Pd and the phenyl group is very similar in the two cases, only longer by 0.006 Å in the branched form. Despite this, the Pd–P bonds trans to the phenyl differ by 0.026 Å, indicating that more of the negative charge has been transferred to the alkene in the branched TS. Qualitatively, the differences between branched and linear TS seen in Figure 6 can be found in all transition states analyzed here, for both the cationic and neutral pathways; only a few examples will be shown (vide infra), but all structures are available as supporting information.
Table 1 Differential activation energies (kJ mol\(^{-1}\)) for cationic systems, relative to the lowest energy TS for each ligand combination (1, 2, or 3).

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>Variable ligand</th>
<th>(\Delta E)</th>
<th>(\Delta G)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Linear</td>
<td>Branched</td>
<td>Linear</td>
</tr>
<tr>
<td>1</td>
<td>PH(_3)</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2a</td>
<td>CO</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>2b</td>
<td>CO</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3a</td>
<td>NH(_3)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3b</td>
<td>NH(_3)</td>
<td>1</td>
<td>13</td>
</tr>
</tbody>
</table>

Exchanging one phosphine for CO (intermediate 2), we can see that the two products still can be formed via low energy pathways, but interestingly enough, for the linear TS, the geometry with CO trans to the phenyl (2b) is strongly preferred. In the branched TS, there is little free energy difference between the two coordination geometries. Viewed from a synthetic perspective, if geometry 2b could be selectively disfavored by sterically demanding substituents, it should be possible to achieve a strong preference (>10:1) for the branched product. However, in a Curtin-Hammett situation without steric demands, the results with a CO-type ligand should closely mirror those obtained with only phosphines.

In the PN-model, 3, we can see an inherent preference for transition states with the strong phosphine ligand trans to the phenyl group. This result, already seen in a study of the asymmetric Heck reaction,[8] shows that from an electronic viewpoint, the TS can be characterized as “late”, despite the strong exergonicity. Obviously, enough electron density has been transferred from the phenyl group so that the forming Pd–C bond dominates the trans effect, and thus prefers the ammine in a trans position. Interestingly enough, the PN-system shows a preference for linear products. Synthetically, this effect could be maximized by favoring geometry 3b, which shows a large linear preference of 8 kJ mol\(^{-1}\).

The neutral Heck reaction has been modeled with two simple anionic ligands, cyanide and methyl. Transition states for an example model system, 5a, are shown in Figure 7. Overall, it can be seen that the geometries are very similar to those of the cationic system in Figure 6, but the transition states are “later”; the forming C–C and Pd–C bonds are shorter, and the breaking Pd–C bond is longer for both structures in Figure 7 compared to their counterparts in Figure 6.
The relative energies for the migratory insertion transition states for all cyanide-containing systems are shown in Table 2. The most obvious trend is that the strong cyanide ligand prefers a position trans to the migrating phenyl group. Again, this is not what would have been expected from the pre-insertion intermediate, where a trans position of the two strong ligands phenyl and cyanide should be disfavored, but it agrees well with the effect seen in the cationic case (vide supra), especially for the PN-system 3.[8] It is also clear from Table 2 that the preference for the weak ligand trans to the forming Pd–C bond is much stronger for the branched TS. In the linear TS, the developing negative charge on the β-carbon is stabilized by the aromatic substituent, somewhat mitigating the effect. Another way to view the same effect is that the branched TS is “later” than the linear TS, and thus has a more marked preference for the strong ligand trans to the phenyl, which has lost much of its trans effect thanks to charge transfer to the alkene.

It can also be seen that the observed linear preference for the neutral Heck reaction[2] is reproduced by the calculations, at least for the two cases where the neutral ligands are substantially weaker than the cyanide, 5 and 6. We note that system 5 is the one most closely reminiscent of the “classical” neutral Heck system, a monodentate phosphine together with an anionic ligand. We also see that the linear preference will be much stronger in cases where path b can be favored. This could happen in specific cases due to steric interactions, but also for any reaction that does not obey Curtin-Hammett kinetics. The latter would occur in experiments where the oxidative addition is rate limiting and shows a preference for the most stable intermediate (e.g., 5b), and where no cis/trans-isomerization path is open to the intermediate.
Table 2 Differential activation energies (kJ mol\(^{-1}\)) for neutral systems with one cyanide ligand, relative to the lowest energy TS for each ligand combination (4, 5, or 6).

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>Neutral ligand</th>
<th>ΔE Linear</th>
<th>ΔE Branched</th>
<th>ΔG Linear</th>
<th>ΔG Branched</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a CO</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4b CO</td>
<td>13</td>
<td>21</td>
<td>13</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>5a PH(_3)</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5b PH(_3)</td>
<td>13</td>
<td>27</td>
<td>14</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>6a NH(_3)</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6b NH(_3)</td>
<td>17</td>
<td>40</td>
<td>20</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

For the systems with a very strong methyl ligand (7-9), we have chosen to illustrate the disfavored path b, where the methyl group is trans to the developing Pd–C bond (Figure 8). We can see a few important differences from the favored path a in Figure 7. First of all, the developing Pd–C bond is much longer than in any of the previously depicted transition states. This is not due to an “earlier” TS, but rather to the very strong trans effect of the methyl group. In fact, the length of the developing C–C bond indicates that the TS is “later”, as would be expected according to the Bell-Evans-Polanyi relationship when the product is destabilized.\(^{[25]}\) This is verified also by the breaking Pd–C bond, which is substantially longer in 8b compared to either 1 (Figure 6) or 5a (Figure 7), despite having only a phosphine in the trans position.

Figure 8 Electronically disfavored branched and linear TS from neutral 8b. Hydrogens are hidden for clarity.

The relative migratory insertion barriers for all systems with a methyl ligand (7, 8, and 9) are shown in Table 3. Compared to the values obtained for the cyanide ligand (Table 2), we can see that the trends correlate, but the linear preference is substantially larger, even for the favored path a. In fact, the linear preference obtained for 8a (ca 20:1) is close to the experimental preference seen with a phosphapalladacyle ligand,\(^{[21]}\) the closest experimental analog to 8a.
Table 3 Differential activation energies (kJ mol\(^{-1}\)) for neutral systems with one methyl ligand, relative to the lowest energy TS for each ligand combination (7, 8, or 9).

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>Neutral ligand</th>
<th>(\Delta E)</th>
<th>(\Delta G)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Linear</td>
<td>Branched</td>
</tr>
<tr>
<td>7a</td>
<td>CO</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>7b</td>
<td>CO</td>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>8a</td>
<td>PH(_3)</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>8b</td>
<td>PH(_3)</td>
<td>11</td>
<td>35</td>
</tr>
<tr>
<td>9a</td>
<td>NH(_3)</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>9b</td>
<td>NH(_3)</td>
<td>19</td>
<td>59</td>
</tr>
</tbody>
</table>

Like in the cyanide case, the linear preference would become huge if the experimental system could be constrained to follow path b. How to do this is not easily envisioned, since the preference for path a is strong, but bidentate ligands like the aforementioned palladacycle, decorated with selective steric bulk could offer a possible way to accomplish this.
Summary and Conclusions

DFT has been utilized to investigate the influence of the trans effect of ligands for the migratory insertion selectivity in the cationic and neutral Heck reaction. Small model systems have been utilized to exclude interference of any other factors that may affect the insertion selectivity. The geometries and activation energies of the transition state for the branched and linear forms have been investigated and compared. The following general trends have been observed in the systems investigated here.

i) Due to the product-like electronic nature of the migratory insertion TS, the favored TS will frequently arise from the least favored intermediate, leading to Halpern-type selectivity.[19,3] Thus, the selectivity can \textit{not} be reliably predicted from observable intermediates.

ii) The TS is very sensitive to the trans effect of the ligand in a position trans to the migrating aryl moiety. A strong ligand in this position will accelerate the reaction, more so for the branched TS, but rarely to a point where the branched product is favored.

iii) The forming Pd–C bond is generally shorter in the branched than in the linear TS, implying a stronger interaction. This is a result of the lower basicity of the α-carbon due to stabilization of the forming negative charge by the neighboring aryl group.

iv) A related observation is that the bond length of palladium and the ligand trans to the forming Pd–C bond is more elongated in the branched form compared to the linear form. This is true no matter if the ligand has a strong or weak trans effect. This can be traced to the more σ donating nature of the β-carbon atom in the branched form. In the linear form the negative charge can be distributed into the π system turning the α-carbon into a weaker σ donor. We conclude that the branched product formation would benefit from a less competitive ligand opposite to the alkene in the pre-insertion intermediate. The effect is clearly seen in the bond lengths, and we also observe a minor difference in activation energy in the cationic system going from a weak, to a moderate σ donating group.

v) The Pd-L bond trans to the migrating phenyl group is always shorter in branched than in linear transition states, implying that the trans effect of the phenyl group has decreased more in the branched TS, and that this therefore is “later” than the linear TS. Similarly, the breaking Pd–C bond to the phenyl group is always slightly longer in the branched TS, for the same reason, but this effect is much smaller.

Acknowledgement

The current project is supported by the Swedish Research Council. The computations were performed on C3SE computing resources in Gothenburg. We are grateful to AstraZeneca for generous support, including funding the position for CB.
References

Selectivity and trans effects

The selectivity determining step of the Heck reaction has been studied by DFT for a range of model ligands. The trans effect of the ligands is found to have a profound and sometimes non-intuitive influence on the reaction selectivity. In particular, the change in trans effect during the reaction leads to a strong Halpern effect.

Keywords

Heck couplings
Density functional calculations
Homogenous catalysis
Palladium
Reaction mechanisms
Supporting information

Calculated potential and free energies and lowest frequency for all transition states

<table>
<thead>
<tr>
<th>Ligand combination, file names</th>
<th>E (au)</th>
<th>G (au)</th>
<th>Freq (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN_NH3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANS_CN_NH3_Trans_to_the_Phenyl_TS igen ochfreq.out</td>
<td>-817.4264116</td>
<td>-817.201314</td>
<td>-337</td>
</tr>
<tr>
<td>GEM_CN_NH3_Trans_to_the_Phenyl_TS_2 TS_SP.out</td>
<td>-817.4176061</td>
<td>-817.193804</td>
<td>-347</td>
</tr>
<tr>
<td>TRANS_CN_NH3_TS_SP.out</td>
<td>-817.4329997</td>
<td>-817.209002</td>
<td>-288</td>
</tr>
<tr>
<td>GEM_CN_NH3_TS_SP.out</td>
<td>-817.431591</td>
<td>-817.207596</td>
<td>-286</td>
</tr>
<tr>
<td>CN_PH3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANS_CN_trans_to_pheNyl_TS_SP.out</td>
<td>-1104.011761</td>
<td>-1103.799793</td>
<td>-316</td>
</tr>
<tr>
<td>GEM_CN_trans_to_pheNyl_TS_SP.out</td>
<td>-1104.093614</td>
<td>-1103.791814</td>
<td>-307</td>
</tr>
<tr>
<td>TRANS_CN_TS_SP.out</td>
<td>-1104.00674</td>
<td>-1103.794331</td>
<td>-328</td>
</tr>
<tr>
<td>GEM_CN_TS_SP.out</td>
<td>-1104.001591</td>
<td>-1103.789655</td>
<td>-331</td>
</tr>
<tr>
<td>CN_CO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANS_CO_transOlefin_CN_transPhenyl_TS_SP.out</td>
<td>-874.1828011</td>
<td>-873.990009</td>
<td>-311</td>
</tr>
<tr>
<td>GEM_CN_CO_transOlefin_TS_SP.out</td>
<td>-874.1819924</td>
<td>-873.989858</td>
<td>-292</td>
</tr>
<tr>
<td>TRANS_CO_transPhenyl_CN_transOlefin_TS_SP.out</td>
<td>-874.1777537</td>
<td>-873.985237</td>
<td>-329</td>
</tr>
<tr>
<td>GEM_CO_transPhenyl_CN_transOlefin_TS_2_out</td>
<td>-874.1746606</td>
<td>-873.982184</td>
<td>-322</td>
</tr>
<tr>
<td>CH3_NH3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANS_CH3_trans_to_olefin_TS_SP_cont.out</td>
<td>-764.4675254</td>
<td>-764.215018</td>
<td>-358</td>
</tr>
<tr>
<td>GEM_CH3_trans_to_olefin_TS_SP.out</td>
<td>-764.4522523</td>
<td>-764.201262</td>
<td>-383</td>
</tr>
<tr>
<td>TRANS_NH3_trans_to_olefin_CH3_transPhenyl_TS_SP.out</td>
<td>-764.4747281</td>
<td>-764.222463</td>
<td>-267</td>
</tr>
<tr>
<td>GEM_NH3_trans_to_olefin_CH3_transPhenyl_TS_SP.out</td>
<td>-764.4713439</td>
<td>-764.219416</td>
<td>-273</td>
</tr>
<tr>
<td>CH3_PH3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANS_CH3_trans_to_olefin_PH3_trans_Phe_TS_SP_out</td>
<td>-1051.052602</td>
<td>-1050.812363</td>
<td>-351</td>
</tr>
<tr>
<td>GEM_CH3_trans_to_olefin_PH3_trans_Phe_TS_SP.out</td>
<td>-1051.043446</td>
<td>-1050.80355</td>
<td>-368</td>
</tr>
<tr>
<td>TRANS_CH3_trans_to_pheNyl_TS_SP_out</td>
<td>-1051.056856</td>
<td>-1050.817121</td>
<td>-296</td>
</tr>
<tr>
<td>GEM_CH3_trans_to_pheNyl_TS_SP.out</td>
<td>-1051.052993</td>
<td>-1050.813971</td>
<td>-1051</td>
</tr>
<tr>
<td>CH3_CO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANS_CO_transOlefin_CH3_transPhenyl_TS_SP.out</td>
<td>-821.23591</td>
<td>-821.014266</td>
<td>-291</td>
</tr>
<tr>
<td>GEM_CO_transOlefin_CH3_transPhenyl_TS_SP.out</td>
<td>-821.2352375</td>
<td>-821.013504</td>
<td>-286</td>
</tr>
<tr>
<td>TRANS_CO_transPhenyl_CH3_transOlefin_TS4_SP.out</td>
<td>-821.23272</td>
<td>-821.011485</td>
<td>-353</td>
</tr>
<tr>
<td>GEM_CO_transPhenyl_CH3_transOlefin_TS2_SP.out</td>
<td>-821.2258494</td>
<td>-821.004205</td>
<td>-363</td>
</tr>
<tr>
<td>PH3_CO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANS_CO_transPhenyl_PH3_transOlefin_TS_SP.out</td>
<td>-1124.294413</td>
<td>-1124.083667</td>
<td>-282</td>
</tr>
<tr>
<td>GEM_CO_transPhenyl_PH3_transOlefin_TS2_SP.out</td>
<td>-1124.294332</td>
<td>-1124.082993</td>
<td>-279</td>
</tr>
<tr>
<td>TRANS_CO_transPhenyl_PH3_transPhenyl_TS2_SP.out</td>
<td>-1124.293406</td>
<td>-1124.081111</td>
<td>-257</td>
</tr>
<tr>
<td>GEM_CO_transPhenyl_TS2_SP.out</td>
<td>-1124.293364</td>
<td>-1124.083783</td>
<td>-270</td>
</tr>
<tr>
<td>PH3_NH3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANS_NH3_trans_to_pheNyl_TS_SP.out</td>
<td>-1067.550429</td>
<td>-1067.306126</td>
<td>-296</td>
</tr>
<tr>
<td>GEM_NH3_trans_to_pheNyl_TS_SP.out</td>
<td>-1067.546065</td>
<td>-1067.303236</td>
<td>-311</td>
</tr>
<tr>
<td>TRANS_NH3_TS_SP.out</td>
<td>-1067.550867</td>
<td>-1067.307329</td>
<td>-236</td>
</tr>
<tr>
<td>GEM_NH3_TS_SP_cont2.out</td>
<td>-1067.550467</td>
<td>-1067.306223</td>
<td>-256</td>
</tr>
<tr>
<td>PH3_PH3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD_2PH3_PheStyrene_TS_SP.out</td>
<td>-1354.126867</td>
<td>-1353.896059</td>
<td>-283</td>
</tr>
<tr>
<td>PD_2PH3_PheStyrene_gem_TS_fix_igen2.out</td>
<td>-1354.125713</td>
<td>-1353.895809</td>
<td>-288</td>
</tr>
</tbody>
</table>

One additional negative eigenvalue (-30 cm⁻¹) corresponding to PH₃ rotation
Geometries for all transition states:

```
TRANS_CH3_trans_to_olefin_PH3_trans_Ph_TS_SP.out

Pd1  0.3622897028    -0.3159447538    0.0115857788
C2   0.0813758070    1.8729810343    -0.3881082784
C3   1.4814475247    1.8636860285    -0.0741434355
H5   2.1629715895    2.2026483987    -0.8488386488
H6   1.7402201615    2.2495526970    0.9067976431
H7   0.5872156568    2.1720842196    0.4179456225
X8   0.7630015000#     1.8708020000#   -0.1961420000#
H19  -2.4238656589    -1.6176343383    0.9506491535
H20  -2.8777374549    -0.0459174837   -0.4321188034
C17  5.1503353646    -0.7383329354    0.4832929573
C18  4.3986921067    -0.3614911901    1.5992661926
C19  3.0913633388    0.0980588359    1.4406927169
C20  2.5004309630    0.1795264270    0.1665599765
C21  3.2777924520    -0.1918308131   -0.9472702159
C22  4.5845480935    -0.6516760113   -0.7920167230
H23  6.1723625190    -1.0877371609    0.6048467841
H24  4.8340999969    -0.4206485935    2.5941371476
H25  2.5240946374    0.4046411383    2.3173109111
H26  2.8561969884    -0.1213259218   -1.9477583320
H27  5.1640615928    -0.9396372321   -1.6662838501
C27  -1.5654463941    2.4889562944    -4.3185125387
C28  -0.2500665512    2.0397568034    -4.1769927077
C29  0.2997070728    1.8354683608    -2.9134426238
C30  -0.4522862381    2.0749180600    -1.7432693779
C31  -1.7782446877    2.5294400795   -1.9076122298
C32  -2.3250124796    2.7338698744   -3.1724032916
H33  -1.9904612505    2.6473404860   -5.3060749231
C34  0.3548401387    1.8458132498   -5.0598079061
C35  1.3235952030    1.4813965908    2.8345571943
H36  -2.3764094375    2.7407880250   -1.0229729882
C37  -3.3478074575    3.0924791613    -3.2631831875
C38  0.0593480907    -3.0560338587    0.3983955161
C39  1.6091136816    -2.6292827030   -0.3720795185
C36  0.8864490408    -2.3347276377    0.3960191481
H40  1.3750952534    -2.3530214579    1.3760265876
P36  -1.8288313775    -0.9567198690   -0.1484184200
H11  -2.1403275494    -1.9184869560   -1.3551515484

GEM_CH3_trans_to_olefin_PH3_trans_Ph_TS_SP.out

Pd1   0.4958643176    -0.2489337985    0.0029913116
C2    0.4595034360    1.8957168631    0.3325769943
C3    1.8923414320    1.8474004293    0.1662749378
H6    2.4692415979    2.1710332604    1.0273561237
H7    0.0871975054    2.1204288589    1.3316806124
X8    0.4808690000#   1.8054860000#   0.3130400000#
H18  -2.3619732471   -1.4258447527    0.6902302010
H19  -2.7026213310    0.4026371405   -0.3431298041
C17  4.9065164352    -1.4067620884    1.4031756840
C18  3.9446091674    -0.9594752112    2.3157587398
C19  2.8334279233    -0.2498652043    1.8581610785
C20  2.6470032269    -0.0018679017    0.4887768712
C21  3.6295495226    -0.4429306924   -0.4143047853
C22  4.7477131167    -1.1431050608    0.0402320573
H23  5.7812494316    -1.9474160746    1.7559132421
H24  4.0676399825    -1.1528909934    3.3768069005
H25  2.1056544908    0.1211434445    2.5775525465
H26  3.5218235752    -0.2385035259    1.4758346065
H27  5.4964567369    -1.4848704159   -0.6708681015
H28  -0.1240671567    2.3415481496   -0.4697410661
C37  3.6586296092    3.2597437651    3.5015164061
C38  4.2513135214    3.5414582513   -2.2701807928
```
S3	3.6795543867	3.0607482708	-1.0920361994
C40	2.5012251376	2.3007244306	-1.1207534221
C41	1.9190033927	2.0173496854	-2.3658925477
C42	2.4915045160	2.4932341619	-3.544381553
H43	4.1054907825	3.6279870878	-4.4214679470
H44	5.1623351474	4.1329917247	-2.2252796619
H45	4.1510432595	3.2787581065	-0.1361194958
H46	1.0213771272	1.4049140455	-2.4084671137
H47	2.0281631404	2.2605009112	-4.4999090454
H35	-0.0331400912	-2.9596599023	-0.4767355980
H36	1.4455431319	-2.3891884393	-1.2842643260
C36	0.8528785738	-3.2000043626	-0.3637063764
H37	1.4513638220	-2.7000427897	0.4710720241
P36	-1.7239289803	-0.6227059607	-0.2828292744
H38	-2.1433192430	-1.3456392789	-1.4231713439

TRANS_CO_transPhenyl_PH3_transOlefin_TS_SP.out

Pd1	0.3248405665	-0.2952667123	0.0745855727
C2	0.0617197665	1.9001666050	-0.3510527971
C3	1.4132886532	1.9078701974	0.0718642401
H4	2.1856980315	2.2211292277	-0.6185906592
H5	1.6114070141	2.1395092532	1.1122597941
H6	-0.6777054519	2.1226647679	0.4172698728
C7	5.1042264081	-0.8081613589	0.2034552652
C8	4.4317469686	-0.5156932902	1.3923482878
C9	3.0986733558	-0.0947454040	1.3630110393
C10	2.4369600719	0.0166995295	0.1326608467
C11	3.1126966240	-0.2636513558	-1.0638821888
C12	4.4442349944	-0.6826883968	-1.0224751886
H13	6.1427187828	-1.1242391481	0.2306861666
H14	4.9437499998	-0.6049369389	2.3463349613
H15	2.5895539399	0.1468576987	2.2924761664
H16	2.6108379969	-0.1625719711	-2.0226701175
H17	4.9660704306	-0.9028668154	-1.9496834303
C18	-1.3732829666	2.4913333388	-4.3427105671
C19	-0.0190015632	2.2127144040	-4.1363047560
C20	0.4676901817	2.0121698110	-2.8479571717
C21	-0.3970629318	2.0832562619	-1.7380895373
C22	-1.758369620	2.3663109002	-1.9621003623
C23	-2.2413916544	2.5720117166	-3.2508373639
H24	-1.7482866381	2.6506710027	-5.3494895525
H25	0.6596736393	2.1595657084	-4.9826080353
H26	1.5264525451	1.8124054244	-2.7093121647
H27	-2.4383559037	2.4382102125	-1.1154107864
H28	-3.2922762898	2.7987303703	-3.4045092013
O32	-2.7975858916	-0.7524814695	0.0460817644
C33	-1.6773922469	-0.5619463798	0.0569647142
P32	0.8389682230	-2.6707972897	0.4680126456
H33	-0.085749563	-3.7060211162	0.2089173108
H34	1.9599715186	-3.165915894	-0.2258347029
H35	1.2026855823	-3.0119914332	1.7864800430

GEM_CO_transPhenyl_PH3_transOlefin_TS_2.SP.out

Pd1	0.4523664782	-0.295490116	0.0590516964
C2	0.4825202234	1.7957883986	0.4003138031
C3	1.8952483067	1.9111070304	0.1678713880
H4	2.5050423130	2.1491022978	1.0323621060
H5	0.1434375464	1.9291695498	1.4272208389
C6	4.8722934260	-1.4346153649	1.2883234146
C7	3.9432364894	-1.0256214056	2.2492897617
C8	2.7828119336	-0.3549165570	1.8558744338
C9	2.5443486310	-0.1204826111	0.4909174333
C10	3.4897803268	-0.5045140886	-0.4706244919
C11 4.6474945333 -1.1730543909 -0.0679611288
C12 5.7815118274 -1.9420881129 1.5972657042
C13 4.1276595318 -1.2118724595 3.3034938682
C14 2.0773398506 -0.0140398754 2.6099010163
C15 3.3332410470 -0.2729192322 -1.5207245115
C16 5.3788079405 -1.4797044484 -0.8106941796
C17 -0.1823671588 2.2254383892 -0.3456915171
C18 3.6181365562 3.3138958436 -3.4832656363
C19 4.3035828602 3.4456640440 -2.2738522151
C20 3.7358208821 2.9609477137 -1.0984976261
C21 2.4675969809 2.3524809093 -1.1130059246
C22 1.7884208700 2.2204843641 -2.3393563775
C23 2.3614658080 2.6991553912 -3.5136819235
C24 4.0614500221 3.6868529833 -4.4021635515
C25 5.2782654128 3.9237411210 -2.2470147892
C26 4.2723883310 3.0668023001 -0.1578209702
C27 0.8136185063 1.7409972527 -2.3788743390
C28 1.8036989346 2.5961239736 -4.4559308482
C29 -2.6590789838 -0.3642589482 -0.2743151499
C30 -1.5286400655 -0.3373197255 -0.1584850310
P31 0.8136266376 -2.7094563300 -0.4336134787
H32 -0.2389448187 -3.6501567963 -0.4425242854
H33 1.3929254996 -3.0165883191 -1.6823760993
H34 1.7201802658 -3.3813091354 0.4098495894

GEM_CO_trans_OLefin_TS_SP.out
Pd1 0.3597563075 -0.3418829294 0.0982207779
C2 0.3729142850 1.7618451712 0.1236777141
C3 1.7972980027 1.9250630339 0.0652437644
H6 2.2868025360 2.1555466467 1.0051649861
H7 -0.0917319129 2.0076612436 1.0799258981
H17 -2.0493888408 -0.3998701169 -0.1573163968
H18 -2.8039759228 -1.0748937278 0.8275042657
H19 -2.7587841916 0.8175963651 -0.1950885965
H20 -2.5772626121 -1.0138854750 -1.3083838877
C17 4.9454218078 -1.3423794625 0.8722296828
C18 4.1534665532 -0.9054922348 1.9382700867
C19 2.9230388137 -0.2932283196 1.6889550449
C20 2.4892558056 -0.1273685309 0.3641906153
C21 3.2889539895 -0.5502664484 -0.7060592274
C22 4.5134317907 -1.1679651144 -0.4468018399
C23 5.9070851951 -1.8077142360 1.0687364913
C24 4.4962765006 -1.0310673533 2.9614721917
C25 2.3174273871 0.0571287929 2.5212222983
C26 2.9757456818 -0.3807184684 -1.7325770376
C27 5.1342508538 -1.5026829823 -1.2731918354
C28 -0.1989330721 2.0975964470 -0.7395426772
C37 3.9710029397 3.3965738832 -3.3043116351
C38 4.5064500141 3.4808799966 -2.0170141574
C39 3.7972945364 2.9750244426 -0.9345838108
C40 2.5255197908 2.3915101973 -1.1209549540
C41 1.9978845827 2.1083320655 -2.4231514229
C42 2.7173537887 2.8089369722 -3.5047403358
H43 4.5284024389 3.7867541930 -4.1511275384
H44 5.4781381729 3.9390880711 -1.8583966771
H45 4.2136561151 3.0354643193 0.0663179346
H46 1.0272946754 1.8533856786 -2.5958603309
H47 2.3028282276 2.7426247925 -4.5063735678
O33 0.8203936462 -3.4976994468 0.1273599300
C34 0.6259483763 -2.3790275014 0.1110317911

TRANS_CO_transOLefin_PH3_transPhenyl1_TS2_SP.out
Pd1 0.3460549255 -0.2773247089 0.0096286508
C2 0.1081919632 1.9129876295 -0.3346117155
C3 1.4777957030 1.9008761769 0.0042611319
GEM_CN_NH3_Trans_to_the_Phenyl_TS_2_TS_SP.out

Pd1 0.490237750 -0.2351349082 0.0240421622
C2 0.4555960672 1.8487134272 0.3740840427
C3 1.8822620376 1.8627773138 0.1817269406
H6 2.4718281269 2.1694757961 1.0396260990
H7 0.0956622710 2.0562944792 1.3821382740
X8 0.4656231486# 1.7848511480# 0.2631404320#
H18 -2.1767538080 -0.3834808959 0.5962885834
H19 -2.0657639259 0.0988142485 -0.9784032688
C17 4.8419887338 -1.4601675530 1.2940833140
C18 3.9293387779 -0.9960873291 2.2452549874
C19 2.8071159975 -0.2768605799 1.8369630408
C20 2.5711315194 -0.0372940637 0.4704790675
C21 3.5046549563 -0.4898520384 -0.4749148156
C22 4.6289940071 -1.2036582618 0.0633577528
H23 5.7220367977 -2.013926805 1.6107263216
H24 4.0958916991 -1.188506930 3.3022193355
H25 2.1103541097 0.1005211038 2.5824052572
H26 3.3449230278 -0.2970927653 -1.5308210945
H27 5.3364373055 -0.5687320699 0.8035120355
H28 -0.1582841851 2.2816846049 -0.416493863
C37 3.6197128766 3.2578075026 -3.4977409478
C38 4.2139473654 3.5462662782 -2.2711803390
C39 3.6534047953 3.0723274165 -1.0879277413
C40 2.4741833662 2.3133884935 -1.1091265824
C41 1.8840985998 2.0233622412 -2.3492905576
C42 2.4511286188 2.4924856188 -3.5322514340
H43 4.0642633691 3.6177054633 -4.4219077309
H44 5.1318789452 4.1355476506 -2.2342306789
H45 4.1304489509 3.2930187122 -0.1355005355
H46 0.9922774514 1.4022278993 -2.3866340371
H47 1.9861285049 2.2509371215 -4.4845014684
N36 -1.6498048712 -0.5000175323 -0.2675504765
N34 0.6188153837 -3.3865174978 -0.6387947941
C35 0.6344051894 -2.2462652071 -0.378944224

GEM_CO_trans_Olefin CH3_transPhenyl_TS_SP.out
Pd1 0.3839321754 -0.2462062005 0.0311670215
C2 0.3499884680 1.8570950897 0.2634372279
C3 1.7773709982 1.8266875808 0.1625423394
H4 2.3286187960 2.0261516575 1.0750592736
H5 -0.0752750926 2.0542199802 1.2458202219
C6 -1.7199113743 -0.1639943095 -0.2458914874
H7 -2.2065394530 -1.0346101115 0.2032897738
H8 -2.1299778279 0.7452637430 0.1991215059
H9 -1.9136129330 -0.1613840898 -1.3244501930
C10 4.9446526857 -1.5740721146 1.1090339288
C11 4.0752602148 -1.1379927460 2.1124171423
C12 2.9107497552 -0.4418433049 1.7751476187
C13 2.5961706275 -0.1860809950 0.4326818554
C14 3.4087594251 -0.6077753488 -0.5651699041
C15 4.6443518500 -1.3084589727 -0.2292505549
H16 5.8547046736 -2.1083208861 1.3693003911
H17 4.3054758542 -1.3337185201 3.1574363986
H18 2.2460429490 -0.0995111148 2.5671218581
H19 3.2698050708 -0.3934921613 -1.6096029474
H20 5.3185470737 -1.6423872824 -1.0147896987
H21 -0.2196735496 2.2764514377 -0.5617834298
C22 3.8405924639 3.2066913127 -3.3442214214
C23 4.4143627335 3.3422616191 -0.9535674714
C24 3.7426709614 2.8690107876 -2.0792886568
C25 2.4807366541 2.2657859917 -0.6347362211
H26 1.9148206360 2.1312987233 -2.3472803160
C27 2.5902174861 2.5966630127 -3.4736432611
C28 4.3657128114 3.5685792473 -4.2242704813
H29 5.3879025090 3.8125740272 -1.9684754820
H30 4.1990750747 2.9664255425 0.0289183368
H31 0.9492445150 1.6458776341 -2.4610709226
H32 2.1406768697 2.4801964821 -4.4563420730
O33 0.2303513781 -3.3065712947 -0.3807253124
C34 0.3418636129 -2.1780710512 -0.2233287641

TRANS_CO_transOlefin CH3_transPhenyl_TS_SP.out
Pd1 0.3018118635 -0.2803729652 0.0568441562
C2 0.0231003023 1.8641997158 -0.3359317074
C3 1.3867229961 1.8457557852 0.0674812959
H4 2.1461583389 2.1701447772 -0.6339753690
H5 1.6063293946 2.0887467979 1.1017718807
H6 -0.7066450174 2.1163027565 0.4300421085
C7 -1.8170535127 -0.4829128759 -0.1022374806
H8 -2.1599995357 -1.5418759483 0.0032836189
H9 -2.1672756176 0.1272468250 0.6845858682
H10 -2.0985324431 -0.097054625 -1.0860738003
C11 5.1695985858 -0.8693805246 0.2909199484
C12 4.4880437794 -1.520931241 1.4601326133
C13 3.1653139717 -0.0784468314 1.3967912655
C14 2.5026960640 0.0216521678 0.1669225049
C15 3.1983180964 -0.3176392350 -1.0030682716
C16 4.5202506567 -0.7651948526 0.9415686554
H17 6.2002015619 -1.2112947664 0.3387735994
H18 4.9856140206 -0.6037802083 2.4241304827
H19 2.6501980727 0.1914992770 2.3169473163
H20 2.7083288004 -0.2420045562 -1.9711034271
H21 5.0433245967 -1.0309447285 -1.8575073445
C22 -1.3096019154 2.6896491431 -4.3448827552
C23 0.0072174690 2.2796428340 -4.1220361447
C24 0.4530735850 2.0054639527 -2.8316483135
C25 -0.4073143561 2.1337812822 -1.7246152124

SIO
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C26</td>
<td>-1.7289302748</td>
<td>2.5503744535</td>
<td>-1.9663208428</td>
<td></td>
</tr>
<tr>
<td>C27</td>
<td>-2.1746306639</td>
<td>2.8241491384</td>
<td>-3.2583322283</td>
<td></td>
</tr>
<tr>
<td>H28</td>
<td>-1.6557546694</td>
<td>2.9007544572</td>
<td>-5.3530933864</td>
<td></td>
</tr>
<tr>
<td>H29</td>
<td>0.6921059521</td>
<td>2.1706718359</td>
<td>-4.9594832087</td>
<td></td>
</tr>
<tr>
<td>H30</td>
<td>1.4796456098</td>
<td>1.6791035360</td>
<td>-2.6874696437</td>
<td></td>
</tr>
<tr>
<td>H31</td>
<td>-2.4114493661</td>
<td>2.6614476208</td>
<td>-1.1273447293</td>
<td></td>
</tr>
<tr>
<td>H32</td>
<td>-3.2016515501</td>
<td>3.1458096163</td>
<td>-3.4146566559</td>
<td></td>
</tr>
<tr>
<td>X33</td>
<td>0.7703436313</td>
<td>1.8649657583</td>
<td>-0.1981727120</td>
<td></td>
</tr>
<tr>
<td>O34</td>
<td>0.3522458071</td>
<td>-3.2993104156</td>
<td>0.6376030128</td>
<td></td>
</tr>
<tr>
<td>C35</td>
<td>0.3936063753</td>
<td>-2.1763415456</td>
<td>0.4195619202</td>
<td></td>
</tr>
</tbody>
</table>

GEM_CN_CO_transOlefin_TS_SP.out

Pd1	0.4496506092	-0.2560349479	0.0272773054
C2	0.3973822832	1.8226131082	0.3384275853
C3	1.8184662540	1.8572345064	0.1607917140
H6	2.4090846608	2.0829078675	1.0402346512
H7	0.0132437805	1.9649242400	1.3468642509
C17	4.9062952374	-1.5316194508	1.2119189896
C18	4.0024803149	-1.1068843500	2.1896245520
C19	2.8529156296	-0.4042110439	1.8199643573
C20	2.5908577430	-0.1412416811	0.4670576309
C21	3.5101309632	-0.5465116619	-0.5070232485
C22	4.6592535424	-1.2494193173	-0.1345562068
H23	5.8043424678	-2.0716669099	1.4992153102
H24	4.1935397057	-1.3163777897	3.2391287083
H25	2.1597513936	-0.066865164	2.5880905577
H26	3.3322868527	-0.3193187689	-0.547530442
H27	5.3617365553	-1.576722115	-0.8971729453
H28	-0.2351447482	2.2391305944	-0.4389282460
C37	3.6430058287	3.2523907157	-3.4623431374
C38	4.2926724139	3.3954773379	-2.2352467004
C39	3.6963417539	2.9174653259	-1.0709836994
C40	2.4362037113	2.2976952132	-1.1152472364
C41	1.7928380209	2.1552833341	-2.3527733464
C42	2.3935222297	2.6289288899	-3.5170575225
H43	4.1086817543	3.6208123597	-4.3725286115
H44	5.2649342276	3.8780420082	-2.184318552
H45	4.2087901186	3.0200624025	-0.1173428436
H46	0.8255423885	1.6632492700	-2.4107267298
H47	1.8855324528	2.5099259308	-4.4701700080
O33	0.4225268190	-3.3557066952	-0.4922734757
C34	0.4996096238	-2.235415390	-0.3011174427
N31	-2.705348158	-0.1974264670	-0.4430262340
C32	-1.5524015841	-0.2147638125	-0.2591461997

TRANS_CO_transolefin_CN_transPhenyl_TS_SP.out

Pd1	0.2875129832	-0.2616764222	0.1349882207
C2	0.0231116269	1.8582220043	-0.3354738610
C3	1.3569086647	1.8926202527	0.1544482853
H4	2.1496013932	2.2636845262	-0.4809748602
H5	4.4977142609	2.1040336389	1.0495498789
H6	-0.766129098	2.0837302299	0.3766497980
C8	5.0773613190	-0.8460688003	0.0427063235
C9	4.4783925031	-0.5400854252	1.2668732355
C10	3.1596519434	-0.0814400833	1.3088266644
C11	2.4268698261	0.0643849147	0.1238026531
C12	3.0365626490	-0.231441591	-1.1050047420
C13	4.3539311776	-0.6928199981	-1.1424934912
H14	6.1041193490	-1.2010321405	0.0119039000
H15	5.0364037729	-0.6604669263	2.1919726720
H16	2.7024918147	0.1542939762	2.2671280494
H17	2.4824078689	-0.1120874922	-2.0328086018
H18	4.8141628383	-0.9309741918	-2.0982578825
C19	-1.1225282971	2.4799207204	-4.4317483830
H19 -2.3297687221 -0.5274245577 0.5475772520
H20 -2.1387630175 0.1755790335 -0.9329880179
C17 5.1126927555 -0.8272315185 0.4656708623
C18 4.3659831227 -0.4690985519 1.5914977610
C19 3.0516484031 -0.0173747421 1.4499400417
C20 2.4716713688 0.0594508559 0.1730044711
C21 3.2306233806 -0.2859697869 -0.9576169342
C22 4.5437984394 -0.7343552538 -0.8077327495
H23 6.1383361935 -1.1658341506 0.5789957492
H24 4.8085259071 -0.5303059392 2.5818820975
H25 2.4863243269 0.2775160020 2.3305530411
H26 2.8205195777 -0.2072123437 -1.9537157230
H27 5.1239962267 -1.0019772445 -1.6865838551
C27 -1.6933087101 2.4375283250 4.2213508465
C28 -0.3492089875 2.0572616223 -4.1466967878
C29 0.02645554301 1.8733387602 -2.9110399065
C30 -0.4565565746 2.0655530993 -1.7165755232
C31 -1.8089718696 2.4533573427 -1.8070555849
C32 -2.12400700528 2.6403726776 -3.0476212763
H33 -2.1658391981 2.5823742776 -5.1883730811
H34 0.2227768467 1.9068743539 -5.0578669893
H35 1.3102436230 1.5794081411 -2.8777225039
H36 -2.3706018124 2.6520063188 -0.8954100669
H37 -3.4587865436 2.9546632252 -3.0952876794
H38 -0.0884984366 -3.6568967454 0.2139290108
H39 1.9799324914 -3.1633434173 -0.0766256772
P36 0.8184922514 -2.6081134235 0.4973014772
H40 1.0731933906 -2.9184546294 1.8499588258
N36 -1.7897976052 -0.5642222190 -0.3179617628
H41 -2.0090989331 -1.4529163503 -0.7678537863

PD_2PH3_Ph_Sterene_TS_SP.out
Pd1 0.3453000000 -0.3036320000 0.0281060000
C2 0.0770570000 1.8726900000 0.3732580000
C3 1.4489460000 1.8689140000 0.0190260000
H5 2.1853100000 2.1412310000 -0.7645980000
H6 1.7038320000 2.1493840000 0.9961850000
H7 -0.6167710000 2.1262080000 0.4277060000
X8 0.73799800000 2.4121280000 0.0181420000
P13 0.8407220000 -2.6255110000 0.5308280000
H14 1.1580680000 -2.8942750000 1.8738600000
H15 -0.0635810000 -3.6886770000 0.3061330000
H16 1.9873830000 -3.1624290000 -0.0867700000
H17 -2.0338460000 -0.6250610000 -0.2251130000
H18 -2.6758680000 -1.7169590000 0.3980330000
H19 -2.9292820000 0.3975130000 0.1499010000
H20 -2.4760850000 -0.8330110000 -1.5474850000
C17 5.1305680000 -0.8532050000 0.3706400000
C18 4.4111890000 -0.5169030000 1.5200310000
C19 3.0849740000 -0.0839390000 1.4216940000
C20 2.4721670000 -0.0021570000 0.1637450000
C21 3.1963040000 0.3285390000 -0.9926690000
C22 4.5210880000 -0.7582870000 -0.8838330000
H23 6.1637480000 -1.1774160000 0.4502720000
H24 4.8818010000 -0.5799870000 2.4972880000
H25 2.5417040000 0.1928870000 2.3218000000
H26 2.7376560000 -0.2516270000 -1.9746770000
H27 5.0774640000 -1.0100610000 -1.7826250000
C27 -1.4960400000 2.5959590000 -4.2994330000
C28 -0.1921700000 2.1104090000 -4.1595970000
C29 0.3353090000 1.8660980000 -2.8950820000
C30 -0.4355660000 2.0986970000 -1.7398430000
C31 -1.7453840000 2.5920170000 -1.8958990000
C32 -2.2689360000 2.8412790000 -3.1633080000
H33 -1.9024960000 2.7887370000 -5.2879720000
<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd1</td>
<td>0.5052799768</td>
<td>-0.2435447204</td>
<td>0.0052534441</td>
</tr>
<tr>
<td>C2</td>
<td>0.4967460826</td>
<td>1.8929251994</td>
<td>0.4382593391</td>
</tr>
<tr>
<td>C3</td>
<td>1.9218095988</td>
<td>1.8481487283</td>
<td>0.2227618019</td>
</tr>
<tr>
<td>H4</td>
<td>2.5310180924</td>
<td>2.1517855751</td>
<td>1.0683635470</td>
</tr>
<tr>
<td>H5</td>
<td>0.1535805909</td>
<td>2.0646685889</td>
<td>1.4571606657</td>
</tr>
<tr>
<td>C6</td>
<td>4.8934895689</td>
<td>-1.4416370030</td>
<td>1.4451141544</td>
</tr>
<tr>
<td>C7</td>
<td>3.9118688770</td>
<td>-1.0169092320</td>
<td>2.3443723751</td>
</tr>
<tr>
<td>C8</td>
<td>2.8108154234</td>
<td>-0.2972339277</td>
<td>1.8803533758</td>
</tr>
<tr>
<td>C9</td>
<td>2.6538169208</td>
<td>-0.0215528721</td>
<td>0.5090494369</td>
</tr>
<tr>
<td>C10</td>
<td>3.6571903741</td>
<td>-0.437960934</td>
<td>-0.3787747078</td>
</tr>
<tr>
<td>C11</td>
<td>4.7659759208</td>
<td>-1.1460765946</td>
<td>0.0848697440</td>
</tr>
<tr>
<td>H12</td>
<td>5.7602997899</td>
<td>-1.9901561164</td>
<td>1.8046912324</td>
</tr>
<tr>
<td>H13</td>
<td>4.0110887678</td>
<td>-1.2344162034</td>
<td>3.4051463666</td>
</tr>
<tr>
<td>H14</td>
<td>2.0688983657</td>
<td>0.0597578659</td>
<td>2.5928043365</td>
</tr>
<tr>
<td>H15</td>
<td>3.5709338061</td>
<td>-0.2106853691</td>
<td>-1.4376422807</td>
</tr>
<tr>
<td>H16</td>
<td>5.5314046002</td>
<td>-1.4706912976</td>
<td>-0.6159715833</td>
</tr>
<tr>
<td>H17</td>
<td>-0.1154276629</td>
<td>2.3647836937</td>
<td>-0.3259444471</td>
</tr>
<tr>
<td>C18</td>
<td>3.5853770530</td>
<td>3.2804885610</td>
<td>-3.4807958490</td>
</tr>
<tr>
<td>C19</td>
<td>4.2272506021</td>
<td>3.5294819709</td>
<td>-2.2670643376</td>
</tr>
<tr>
<td>C20</td>
<td>3.6858709923</td>
<td>3.0418554068</td>
<td>-1.0788722226</td>
</tr>
<tr>
<td>C21</td>
<td>2.4902099507</td>
<td>2.3087533253</td>
<td>-1.0786635382</td>
</tr>
<tr>
<td>C22</td>
<td>1.8570755420</td>
<td>2.0579073571</td>
<td>-2.3062951881</td>
</tr>
<tr>
<td>C23</td>
<td>2.3995717159</td>
<td>2.5411871754</td>
<td>-3.4958035008</td>
</tr>
<tr>
<td>H24</td>
<td>4.0083601205</td>
<td>3.6541151365</td>
<td>-4.4096855995</td>
</tr>
<tr>
<td>H25</td>
<td>5.1520609427</td>
<td>4.1002851755</td>
<td>-2.2447552175</td>
</tr>
<tr>
<td>H26</td>
<td>4.1944394339</td>
<td>3.2333557445</td>
<td>-0.1353895278</td>
</tr>
<tr>
<td>H27</td>
<td>0.9428763509</td>
<td>1.4699456625</td>
<td>-2.3298325681</td>
</tr>
<tr>
<td>H28</td>
<td>1.8985296029</td>
<td>2.3362953057</td>
<td>-4.4381668334</td>
</tr>
<tr>
<td>O29</td>
<td>-2.4507538359</td>
<td>-0.7557234586</td>
<td>-0.4913461049</td>
</tr>
<tr>
<td>C30</td>
<td>-1.3425806885</td>
<td>-0.5288504439</td>
<td>-0.3003821487</td>
</tr>
<tr>
<td>C31</td>
<td>0.8961363174</td>
<td>-2.2918227078</td>
<td>-0.4659482813</td>
</tr>
<tr>
<td>H32</td>
<td>0.0075061785</td>
<td>-2.8925144893</td>
<td>-0.6790038466</td>
</tr>
<tr>
<td>H33</td>
<td>1.5559114404</td>
<td>-2.2957101411</td>
<td>-1.3399362302</td>
</tr>
<tr>
<td>H34</td>
<td>1.4262474547</td>
<td>-2.7123917461</td>
<td>0.3936282330</td>
</tr>
</tbody>
</table>

S21