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Abstract

We describe the C*-algebras of the Heisenberg group H,, n > 1, and the thread-like
Lie groups Gy, N > 3, in terms of C*-algebras of operator fields.

1 Introduction and notation

Let H,, be the Heisenberg group of dimension 2n + 1. It has been known for a long time that
the C*-algebra, C*(H,), of H, is an extension of an ideal J isomorphic to Cp(R*, ) with
the quotient algebra isomorphic to C*(R?"), where K is the C*-algebra of compact operators
on a separable Hilbert space, R* = R\ {0} and Co(R*,K) is the C*-algebra of continuous
functions vanishing at infinity from R* to /.

We obtain an exact characterization of this extension giving a linear mapping from C*(R?")
to C*(H,)/J which is a cross section of the quotient mapping i : C*(H,,) — C*(H,)/J. More
precisely, realizing C*(H,,) as a C*-subalgebra of the C*-algebra F,, of all operator fields
(F = F()\))aer taking values in K for A € R* and in C*(R?") for A\ = 0, norm continuous on
R* and vanishing as A — 0o, we construct a linear map v from C*(R?") to JF,, such that the
C*-subalgebra is isomorphic to the C*-algebra D, (Hy,) of all (F' = F()\))xer € F» such that

1E(A) = v(F(0))llop — O,

where || - ||op is the operator norm on K. The constructed mapping v is an almost homomor-
phism in the sense that

tim (7 - 2)() = (/) (V) © (B (M)llop = 0.

Moreover, any such almost homomorphism 7 : C*(R?) — F,, defines a C*-algebra, D, (H,),
which is an extension of Co(R*, k) by C*(R?™). A question we left unanswered : what mappings
T give the C*-algebras which are isomorphic to C*(H,,). We note that the condition

tian || (R)(V)lop = 1Al e for all b€ C* (B2,

which is equivalent to the condition that the topologies of D, (H,) and that of C*(H,,) agree,
is not the right condition: there are examples of splitting extensions of type D.(H,,) with the
same spectrum as C*(H,,) (see [De] and Example 2.23) while it is known that C*(H,,) is a
non-splitting extension.

We note that another characterisation of C*(H,,) as a C*-algebra of operator fields is given
without proof in a short paper by Gorbachev [Gor].



The second part of the paper deals with the C*-algebra of thread-like Lie groups Gy, N > 3.
The group G is the Heisenberg group of dimension 3 treated in the first part of the paper.
The groups G are nilpotent Lie groups and their unitary representations can be described
using the Kirillov orbit method. The topology of the dual space Gy has been investigated in
details in [ALS]. In particular, it was shown that like for the Heisenberg group G5 the topology
of Gy N, N > 3 is not Hausdorff. It is known that G3 R* UR? as a set with natural topology
on each pieces, the limit set when A € R* goes to 0 is the whole real plane R2. The topology
of G, becomes more complicated with growth of the dimension N. Using a description of
the limit sets of converging sequences (m;) € Gy obtained in [AKLSS] and [ALS] we give
a characterisation of the C”-algebra of G'x in the spirit of one for the Heisenberg group
H,,. Namely, parametrising Gy by a set ST UR?, where S%" consists of element ¢ € g}
corresponding to non-characters (here gy is the Lie algebra of Gn), we realize C*(Gp) as
a C*-algebra of operator fields (A = A(¢)) on S3" U {0}, such that A(¢) € K, £ € S,
A(0) € C*(R?) and (A = A(f)) satisfy for each converging sequence in the dual space the
generic, the character and the infinity conditions (see Definition 3.12).

We shall use the following notation. LP(R™) denote the space of (almost everywhere equiv-
alence classes) p-integrable functions for p = 1,2 with norm || - ||,. By || f|lcc We denote the
supremum norm sup,cq |f(z)| of a continuous function f vanishing at infinity from a locally
compact space €2 to C. D(R"™) is the space of complex-valued C'*° functions with compact
support and S(R™) is the space of Schwartz functions, i.e. rapidly decreasing complex-valued
C* functions on R™. The space of Schwartz functions on the groups H,, and Gy (see [CG])
will be denoted by S(H,,) and S(Gy) respectively. We use the usual notation B(H) for the
space of all linear bounded operators on a Hilbert space H with the operator norm || - [|op.
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2 The (C*-algebra of the Heisenberg group H,

Let H, be the 2n 4+ 1 dimensional Heisenberg group, which is defined as to be the Lie group
whose underlying variety is the vector space R™ x R™ x R and on which the multiplication is
given by

1
($,y,t)($/,y,,t/) = (1‘ +$/,y+y/,t+t, + 5((1) : y, - ':L‘/ ' y))7

where z -y = z1y1 + - - - + TnYn denotes the Euclidean scalar product on R™. The center of
H,, is the subgroup Z := {0,} x {0,} x R and the commutator subgroup [H,, Hy] of H, is
given by [Hy, H,| = Z. The Lie algebra g of H,, has the basis

B:={X;,Y;,j=1---,n,Z=(0,,0,,1)},

where X; = (e;,0,,0),Y; = (0p,€;,0),5 = 1,--- ,n and e; is the j’th canonical basis vector
of R™, with the non trivial brackets

(X5, Y] =6;;Z.



2.1 The unitary dual of H,,.

The unitary dual fIn of H,, can be described as follows.

2.1.1 The infinite dimensional irreducible representations

For every A € R*, there exists a unitary representation 7 of H,, on the Hilbert space L?(R"),
which is given by the formula

m(z,y, t)E(s) == 6_2”i’\t_2m%$'y+2m’\s'y§(5 —z), s € R", ¢ € L*(R"), (z,y,t) € H,.
It is easily seen that 7y is in fact irreducible and that m) is equivalent to m, if and only if
A=r.
The representation ) is equivalent to the induced representation 7 := indgnx,\, where
P = {0,} x R" x R is a polarization at the linear functional ¢)((z,y,t)) := At, (z,y,t) € g
and where ) is the character of P defined by xx(0p,y,t) = e 2™,
The theorem of Stone-Von Neumann tells us that every infinite dimensional unitary repre-
sentation of H, is equivalent to one of the my’s. (see [CG]).

2.1.2 The finite dimensional irreducible representations

Since H, is nilpotent, every irreducible finite dimensional representation of H, is one-
dimensional, by Lie’s theorem.
Any one-dimensional representation is a unitary character x,, (a,b) € R" xR", of H,,, which
is given by

Xap(T,y,t) = e~ 2milaatby) (x,y,t) € Hy.

For f € L'(H,), let
F(a,b) := xan(f) = / fla,y, t)e 2 @ dpdydt, a,b € R”,
Hpy

and

1 £lloo0 = sup [xap(F) = I flloo:

a,beR™

—

2.2 The topology of C*(H,)

Let C*(H,) denote the full C*-algebra of H,,. We recall that C*(H,) is obtained by the
completion of L'(H,) with respect to the norm

1/ llo-caz,y = sup | / F(,y, O, y, ) dadydt | op,

where the supremum is taken over all unitary representations m of H,.

Definition 2.1. Let
p= indgnl

be the left regular representation of H, on the Hilbert space L?(H,/Z). Then the image
p(C*(H,)) is just the C*-algebra of R?" considered as an algebra of convolution operators on



L?(R?*") and p(C*(H,)) is isomorphic to the algebra C(R?") of continuous functions vanishing
at infinity on R2" via the Fourier transform. For f € L'(H,,) we have p(f)(a,b) = f(a,b,0),
a, be R™

Definition 2.2. Define for C*(H,,) the Fourier transform F(c) of ¢ by
F(e)()) = m(c) € BIAR™), A € R*
and

F(c)(0) := p(c) € C*(R?™).

2.2.1 Behavior on R*

As for the topology of the dual space, it is well known that [r,] tends to [r,] in H, if and
only if A tends to v in R*, where [r] denotes the unitary equivalence class of the unitary
representation 7. Furthermore, if A tends to 0, then the representations my converge in the
dual space topology to all the characters x,p,a,b € R™.

Let us compute for f € L'(H,) the operator my(f). We have for ¢ € L?(R") and s € R” that

n@Es) = [ e dm e eyt

= / fla,y,t)e TN
R xR"™ xR

(2.1) = / f(s —x,y,t)e 2mA
R xR™ xR

27

Qi"z-y+27ri)‘3'y§(s — z)dzdydt

2miA
2

@—x)y+%ﬂA&y£(x)dmdydt

= [ P =2 =25+ 1), NE()da.
Rn 2
Here

f2’3(8,u, A) = / f(S,y,t)e_2m(y'“+>‘t)dydt, (s,u,A\) e R" x R" x R
R xR

denotes the partial Fourier transform of f in the variables y and ¢.
Hence 7, (f) is a kernel operator with kernel

(2.2) (s, x) = f2’3(s —x, —i

2(s+$),)\), s,x € R™.

If we take now a Schwartz-functions f € S(H,,), then the operator my(f) is Hilbert-Schmidt
and its Hilbert-Schmidt norm ||7x(f)||m.s. is given by

(2.3) ||7T>\(f)||12{.s_ = /R2 | fa(s, z)|*dzds = /]1{2 |f2’3(s,)\x, M) [2dsdz < oo.

Proposition 2.3. For any ¢ € C*(H,) and \e R*, the operator m\(c) is compact , the
mapping R* — B(L?*(R™)) : A — m(c) is norm continuous and tending to 0 for \ going to
nfinity.



Proof. Indeed, for f € S(H,,), the compactness of the operator 7 (f) is a consequence of (2.3)
and by (2.1) we have the estimate:

) = mlls = [ 1P =gl 2 N) = s — = (s 4 a),0) P
R7xR™

= / 1F23(s, Az, \) — f23(s, vz, v)|2dsdz
R” xR™

Hence, since f is a Schwartz function, this expression goes to 0 if A tends to v by Lebesgue’s
theorem of dominated convergence. Therefore the mapping A — m)(f) is norm continuous.
Furthermore, the Hilbert-Schmidt norms of the operators m)(f) go to 0, when A tends to
infinity. The proposition follows from the density of S(H,,) in C*(H,,). O

2.2.2 Behavior at 0

Let us now see the behavior of my(f) for Schwartz functions f € S(H,,), as A tends to 0.
Choose a Schwartz-function 7 in S(R™) with L2-norm equal to 1. For u = (a,b) in R®*xR", \ €
R*, we define the function n(\, a,b) by

(2.4) 100 0,8)(s) = AT (s +3) s € R

and let ny(s) = |\["/4n(|A\|/%s), s € R".
Let us compute

(T, 9,8) = (mal@,y, )\ w), n(A, )
_ / e—27ri)\t—27ri()\/2)2:~ye27ri)\s~y77()\’ u)(s o x)mds

—_ 3 p— , . ) “Y— en ) —_ / .
|>\|n/26 2miAt—2mi(N/2)z-y / e27rz)\s y—2mia me2m(a a’)-s

n

(25) WA (s — a4 (N2 (s + 5 )ds

_ . _ . . _ 7 _ . . i . YA _k
_ |>\|n/2€ 2miAt—2mi(A/2)x Yo 2mib Yp—2mia-x / 62m)\s y627r2(a a’)-(s—%)
R

n(AI2(s — 2)n(A172(s + L;b»ds.

Hence for u = v’ we get

n

() = e PNy [ A e 2 s
N e—27ria~:c—27rib-y/ n(s)@dsze—Qma-x—mey.

It follows also that the convergence of the coefficients c) 4, to the characters x,; is uniform
in « and uniform on compacta in (z,y,t) since

c T 1) — " ¢ _ e—27ri/\t—27ri%m-ye%ri(sign)\)\)\|1/2$-y
Au,u\ly Y, Xa,b\ s Y,

Rn
n(s — IAY2a)n(s) — In(s)[*)ds| — 0
as A — 0.



Proposition 2.4. For every u = (a,b) € R" x R", c € C*(H,,), we have that

lim | F(e) WA, u) = F()(0) (wn(r, u) ]2 = 0

uniformly in (a,b).

Proof. For c € C*(Mve have that
17 () (N)n(x, u) = F(e)(0)(w)n(A, w)ll3 = llma(c)n(X, u) — Xap(e)n(X,u) 3 =

= <7T)\ 6)77()‘7 u) - me(c)n()" u)7 WA(C)W(/\> u) - Xa,b(c)n()‘> u)>
= (m(c"*c)n(A u),n(Aw)) — Xap(e)(male)n(X, u), n(A, u))
- Xa,b(c)<77,\<c)77(/\7u)777()\7U)> + ’Xa,b(c)‘Q

)

= Ixas(OF = Xap()* = [Xap ()] + [Xap(c)* = 0.

2.3 A (C*-condition

The aim of this section is to obtain a characterization of the C*-algebra C*(H,) as a C*-
algebra of operator fields ([Leel, Lee2]).
Let us first define a larger C*-algebra F,.

Definition 2.5. Let F,, be the family consisting of all operator fields (F' = F()\))aer satis-
fying the following conditions:

1. F()) is a compact operator on L?(R") for every A € R*,

2. F(0) € C*(R?),

3. the mapping R* — B(L*(R")) : A — F()) is norm continuous,

4. Ty [ F () lop = 0.
Proposition 2.6. F,, is a C*-algebra.
Proof. The proof is straight forward. O
Proposition 2.7. The Fourier transform F : C*(H,) — F, is an injective homomorphism.

Proof. 1t is clear from the definition of F' and Proposition 2.3 that F' is a homomorphism
with values in F,,. If F'(¢) = 0, then for each irreducible representation 7 of C*(H,,), 7(c) = 0.
Hence ¢ = 0. O

Lemma 2.8. Let £ € S(R™). Then, for any X € R*,

1
€= L (EnnO

where n(\,u) is given by (2.4), the integral converging in L?(R™).



Proof. Let £ € S(R™). Then
/ (&, n(X, a,b))n(X, a,b)(x)dadb
R™ xR™

T h , b
= / (s)e M@y, (s 4+ <))ds | ¥ %%y, (z + ~)dadb
R xR™ Rn A A

(by Fourier’s inversion formula)

- /Rann E(x)ma(z + g)n,\(x 4 g)db N

giving & = 5 Jgnsmn (€ 1%, @, 0))1(A, a, b)dadb.
Furthermore, since ¢ is a Schwartz function, it follows that the mapping

(@) = (Enhab) = AP [ g(s)e oA /2 + 5))ds

is also a Schwartz function in the variables a,b. Hence the integral
Jgrwmn (& n(A, a,0))n(X, a, b)dadb converges in S(R™) and hence also in L?(R™).
O

Remark 2.9. By Lemma 2.8,

0= 1 L mOn e wde= o [ mr)e P

for any f € C*(H,), where Py, ) is the orthogonal projection onto the one dimensional
subspace Cn(A,u).

Definition 2.10. For a vector 0 # n € L*(R"), we let P, be the orthogonal projection onto
the one dimensional subspace Cn.
Define for A € R* and h € C*(R?") the linear operator

du

(2.6) va(h) = ﬁ(u)Pn(,\vu)W.

R2n

Proposition 2.11.
1. For every A € R* and h € S(R?") the integral (2.6) converges in operator norm.
2. va(h) is compact and [[A(h)[|lop < [|h]| o+ (me2n)-

3. The mapping vy : C*(R*™) — F,, is involutive, i.e. vy(h*) = vr(h)*, h € C*(R®"), where
by vy we denote also the extension of vy to C*(R?™).

Proof. Since ||Pyxullop = [[7(A, w)[|3 = 1, we have that

. du - du ||h]
Wlop = WPy o< [ (2 = 10
[ (P) llop H/R% (u) r]()\,u)‘)\‘nH p _/Rzn! ()] N

Hence the integral [po, ﬁ(u)Pn( >\7U)|f\% converges in operator norm for h € S(R?").



We compute vy (h) applied to a Schwartz function £ € S(R™):

vA(h)¢()

(2.7)

L i@ i
RQTL

2 — b, _ mia-r Tia-X
Lt ([ et ez ) émen s
[ i) )@+ D)
(where )y p(s) == na(s + ;) s € R")

b b, db

L [ i = a0+ Dma + 5) s

/R%/nhQ(x

VTR

b, dadb

s, |AY20)E(s)T( AV 25 + signX - D)n(|A|Y/ 2z + sign) - b)dbds

The kernel function hy(z,s) of vy(h) is in S(R?™) if h € S(R?"). In particular vy(h) is a

compact operator and we have the following estimate for the Hilbert-Schmidt norm, || - || z.s,
of v\(h):
- b b, db
a®les = [ [ B+ S+ )5 Pdsds
nygn  JRn A A AP

/3 2(2, A(b + ) [2lna () [2dbdads
R 7n

/ |h2(z, \s)|2dzds < oo.
R2n

Let us show that || (h)]lop < [|72]lcc- Indeed

Let h € S(R?™).

b

el = / [ e s ) @me + 5

< o LR () 0) Pl

1712, :
< 5E L lemsla
2
= ‘!};‘;n /n/n x)na(x + )| dxdb
= B el

Then h = h*. This gives

/ W% (2 — s, \(b — ))|*[na(s — = + b)[*dbdzxds
RSn

rn’d

. . du ., z du

va(h)" = (/Rzn h(U)Pn(A,u)W) = /R% h(w) By ) A
R du

= h*(u)P, — =y (hY).

/R% () n(hu) |A[™ )



Theorem 2.12. Let a € C*(H,,) and let A be the operator field A = F(a), i. e.
A(N) = m(a), A € R*, A(0) = p(a) € C*(R*).
Then

lim L) = 22 (A(0)) lop = 0.

Proof. Let f € S(H,), ¢ € L*(R"), n € S(R™), |[n|l2 = 1. Then by (2.1) and (2.7)

() = D@ = [ P — 5,2 (e + ), NE(s)ds

- 2

A b b, db
- /n /n f273(90—3,570)§(3)m(3+X)WA(UCer)WdS

= /R” /n f2,3(x — s, —g(x + 5), M)A (b)7in (b)E(s)dbds
— /n - f2,3($ — 85, A(b—2),0)&(s)Tx(s — z + b)na(b)dbds.
Let

ur(z,b) = /R CEals — w4 D — s+ 8),N) — P — s, S e+ 5),0))ds,

on(z,b) = /g(s)nA(s—x—i-b)(fZS(a:—s,—;\(x—i—s),O)—f2’3(az—s,/\(b—x),0))ds
R
and

wn(@) = [ [ P55 9 N O)I0) — (s — o+ b)dbis,

We have
28) () -neO@ = [ nEhn®d+ [ o hmnod+ue)

Thus to prove ||Tx(f) — va(p(f))llop — 0 as A — 0 it is enough to show that [|uy||2 < dx||€]l2,
H'U)\HQ < o.))\HfHQ and Hw,\HQ < 6)\H§H2, where (5)\, WH, €\ — 0as A— 0.
We have

1
P — s~ D@+ )N - PP a— s, — (x4 5),0) = A / 05w — 5.~ Da + 8)), tN)dt
2 2 0 2

and

23w 5,2 (4 5)),0) = 3@ — 5, Mb—2),0) = A3 (s — ) — (s — 2 +1)

1
. 1
« / 0o — 5, Mb— 1) + 15 (5 — ) — (s — 1)), 0t
0
Hence, since f € S(H,), there exists a constant C' > 0 such that

A A A c
23/ . N B O <
’f (‘T S, 2(x+8))7)\) f (.I' S, 2(CC+S),0)’ — |A|(1+H$—S”)2n+17

9



and

A A
’f2’3($ - S5

2@+$%®—f“@—&Aw—@ﬂﬂ

C
(14 [|lz — s|)+

< |AI(ls =z + bl + [s — =[])

for all A € R*, z,s € R™. Therefore we see that

lurl3

Similarly

loall3

IN

IN

IN

IN

+

<

= / lux(z, b)|2dxdb
R xR™

c 2
/Rann (/R" 1€(s)mr(s — x + D)||\| A5 o —sor ds> dxdb

|)\\QC’/ &\m(s — x +b)|*dbdxds
ron (1+ [z = s)?

IN

IN

IN

C NP I&]3-

/ lux(z, b)|*dzdb
R7 xR™

/ (/ l€(8)ma(s — z + B)A(lls — = +b]| + ||s — ]|
R” xR" n
C 2
a+|x—ﬂﬂM1“)‘m“
<7/ €(s)ma(s — 2+ D) PIAP(lls — 2 + b + [1s — z)?
]R3n

1
(14 [z = s[)t+!

dsdbdzx

dsdbdz
2 / )\77,/4 )\ 1/2 o b 2 )\2 o b 2
C" [ EIN N2 =+ D) PP = o+ WP e e
dsdbdzx
90" n/4 1/2 21y 12110 )2
¢ [ @M A5 =+ D)PINPls = ol s
dsdbdx
2 /)\ )\n/4 )\1/2 b 2
CIN [ | TGP A2 (s =+ )P e e
dsdbdz

2R [N A s =+ )P

C"INANZ + I3,

(14 flz = s[)*

for some constants C’, C” > 0, where the function 7 is defined by 7(s) := ||s||n(s), s € R.
Since n € S(R™), we can use the same arguments to see that

w3

IN

IN

RCCRE

C 2
n/4+1/2
/n /n/n $) I (D)|A| (Is = xll)(1+”x78”)4n+ldbds) da

— s||2dsdxdb
/An/2+1/ 2 b 2”.’1) S”
N [l 0

< C"IAME €3 n)13-

10



We have proved therefore ||7x(f) — va(p(f))|| — 0 as A — 0 for f € S(H,). Since S(H,,) is
dense in C*(H,,), the statement holds for any a € C*(H,,).
O

Definition 2.13. For n € S(R™) we define the linear mapping vy, := v : C*(R?") — F,, by
v(h)(A) = va(h), A € R* and v(h)(0) = h.
Proposition 2.14. The mapping v : C*(R?") — F,, has the following properties:
1. Jv||=1.
2. For every h,h' € C*(R®*"), we have that

tim floa(h - 1) = va(R) 0 A (H)lop = 0

and also
lim [[va (™) = va(h)"llop = 0.

3. For (a,b) € R* and h € C*(R?*") we have that

)l\li% ||V(h)()\)77()\a a,b) — iz(a, b)n(A, a, b)H2 =0.

4 limyg [l (R) V)| = [1lloo-

Proof. (1) follows from Proposition 2.11.
To prove (2) we take for h,h/ € S(R?") two elements f,f' € S(H,), such that p(f) =
hyp(f') = k. Then p(f * f') = h-h' and

[ua(h - 1Y) = vA(R) 0 vA(R)op [oa(h - B') =7 (f * f)llop

[ua(h) o va(R') = ma(f) o TA(") llop
[a(h - h') — 7 (f * f/)Hop

L N ey oA (R) = 7 (f) llop

1Pl ey l[va(h') = 7 (f)llop-

Hence, by Theorem 2.12, limy_o [|[va(f * f') — vA(f) o va(f')|lop = 0. Furthermore

[va(h™) = va(R) llop < lwa(R™) = mA(f ) llop + [[vA(R)" — 7a(f)*[lop — O
as A — 0.

(2.9)

+ + IN + A

We conclude by the usual approximation argument.

For assertion (3), using Propositions 2.4 and Theorem 2.12, it suffices to take for h € C*(R?")
an element ¢ € C*(H,,), for which p(c) = h.

The last statement follows from Proposition 2.11 and assertion (3). O

Definition 2.15. Let D,(H,) be the subspace of the algebra F,, consisting of all the fields
(F(X\))xer € Fn, such that

lim [F() = A (F(0))flop = 0.

11



Our main theorem of this section is the following characterisation of C*(H,,).
Theorem 2.16. The Heisenberg C*-algebra C*(H,,) is isomorphic to D,(H,).

Proof. First we show that D, (H,) is a *-subalgebra of F,,. Indeed if F, F' € D, (H,,), then

[A(F(0) + F'(0)) = mA(F + F)llop < [[vA(F(0)) = ma(F)llop + [lva(F'(0)) = mx(F") op — O

as A — 0.
and since Timj__o [ (F - F/(0)) — va(F(0)) o v(F/(0))]lop = 0 it follows that
[vA(F(0) - F'(0)) = ma(F - F')]lop  — 0.

Proposition 2.14 tells us that D, (H,,) is also invariant under the involution .

In order to see that D, (Hy) is closed, let F' € F,, be contained in the closure of D, (H,). Let
e > 0. Choose F' € D, (H,), such that | F—F'|| 7, < e.In particular, [|F'(0)—F"(0)||c=(r2) < €.
Thus there exists Ag > 0, such that

lma(F") = vA(E"(0)[lop <
for all |A| < |A\o|, whence

[T (EF) = vA(FO)llop = [Ima(F) — Ta(F") + mA(F") — vA(F'(0)) + vA(F'(0)) — va(£(0))]lop
3¢, for |A| < |ol.

A

Hence D, (H,) is a C*-subalgebra of F,.

Let Iy := {F € F,,F(0) = 0} and let Iog = {F € Iy;limy_o || F(\)|op = 0}. Then Iy and
Iy are closed two sided ideals of F,, and it follows from the definition of F,, that Iyg is just
the algebra Cy(R*, K). It is clear that D, (H,) NIy = Ipo. But D,(H,) N Iy is the kernel in
D, (H,) of the homomorphism &y : F,, — C*(R*"); F — F(0).

Since im(v) C D, (H,), the canonical projection D, (H,) — C*(R?") : F +— F(0) is surjective
and has the ideal Iny as its kernel. Thus D, (H,)/Ipo = C*(R?") and therefore D, (H,) is an
extension of Ipg by C*(R?"). Moreover,

Dy(Hy) = Ioo +im(v).

Since for every irreducible representation 7 of D, (H,), we have either 7(Ipp) # 0, and then
7 = ) for some A € R* or 7 = 0 on Iyp and then 7 must be a character of C*(R?"). Hence
D,(H,) = H,, as sets. That topologies of these spaces agree follows from the equality

Lim [|7(R)(A)lop = lilloo, VR € C*(R™),

which is due to Proposition 2.14.

By Theorem 2.12, F(S(H,)) C D,(H,). Hence the C*- algebra C*(H,,) can be injected into
D,(H,).

Since D, (H,,) is a type I algebra and the dual spaces of D, (H,,) and of C*(H,,) are the same,
we have that F'(C*(H,)) is equal to D, (H,,) by the Stone -Weierstrass theorem (see [Di]). O
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Remark 2.17. Another characterisation of the C*-algebra C*(H,,) is given (without proof)
in a short paper by Gorbachev [Gor|. For n = 1 and A € R* he defines an operator-valued
measure ) on R? given on the product of two intervals [s,t] x [e,d] by pur([s,t] x [e,d]) =

PSS EPStRE —1 where P*! is the multiplication operator by the characteristic function of
[t,s] on L?(R) and F is the Fourier transform on L?(R). For f € Cy(R?), A € R* let

WO = [ | Flabdm(a.)

and y(f)(0) = f. Gorbachev states that C*(H;) is isomorphic to the C*-algebra of operator
fields B = {B(\) = y(f)(\) + a, A € R*, B(0) = f, f € Co(R?),a € Co(R*,K)}.

2.4 Almost homomorphisms and Heisenberg property

Definition 2.18. A bounded mapping 7 : C*(R?") — F,, is called an almost homomorphism
if

lim [|7y(a + B) = a7a(h) = BTA(f)lop = O,
tim [|7(h - 1) = 7a(h) 0 7A(H)lop = 0.
lim [|7(h") = 77(h)*[lop = 0. @, 8 € C, f,h € C*(&™").

The mapping v from the previous section is an example of such almost homomorphism.

Let 7 be an arbitrary almost homomorphism such that 7(f)(0) = f for any f € C*(R?*").
We define as before D, (H,,) to be the subspace of the algebra F,,, consisting of all the fields
F = (F()N))aer € Fn, such that

lim [FO) =\ (FO)llop = 0.

Using the same arguments as the one in the proof of Theorem 2.16 one can easily prove the
following

Proposition 2.19. The subspace D.(H,,) of the C*-algebra F, is itself a C*-algebra. The
algebra D, (H,) is an extension of Co(R*,K) by C*(R?*"), i.e., Co(R*,K) is a closed *-ideal
in D, (H,) such that D.(H,)/Co(R*,K) is isomorphic to C*(R?").

Definition 2.20. We say that an almost homomorphism 7 : C*(R?") — F,, has the Heisen-
berg property, if the C*-algebra D,(H,,) is isomorphic to C*(H,,).

Remark 2.21. As for the mapping v we have that the dual spaces of D,(H,) and of H,
coincides as sets. The necessary and the sufficient conditions for them to coincide as topological
spaces is R

Lim [[7A(A)llop = [[Alloc,  h € C7(RT).

Remark 2.22. Using the notion of Busby invariant for a C*-algebra extension and the
pullback algebra ([W]), one can show that any extension B C F, of Co(R*,K) by C*(R?"?)
is isomorphic to D,(H,) for some almost homomorphism 7. The Busby invariant of such
extension is b : C*(R?") — Cy(R*, B(H))/Co(R*,K), b(h) = 7(h) + Co(R*, K).
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Question.
What mappings 7 give us C*-algebras D, (H,,), which are isomorphic to C*(H,)?

Using a procedure described in [De] one can construct families of C*-algebras of type D, (H,)
which are isomorphic to D, (H,,) and therefore to C*(H,,).

Next example shows that there is no topological obstacle for a C*-algebra of type D.(H,)
to be non-isomorphic to C*(H,,). Namely, there is a C*-algebras D.(H,) with the spectrum
equal to H, and such that D.(H,) # C*(Hy).

We recall first that if A, C are C*-algebras, then an extension of C by A is a short exact
sequence

(2.10) 0-A%BLc o

of C*-algebras. One says that the exact sequence splits if there is a cross-section -
homomorphism s : C — B such that fos = I¢.
It is known that the extension

(2.11) 0 — Co(R*,K) — C*(H,,) — C*(R*) =0

does not split (see [R] and references therein) while there exists a large number of splitting
extensions B and therefore non-isomorphic to C*(H,,) such that B = H,, (see [De, VII.3.4]).
Here is a concrete example inspired by [De].

Example 2.23. Let {¢7};cz2n be an orthonormal basis of the Hilbert space L?(R"). Let
P;.Z € 7", be the orthogonal projection onto the one-dimensional C¢;. We define a homo-
morphism v from C*(R?") to F,, by

v(e)(A\) == > @(IAV22) Pz, A € R*, u(9)(0) i= o, ¢ € C*(R*").
A/l
We note that since for each A # 0 and each compact subset K C R?*", the set {Z € Z*" :
A2 € K} is finite and since ¢ € Co(R??), one can easily see that v(¢)(\) is compact.
Moreover

()N lop = sup [@(|A[V22)].
Ze2n

Since we can find for every vector u € R?" and A € R* a vector Z), € Z?", such that
limy_o |A\|'/2Z) = u, we see that

(2.12) lim [[rA(@)llop = 19llo0 = llelles @en)-

3 The (C*-algebra of the thread-like Lie groups Gy

For N > 3, let gy be the N-dimensional real nilpotent Lie algebra with basis Xi,..., Xy
and non-trivial Lie brackets

(XN, Xn-1] = Xn—2,..., [ XN, Xo] = Xi.

The Lie algebra gy is (N — 1)-step nilpotent and is a semi-direct product of RXy with the
abelian ideal

N-1
(3.13) b:=> RXj.
j=1
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Let
bj :=span{X;,i=1,--- ,j},1 <j <N -1

Note that gs is the three dimensional Heisenberg Lie algebra. Let Gy := exp(gn) be the
associated connected, simply connected Lie group. Let also B; := exp(b;) and B := exp(b).
Then for 3 < M < N we have Gy ~ Gn/Bn—_pr-

3.1 The unitary dual of Gy

In this section we describe the unitary irreducible representations of Gy up to a unitary
equivalence.
For ¢ = Eé\f:_ll § X7 € gly, the coadjoint action is given by
N—1
Ad*(exp(—tXn))E = Y pi(&, 0)X],

j=1
where, for 1 <j < N —1, p;(§,t) is a polynomial in ¢ defined by
.

J
pi6t) =D &k
k

=0

~~

o

Moreover, if £; # 0 for at least one 1 < j < N — 2, then Ad*(Gn)¢ is of dimension two, and
Ad*(GN)E = { Ad*(exp(tXn))€ + RX%, t € R}. We shall always identify g} with RY via the
mapping ({n,...,&1) — Zjvzl £ X7 and the subspace V = {{ € g} : v = 0} with the dual
space of b. For £ € V and t € R, let

t-&= Ad™*(exp(tXn))¢

(3.14) = (o,gN_l —téN_2 4 ...+ (Nl_Q)!(—t)stl, Ry - tfl,&).

As in [AKLSS], we define the function E on R by

(3.15) E(t)=(t En-1=Ev1—tena+...+ !(_t)N—le.

(N —-2)

Then the mapping & — E is a linear isomorphism of V onto Py _2, the space of real polynomials
of degree at most NV — 2. In particular, § — { coordinate-wise in V' as k — oo if and only
if &(t) — &(t) for all ¢ € R. Also, the mapping £ — ¢ intertwines the Ad*-action and
translation in the following way:

EE(s) = (s (t- )

-~

=((s+1t)-On-1=E(s+1)
for £ € V and s,t € R.

By Kirillov’s orbit picture of the dual space of a nilpotent Lie group, we can describe the
irreducible unitary representations of G in the following way (see [CG] for details). For any
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non-constant polynomial p = { € Py_s we consider the induced representation 7w, = indgxg,
where x, denotes the unitary character of the abelian group B defined by:

xe(exp(U)) = e >0 U € b

Since b is abelian of codimension 1, it is a polarization at £ and so mp is irreducible. Every
infinite dimensional irreducible unitary representation of G arises in this manner up to
equivalence.

Let us describe the representation 7y, £ € b*, explicitly. The Hilbert space H; of the repre-
sentation 7, is the space L?(Gy /B, x¢) consisting of all measurable functions 5 : Gy — C,
such that €(gb) = xe(b=1)E(g) for all b € B and all g € G outside some set of measure of
Lebesgue measure 0 and such that the function |§~ | is contained in L?(Gx/B). We can identify
the space L2(Gx /B, x¢) in an obvious way with L2(R) via the isomorphism U : £ — & where
E(exp(sXn)b) := xe(b~1)E(s), s € R, b € B. Hence for g = exp(tX )b and ¢ € L%(R) we have
an explicit expression for the operator my(g):

(316)  m(g)k(s) = (g exp(sXw))
= é(bilexp((s —t)XnN))
= &(exp((s — 1) Xn) (exp((t — 5)Xn)b~ exp((s — 1) X))

= xe(exp((t — ) Xn)bexp((s — ) Xn))E(s — 1)
e—QWiK(Ad(exp((t—s)XN) 1Og(b))€(8 _ t), seR.

We can parametrize the orbit space g, /Gy in the following way. First we have a decompo-
sition

N—2
on/Gy = | av'/Gn X7,
j=1
where
gv’ = {lean (X)) =0,i=1,--,j— LUX;)# 0}
and where

X ={legy,{(X;)=0,j=1,--- ,N -2}

denotes the characters of Gy. A character of the group Gy can be written as x4, a,b € R,
where

e—?wiaxN —2mibr N _1

Xab(TN, TN-1,, - ,T1) = , (N, -, 21) € GN.

For any ¢ € g}‘vj,N — 2 > j > 1 there exists exactly one element ¢y in the G p-orbit of £,
which satisfies the conditions

bo(X;) #0,60(Xj+1) = 0,€0(XN) = 0.

We can thus parametrize the orbit space g} /G, and hence also the dual space C/}E, with the
sets

N-2
Sy = US;VUX*,
j=1
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where ng =Sy Ng* :{Keg}‘vj,é(Xk) =0,k=1,---,7—1,j+1,0(X;) # 0}. Let

N-2
gen ., _ J
so= | S
j=1
be the family of points in Sy, whose G n-orbits are of dimension 2.

3.2 The topology of é;

The topology of the dual space of Gy has been studied in detail in the papers [ALS] and
[AKLSS] based on the methods developed in [LRS] and [L]. We need the following description
of the convergence of sequences () of representations in 5;

Let (7)) be a sequence in 5]; It is said to be properly convergent if it is convergent and all
cluster points are limits. It is known (see [LRS]) that any convergent sequence has a properly
convergent subsequence.

Proposition 3.1. Suppose that (7, = mp, )k, (U € S}g\,en, k € N) is a sequence in 6’; that has
a cluster point. Then there exists a subsequence, (also indexed by the symbol k for simplicity),
called with perfect data such that (my)g is properly converging and such that the polynomials
Pk, k € N, associated to m, have the following properties: The polynomials px have all the
same degree d. Write

d
pe(t) == [J(t = af) = lu(t), t € R 4 € V.
j=1

There exist 0 < m < 2d, real sequences (tf)k and polynomials q; of degreed; < d,i=1,--- ,m,
such that

1. limg_ o0 pi(t + tF) — gi(t), t € R, 1 <i < m or equivalently limyg_o t¥ - £ — €%, where
¢ in V such that £'(t) = q;(t).

2. limg_oo [tF — 5| = +oo, for alli #4' € {1,--- ,m}.
3. IfC={ic{l,---,m,},¢ is a character } then for all i € C

(a) limg_o [tF — a?\ = +4o0 forall j € {1,--- ,d};

(b) there exists an index j(i) € {1,---,d} such that |t}F — a;?(i)| < |th — a§| for all
jefl, -, dy; let

k k k
pi = |t — aj(i)’?

k ok
(c) there exists a subset L(i) C {1,---,m}, such that limg_, ltip,_caj‘ exists in R for
k_k !
every j € L(i) and such that limy_, o ‘tipkaf‘ = +o0 for j & L(i);

(3

(d) the polynomials (tiC —i—spf) -pr int converge uniformly on compacta to the constants
klirgo(tf + sp8) - p(t) = pi(s), s € R,

and these constants define a real polynomial of degree #L(1) in s.
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0.
4. Let D={1,--- 'm}\ C and write pf := 1 fori € D. Fori € D, let

(e) If ' # i€ C, then L(i) N L(i")

J(@)={1<j<d, lim [tF - a?! = 00}.
k—o0

Suppose that (t;)r is a real sequence, such that limg_o ty - b — € in gy, then

(a) if £ is a non-character, then the sequence (|ty — t¥|)), is bounded for some i ¢ C;

)
o

(b) if £ is a character, then limy_ t,_;:a exists for some i € C and some j € L(7)

[OFS

and )y = qi(s) X} _, for some s € R.

5. Take any real sequence (s)k, such that limy_, || = +00, and such that for any i € D,
k
Je J(), ‘tkii’“ak‘ﬁ(), and fori € C, j & L(i), - —0 (md;—ﬁ—>0 as k — oo. Let

’ |a§:7t§| 7
m
S = ((JItF = kol s tf + sepf]); T := R\ Sp, kb € N.
=1

Then for any sequence (tg)k, tp € T, we have ty - I, — 0o.

We say that the sequence (sy)g is adapted to the sequence ({k).

Proof. We may assume that (my)y is properly convergent with limit set L. We can also assume,
by passing to a subsequence, that each py has degree d. By [L] the number of non-characters
in L is finite. Let this subset of non-characters be denoted by L9¢". If L9" is non-empty
by passing further to a subsequence we may assume the sequence (m); converges i,-times
to each non-character o € LI (see p.34, [AKLSS] for the definition of m-convergence and
p.253 [ALS]). Let s = Y j4en io. Then there exist non-constant polynomials g1, ..., qs of
degree d; < d, i = 1,...,s, and sequences (t¥)y, ..., (t*); such that the conditions (1) and
(2) are fulfilled and for each o € L9" there are i, equal polynomials amongst qi,...,qs
corresponding to . Then if (t)x is a real sequence such that ¢ - £, — ¢, ¢ is a non-character,
then £ corresponds to some o € L9 and we may assume that = q; forsomei e 1,...,s. It
follows from the definition of i,-convergence that the sequences (¢, - £;) and (t¥ - ¢;,) are not
disjoint implying |t; — t¥| is bounded and therefore (4a).

If (7)r has a character as a limit point then passing if necessary to a subsequence we can
find a maximal family of real sequences (tF), | < s < m < d, constant polynomials g;, non-
negative sequences (pf)) and polynomials p; satisfying (1) — (4) (see Definition 6.4 and the
discussion before in [ALS]).

The condition (4b) follows from the maximality of the family of sequences (), and the proof
of Proposition 6.2, [ALS].

Suppose now that we have a sequence (tx); such that ¢, € T} for every k and such that
some subsequence (also indexed by k for simplicity of notations) (tx - fx)r converges to an
¢ € g*. By condition (5) then either for some i € D, the sequence (¢, — t¥); is bounded, i.e
iy € [tf — skpf, tf + skpf] for k large enough, which is impossible, or we have an i € C, such
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that limg_, exists for some j € L(i). But then

tkfa?
tf—a;?
[t =t _ te —al| |tF —a|

N ok

[tk — aj| [t7 —af] [t} — af]

jtF —ak| P pf

andsotheseuence(w)'b ded, i.e tp € [tF — sppk tF + sppk] € Sy, for k1

q pf k 1S bounded, 1.e 1g i SkP; U SkP; k Ior arge
enough, a contradiction. Hence limy ti - £, = oo whenever t; € T}, for large k. ]
Example 3.2. Let us consider the Heisenberg group G3. Then S3 = S3 URZ2. Let (¢;) € Si.
Then £, = A\ X7, A € R*. The associated polynomials are pi(t) = =M\t (d = 1, ¢ = —Ag,
a’f = 1). Assume that (¢;) is a sequence with perfect data. Then either 7, converges to 7y,
le S%, or 7y, converges to a character and in this case A\, — 0 as & — oco. We shall consider

now the second case. So we have m = 1 and ¢! = X} with the corresponding polynomial
q1(t) =1 and t¥ = —1/)\;, and thus p¥ = 1/|\|. The polynomial p'(s) is the limit

klim pr(th +spf +1) = klim (=) (=1/ A + 8/ M| + 1) = klim (1 —signAgs — Agt).

Since (¢x) is a sequence with perfect data, the sign of Ay is constant, implying ¢;1(s) = 1+es,
where e = £1. A real sequence (s) is adapted to (¢x) if and only if sy — oo and sg|\x| — 0.

3.3 A (C*-condition

Let C*(Gy) be the full C*-algebra of G that is the completion of the convolution algebra
L'(Gy) with respect to the norm

/]

crta = s || [ F()mila)dglen
@GSN GN
Definition 3.3. Let f € L'(Gy). Define the function f2 on R x b* by
F2(s,0) = / f(s,u)e” 2mtlos) gy s e R, ¢ € b*.
B

We denote by LL(Gy) the space of functions f € L'(Gy), for which f2 is contained in
C>°(R x b*), the space of compactly supported C*°-functions on R x b*. The subspace L.(G y)
is dense in L'(Gy) and hence in the full C*-algebra C*(Gy) of G .

Proposition 3.4. Take f € LL(Gn) and let £ € S{". Then the operator m(f) is a kernel
operator with kernel function

fo(s,t) = fA(s—t,t-0),s,t € R.
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Proof. Indeed, for ¢ € L?(R), s € R, we have that

m(f)E(s) = . f(9)me(g)édg
= /]R /B F(t, b)e 2mitAdE((t=s)Xn) 18 e (s — 1) dbdt( by 3.16)
(3.17) _ / / F(s — £, be~2mi(Ad (exp(EX ) (O (o)) ¢ (1) dbt
- / F2(s — t, Ad* (exp(tX x (€)€(t)dt
= /f2s—tt 0)E(t)dt.

O

Definition 3.5. Let ¢ := span {Xi,, -+ ,Xny—_2}. Then ¢ is an abelian ideal of gy, the
algebra gy /c is abelian and isomorphic to R? and C := exp(c) is an abelian closed normal
subgroup of Gy.
Let

p= indgN 1

be the left regular representation of Gy on the Hilbert space L?(Gx/C). Then the image
p(C*(Gy)) is the C*-algebra of R? considered as algebra of convolution operators on L?(R?)
and hence p(C*(Gy)) is isomorphic to the algebra Cp(R?) of continuous functions vanishing
at infinity on I R2. As for the Heisenberg algebra we have that if f € L'(Gy) then the Fourier

transform p(f)(a b) of p(f) € C*(R2) equals f(a,b,0,...,0).
Our aim is to realize the C*-algebra C*(Gy) as a C*-algebra of operator fields.

Definition 3.6. For a € C*(Gy) we define the Fourier transform F'(a) of a as operator field
F(a) == {(A(0) := my(a), € € ST, A(0) := p(a) € C*(R?)}.

Remark 3.7. We observe that the spaces sS4 ,j=1,--- N — 2, are Hausdorff spaces if we
equip them with the topology of é; Indeed, let (f;)r be a sequence in ng, such that the
sequence of representations (my, ) converges to some mp with £ € Sj Then the numerical
sequence (A, := l(Xk))r converges to A := £(X;) # 0. Suppose now that the same sequence

(mg,,) converges to some other point mp. Then there exists a numerical sequence (t), such that
k—o0

Ad " (exp(tkXn))lkp converges to E‘b In particular —Apty = Ad™(exp(tiXn))l(Xjr1) —
¢'(Xj41). Hence the sequence (t;); converges to some t € R and 7y = 7. Similarly, we see
from (3.17) that for f € L{(Gx), the mapping ¢ — 7,(f) is norm continuous when restricted
to the sets S%;,j = 1,--+ , N —2, since for the sequence (7, )i, above, the functions f;, converge
in the Ly-norm to f.

Definition 3.8. Define for ¢, s € R the selfadjoint projection operator on L%(R) given by

My s€(z) == 1116 (x)§(7), 7 €R,E € L*(R),

where 1(,3),a,b € R, denotes the characteristic function of the interval (a,b) CR
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We put for s € R
Mg == My s.

More generally, for a measurable subset 7' C R, we let M7 be the multiplication operator
with the characteristic function of the set 7'. For r € R, let U(r) be the unitary operator on
L?(R) defined by

U(r)é(s) = &(s+r),& e L}(R),s eR.

Definition 3.9. Let (m, ) be a properly converging sequence in G ~ with perfect data
(t)k, (p), (sF)). Let i € C and let n € D(R™) such that  has L?norm 1. Define for
pF ke N,i € C, and u = (a,b) € R? the Schwartz function

(i kyu)(s) = n(skpf< ) + spb)e?™es s € R.

)

By Example 3.2, for N = 3 we have
n(1, k,u) = n(E£sp|Ae|s + sp(1 +b))e2™ 5.
Let P; 1., be the operator of rank one defined by
Piut = (&ni ku)n(i, k,u), € € LX(R).
Definition 3.10. For an element ¢ € S(R?) let
v(p)(i k) = s [z @(a, —b)P; pudadb, k € N,i € C.

Then for ¢ € S(R?),¢ € L?(R), s € R, we have that
V(@)L K)E)(s) = s / (0, —b) (Prpu) (5)du
R2

= sk/ (a,—b) (/f n(sgp’ <t>+skb) 2”“'(t8)dt>
R2 P

n(skp’ ( > + sib)dbda

= sk// (s —t, —b)E(t)n(sppt (:) + spb)n(spp’ <pk> + spb)dtdb
(3.18) = /R/Rﬁ(s—t,—% +p' <p§>)n(b)
(s <pi (;) _pf (;,g)) + b)E(¢)dtdb.
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Since 1 has Le-norm 1, using (3.17) and (3.18) we get
(U(tF) o me, (f) 0 U(—t7) © My, — v(F(f)(0))(i, k) 0 My, )(€)(s)

= [ Pa-rart - Pe-n-rep (o)

(3.19) (e (p%‘}) p (;)) T B)db)E(t)dt

[ ) ([ Pl =t e+ -0
(n(b) — n(sk <p’< > < )) t)dt.

Proposition 3.11. Let ¢ € C*(R?), i € C and k € N. Then

1. the operator v(p)(i, k) is compact and |[v(o) (i, k)|lop < |l¢llc=(®2)s
2. we have that v(p)(i, k)" = v(e*)(i,k);

3. furthermore
lm [Jv (@) (i, k) o (L= M pr)llop =0

k—o0

and hence
lim [[(I— M, x)ov(p)(i,k)o M, llop=0.

k—00 SkPi SkP;

Proof. 1.) It suffices to prove this for ¢ € D(R?). We have that

()i ENE = / | / / ¢2<s—t,—3>s<t>n<skp () + Bydtn(sip’ () + b)abfds

P
- / / A2——* <snkb>><><skp<p—k>+b>db| s

(where n, () := n(sup’ (p ) +b),t€R)

(]

(8= =) = (670) (5) s

IN

RQ

ol g2y | §mepl3db
®) |

2 2 2
O+ (R2) /R2 €)1 n(skp’ (E) + b)[2dbdt

IN

= |l

= [1%lIE- @) €113
Furthermore, since v(¢)(i, k) is an integral of rank one operators, v(¢) (i, k) must be compact.
Hence for every ¢ € C*(R?), v(p)(i, k) is a compact operator bounded by [ello= (m2)-

2.) Let ¢ € S(R?). Then ¢ = ¢* and so

ViR = (o [ PP gadn) =si [ FPiudu
R

R2

= s [ G @Padu = v,
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3.) Take now ¢ € S(R?), such that ¢ has a compact support. We denote by [—sypF, sppF]¢
the set R\ [—skpF, sppf]. By (3.18) for any & € L2(R), s € R we have

v(p) (i, k) o (T = M, 1) (E)(s)

~ b ) t 7
- / l/w@—u—+p<>mwm%@<
[—supf,sppf]e /R Sk

oF ) — pi(ik)) + b)dbé (t)dt = 0

Pl Pl
since for k large enough ¢?(s — t, —% +pi(p%)) =0 for any t € [—sppF, sppF]¢, b € supp(n),
s € R. Hence v(p(3, k))O(H_Mskp’?) =0for k farge enough. Since the mapping v is continuous,

it follows that limy_.cc [|v/() (4, k) (I — My, )[lop = 0 for all ¢ € C*(R?) and every i € C.
Hence also '

lim [[(T— M, ) 0 ()i, k) © M,_ellop

k—o0 Sk SkPi
= Tim [[(My, 0 v(9") (i, F) © (1= My, ) op
Jim (") (i, k) o (1= My, ) llop = 0.

IN

O]

Definition 3.12. Let Let A = (A(¢) € K(L*(R)),¢ € S%", A(0) € C*(R?)) be a field
of bounded operators. We say that A satisfies the generic condition if for every properly
converging sequence with perfect data (m, )i C G and for every limit point 7,7 € D, and
for every adapted real sequence (sg)g

(3.20) Jim (U (t) 0 A(fk) 0 U(—t7) 0 My, — A(E") 0 My |op = 0.

A satisfies the character condition if for every properly converging sequence with perfect data
(e, k> Ui € S]gven and for every limit point 7,7 € C, and for every adapted real sequence

(sk )k
kh—{EO HU@f) ° A(ek) © U(_tf) © Mskpi.“ - V(A(O))(Z7 k) ° Mskpi.“HOP = 0.

A satisfies the infinity condition, if for any properly converging sequence (7, ), {x € S%

with perfect data we have that
lim ||A(¢g) o M7, |lop = O,
k—o0

where T, = R\ (Uﬁl[tf — skpf,tf + skpf]), and that for every sequence (¢4); C S% ", for
which the sequence of orbits G - £ goes to infinity we also have

khm A(fk) = 0.
We can now define the operator field C*-algebra D7;, which will be the image of the Fourier
transform of C*(Gy).

Definition 3.13. Let D}, be the space of all bounded operator fields A = (A(¢)) €
K(L*(R)), ¢ € S, A(0) € C*(R?), such that A and the adjoint field A* satisfy the generic,
the character and the infinity conditions. Let for A € D7},

Ao == sup{[|[A(€)[lop; [[A(0)[lc=me) : £ € SF™}-
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It is clear that D7}, is a Banach space for the norm || - ||, since the generic, the character and
the infinity conditions are stable for the sum, for scalar multiplication and limits of sequences
of operator fields.

Theorem 3.14. Let a € C*(GN) and let A be the operator field defined by A = F(a) as in
Definition 3.6. Then A satisfies the generic, the character and the infinity conditions.

Proof. For the infinity condition, it suffices to remark that for any f € L!(Gy), and k large
enough, we have that fz(s —t,t-ly) =0 for every s € R, t € T}, and so 7, (f) o M7, = 0.
If G - ) goes to infinity in the orbit space, then R - ;. is outside any given compact subset
K C g} and so f2(5 —t,t-ly) =0,s,t € R and hence m, (f) = 0 for k large enough. Using
the density argument, we see that the infinity condition is satisfied for every element in the
Fourier transform of C*(Gy).

For the generic condition, let (¢x); be a properly converging sequence in Sy with perfect data.
Take i € D. Then for an adapted sequence (sy)x, f € LL(Gn) and ¢ € L?(R), s € R, we have
that

(U(t) o 1, () 0 U(—tF) 0 My, — mp(f) 0 My, ()
(3.21) = [ (Pl-trd) ) - Pt b

sk
Let pr and ¢; be the polynomials corresponding to £ and ¢¢ respectively, i.e., pi(t) = Ak(t)
and ¢;(t) = ¢i(t). Since klim rkk\ — 0, j € J(i), there exists R > 0 such that (s — ¢, (t +
—00 i aj

) lp) = (s — t,pr(t + tF), —p)(t + tF),...) is out of the support of f?if t € [—sy, s3] and
[t| > R. In fact if t € [—sg, si] we have

lpe(t +tH)| = \ckH (t+tf—af) =lex ] 185 —dfl ] |k — =1 I+t - df|

JEJ(3) JEJ(3) J JEJ ()
z\mIIu R il I1 e+t =a
jeJ (@) j&J %)

where b; is the leading coefficient of the polynomial ¢;, giving the statement. Thus by (3.21)
(U(tF) o me, (f) 0 U(—tF) o My, — mp(f) 0 My )E(s)
R
= [ (Pl-terd) ) - Pl-tt-d) o

-R
for k large enough. It is clear now that U(tF) o my, (f) o U(—tF) o My, — i (f) o My, converges
to 0 with respect to the Hilbert-Schmidt norm and hence in the operator norm.
Let a € C*(Gy). Then for any € > 0 there exists f € LL(Gy) such that ||7(f) — m(a)||op <

If = alle=(cy) < € for any representation 7 of C*(Gy). Thus for A(¢) = my(a), £ € ST we
have

() 0 Alr) 0 U(=tf) 0 My, — A(£') 0 My [lop = [IU(#F) o (A(Cr) —m,(f)) o U(~t5)llop
HU(EF) 0 ma, (f) 0 U(—t5) © My, — 76 () © Mg lop + [l (s () — A(E))llop — 0,

and hence A satisfies the generic condition.
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Choose now i € C. By (3.19), for k € N;s € R, &£ € L*(R), f € LL(GN)
U(t7) o me, (f) 0 U(—tf) o My — v(F(f(0)))(i, k) 0 M 5 (€)(5)

/Skp /f2 t(t+1) L)) — f2<s—t—£+p<t>0---70>
—SkP Sk pz

n(b)n(sk(p’ (7;) - Z(pt )) + b)db)E(t)dt +

)

[ Pt ) I 0(8) = 0l ) = ') + DD,

In order to show that

(3.22) IU(t) o e, (f) o U(=tf) 0 My, i — v(F(£(0)))(i, k) o My, i || — 0, k — oo,
consider
Skpf N N .
q(kﬁ,Z)(S,b) = / (fQ(S_t’(t_f—tf)Ek))_f2(5_t7_£+pz(ik)’o’0))
—spk Sk Py

ok (p' () - ﬂ(p@)) +B)E(t)dt = ulk, ) + v(k, 1),

where

k

u(k7i)(87b) = /Skplk(]m(s - t,pk(t + tf)v —p;c(t +t§)7 e ) - f2(8 - t,pk(t + t§)707 " ))
—SkpP

(') — P (L)) + b)Edt,

P
o(k.i)(s.b) — / (P25 — typa(t +£9,0,..) = F2(s — t,— >+ pi(-),0..))
—spk Sk i
H(Sk(pi(%) - pi(;)) +b))E(t)dt.

and let

= [ Pt ) 6B - a5 - ) + D)o
Our aim is to prove that for p(s,b) = lIrxsupp(n)(s;b)

(3.23) [uk, D)plla < wrll€ll2, [lv(k, Dplla < dkll¢]l2 and [lw(k, i)lla < r&ll€]l2

with wg, g, 7 — 0 as k — oo. This will imply

/ / (k. )5, D)) db[2ds < [l(k, )3 lnll2 < (we + 80)2 €113

which together with ||w(k,d)|2 < 7i||€]|2 will give (3.22).
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To see this we note first that since " — 0if j ¢ L(i), we have that for [t| < sjpF

IaJ £l

pk(t+ 5| = \CkH t+t; — af |—|CkH|tk—ak\ I1 |k 7 1] |k —r T
JEL(7) JEL(7) Z J
t k
> O_H|1_ Skpz |H|H PP _1|

i¢LG) 91 s P11t = 5]
for some o > 0. Thus for large k there exists R > 0 such that f2(s — t, pp(t + t¥), —p(t +
th),..) = 0 and f2(s — t,pr(t + t5),0,...) = 0 if [t| < sgp¥ and [t| > RpF. Hence the
integration over the interval [—sg, sx] can be replaced by the integration over [—Rp¥, Rp}] in
the expression for u(k, i), v(k,i)p and w(k,i). Since f € LL(Gy) we have that

) . b ot b 1
2(s—t, pp(t+t9),0, .. )= f2(s—t,p'(—)——,0,...)| < fatty iy 2 &
Pt +48),0,00= Plo=t ()= 1.0 )1 < Clt+D)—P )t
for some constant C' > 0 and m € N, m > 2 . This gives
sz ¢
okl =C [ / FINIGORD
pi
oty b £(t) 2
t4t8) — p'(—=) + —)———L—dt| dsdb
(pr(t +17) p(p§)+sk)1+\t—s|m 5
//sz *) = pi() +b)
n(sk(p —p'(—)+
R? Rl
5 gt £(t) ?
b — (=) —>22 gt dsdb
( +Sk( (k) p(pf))1+|t*8|m S
Rpl - ot é—(t) 2
3C — (=) + ) (pe(t + tF) — pP(—)) ——2—dt| dsdb
v [ [ f) )+ Doalt+18) = ) ]
sz .S . t . t - S 1 2
3C () — pi (=) + D) (P (=) — p (o)) dt| dsdb
w30 [ Jemsn )~ o)+ D) = ) —t]
v Sy gty | L tdsay
~ 7,7 _ 17 t
/R/ DRk () = ) + 0] g
(where n(b) = bn(b))
Rpf s . 2
s | / ()~ )+ D sla 1) — ()
R2 p’t p’L pz
7dtdsdb
1+t —sm
RP,L ; s i t ; t ; s 2
// B(5) = () + BB () — ()
R2 p’L pZ pz pz
b dsab
1+t —sm
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Co R
< 82||77||§H£H§+02|n!l%/Rlé(tpf)IQIPk(tp?+tf) P () prdt
k j—

2 Rl 2
L Gyl / / 0
R J—Rp¥

As pi(tpF +t¥) — pi(t) converges to 0 uniformly on each compact,

2 1
1+ [t —s|m

t 8
—) —p' (%)
P P

dtds

R
/R\ﬁ(tpf)lzlpk(tpfﬂf) P () ?pFdt < i€l

ot
with r;, — 0 as k — oo. Moreover, p'(—) — Z ozl S) for some finite
P pz pz

number of polynomials «;, §; which do not depend on k: Thus
Rp¥ 2 1
[ eor A IR
R J— Rk pi pil LAt = s
2
t — 8
e 2l )
Pi l
Cy

t ]

—) —p'(=) dtds

dtds

Rpi.c
= [ [l
R J—Rpk z' Pz

G [T
(0] /_Rpf (e)dr < ¢ 3 €1B

for a properly chosen m. It follows now that

1+t —sm

|[v(k, i)pll2 < 0k[€ll2

for some 6, — 0 as k — oo.
For w(k,i) we have

lw(k,a)2 = / P25 — 1, (t+ 15 - 0)n(0)

t

2

(10) (vl ()~ i(pt>>+b>>s<t>dbdt ds
2
t 1
< C\In\lz/‘/ I ) = Oy 01| ds
Rp} s . 1
< it [ [ w0~ oD g0 s

for some constant C'. Then using the previous arguments we get

. Ds?
lw(k,i)]* < (pk>k2\\£||§!\n\\§-

As Z—’,; — 0 we get the desired inequality for w(k,1).
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To prove the inequality for u(k,i) we have as in the previous case that

]fQ(s —t,p(t+ tf), —pj(t + tf), )= fQ(s —t,pr(t+ tf), 0,...)]
N-2 - 1
< Z n ky(241/2

n=1

for some constant C' > 0 and m € N, m > 2; here p,gn) denotes the n-th derivative of pg. For

n = 1 we have

d—1
t t]
k
Pl t+t’“|—!c;c||t—ak|§ G )||tk_j+1)|§o— ( +1)
ay pz Pi

J#

for some constant o > 0. Similar inequalities hold for higher order derivatives pén) (t + tf)

which show that

|u(k,i)||3 =
i |
— /]R2 / (F2(s — b, put + ), —ph (¢ + 5, ..) — F2(s — t, puo(t + 15),0,..))

n(Sk(pi(*k) — pz(ptk)) + b))E(t)dt|>dbds

]

IN

1 st
/RZ /Rpl Z‘p (44 O (s @' () =2 Cp) + D)E)dt Pdbds

n=1

sz |t] 1 i S St
: /R2/ ( > TH e s (=) = P'(=5)) + b)&(t)dt[*dbds

< 7H77H§H€H§
Pi

for a polynomial p. Thus we get the required inequality for u(k,7) and hence

lim [|[U(tf) o 7w, () 0 U(=tf) 0 M, i = v(F(f(0))(i,k) o M, pllop = 0.

k—oo

To show now that the character condition holds for the fields A € C*/(C?N) we use again the
density of L1(Gx) in C*(Gy).
O

Corollary 3.15. Let (m, ), be a properly converging sequence in @N with perfect data
(t)k, (pF), (sF)). Let i € C. Then for every p,v € C*(R?) we have that

lim [|v(p) (i, k) o v($) (i, k) — ()i, D)oy = 0.

k—o0

Proof. Indeed, if we take first ¢,v in S(R?), then we can choose f,g € S(Gx), such that
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p(f) = ¢, p(g) = ¢ and so, by Proposition 3.11 and Theorem 3.14,

lv(i, k) () o w(i, k) () — v (i, k) () lop
< W@ k) (p) ov(i, k)() = v(i k)(pi)) o skpkHop
+ W@ k)(p) ov(i, k) (¢) — v(i, k) (pi)) o (T = M, e ) lop
< I (@ k) () o v(i, k)(4)
—(U(tF) om (f) o U(—t5)) o (U(tF) 0 mg, (9) 0 U(~£{))) © My llop
+ (U)o me (f + g) 0 U(—tF) = v(i, k) (91)) 0 M, e lop
+ [ k)(p) ov(i, k) (¢) — v(i, k) (pi)) o (T = M, ) lop
< @i k) (@) = UE) o me (f) 0 U(=tf)) o (1= My ) 0 (i, k) (1) © My, i [lop
+ (i, k) () = (UEF) o me (f) o U(=th)) 0 My 0 (i, k) (9) © My, yelop
+ U)o me (f) 0 U(—t5)) o (v(i, k) () — (U (tk)owk( ) o U(=tF)) o My, ,pllop
+ U)o mo (f * g) 0 U(=tf) — v(i, k) (09) © My, jrllop
+ [ k) (p) ov(i, k) (¢) — v(i, k) (pp)) o (L= My, i)llop — 0 as k — oo
The usual density condition shows that the statement holds for all o, 1 € C*(R?). O]

Theorem 3.16. The space D} is a C*-algebra, which is isomorphic with C*(Gy) for every
NeN,N > 3.

Proof. Let us first show that D3}, is a C*-algebra. We prove first that D7}, is closed under
multiplication. Let A = (A(¢),¢ € Sy) and B = (B({),¢ € Sy) satisfy the generic condition
and let (7, ) C Gy be a properly convergent sequence with perfect data such that for every
limit point 7, i € D, and for every adapted real sequence (si) the fields A, B satisfy (3.20).
Then

() 0 AEr) 0 B(Ly) 0 U(~t7) 0 My, — A(£') 0 B(£') 0 My, [|op

< iU (tk)OA(fk)oU( tf) o My, — A(€") 0 M) 0 U(tf) 0 B(ly) o U(—t7) o My, |lop
+H[A(E) 0 My, o (U(tF) o B(ly) o U(—t7) 0 My, — B(£) 0 M) lop
+||Utf)0A(€k)OU( tf) o (L= My,) o (U(t7) o B(ly) 0 U(~t7) 0 My, — B(£') 0 M, )|lop
+HAWE) o (I = My,) 0 B(E') 0 My, [lop
HIU(t) 0 Al) 0 U(=tf) o (L= M) 0 B(£') 0 My [lop-

Since B(¢') is compact and I — M, converges to 0 strongly, ||(I— Ms,) o B(£")|op — 0 giving
that the product A(¢) o B(¢) satisfies the generic condition.

To see that the character condition is closed under multiplication we argue as before, but use
(T — SkPZ) v(p)(i, k) o Mskpchop — 0 which is due to Propsition 3.11.

The infinity condition is clearly closed under multiplication of fields.

By Theorem 3.14, the Fourier transform F' maps C*(G ) into D% Let us show that F' is also
onto. By the Stone-Weierstrass approximation theorem, we must only prove that the dual
space of D} is the same as the dual space of C*(Gx). We proceed by induction on N. If
N = 3, then Gy is the Heisenberg group and the statement follows from Theorem 2.16. Let

m e Dy.
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Let for M = 3,---N — 1, Ry : Dy, — Dj, be the restriction map, i.e. denote by qas : gy —
on/by—n >~ g the quotient map and by ¢f, : g%, ~ bﬁ_M — g its transpose. Then for an
operator field A € D}, we define the operator field Rys(A) over S5 by:

Rar(A)(0) = Alghy (D), L € S

It follows from the definition of D3}, that the image of Rjs is contained in D},. Hence R is
a homomorphism of C*-algebras, whose kernel I;; is the ideal

Iy ={A e Dy, A(f) =0 for all £ € Sy Nbx_ /).

Let Qur : C*(Gn) — C*(Gp) ~ C*(Gn/Bn—nr) be the canonical projection. Then the kernel
of this projection is the ideal Jys := {a € C*(Gy);m(a) = 0,£ € Sy Nbx_,,}- Let us write
Fyy for the Fourier transform C*(Gar) — Dj,. With these notations we have the formula

(3.24) Ry(Fn(a)) = Fyr(a modulo Jyr),a € C*(Gy).

Since by the induction hypothesis l/)-}"\; = FM(C@)) for every 3 < M < N —1 we see from
(3.24) that Ry (Fn(C*(GN))) = Fu(C*(Gar)) = D3, and so the mapping R)y is surjective
for such an M. Hence Dy /Iy ~ C*(G ). We have also In—y € In—2 € ... C I3.

If 7(In_1) = {0} then m € Gn/B1 C G-

Suppose now that 7(Iy_1) # {0}. Let us show that Iy_1 ~ Co(Sk, K(L*(R))). It is clear from
the definition of D% that Co(S%, K(L*(R))) C D% and so is contained in In_1. It suffices to
show now that Iy_1 C Co(Sk,K(L*(R))). For that it is enough to see that for any element
A in Iy_; and any sequence ({x); in S} for which either (7, ) converges to infinity or to a
representation 7, with £ ¢ S§, we have that limy || A(¢x)|lop = 0. This follows from the infinity
condition in the first case. In the second case no limit point of the sequence (my,) is in S}
by Remark 3.7. It suffices to show then that limy, ||A(x)||op = O for every subsequence with
perfect data (also indexed by k for simplicity of notation). We have with the notations of
Definition 3.12 that for k € N

A(Ek) = A(fk) o Msk + A(fk) o MTk~

where Si = U; (tF — sppF, 8 + sppF), T, = R\ Sy
Since A(¢) = 0 for every 7, in the limit set of the sequence (7, )1, the generic and the character
conditions say that

. k k

lim [[U(#7) o A(lk) 0 U(t77) © My, piflop = 0.

Hence
lilgn |A(Lg) o Mtg_g kHop =0

»SkP;

and since also
tim | A(t) © M lop = 0

it follows that limg||A(¢)|lop = 0. Hence In_1 C Co(Sx,K(L*(R))) and so Iy_1 =
Co(Sy, K(L*(R))). Finally w7, | is evaluation in some point £ € Sy and so 7 € Gy. This
finishes the proof of the theorem.

O
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