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Abstract

We present a continuous-discontinuous finite element ndefoo the Mindlin-Reissner
plate model based on continuous polynomials of degree2 for the transverse displace-
ments and discontinuous polynomials of degkee 1 for the rotations. We prova priori
convergence estimates, uniformly in the thickness of th&eplnd thus show that locking
is avoided. We also derive posteriorierror estimates based on duality, together with cor-
responding adaptive procedures for controlling lineacfiomals of the error. Finally, we
present some numerical results.
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1 Introduction

Plates are very common simplified models for thin structimesngineering prac-
tice. The most basic plate models are the Kirchhoff modeickvis a fourth order
partial differential equation, and the Mindlin-ReissndiR) model, which is a sys-
tem of second order partial differential equations. TheKoff model can be seen
as the limit of the MR model as the thickness of the plate tdndzero. Finite
element approximations of plate models would seem to beretsihandle with
the MR model, since then onlg® continuity is required, as opposed to the-
continuous elements needed for the Kirchhoff model. Howenrerder for a finite
element method to work asymptoticallyias- 0 in the MR model, typically rather
complicated approximations must be used.

In this paper, we will consider a family of simple continuediscontinuous Galerkin
finite element methods for the MR model, first proposed in,[b@ked on discon-
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tinuous piecewise polynomials for the discretization @tbtations and continuous
piecewise polynomials of one degree higher for the trarsgveisplacements.

When the thickness of the plate tends to zero we obtain thehKaff plate and our
scheme simplifies to the method proposed in [9]. In this cdnie also mention
the discontinuous Galerkin methods for the Kirchhoff pldéseloped by Hansbo
and Larson [12] and for the Mindlin-Reissner model by BgsiMadureira, and
Mozolevski [4].

2 The continuous problem

The Mindlin-Reissner plate model is described by the follmypartial differential
equations:

~V . -0(0) -kt ?(Vu—0)=0, inQcCR?

—Kkt V- (Vu—0)=g, inQ, @)

whereu is the transverse displacemeftis the rotation of the median surfacas
the thickness, assumed constaht; is the transverse surface load, and
o(0):=2ue(@) +A\V-01

is the moment tensor. Herg s the identity tensor anelis the strain operator with
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The material constants are given by the relations

Ek E vE
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whereE andv are the Young’s modulus and Poisson’s ratio, respectiaalgf is

a shear correction factor usually setito= 5/6. For simplicity, we shall assume
that the domain is a convex polygon and consider the case of clamped boundary
conditions:@ = 0 andu = 0 on Of).

The differential equations describing the MR plate modallwaderived from min-
imization of the sum of the bending energy, the shear enargythe potential of
the surface load,

F(u,0) :=3a(0,0) + 3b(u,0;u,0) — (g,u)q. 2)

where(-, - ) denotes thé., scalar product over the indicated domain, the bending
energya(-, -) is defined by

a(0,9) = (a(0),e(9))a,



and the shear energy-, -; -, -) by

b(u,0;v,9) := t% (Vu—6,Vov—19),. (3)

The difficulty with this model, from a numerical point of view the matching of
the approximating spaces f@randu. Ast — 0, the differencévVu — 8 must tend
to zero; if this is not allowed by the approximating spacesrésult is a deteriora-
tion of the numerical solution known as shear locking (theastenergy increases
without bound). The situation is particularly difficult ifewvish to use low order ap-
proximations. One useful approach has been to use prajsdtithe shear energy
term and consider modified energy functionals of the type

Fn(u,0) = 1a(6,0) + b(u, R,0; u, R,LO) — (g, u)q,

where Ry, is some interpolation or projection operator. This ideaarpths, e.g.,
the MITC element family of Bathe and co-workers, first intnedd in [2], and
has been used extensively in the mathematical literatyseoie convergence, see,
e.g., [1,6,8,14]. It should be noted that if the approximatorresponding tdz, 0
were to be used also for the bending energy, the element vbeutdn-conforming,
and potentially unstable. This means that we in effect haxehstruct and match
three different finite element spaces, and this is indeedthevapproach was orig-
inally conceived: as a mixed method with an auxiliary setmfnowns (the shear
stresses), cf. [2].

3 The finite element method

For simplicity, we shall consider the case of clamped boondanditions. The
transverse displacement and rotation vector are solutmmise following varia-
tional problem: findd € [H}(92)]? andu € H}(Q) such that

a(0,9) + b(u,8;v,9) = (g,v)q 4)

for all (v,9) € H}(Q) x [H}()]?. However, as is common in discontinuous
Galerkin methods, we need to assume a higher regularityeofdttution in or-
der for all terms in our scheme to make sense with the exactisolinserted. In
particular, we will needr - o(0) to be inL, on each edge (with normad) of the
mesh. Since the error estimates in fact require even mousandty, we will in the
following simply assume tha € [Hj(Q)]> N [H*(Q)]* andu € H(Q) N H*(Q).

To define the method, consider a subdivisibr= {7’} of (2 into a geometrically
conforming, quasiuniform, finite element mesh of affinengkes. Denote by
the diameter of element and byh = maxrcs hr the global mesh size parameter.
We shall use continuous, piecewise polynomial, approxonatof the transverse



displacement,
Vi={ve H (Q): v|p € PX(T)forall T € T, v =00n0N},
and discontinuous polynomials for the rotations:
Q) = {9 € [L2(0)]?: O]y € [PFY(T)*forall T € T},
wherek > 2.
We note that the approximating spaces are compatible iretgesthat
Vv e @y, Yvel,. (5)

In the limit ¢ — 0, functions in®,, are then allowed to belong &'V}, which
alleviates locking.

Remark 1 The case of quadrilateral elements is not equally easy talleam
the general isoparametric case: the gradients of functionssoparametrically
mapped elements are not polynomials, which makes thearléi) more delicate
to fulfill.

To define our method we introduce the set of edges in the ndesh{ £}, and we
split € into two disjoint subsets

¢=¢ UCg,

where¢; is the set of edges in the interior @fand &y is the set of edges on the
boundary. Further, with each edge we associate a fixed umbale: such that
for edges on the boundary is the exterior unit normal. We denote the jump of a
functionv € V}, (and analogously fov € ©,) at an edge? by [v] = v — v~ for

E € ¢;and[v] = v" for E € &g, and the averagey) = (vt +v7)/2for E € &
and(v) = v* for E € ¢, wherev® = lim, g v(x F en) with x € F.

Our method can now be formulated as follows: f?id € ©, andw” € Vj, such
that

an(6",9) +b(u", 0" v,9) = (g,v)0 (6)
forall (v,9) € V}, x ©y. In (6), the bilinear formu, (-, -) is defined by

an(0",9) = > (a(8").e(®))r — > ((n-a(6")).[9])x

Te% Ece

= > (n-a(9),10")e (7)

Fee

+2p+20)7 3 (h' (0", [9)p.



Here~ is a positive constant and; is defined by
hi = (|TH|+|T7) /(2|E]) for E =0T+ NOT", (8)
with |7'| the area ofl’, on each edge.
Using Green’s formula, we readily establish the followirgnhma.
Lemma 2 The method6) is consistent in the sense that
an(@ —0",9) +b(u—u",0 — 0" v,9)=0

forall ¥ € ©®;, andv € V},.

4 Stability estimates

For our analysis, we introduce the following edge norm

1901 = > 19172()- (9)

Ece

and mesh dependent energy-like norm

2 1 1/2 2
119]]] = %(aw),s(v))w L RGN
+ (2p 4 20 |hg 9] |12, (10)

The mesh dependent notifh- ||| can be used to bound the brok&n () norm on
®,, which is the statement of the following Lemma.

Lemma 3 There is a constant, independent of, ., and\ such that

S 2 < cl[9]]> forall d € O, (11)
Tex

PROOF. This is a discrete Korn-type inequality that results from ¢lontrol of the
rigid body rotations given by the jump terms. A complete fican be found in [5].

In order to show that the method (6) is stable, we shall firsinsthatay, (-, <) is
coercive with respect to the norm - |||, given thaty is sufficiently large.
Lemma 4 If v > ¢y, with ¢ sufficiently large, then the following estimate holds

c|[19l* < an(®, 9), (12)



forall v € ©,,.

PROOF. We first note that the following inverse estimate holds

2 (n e () < e X lo@)L,m)- (13)
TeX

This inequality is proved by scaling and finite dimensiotyalsee, e.g. [15]). Next

we note that .
2
3ol o @ < (@(9). @)

cf. Hansbo and Larson [11], and thus we conclude that

1
21+ 2X

1h2(n- o (9)) e < er Y- (o(9), (9))r. (14)

Te%

Next, we have, for each € ¢, that

2((n- o (9)),[9]))p < 62+ 207 [ (n- o (9)) |17,
+ 07 2u A+ 2N)[[h 212 ),

where we used the Cauchy-Schwarz inequality followed bthlemetic-geometric
mean inequality. Using these estimates and choosingje=g(4 c;)~!, we obtain

w(9.9) > 5 3 (o(9),e(9)r

Te%
+ (2 + 20) (v — 2¢n) |2 (9] 13

1
+ =2+ 20) R (- (9)) G
40[

> |||,

whence we must choose> ¢y > 4 ¢;.

We have thus shown the following stability property of thetinogl.
Proposition 5 Choosingy > ¢y > 4 ¢, the following coercivity condition holds:
K 2 1/2,-1 2
an(9,9) + 5 | [V = 9FdQ2 = C{[[[J]]| + &7 Ve = O | (15)

forall (¥,v) € ©) x V.

We finally remark that the constant in the inverse estimate (13) is computable
and thus the lower boung on+ is available, see [13] for details.



5 A priori error estimates

In this section, we will deriva priori error estimates for CDG methods in the case
k = 2, and show that they hold uniformly in For higher order methods, edge
effects will typically preclude global estimates becaukthe lack of regularity of
the exact solution.

5.1 An estimate in energy norm

For convenience, we introduce the scaled shear sfrass its discrete counterpart
¢", defined by

¢:=r?(Vu—0)/t* and ¢":=k2(Vu" — 0" /1% (16)

We also split the Mindlin-Reissner displacemaninto the corresponding Kirch-
hoff solutionu, corresponding to the limit cage— 0, and a remainder,., so that
u = ug + u,. We then have the following stability estimate.

Lemma 6 Assume thaf is convex and € L,(2). Then

1
Juollsey + ;i) + 1820y + S ey < € (llglase) + lglzace )

For a proof, see [7,1].

For the purpose of analysis, we introduce the nodal intetposl operatorsr; :
[H?(2)]? — W}, where

W, = {v e [H(Q) N Q)2 : v|r € [PY(T)forall T € T,

andm, : H*(Q)) — V,. We also define the operatof3, : [H?*(Q)]* — ©,, and
Q, : [H*(Q))* — ©, defined by

PUO = V?TQUQ — 7T1VUO + 7710

and
Q¢ := kY (Vru, — mVu,)) /12 + (.

Noting that
t2
WQUC = Vmu, — mVu, + ©V(u, + ug) + 7,60 = Vmyu — P,0,

and using Lemma 2, we then find

an(6 — 6", P,0) +1t*(¢ — ¢",Q,¢)a =0. (17)



We will need the following approximation properties of oumniteé element sub-
spaces.

Lemma 7 We have the following interpolation estimate:
116 = Publll + t1¢ = @uCllaiey < (I8l + Nl + el

HHICme)-

PROOF. We first recall the trace inequality (cf. [15])
' 1190 2,0m) < C (A2 191120y + 191130y ) (18)
for all 9 € [H?(T)]?. For the edge norm we have that
W10 = Pub)I i) < Chs* (16 = Publ o) + 16~ Publory )

for £ shared by adjacent elemefitsand’;, and since, by quasiuniformity;, <
hg/C, i = 1,2, we find, using (18),

hg'l6 — PuOH%Q(aTi) < Chz'(|0 — PuOH%Q(aTi)
< C (hg?l10 = PubII3 1y + 10 — Publl3nry) -
Using the definition ofP,, and applying the triangle inequality, we find
”0 — PuOH < ”0 — 71'10H + HVUO — V?TQUQH + HVUQ — 71'1VU(]”,
so that, by standard interpolation theory,
0518 = PubliE,omy < OO (1813mcy + ol )-
Similarly,
hillo(8 — Pu8)omy < C(18 — Publliner, + 3110 — Publecr,
< O3, (180 + wolliegey )

and
(0(6 ~ P.9).£(6 — Pu8))r < Ch (18130, + ol ).

By summation it thus follows that

16 = w111 < (118l + sy ).



Finally, by the triangle inequality and standard interpiolaarguments,

(172
1€ = Quillzai@) = lI€ = milllzaie) + —5- VU = Vmaur || Ly
172
+ t—gHvur = 1V 0
< Ch{t 2oy + I¢m ey )

which completes the proof of the lemma.

We can now prove the following best approximation result.

Lemma 8 We have that

118 = 6111+ £1C = ¢ ooy < C (1118 = PubIl +£1¢ = @€l )-

PROOF. By the triangle inequality

1116 — 0™||| +t|¢ — ¢l 2 < 1110 — PLO|| + ||| P.O — 0"|]| +t]|¢ — Qulll a0
+t1QuC — ¢l 1)

Further, by (17), we have that

116" — P.0|||> + ¢*|¢" — Q.Cl7, @)
< C(an(6" = P,0,0" — P,60) + *(¢" - Q.¢.¢" - Q.0))
= C (an(6 — P.8,0" — P,6) + *(¢ — Q.(.¢" - Q,0))
< (116 = Publll + ¢ - uCl1uco))
<(118" = Puslll + 11¢" - Qulllae)):

and the lemma follows.

Finally, combining Lemmas 6, 7, and 8, we obtain

Theorem 9 If Q2 is a convex domain ang € L, () we have, for8", u") solving
(6) and (0, u) solving(4), and using the definitio(iL6),

116 — 8111+ 11¢ = ¢lzacer < Ch(llgln-ri0y + tlgllan ).

uniformly int.



5.2 An estimate idy-norm

Consider the following auxiliary problem of findingand such that

—V.-o() -kt 2(Vz—1p)=0-0", inQ,

19
—kt 2V (Vz =) =u—u", inQ, (19)

which, withe, = u — " andey = 6 — 6", leads to

leullZ,@) + llesllZ, ) = anles, 1) + bleu, s 2,4)

using integration by parts and the symmetry of the formsc&eding as in the
energy estimate, we define

n = kY3(Vz — )/t (20)

and the split = 2, + z,. We also define, = ¢ — ¢" and introduce the operators
Q. and P, defined as in Lemma 6 (within the place ofx and1) in the place of
0). Then, by Lemma 2, we find that

lewllsoy + ol = anleo, s — Pap) + £lecn — Qi)
C(llealll + tecl e
< (11l = Pl + m — Qunll o)

IA

Proceeding as in Lemma 7, and using the stability result

1
lzolmsioy + llze i) + [l + il < C(leallzaor + leollam) -

adapted from [7,1], we finally obtain (under the conditioisTbheorem 9) thea
priori estimate:

lu = u"|[ o) + 10 = 8" || o0y < Ch2<||g||H1(Q) + t||9||L2(Q))- (21)

10



6 A posteriori error estimates and adaptive algorithms
6.1 A duality-basea posterioriestimate

For duality-basea posteriorierror analysis, we consider the following variant of
(29): find z andt) such that

—V.o() -kt 2 (Vz—1p) = f,, inQ 22)
—kt 2V - (Vz—1) = f,, inQ,

with zero Dirichlet boundary conditions farande. With ey = & — 8" ande, =
u — u” we find, using Lemma 2, that

(fo.€0)a+ (fu,ew)a = an(®h, €p) + b(2,; ey, €9)
= ap(€g, Y — ) + b(ey, €g; 2 — Thz, Y — TRp),

wherer;, andr, now denote arbitrary interpolants (or projections) onmréspec-
tive subspaces. Using the equilibrium equations we find that

(fo,€0)a + (fusew)o = (9,2 — Tz) — an(0", 9 — mheh) (23)

—b(u", 0" 2 — Fpz4p — mhap).
This exact relation forms the basis of our adaptive errotrobalgorithm. Follow-
ing Becker and Rannacher [3], we can now select the tefjrend f,, to try to
control general linear functionals of the errors in displaent and rotation, as long
as we have good estimates of theriori termsz — 7,z andy — m,).

6.2 Implementation

We shall establish a practical adaptive method based onT@3)is end we need to
approximate the (unknown) solution of the continuous dietiegproblem (22). In
the numerical examples presented in Sections 7.1-7.2,watstontrolling errors
in displacements, which implie = 0, and the discretized dual plate formulation
becomes: find € V; andy € ©; such that

an(9,9) +b(Z,9;0,9) = (fu,v)a, Y(v,9) € Vi x O}, (24)

where the enriched function spacé%, > V}, and®; D ©,, are constructed by
regular subdivision of the primal triangulatiagh For simplicity we letk = 2,
with quadratic and linear approximations of the transvelisplacements and the
rotation vector, respectively.

11



The positive constant in a,(-,-) must be large enough to ensure coercivity, cf.
Lemma 4. A discussion on how to compute the stability paramat the context

of the Kirchhoff plate model, can be found in [11]. Typicathyincreases with the
order of the polynomial approximation. Here we set 10, which is larger than

the asymptotic valuey, = 3/2. We also note that the presence of the shear energy
functional (3) in the Mindlin-Reissner model stabilizeg thumerical method (6)
further. The implications of the choice of stability pardereon different types of
meshes are discussed in Section 7.4.

Now, after solving (24) the error estimate (23) is evaluakmentwise, so that
eachl; € T,j =1,..., N, contributes); to the total error

Lew = (fueo ~ X ny = D(ew)

Error contributions in (23) coming from internal edges gobt®qually between
neighboring elements. Moreover, : V;* — V,, is chosen to be the nodal in-
terpolant ofz, whereasr, : ®; — ©, is an elementwisd.,-projection of the
rotation components. The stopping criterion of the adalgorithm, summarized
in Algorithm 1, is imposed on the relative error

erel := [ L(eu)/L(u)| < TOL, (25)

where TOL> 0 is a prescribed tolerance. If (25) is not satisfied, a fixdobraere
chosen as = 20%, of the elements with the largest absolute error indicdtpis
are locally refined using longest-edge bisection. The perdmce of thex posteri-
ori error estimator is evaluated in terms of the effectivityard

Tot := | L(&,)/L(ey)| .

When the computational mesh is sufficiently resolved, wetwranestimator to be
robust and accurate. The ultimate goal is to hayge= 1 exactly; however, since
we use numerical approximations of the continuous duaégatblem, this cannot
be expected and we observe a slight overestimation of tbe err

7 Numerical examples

We apply Algorithm 1 to a set of simpler model problems in ortde 1) exemplify
the behavior of the adaptive procedure; 2) study convermeates of the finite
element method (6) with respect to meshsize and plate thgskrand 3) study how
the choice of stability parameter affects the approxinmata different types of
meshes.

12



Algorithm 1 : Adaptive scheme

Data: initial mesh??, user-specified tolerance TOL
Result FE-solutions:" and#”, estimated goal quantity(u"), local error
indicatorsp;

fori=0,1,...do
solve primal plate problem (6) far* and8” on ¥’
construct dual mes&’ by regular subdivision
solve dual plate problem (24) farand) on <’
compute local error indicators by element- and edgewisgmation in (23)
if TOL > e then
| refine primal mesh locally by longest-edge bisecti®h:— Ti+!

else
| break

end
end

The stopping criteria were set to require a reasonable nuailiefinement levels,
given initial meshe&" not too coarse. The shear correction fadtet 5/6.

We remark that the solutions in Sections 7.1 and 7.2 are nob#menough to be
covered by the priori error analysis presented above. We chose these examples in
order to show that the adaptive algorithm still can prediet érror accurately. In
Section 7.3 we show the convergence in a smooth case.

7.1 An L-shaped membrane

The polygonal domairf2, with vertices at(0,0), (3,0), (3,1),(1,3),(1,1), and
(0,1), represents a clamped platé, = 0 and 8|y, = 0). The material param-
etersv = 1/3, E = 1, and the thickness = 1072. The plate is subjected to a
uniform transverse loag = 1.

We setf, = 1 to control the error in mean displacement. The exact goahtijya
was approximated by

L(u) = /Q wdQ ~ /Q PP, (26)

whereu?’? denotes the approximate solution on a densely adapted mMesbe the

effectivity index can be expected to increase slowly dutimg adaptive process.
Due to the symmetry of the domain and the uniform load, canser meshes

should also be symmetric. A concentration of elements igebgal in the vicinity

of the corner singularity &t, 3 ).

13



The FE-solutionu”, shown in Figure 1, was computed on the nearly symmetric
(abouty = 1 — z) final meshT'?, shown in Figure 2(b). Local refinements were
prominent at the interior corner, and along the boundafissodomain, where the
magnitude of the curvature of the plate becomes large. Titialimesh is shown in
Figure 2(a). The effectivity indices shown in Figure 3(bdizate the accurate and
robustness of the error estimator. The adaptive stratagpis efficient in terms of
accuracy per degree of freedom compared to uniform refineaemording to the
results presented in Figure 3(a). Data from the adaptivega®are summarized in
Table 1.

7.2 The unit square

Here, we let) = [0, 1] x[0, 1] represent a fixed platé{,n= 0). We use the material
parameters and thickness from the preceding examplefi.e:, 1, v = 1/3, and
t = 10~2. The rotation vector is given explicitly by

0 — , (27)

and the symmetric surface load
2F

1—12

+ 12z(x — Dy(y — 1) + %)

g(z,y) = (2@ =@ =2 +2) +yly - DY’ —y +2)

This corresponds to the transverse displacements

m(mx(:c —Dy(y — D (2* -z +y* —y)

+2(%(x = 1)’ + 12y — 1)) + 2% — 1)’y — 1),

u(z,y) = 28)

whose boundary values are applied as Dirichlet data. Naiette displacements
will depend on the thickness of the plate, so that we regarKilhchhoff solution,
up(w,y) = 2%(z — 1)?y*(y — 1), in the limit¢ — 0.

We let the datum of the dual plate problem be a Dirac deltatfanc
fuzé(]?—f,y—’g), <f7g>:(%7%)7

so that the error in the goal quantity simplifiesitee, ) = u(z, y) — u"(z, y) corre-
sponding to controlling the displacement error in a singi@p Since the analytical
solution is symmetric, we expect consecutive meshes toresyric as well, with
respect to the symmetry ling = z. The final mesh should be densely resolved
about(z, y).

14



The FE-solution shown in Figure 5, was computed on the negriymetric final
meshZ!!, given in Figure 4(b). The initial mesh, shown in Figure 4¢@s refined
by the algorithm, in particular in the vicinity d@f, ¢), but also along the boundary.
Figure 6(b) shows the effectivity index to be stable, witt¢,) slightly overesti-
mating L(e, ). The comparison presented in Figure 6(a) indicates theadhptive
strategy is more efficient than uniform refinement. The atser a strong singu-
larity, however, makes it less so than in the previous examlimerical data are
given in Table 2.

7.3 Convergence in meshsize and plate thickness

We now consider convergence ratesf the numerical solution in terms of mesh-
size and plate thickness. To this end, the model problematid®e7.2, with known
analytical solutions (27) and (28), will be employed.

For the displacements the result in Figure 7(a) indicatesgtimal rate of second-
order convergence ih,-norm, which is in agreement with the order of the polyno-
mial approximation. The same result can be seen in Figune &glgmptotically as

h — 0, for the scaled shear stresses (16). These numerical gamas rates concur
with (21). For the rotations, in Figure 8(a), we observe {finster convergence in
the brokenf -norm, which, by Lemma 3, is in accordance with the erromeste

of Theorem 9. The latter is also confirmed by the results imfa@(b). Moreover,
Theorem 9 predicts uniform convergencé imvhich is shown in Figure 9 for a set
of different plate thicknesses, ranging frafr! to 10-5.

Finally, in order to avoid shear locking, the differeri¢e — @ must vanish in the
limit ¢ — 0. The results in Figure 10 show th&¥u" — 6" ||, ) converges to zero,
almost quadratically, as— 0 for fixed i (as in the analytical solution). Hence the
computed shear energy(u”, "; u", 8") does as well.

7.4 Choice of stability parameter

We study the sensitivity of the numerical solution to theich®f stability parame-
ter~. This is done on three different types of meshes: 1) a meshdiiectionality;
2) an unstructured mesh; and 3) a criss-cross mesh. We rauseoalel problem
in Section 7.2, and consider the error in the midpoint disgri@ent, as a function
of v and plate thickness. The different meshes were constractedve a similar
number of elements.

The numerical method (6) has a mesh sensitivity with reqjpecfor low-orderk,
as discussed in [11], in context of the Kirchhoff plate motfe} is chosen too large
locking will occur, unless a globdl!-approximation is contained in the trial space.

15



Table 1
Goal-oriented adaptive procedure: controlling the error inean displacements on an L-
shaped membrane

iter. #elements #DOF goal quantity est. error est. exaot ereffectivity

1 384 3137 5.18-107* 8.08-107°  8.62-107° 0.93
2 492 4001 5.44-107* 5.92-107° 5.93.107° 0.99
3 604 4899 5.64-107% 4.03-10°  3.98-107° 1.01
4 830 6737 575-107% 3.14-107° 2.92-107° 1.07
5 1090 8831 584-107% 220-10° 2.01-107° 1.09
6 1422 11499 590-107% 1.53-107°  1.38-107° 1.11
7 1954 15803 5.94-107% 1.15-10°  1.01-107° 1.14
8 2686 21699 596-107% 8.67-107% 7.40-107° 1.17
9 3567 28760 598-107* 6.37-107% 5.30-107 1.20
10 4740 38179 6.00-107* 4.76-107¢ 3.83-1076 1.24
Table 2

Goal-oriented adaptive procedure: controlling the disgganent error in a point on the unit
square

iter. #elements #DOF goal quantity est.error exact errorfectvity

1 512 4161 1.1857-107% 5.49-107° 5.07-107° 1.08
2 654 5297 1.2062-10"2 3.36-107° 3.02-107° 1.11
3 840 6793 1.2159-1072 2.26-107° 2.04-107° 1.10
4 1122 9061 1.2216-10"2 1.70-107° 1.48-107° 1.14
5 1468 11831 1.2248-1072 1.34-107° 1.16-107° 1.15
6 1996 16093 1.2277-10~2 1.00-107° 8.70-1076 1.15
7 2672 21515 1.2302-1072 7.29-107% 6.26-1076 1.16
8 3604 28995 1.2318-107% 5.43-107% 4.61-10°6 1.17
9 4810 38675 1.2331-107% 3.85-107% 3.30-10°¢ 1.16
10 6492 52177 1.2341-1073 2.76-1076% 2.35.-106 1.17
11 8662 69561 1.2346-10"2 2.13-107% 1.79-107° 1.18
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The effect is evident for thin plates, as seen in Figures t11&) where the degra-
dation of the numerical solutions on oriented and unstrecktuneshes is shown.
On a criss-cross mesh, however, the finite element methambisst with respect
to locking: the existence of @!-approximation with second degree polynomials
on this type of mesh was shown by Zhang in [16]. In Figure 13 Ise aote how

u — ug ast — 0. Finally, we remark that there is no numerical locking fackier
plates; here/ can be set arbitrarily large (though this will affect the @acy on a
fixed mesh).

8 CONCLUDING REMARKS

We have presented a novel finite element method for the MirR&issner plate
model, based on the discontinuous Galerkin approach. We #ett our method
does not lock as long as we make a proper choice of a free, bypwtable, pa-
rameter. Our approach avoids the current paradigm of giojecof the rotations
in the shear energy functional, which, at least from a cotuapoint of view, re-

guires a mixed implementation. We pay the price of havings®aihigher number
of degrees of freedom; in consequence, the presented appmnoay not be com-
putationally competitive with the “best” elements avai@abNevertheless, we feel
that it is a very simple and straightforward method; in arar it is free of special
mixed element approximations.
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