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Abstract

We present a continuous-discontinuous finite element method for the Mindlin-Reissner
plate model based on continuous polynomials of degreek ≥ 2 for the transverse displace-
ments and discontinuous polynomials of degreek − 1 for the rotations. We provea priori
convergence estimates, uniformly in the thickness of the plate, and thus show that locking
is avoided. We also derivea posteriorierror estimates based on duality, together with cor-
responding adaptive procedures for controlling linear functionals of the error. Finally, we
present some numerical results.

Key words: Nitsche’s method, discontinuous Galerkin, plate model, error estimates.

1 Introduction

Plates are very common simplified models for thin structuresin engineering prac-
tice. The most basic plate models are the Kirchhoff model, which is a fourth order
partial differential equation, and the Mindlin-Reissner (MR) model, which is a sys-
tem of second order partial differential equations. The Kirchhoff model can be seen
as the limit of the MR model as the thickness of the plate tendsto zero. Finite
element approximations of plate models would seem to be easier to handle with
the MR model, since then onlyC0 continuity is required, as opposed to theC1-
continuous elements needed for the Kirchhoff model. However, in order for a finite
element method to work asymptotically ast → 0 in the MR model, typically rather
complicated approximations must be used.

In this paper, we will consider a family of simple continuous-discontinuous Galerkin
finite element methods for the MR model, first proposed in [10], based on discon-
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tinuous piecewise polynomials for the discretization of the rotations and continuous
piecewise polynomials of one degree higher for the transverse displacements.

When the thickness of the plate tends to zero we obtain the Kirchhoff plate and our
scheme simplifies to the method proposed in [9]. In this context we also mention
the discontinuous Galerkin methods for the Kirchhoff platedeveloped by Hansbo
and Larson [12] and for the Mindlin-Reissner model by Bösing, Madureira, and
Mozolevski [4].

2 The continuous problem

The Mindlin-Reissner plate model is described by the following partial differential
equations:

−∇ · σ(θ) − κ t−2 (∇u − θ) = 0, in Ω ⊂ R
2,

−κ t−2 ∇ · (∇u − θ) = g, in Ω,
(1)

whereu is the transverse displacement,θ is the rotation of the median surface,t is
the thickness, assumed constant,t3 g is the transverse surface load, and

σ(θ) := 2µε(θ) + λ∇ · θ 1

is the moment tensor. Here,1 is the identity tensor andε is the strain operator with
components

εij(θ) =
1

2

(

∂θi

∂xj

+
∂θj

∂xi

)

.

The material constants are given by the relations

κ :=
E k

2(1 + ν)
, µ :=

E

24(1 + ν)
, λ :=

νE

12(1 − ν2)
,

whereE andν are the Young’s modulus and Poisson’s ratio, respectively,andk is
a shear correction factor usually set tok = 5/6. For simplicity, we shall assume
that the domainΩ is a convex polygon and consider the case of clamped boundary
conditions:θ = 0 andu = 0 on∂Ω.

The differential equations describing the MR plate model can be derived from min-
imization of the sum of the bending energy, the shear energy,and the potential of
the surface load,

F(u, θ) := 1
2
a(θ, θ) + 1

2
b(u, θ; u, θ) − (g, u)Ω. (2)

where(·, ·)Ω denotes theL2 scalar product over the indicated domain, the bending
energya(·, ·) is defined by

a(θ,ϑ) := (σ(θ), ε(ϑ))Ω,
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and the shear energyb(·, ·; ·, ·) by

b(u, θ; v,ϑ) :=
κ

t2
(∇u − θ,∇v − ϑ)Ω . (3)

The difficulty with this model, from a numerical point of view, is the matching of
the approximating spaces forθ andu. As t → 0, the difference∇u − θ must tend
to zero; if this is not allowed by the approximating spaces the result is a deteriora-
tion of the numerical solution known as shear locking (the shear energy increases
without bound). The situation is particularly difficult if we wish to use low order ap-
proximations. One useful approach has been to use projections in the shear energy
term and consider modified energy functionals of the type

Fh(u, θ) := 1
2
a(θ, θ) + 1

2
b(u,Rhθ; u,Rhθ) − (g, u)Ω,

whereRh is some interpolation or projection operator. This idea underpins, e.g.,
the MITC element family of Bathe and co-workers, first introduced in [2], and
has been used extensively in the mathematical literature toprove convergence, see,
e.g., [1,6,8,14]. It should be noted that if the approximation corresponding toRhθ

were to be used also for the bending energy, the element wouldbe non-conforming,
and potentially unstable. This means that we in effect have to construct and match
three different finite element spaces, and this is indeed howthe approach was orig-
inally conceived: as a mixed method with an auxiliary set of unknowns (the shear
stresses), cf. [2].

3 The finite element method

For simplicity, we shall consider the case of clamped boundary conditions. The
transverse displacement and rotation vector are solutionsto the following varia-
tional problem: findθ ∈ [H1

0 (Ω)]2 andu ∈ H1
0 (Ω) such that

a(θ,ϑ) + b(u, θ; v,ϑ) = (g, v)Ω (4)

for all (v,ϑ) ∈ H1
0 (Ω) × [H1

0 (Ω)]2. However, as is common in discontinuous
Galerkin methods, we need to assume a higher regularity of the solution in or-
der for all terms in our scheme to make sense with the exact solution inserted. In
particular, we will needn · σ(θ) to be inL2 on each edge (with normaln) of the
mesh. Since the error estimates in fact require even more regularity, we will in the
following simply assume thatθ ∈ [H1

0 (Ω)]2 ∩ [H2(Ω)]2 andu ∈ H1
0 (Ω) ∩ H2(Ω).

To define the method, consider a subdivisionT = {T} of Ω into a geometrically
conforming, quasiuniform, finite element mesh of affine triangles. Denote byhT

the diameter of elementT and byh = maxT∈T hT the global mesh size parameter.
We shall use continuous, piecewise polynomial, approximations of the transverse
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displacement,

Vh = {v ∈ H1(Ω) : v|T ∈ P k(T ) for all T ∈ T, v = 0 on∂Ω},

and discontinuous polynomials for the rotations:

Θh := {ϑ ∈ [L2(Ω)]2 : ϑ|T ∈ [P k−1(T )]2 for all T ∈ T},

wherek ≥ 2.

We note that the approximating spaces are compatible in the sense that

∇v ∈ Θh, ∀v ∈ Vh. (5)

In the limit t → 0, functions inΘh are then allowed to belong to∇Vh which
alleviates locking.

Remark 1 The case of quadrilateral elements is not equally easy to handle in
the general isoparametric case: the gradients of functionson isoparametrically
mapped elements are not polynomials, which makes the relation (5) more delicate
to fulfill.

To define our method we introduce the set of edges in the mesh,E = {E}, and we
split E into two disjoint subsets

E = EI ∪ EB,

whereEI is the set of edges in the interior ofΩ andEB is the set of edges on the
boundary. Further, with each edge we associate a fixed unit normal n such that
for edges on the boundaryn is the exterior unit normal. We denote the jump of a
functionv ∈ Vh (and analogously forv ∈ Θh) at an edgeE by [v] = v+ − v− for
E ∈ EI and[v] = v+ for E ∈ EB, and the average〈v〉 = (v+ + v−)/2 for E ∈ EI

and〈v〉 = v+ for E ∈ EB, wherev± = limǫ↓0 v(x∓ ǫn) with x ∈ E.

Our method can now be formulated as follows: findθh ∈ Θh anduh ∈ Vh such
that

ah(θ
h,ϑ) + b(uh, θh; v,ϑ) = (g, v)Ω (6)

for all (v,ϑ) ∈ Vh × Θh. In (6), the bilinear formah(·, ·) is defined by

ah(θ
h,ϑ) =

∑

T∈T

(σ(θh), ε(ϑ))T −
∑

E∈E

(〈n · σ(θh)〉, [ϑ])E

−
∑

E∈E

(〈n · σ(ϑ)〉, [θh])E (7)

+ (2µ + 2λ) γ
∑

E∈E

(h−1
E [θh], [ϑ])E .
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Hereγ is a positive constant andhE is defined by

hE =
(

|T+| + |T−|
)

/(2 |E|) for E = ∂T+ ∩ ∂T−, (8)

with |T | the area ofT , on each edge.

Using Green’s formula, we readily establish the following Lemma.

Lemma 2 The method(6) is consistent in the sense that

ah(θ − θ
h,ϑ) + b(u − uh, θ − θh; v,ϑ) = 0

for all ϑ ∈ Θh andv ∈ Vh.

4 Stability estimates

For our analysis, we introduce the following edge norm

‖ϑ‖2
E =

∑

E∈E

‖ϑ‖2
L2(E). (9)

and mesh dependent energy-like norm

|||ϑ|||2 =
∑

T∈T

(σ(ϑ), ε(ϑ))T +
1

2µ + 2λ
‖h

1/2
E 〈n · σ(ϑ)〉‖2

E

+ (2µ + 2λ)‖h
−1/2
E [ϑ] ‖2

E, (10)

The mesh dependent norm||| · ||| can be used to bound the brokenH1(Ω) norm on
Θh, which is the statement of the following Lemma.

Lemma 3 There is a constantc, independent ofh, µ, andλ such that

∑

T∈T

‖ϑ‖2
H1(T ) ≤ c|||ϑ|||2 for all ϑ ∈ Θh. (11)

PROOF. This is a discrete Korn-type inequality that results from the control of the
rigid body rotations given by the jump terms. A complete proof can be found in [5].

In order to show that the method (6) is stable, we shall first show thatah (·, ·) is
coercive with respect to the norm||| · |||, given thatγ is sufficiently large.

Lemma 4 If γ > c0, with c0 sufficiently large, then the following estimate holds

c |||ϑ|||2 ≤ ah(ϑ,ϑ), (12)
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for all v ∈ Θh.

PROOF. We first note that the following inverse estimate holds

‖h1/2〈n · σ(ϑ)〉‖2
E
≤ cI

∑

T∈T

‖σ(ϑ)‖2
L2(T ). (13)

This inequality is proved by scaling and finite dimensionality (see, e.g. [15]). Next
we note that

1

2µ + 2λ
‖σ(ϑ)‖2

L2(T ) ≤ (σ(ϑ), ε(ϑ))T ,

cf. Hansbo and Larson [11], and thus we conclude that

1

2µ + 2λ
‖h1/2〈n · σ(ϑ)〉‖2

E ≤ cI

∑

T∈T

(σ(ϑ), ε(ϑ))T . (14)

Next, we have, for eachE ∈ E, that

2(〈n · σ(ϑ)〉 , [ϑ])E ≤ δ(2µ + 2λ)−1‖h1/2 〈n · σ(ϑ)〉 ‖2
L2(E)

+ δ−1(2µ + 2λ)‖h−1/2[ϑ]‖2
L2(E),

where we used the Cauchy-Schwarz inequality followed by thearithmetic-geometric
mean inequality. Using these estimates and choosing, e.g.,δ = (4 cI)

−1, we obtain

ah(ϑ,ϑ) ≥
1

2

∑

T∈T

(σ(ϑ), ε(ϑ))T

+ (2µ + 2λ)(γ − 2cI)‖h
−1/2[ϑ]‖2

E

+
1

4cI

(2µ + 2λ)−1‖h1/2 〈n · σ(ϑ)〉 ‖2
E

≥ c|||ϑ|||2,

whence we must chooseγ ≥ c0 > 4 cI .

We have thus shown the following stability property of the method.

Proposition 5 Choosingγ ≥ c0 > 4 cI , the following coercivity condition holds:

ah(ϑ,ϑ) +
κ

t2

∫

Ω
|∇v − ϑ|2dΩ ≥ C

(

|||ϑ||| + κ1/2t−1‖∇v − ϑ‖L2(Ω)

)2

, (15)

for all (ϑ, v) ∈ Θh × Vh.

We finally remark that the constantcI in the inverse estimate (13) is computable
and thus the lower boundc0 onγ is available, see [13] for details.
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5 A priori error estimates

In this section, we will derivea priori error estimates for CDG methods in the case
k = 2, and show that they hold uniformly int. For higher order methods, edge
effects will typically preclude global estimates because of the lack of regularity of
the exact solution.

5.1 An estimate in energy norm

For convenience, we introduce the scaled shear stressζ and its discrete counterpart
ζh, defined by

ζ := κ1/2(∇u − θ)/t2 and ζh := κ1/2(∇uh − θh)/t2. (16)

We also split the Mindlin-Reissner displacementu into the corresponding Kirch-
hoff solutionu0 corresponding to the limit caset → 0, and a remainderur, so that
u = u0 + ur. We then have the following stability estimate.

Lemma 6 Assume thatΩ is convex andg ∈ L2(Ω). Then

‖u0‖H3(Ω) +
1

t
‖ur‖H2(Ω) + ‖θ‖H2(Ω) + t‖ζ‖H1(Ω) ≤ C

(

‖g‖H−1(Ω) + t‖g‖L2(Ω)

)

.

For a proof, see [7,1].

For the purpose of analysis, we introduce the nodal interpolation operatorsπ1 :
[H2(Ω)]2 →W h, where

W h := {v ∈ [H1(Ω) ∩ C0(Ω)]2 : v|T ∈ [P 1(T )]2 for all T ∈ T},

andπ2 : H2(Ω) → Vh. We also define the operatorsP u : [H2(Ω)]2 → Θh and
Qu : [H2(Ω)]2 → Θh defined by

P uθ := ∇π2u0 − π1∇u0 + π1θ

and
Quζ := κ1/2 (∇π2ur − π1∇ur)) /t2 + π1ζ.

Noting that

t2

κ1/2
Quζ = ∇π2ur − π1∇ur + π1∇(ur + u0) + π1θ = ∇π2u −P uθ,

and using Lemma 2, we then find

ah(θ − θ
h,P uθ) + t2(ζ − ζh,Quζ)Ω = 0. (17)
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We will need the following approximation properties of our finite element sub-
spaces.

Lemma 7 We have the following interpolation estimate:

|||θ − P uθ||| + t‖ζ −Quζ‖L2(Ω) ≤ Ch
(

‖θ‖H2(Ω) + ‖u0‖H3(Ω) + t−1‖ur‖H2(Ω)

+ t‖ζ‖H1(Ω)

)

.

PROOF. We first recall the trace inequality (cf. [15])

h−1
T ‖ϑ‖2

L2(∂T ) ≤ C
(

h−2
T ‖ϑ‖2

L2(T ) + ‖ϑ‖2
H1(T )

)

, (18)

for all ϑ ∈ [H2(T )]2. For the edge norm we have that

h−1
E ‖[θ − P uθ]‖

2
L2(E) ≤ Ch−1

E

(

‖θ − P uθ‖
2
L2(∂T1) + ‖θ − P uθ‖

2
L2(∂T2)

)

for E shared by adjacent elementsT1 andT2, and since, by quasiuniformity,hTi
≤

hE/C, i = 1, 2, we find, using (18),

h−1
E ‖θ − P uθ‖

2
L2(∂Ti)

≤ Ch−1
Ti
‖θ − P uθ‖

2
L2(∂Ti)

≤ C
(

h−2
Ti
‖θ − P uθ‖

2
L2(Ti)

+ ‖θ − P uθ‖
2
H1(Ti)

)

.

Using the definition ofP u and applying the triangle inequality, we find

‖θ −P uθ‖ ≤ ‖θ − π1θ‖ + ‖∇u0 −∇π2u0‖ + ‖∇u0 − π1∇u0‖,

so that, by standard interpolation theory,

h−1
E ‖θ −P uθ‖

2
L2(∂Ti)

≤ Ch2
T

(

‖θ‖2
H2(Ti)

+ ‖u0‖
2
H3(Ti)

)

.

Similarly,

hE‖σ(θ − P uθ)‖
2
L2(∂Ti)

≤ C
(

‖θ − P uθ‖
2
H1(Ti)

+ h2
Ti
‖θ −P uθ‖

2
H2(Ti)

)

≤ Ch2
Ti

(

‖θ‖2
H2(Ti)

+ ‖u0‖
2
H3(Ti)

)

,

and
(σ(θ − P uθ), ε(θ − P uθ))T ≤ Ch2

T

(

‖θ‖2
H2(T ) + ‖u0‖

2
H3(T )

)

.

By summation it thus follows that

|||θ − πuθ||| ≤ Ch
(

‖θ‖H2(Ω) + ‖u0‖H3(Ω)

)

.
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Finally, by the triangle inequality and standard interpolation arguments,

‖ζ −Quζ‖L2(Ω) ≤ ‖ζ − π1ζ‖L2(Ω) +
κ1/2

t2
‖∇ur −∇π2ur‖L2(Ω)

+
κ1/2

t2
‖∇ur − π1∇ur‖L2(Ω)

≤ Ch
(

t−2‖ur‖H2(Ω) + ‖ζ‖H1(Ω)

)

,

which completes the proof of the lemma.

We can now prove the following best approximation result.

Lemma 8 We have that

|||θ − θh||| + t‖ζ − ζh‖L2(Ω) ≤ C
(

|||θ − P uθ||| + t‖ζ −Quζ‖L2(Ω)

)

.

PROOF. By the triangle inequality

|||θ − θh||| + t‖ζ − ζh‖L2(Ω) ≤ |||θ − P uθ||| + |||P uθ − θ
h||| + t‖ζ −Quζ‖L2(Ω)

+ t‖Quζ − ζ
h‖L2(Ω).

Further, by (17), we have that

|||θh −P uθ|||
2 + t2‖ζh −Quζ‖

2
L2(Ω)

≤ C
(

ah(θ
h − P uθ, θ

h −P uθ) + t2(ζh −Quζ, ζ
h −Quζ)

)

= C
(

ah(θ −P uθ, θ
h − P uθ) + t2(ζ −Quζ, ζ

h −Quζ)
)

≤ C
(

|||θ − P uθ||| + t‖ζ −Quζ‖L2(Ω)

)

×
(

|||θh − P uθ||| + t‖ζh −Quζ‖L2(Ω)

)

,

and the lemma follows.

Finally, combining Lemmas 6, 7, and 8, we obtain

Theorem 9 If Ω is a convex domain andg ∈ L2(Ω) we have, for(θh, uh) solving
(6) and(θ, u) solving(4), and using the definition(16),

|||θ − θh||| + t‖ζ − ζh‖L2(Ω) ≤ Ch
(

‖g‖H−1(Ω) + t‖g‖L2(Ω)

)

,

uniformly int.
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5.2 An estimate inL2-norm

Consider the following auxiliary problem of findingz andψ such that

−∇ · σ(ψ) − κ t−2 (∇z −ψ) = θ − θh, in Ω,

−κ t−2 ∇ · (∇z −ψ) = u − uh, in Ω,
(19)

which, witheu = u − uh andeθ = θ − θh, leads to

‖eu‖
2
L2(Ω) + ‖eθ‖

2
L2(Ω) = ah(eθ,ψ) + b(eu, eθ; z,ψ)

using integration by parts and the symmetry of the forms. Proceeding as in the
energy estimate, we define

η := κ1/2(∇z −ψ)/t2, (20)

and the splitz = z0 + zr. We also defineeζ = ζ − ζh and introduce the operators
Qz andP z defined as in Lemma 6 (withz in the place ofu andψ in the place of
θ). Then, by Lemma 2, we find that

‖eu‖
2
L2(Ω) + ‖eθ‖

2
L2(Ω) = ah(eθ,ψ −P zψ) + t2(eζ ,η −Qzη)

≤ C
(

|||eθ||| + t‖eζ‖L2(Ω)

)

×
(

|||ψ − P zψ||| + t‖η −Qzη‖L2(Ω)

)

.

Proceeding as in Lemma 7, and using the stability result

‖z0‖H3(Ω) +
1

t
‖zr‖H2(Ω) + ‖ψ‖H2(Ω) + t‖η‖H1(Ω) ≤ C

(

‖eu‖L2(Ω) + ‖eθ‖L2(Ω)

)

.

adapted from [7,1], we finally obtain (under the conditions of Theorem 9) thea
priori estimate:

‖u − uh‖L2(Ω) + ‖θ − θh‖L2(Ω) ≤ Ch2
(

‖g‖H−1(Ω) + t‖g‖L2(Ω)

)

. (21)
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6 A posteriori error estimates and adaptive algorithms

6.1 A duality-baseda posterioriestimate

For duality-baseda posteriorierror analysis, we consider the following variant of
(19): findz andψ such that

−∇ · σ(ψ) − κ t−2 (∇z −ψ) = f θ, in Ω,

−κ t−2 ∇ · (∇z −ψ) = fu, in Ω,
(22)

with zero Dirichlet boundary conditions forz andψ. With eθ = θ − θh andeu =
u − uh we find, using Lemma 2, that

(f θ, eθ)Ω + (fu, eu)Ω = ah(ψ, eθ) + b(z,ψ; eu, eθ)

= ah(eθ,ψ − πhψ) + b(eu, eθ; z − π̃hz,ψ − πhψ),

whereπh andπ̃h now denote arbitrary interpolants (or projections) onto the respec-
tive subspaces. Using the equilibrium equations we find that

(fθ, eθ)Ω + (fu, eu)Ω = (g, z − π̃hz) − ah(θ
h,ψ − πhψ)

− b(uh, θh; z − π̃hz,ψ − πhψ).
(23)

This exact relation forms the basis of our adaptive error control algorithm. Follow-
ing Becker and Rannacher [3], we can now select the termsfθ andfu to try to
control general linear functionals of the errors in displacement and rotation, as long
as we have good estimates of thea priori termsz − π̃hz andψ − πhψ.

6.2 Implementation

We shall establish a practical adaptive method based on (23). To this end we need to
approximate the (unknown) solution of the continuous dual plate problem (22). In
the numerical examples presented in Sections 7.1–7.2, we aim at controlling errors
in displacements, which impliesfθ = 0, and the discretized dual plate formulation
becomes: find̃z ∈ V ∗

h andψ̃ ∈ Θ
∗
h such that

ah(ψ̃,ϑ) + b(z̃, ψ̃; v,ϑ) = (fu, v)Ω, ∀(v,ϑ) ∈ V ∗
h ×Θ

∗
h, (24)

where the enriched function spaces,V ∗
h ⊃ Vh andΘ

∗
h ⊃ Θh, are constructed by

regular subdivision of the primal triangulationT. For simplicity we letk = 2,
with quadratic and linear approximations of the transversedisplacements and the
rotation vector, respectively.
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The positive constantγ in ah(·, ·) must be large enough to ensure coercivity, cf.
Lemma 4. A discussion on how to compute the stability parameter, in the context
of the Kirchhoff plate model, can be found in [11]. Typicallyγ increases with the
order of the polynomial approximation. Here we setγ = 10, which is larger than
the asymptotic value,γ0 = 3/2. We also note that the presence of the shear energy
functional (3) in the Mindlin-Reissner model stabilizes the numerical method (6)
further. The implications of the choice of stability parameter on different types of
meshes are discussed in Section 7.4.

Now, after solving (24) the error estimate (23) is evaluatedelementwise, so that
eachTj ∈ T, j = 1, . . . , N , contributesηj to the total error

L(eu) = (fu, eu)Ω ≈
N
∑

j=1

ηj = L(ẽu).

Error contributions in (23) coming from internal edges are split equally between
neighboring elements. Moreover,π̃h : V ∗

h → Vh is chosen to be the nodal in-
terpolant ofz̃, whereasπh : Θ

∗
h → Θh is an elementwiseL2-projection of the

rotation components. The stopping criterion of the adaptive algorithm, summarized
in Algorithm 1, is imposed on the relative error

erel := |L(eu)/L(u)| ≤ TOL, (25)

where TOL> 0 is a prescribed tolerance. If (25) is not satisfied, a fixed-ratio, here
chosen asr = 20%, of the elements with the largest absolute error indicators|ηj|
are locally refined using longest-edge bisection. The performance of thea posteri-
ori error estimator is evaluated in terms of the effectivity index

Ieff := |L(ẽu)/L(eu)| .

When the computational mesh is sufficiently resolved, we want the estimator to be
robust and accurate. The ultimate goal is to haveIeff = 1 exactly; however, since
we use numerical approximations of the continuous dual plate problem, this cannot
be expected and we observe a slight overestimation of the error.

7 Numerical examples

We apply Algorithm 1 to a set of simpler model problems in order to: 1) exemplify
the behavior of the adaptive procedure; 2) study convergence rates of the finite
element method (6) with respect to meshsize and plate thickness; and 3) study how
the choice of stability parameter affects the approximation on different types of
meshes.
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Algorithm 1 : Adaptive scheme

Data: initial meshT0, user-specified tolerance TOL
Result: FE-solutionsuh andθh, estimated goal quantityL(uh), local error

indicatorsηj

for i = 0, 1, . . . do
solve primal plate problem (6) foruh andθh onTi

construct dual mesh̃Ti by regular subdivision
solve dual plate problem (24) for̃z andψ̃ on T̃i

compute local error indicators by element- and edgewise integration in (23)
if TOL > erel then

refine primal mesh locally by longest-edge bisection:Ti → Ti+1

else
break

end
end

The stopping criteria were set to require a reasonable number of refinement levels,
given initial meshesT0 not too coarse. The shear correction factork = 5/6.

We remark that the solutions in Sections 7.1 and 7.2 are not smooth enough to be
covered by thea priori error analysis presented above. We chose these examples in
order to show that the adaptive algorithm still can predict the error accurately. In
Section 7.3 we show the convergence in a smooth case.

7.1 An L-shaped membrane

The polygonal domainΩ, with vertices at(0, 0), (1
2
, 0), (1

2
, 1

2
), (1, 1

2
), (1, 1), and

(0, 1), represents a clamped plate (u|∂Ω = 0 andθ|∂Ω = 0). The material param-
etersν = 1/3, E = 1, and the thicknesst = 10−2. The plate is subjected to a
uniform transverse loadg = 1.

We setfu = 1 to control the error in mean displacement. The exact goal quantity
was approximated by

L(u) =
∫

Ω
u dΩ ≈

∫

Ω
uappdΩ, (26)

whereuapp denotes the approximate solution on a densely adapted mesh.Hence the
effectivity index can be expected to increase slowly duringthe adaptive process.
Due to the symmetry of the domain and the uniform load, consecutive meshes
should also be symmetric. A concentration of elements is expected in the vicinity
of the corner singularity at(1

2
, 1

2
).
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The FE-solutionuh, shown in Figure 1, was computed on the nearly symmetric
(abouty = 1 − x) final meshT10, shown in Figure 2(b). Local refinements were
prominent at the interior corner, and along the boundaries of the domain, where the
magnitude of the curvature of the plate becomes large. The initial mesh is shown in
Figure 2(a). The effectivity indices shown in Figure 3(b) indicate the accurate and
robustness of the error estimator. The adaptive strategy ismore efficient in terms of
accuracy per degree of freedom compared to uniform refinement according to the
results presented in Figure 3(a). Data from the adaptive process are summarized in
Table 1.

7.2 The unit square

Here, we letΩ = [0, 1]×[0, 1] represent a fixed plate (θ|∂Ω= 0). We use the material
parameters and thickness from the preceding example, i.e.,E = 1, ν = 1/3, and
t = 10−2. The rotation vector is given explicitly by

θ =







2(x − 1)x(2x − 1)(y − 1)2y2

2(y − 1)y(2y − 1)(x − 1)2x2





 , (27)

and the symmetric surface load

g(x, y) =
2E

1 − ν2

(

x(x − 1)(x2 − x + 2) + y(y − 1)(y2 − y + 2)

+ 12x(x − 1)y(y − 1) + 1
3

)

.

This corresponds to the transverse displacements

u(x, y) =
t2

5(ν − 1)

(

12x(x − 1)y(y − 1)(x2 − x + y2 − y)

+ 2(x2(x − 1)2 + y2(y − 1)2)
)

+ x2(x − 1)2y2(y − 1)2,

(28)

whose boundary values are applied as Dirichlet data. Note that the displacements
will depend on the thickness of the plate, so that we regain the Kirchhoff solution,
u0(x, y) = x2(x − 1)2y2(y − 1)2, in the limit t → 0.

We let the datum of the dual plate problem be a Dirac delta function

fu = δ(x − x̄, y − ȳ), (x̄, ȳ) = (3
4
, 3

4
),

so that the error in the goal quantity simplifies toL(eu) = u(x̄, ȳ)−uh(x̄, ȳ) corre-
sponding to controlling the displacement error in a single point. Since the analytical
solution is symmetric, we expect consecutive meshes to be symmetric as well, with
respect to the symmetry liney = x. The final mesh should be densely resolved
about(x̄, ȳ).
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The FE-solution shown in Figure 5, was computed on the nearlysymmetric final
meshT11, given in Figure 4(b). The initial mesh, shown in Figure 4(a), was refined
by the algorithm, in particular in the vicinity of(x̄, ȳ), but also along the boundary.
Figure 6(b) shows the effectivity index to be stable, withL(ẽu) slightly overesti-
matingL(eu). The comparison presented in Figure 6(a) indicates that theadaptive
strategy is more efficient than uniform refinement. The absence of a strong singu-
larity, however, makes it less so than in the previous example. Numerical data are
given in Table 2.

7.3 Convergence in meshsize and plate thickness

We now consider convergence ratesα of the numerical solution in terms of mesh-
size and plate thickness. To this end, the model problem in Section 7.2, with known
analytical solutions (27) and (28), will be employed.

For the displacements the result in Figure 7(a) indicates the optimal rate of second-
order convergence inL2-norm, which is in agreement with the order of the polyno-
mial approximation. The same result can be seen in Figure 7(b), asymptotically as
h → 0, for the scaled shear stresses (16). These numerical convergence rates concur
with (21). For the rotations, in Figure 8(a), we observe first-order convergence in
the brokenH1-norm, which, by Lemma 3, is in accordance with the error estimate
of Theorem 9. The latter is also confirmed by the results in Figure 8(b). Moreover,
Theorem 9 predicts uniform convergence int, which is shown in Figure 9 for a set
of different plate thicknesses, ranging from10−1 to 10−6.

Finally, in order to avoid shear locking, the difference∇u − θ must vanish in the
limit t → 0. The results in Figure 10 show that‖∇uh−θh‖L2(Ω) converges to zero,
almost quadratically, ast → 0 for fixedh (as in the analytical solution). Hence the
computed shear energy1

2
b(uh, θh; uh, θh) does as well.

7.4 Choice of stability parameter

We study the sensitivity of the numerical solution to the choice of stability parame-
terγ. This is done on three different types of meshes: 1) a mesh with directionality;
2) an unstructured mesh; and 3) a criss-cross mesh. We reuse our model problem
in Section 7.2, and consider the error in the midpoint displacement, as a function
of γ and plate thickness. The different meshes were constructedto have a similar
number of elements.

The numerical method (6) has a mesh sensitivity with respectto γ for low-orderk,
as discussed in [11], in context of the Kirchhoff plate model. If γ is chosen too large
locking will occur, unless a globalC1-approximation is contained in the trial space.
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Table 1
Goal-oriented adaptive procedure: controlling the error in mean displacements on an L-
shaped membrane

iter. # elements # DOF goal quantity est. error est. exact error effectivity

1 384 3 137 5.18 · 10−4 8.08 · 10−5 8.62 · 10−5 0.93

2 492 4 001 5.44 · 10−4 5.92 · 10−5 5.93 · 10−5 0.99

3 604 4 899 5.64 · 10−4 4.03 · 10−5 3.98 · 10−5 1.01

4 830 6 737 5.75 · 10−4 3.14 · 10−5 2.92 · 10−5 1.07

5 1 090 8 831 5.84 · 10−4 2.20 · 10−5 2.01 · 10−5 1.09

6 1 422 11 499 5.90 · 10−4 1.53 · 10−5 1.38 · 10−5 1.11

7 1 954 15 803 5.94 · 10−4 1.15 · 10−5 1.01 · 10−5 1.14

8 2 686 21 699 5.96 · 10−4 8.67 · 10−6 7.40 · 10−6 1.17

9 3 567 28 760 5.98 · 10−4 6.37 · 10−6 5.30 · 10−6 1.20

10 4 740 38 179 6.00 · 10−4 4.76 · 10−6 3.83 · 10−6 1.24

Table 2
Goal-oriented adaptive procedure: controlling the displacement error in a point on the unit
square

iter. # elements # DOF goal quantity est. error exact error effectivity

1 512 4 161 1.1857 · 10−3 5.49 · 10−5 5.07 · 10−5 1.08

2 654 5 297 1.2062 · 10−3 3.36 · 10−5 3.02 · 10−5 1.11

3 840 6 793 1.2159 · 10−3 2.26 · 10−5 2.04 · 10−5 1.10

4 1 122 9 061 1.2216 · 10−3 1.70 · 10−5 1.48 · 10−5 1.14

5 1 468 11 831 1.2248 · 10−3 1.34 · 10−5 1.16 · 10−5 1.15

6 1 996 16 093 1.2277 · 10−3 1.00 · 10−5 8.70 · 10−6 1.15

7 2 672 21 515 1.2302 · 10−3 7.29 · 10−6 6.26 · 10−6 1.16

8 3 604 28 995 1.2318 · 10−3 5.43 · 10−6 4.61 · 10−6 1.17

9 4 810 38 675 1.2331 · 10−3 3.85 · 10−6 3.30 · 10−6 1.16

10 6 492 52 177 1.2341 · 10−3 2.76 · 10−6 2.35 · 10−6 1.17

11 8 662 69 561 1.2346 · 10−3 2.13 · 10−6 1.79 · 10−6 1.18
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The effect is evident for thin plates, as seen in Figures 11 and 12, where the degra-
dation of the numerical solutions on oriented and unstructured meshes is shown.
On a criss-cross mesh, however, the finite element method is robust with respect
to locking: the existence of aC1-approximation with second degree polynomials
on this type of mesh was shown by Zhang in [16]. In Figure 13 we also note how
u → u0 ast → 0. Finally, we remark that there is no numerical locking for thicker
plates; hereγ can be set arbitrarily large (though this will affect the accuracy on a
fixed mesh).

8 CONCLUDING REMARKS

We have presented a novel finite element method for the Mindlin-Reissner plate
model, based on the discontinuous Galerkin approach. We show that our method
does not lock as long as we make a proper choice of a free, but computable, pa-
rameter. Our approach avoids the current paradigm of projections of the rotations
in the shear energy functional, which, at least from a conceptual point of view, re-
quires a mixed implementation. We pay the price of having to use a higher number
of degrees of freedom; in consequence, the presented approach may not be com-
putationally competitive with the “best” elements available. Nevertheless, we feel
that it is a very simple and straightforward method; in particular it is free of special
mixed element approximations.
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[4] P Bösing, A. L. Madureira, I. Mozolevski, A new interiorpenalty discontinuous
Galerkin method for the Reissner-Mindlin model, Mathematical Models and Methods
in Applied Sciences 20 (2010) 1343–1361.

[5] S. C. Brenner, Korn’s inequalities for piecewiseH1 vector fields, Mathematics of
Computation 73 (2004) 1067–1087.

17



[6] G. Brezzi, M. Fortin, R. Stenberg, Error analysis of mixed-interpolated elements for
Reissner-Mindlin plates, Mathematical Models and Methodsin Applied Sciences 1
(1991) 125–151

[7] D. Chapelle, R. Stenberg, An optimal low-order locking-free finite element method
for Reissner-Mindlin plates, Mathematical Models and Methods in Applied Sciences
8 (1998) 407–430

[8] R. Duran, E. Liberman, On mixed finite-element methods for the Reissner-Mindlin
plate model, Mathematics of Compututation 58 (1992) 561–573.

[9] G. Engel, K. Garikipati, T. J. R. Hughes, M. G. Larson, L. Mazzei, R. L.
Taylor, Continuous/discontinuous approximations of fourth-order elliptic problems in
structural and continuum mechanics with applications to thin bending elements and
strain gradient elasticity, Computer Methods in Applied Mechanics and Engineering
191 (2002) 3669–3750

[10] P. Hansbo, P. M. G. Larson, AP 2-continuous,P 1-discontinuous Galerkin method
for the Mindlin-Reissner plate model, in: Numerical Mathematics and Advanced
Applications: ENUMATH 2001, F. Brezzi, A. Buffa, S. Corsaro, and A. Murli (Eds.),
Springer, Milan, 2003, pp. 765–774.

[11] P. Hansbo, M. G. Larson, A posteriori error estimates for continuous/discontinuous
Galerkin approximations of the Kirchhoff-Love plate, Preprint 2008:10, Department
of Mathematical Sciences, Chalmers University of Technology, 2008.

[12] P. Hansbo, M. G. Larson, A discontinuous Galerkin method for the plate problem,
Calcolo 39 (2002) 41–59.

[13] P. Hansbo, M. G. Larson, Discontinuous Galerkin methods for incompressible and
nearly incompressible elasticity by Nitsche’s method, Computer Methods in Applied
Mechanics and Engineering 191 (2002) 1895–1908
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Fig. 1. The adapted FE-solutionuh at the last refinement leveli = 10

(a) Initial meshT0 (b) Final meshT10

Fig. 2.
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Fig. 5. The adapted FE-solutionuh at the last refinement leveli = 11
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(a) 8 192-element mesh with direction-
ality.
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(a) 8 198-element unstructured mesh.
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(a) 8 192-element criss-cross mesh.
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