Toward perceptually grounded formal semantics *Simon Dobnik, Staffan Larsson, Robin Cooper*

Department of Philosophy, Linguistics and Theory of Science University of Gothenburg, Sweden

GÖTEBORGS UNIVERSITET

Aims

Computational models of dynamic meaning in dialogue

Computational models of symbolic and perceptual meaning

Traditional formal semantics

X	•	Ind
c _{a-shape}	•	apple-shape(x)
$c_{a-colour}$	•	apple-colour(x)
$c_{a-taste}$	•	apple-taste(x)
C _{a-smell}	•	apple-smell(x)

Proofs objects of record types are **records** which include sensor readings (verification).

	•	Ind
)	•	Ind
a	•	loc(a)
Ь	•	loc(b)
T	•	ClassifierKnowledge
rel	•	$f(l_a, l_b, \pi) = \begin{cases} \text{left}(a, b) \end{cases}$

Model-theoretic semantics does not deal with perception and dynamic meaning.

#1: What is the norm for set membership?

This is a green ball.

True if in a given model the referent a_{37} is a member of a set containing green objects $F(\text{green}) = \{\dots, a_{37}, \dots\}$.

#2: Norm affected by perception (geometry) *The chair is to the left of the table.* True if in a given model the referents a_{56} and b_{61} can be found in the set of pairs defined by $F(\text{left}) = \{..., \langle a_{56}, b_{61} \rangle, ... \}$.

#3: Competition of norms: geometry vs. function *The umbrella is over a man.*

#4: Dynamic norm

A: I like bears.

A: *That's a nice bear.*B: *Yes, it's a nice* panda.

The corrective feedback from a human is used to update the relation type:

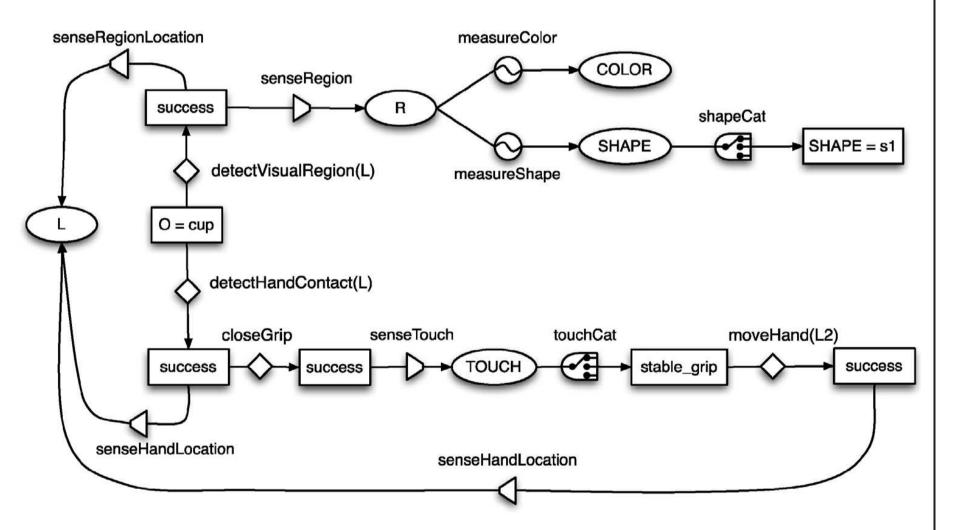
 $\pi' = \text{retrain_classifier}(\pi, l_a, l_b, \text{behind})$

 $f(\mathbf{l}_a, \mathbf{l}_b, \pi) = \begin{cases} \text{left}(a, b) \lor \\ \text{behind}(a, b) \end{cases}$

Coordinating symbolic knowledge

The robot does not know about tables yet and the perceptional knowledge alone may not be enough to distinguish between tables and chairs.

a:Ind c_{ch} :chair(a) c_{ot} :class(a,furniture) c_{osh} :chair-shape(a)


R: This is a chair.
H: No, it's a table.
R: A table.
H: One sits on a chair but one keeps food on a table.
R: Aha.

The object shape classifier is updated so that it also evaluates to table-shape(a) (π' = retrain_classifier(π , RVector^{*n*},table)) and a new record type for tables is created. New categorical type constraints are also added.

A: Panda.

Grounding language in vision

Conceptual categories (*a cup*) are defined by action and perception (Roy 2005, p.190).

No account of how distributional and categorical meaning is:

- composed;
- reasoned about;
- compared;
- modified: refined or generalised.

$$\begin{bmatrix} c_{sf} & : & prf(sfocus(sr_{img},a)) \\ \pi & : & ClassifierKnowledge \end{bmatrix}$$

$$\left(\begin{bmatrix} c_{a-shape} = \begin{bmatrix} a & = & r.a \\ sr_{img} & = & r.sr_{img} \\ c_{sf} & = & r.c_{sf} \\ \pi & = & r.\pi \end{bmatrix} : f(r.sr_{img}, r.\pi, r.a)$$

Classification is a mapping from sensory readings to types:

 $f(\mathbf{r.sr}_{img}, \mathbf{r.}\boldsymbol{\pi}, \mathbf{r.a}) = \begin{cases} \text{apple-shape}(\mathbf{r.a}) \lor \\ \neg \text{ apple-shape}(\mathbf{r.a}) \end{cases}$

RVectorⁿ

 λr :

If something is apple-shaped, it might be an apple (cf. enthymemes).

$$\lambda r: \begin{bmatrix} a & : & \text{Ind} \\ c_{a-shape} & : & \text{apple-shape(a)} \end{bmatrix} \dots$$
$$(\begin{bmatrix} c_{apple} & : & \text{apple(r.a)} \end{bmatrix})$$

The more constraints can be verified/grounded, the higher the certainty that an individual is an apple.

TTR and dynamic meaning

a	•	Ind
b	•	Ind
c_{ch}	•	chair(a)
C _{ot}	•	class(a,furniture)
C _{ot}	•	class(b,human)
C _S	•	provides_support(a,b)
C _{osh}	•	chair-shape(a)
-		_
	•	Ind

a	•	Ind
b	•	Ind
c _{tb}	•	table(a)
C _{ot}	•	class(a,furniture)
C _{ot}	•	class(b,food)
C _S	•	provides_support(a,b)
C _{osh}	•	table-shape(a)

Categorical world knowledge is useful for directing

Type Theory with Records (TTR)

Types are intensional categories. Perception is assignment to types. Agents may have different type systems.

a : Apple Proof objects : Type

Types may have a more complex structure: **record types**.

The meaning in TTR can be updated as agents interact in dialogue. Each agent has its own **take on a situation**. Agents coordinate meaning.

Coordinating perceptual knowledge

R: The chair is to the left of the table.H: The chair is behind the table.R: OK.

Initially, the robot classifies every relation as "to the left of".

visual search and modelling object affordances.

References

Roy, Deb. 2005. Semiotic schemas: a framework for grounding language in action and perception. *Artificial Intelligence* 167:170–205.

Cooper, Robin. 2005. Austinian truth, attitudes and type theory. *Research on Language and Computation* 3:333–362.

Larsson, Staffan. 2011. The TTR perceptron: Dynamic perceptual meanings and semantic coordination. *Proceedings of the 15th Workshop on the Semantics and Pragmatics of Dialogue* (*SemDial 2011 - Los Angelogue*). September 21–23, 2011 Los Angeles, California. 140–148.