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Type 2 diabetes mellitus (T2DM) is a progressive, 
metabolic disease characterized by reduced insu-

lin sensitivity (S) and loss of beta-cell function, 
resulting in hyperglycemia. Fasting plasma glucose 
(FPG) and fraction-glycosylated hemoglobin A1c 
(HbA1c) are used as biomarkers to assess short- and 
long-term glycemic control, respectively. In addition, 

measuring the endogenous fasting insulin level (FI) 
estimates of S and beta-cell function can be obtained.

Population pharmacokinetic-pharmacodynamic 
(PKPD) modeling1 is a powerful method to character-
ize relationships between drug exposure and biomar-
kers in T2DM.2-4 A mechanistic approach can provide 
better understanding of drug action and disease. In 
addition, data from different studies, including het-
erogeneous patient populations and experimental 
conditions, can be used, and such models will likely 
have better predictive power. One prediction of inter-
est is the effects of antidiabetic therapies on long-
term disease progression, based on data from relative 
short-term studies (eg, 1 year or less).

In recent years, several PKPD models have been 
developed for T2DM and the pharmacodynamics of 
oral antidiabetics.5 A semi-mechanistic model devel-
oped by de Winter et al4 included disease progres-
sion and the interplay between FI, FPG, and HbA1c. 
This population PD model was based on 2 large 
phase III studies in drug-naive patients treated with 

Type 2 diabetes mellitus (T2DM) is a progressive, metabolic 
disorder characterized by reduced insulin sensitivity and 
loss of beta-cell mass (BCM), resulting in hyperglycemia. 
Population pharmacokinetic-pharmacodynamic (PKPD) 
modeling is a valuable method to gain insight into disease 
and drug action. A semi-mechanistic PKPD model incorpo-
rating fasting plasma glucose (FPG), fasting insulin, insulin 
sensitivity, and BCM in patients at various disease stages 
was developed. Data from 3 clinical trials (phase II/III) with 
a peroxisome proliferator-activated receptor agonist, tesagli-
tazar, were used to develop the model. In this, a modeling 
framework proposed by Topp et al was expanded to incorpo-
rate the effects of treatment and impact of disease, as well as 
variability between subjects. The model accurately described 
FPG and fasting insulin data over time. The model included 
a strong relation between insulin clearance and insulin  

sensitivity, predicted 40% to 60% lower BCM in T2DM 
patients, and realistic improvements of BCM and insulin 
sensitivity with treatment. The treatment response on insulin 
sensitivity occurs within the first weeks, whereas the positive 
effects on BCM arise over several months. The semi- 
mechanistic PKPD model well described the heterogeneous 
populations, ranging from nondiabetic, insulin-resistant 
subjects to long-term treated T2DM patients. This model also 
allows incorporation of clinical-experimental studies and 
actual observations of BCM.
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pioglitazone, metformin, or gliclazide and incorpo-
rated components for beta-cell function and insulin 
sensitivity and further attempted to distinguish 
immediate treatment effects from effects on long-
term disease progression. The population PKPD 
model developed by Hamrén et al3 incorporated the 
characteristics of red blood cell (RBC) aging and gly-
cosylation of Hb and was based on a phase II study 
investigating the effects of 12 weeks’ treatment with 
tesaglitazar in both drug-naive subjects and patients 
previously on antidiabetic medication. As for other 
peroxisome proliferator-activated receptor (PPAR) 
agonists,6 tesaglitazar has been observed to decrease 
Hb in a dose- and time-dependent manner,7,8 which 
was incorporated in the model.

A semi-mechanistic model that integrates beta-
cell mass (BCM), insulin, and glucose dynamics has 
been proposed by Topp et al.9 To our knowledge, 
this model, derived from different sources in the 
literature, has never been applied to clinical data. 
Furthermore, Topp et al9 remark that the model nei-
ther incorporates the effects of antidiabetic treat-
ment nor all known physiological effects. In the 
present study, the underlying structure in the Topp 
model was used and further developed with data 
from 3 clinical studies (phase II/III) with tesaglitazar.

Tesaglitazar is a dual PPAR α/γ agonist previously 
in development for treatment of T2DM. Clinical devel-
opment was discontinued in May 2006 when results 
from phase III studies indicated that the overall  
benefit-risk profile was unlikely to give patients an 
advantage over currently available therapies. 
Tesaglitazar activates PPAR α/γ, which increases insu-
lin sensitivity in liver, fat, and skeletal muscle cells; 
increases peripheral glucose uptake; and decreases 
hepatic glucose output, similar to the effects of PPARγ 
agonists such as rosiglitazone and pioglitazone.10 
When treatment with PPAR agonists is initiated, the 
response in FI is relatively rapid, and a pseudo steady 
state is reached within weeks after initiation of treat-
ment. However, the decline in FPG is slower, with a 
pseudo steady state reached within months.4 This pat-
tern is probably a result of slowly increasing BCM11-14 
simultaneous to the enhanced insulin sensitivity that 
follows with improved lipid metabolism.15 For accu-
rate predictions of long-term disease-modifying 
effects, the treatment effects seen over the first 6 
months have to be separated from the underlying dis-
ease progression and any protective effects that treat-
ment may have on this process.

Our model predictions of BCM assume that beta-
cell function per mg BCM is the same during fasting 
in T2DM patients and normal, healthy subjects. 
Consequently, our predicted BCM may be seen as 

functional rather than actual BCM. On the other hand, 
as seen later in this work, our predicted BCM is in 
accordance with reports from autopsy studies, giving 
some support to this model assumption. Also, it 
should be emphasized that our BCM is mechanisti-
cally closer to the actual BCM than the beta-cell func-
tion calculated through the homeostasis model 
assessment (HOMA)16 used in the model by de Winter 
et al.4 As a measure of BCM, the HOMA beta-cell func-
tion is confounded by the deteriorating insulin sensi-
tivity and insulin clearance that occurs with 
progressing diabetes.17-19 Indeed, HOMA does not 
intend to measure BCM and is instead useful as a 
measure of how much a subject’s beta-cell function 
would have to increase to obtain normoglycemia, all 
other disease-related factors remaining the same.

The purpose of this work was to further develop the 
semi-mechanistic model suggested by Topp et al9 to 
better describe the dynamics of FPG, FI, S, and BCM 
with and without antidiabetic treatment in a heteroge-
neous population, including insulin-resistant subjects 
and patients at different T2DM disease stages.

METHODS

Trial Design and Participants

Three completed clinical phase II/III trials with tes-
aglitazar were included in the analysis: the Study in 
Insulin Resistance (SIR, SH-SBT-0001), a dose-finding 
study in nondiabetic subjects with hypertriglyceri-
demia and abdominal obesity (ie, signs of insulin 
resistance)7; the Glucose and Lipid Assessment in 
Diabetes (GLAD, SH-SBD-0001) trial, a dose-finding 
study in T2DM patients8; and the phase III GALLANT6 
(D6160C00030) trial, a 6-month study with 0.5 and 1 
mg of tesaglitazar compared with 3 doses of pioglita-
zone.20 Subjects in the pioglitazone arm were excluded 
from the current analysis. The GLAD and GALLANT6 
studies included both drug-naive patients and patients 
treated with oral antidiabetic medication prior to the 
study. For brevity, these patients are referred to as 
naive and pretreated.

The total number of participants treated with tes-
aglitazar or placebo in the 3 studies was 1460. 
Available data were tesaglitazar plasma concentra-
tions (C), FPG, FI, Hb, and, except for the SIR study, 
also HbA1c (see Table I).

Semi-Mechanistic PKPD Model Including  
Fasting Insulin and Beta-Cell Mass

Topp et al9 proposed a model for BCM (fasting) insulin 
and glucose dynamics in normal subjects. In the current 

 at PFIZER, INC. on October 4, 2010jcp.sagepub.comDownloaded from 

http://jcp.sagepub.com/


 863

Ta
bl

e 
I 

S
tu

d
y 

D
es

ig
n

 a
n

d
 P

at
ie

n
t 

C
h

ar
ac

te
ri

st
ic

s 
at

 S
tu

d
y 

E
n

tr
y

N
u

m
be

r 
of

 O
bs

er
va

ti
on

s 
 

P
er

 S
u

bj
ec

t,
  

M
ea

n
 (

R
an

ge
)

S
tu

d
y

R
u

n
-I

n
  

D
u

ra
ti

on
,  

d
, M

ea
n

  
(R

an
ge

)

Tr
ea

tm
en

t 
 

d
u

ra
ti

on
, d

,  
M

ea
n

  
(R

an
ge

)
F

P
G

F
I

H
b

H
bA

1c

In
ve

st
ig

at
ed

  
D

os
es

, m
g

P
re

tr
ea

tm
en

t,
  

D
G

R

N
u

m
be

r 
 

of
  

S
u

bj
ec

ts

F
P

G
,  

m
m

ol
/L

,  
M

ea
n

  
(S

D
)

F
I,

  
p

m
ol

/L
, 

M
ea

n
  

(S
D

)

H
b,

  
g/

L
,  

M
ea

n
  

(S
D

)

H
bA

1c
, 

%
,  

M
ea

n
  

(S
D

)

S
ex

,  
%

  
M

al
e

B
od

y 
 

W
ei

gh
t,

 k
g,

  
M

ea
n

  
(S

D
)

S
IR

55
(4

1-
92

)
78

(1
0-

10
1)

8.
6

(3
-1

0)
6.

4
(2

-8
)

6.
5

(2
-8

)
0

(0
-0

)
0,

 0
.1

, 0
.2

5,
 0

.5
, 1

N
ai

ve
(1

)
37

7
5.

9
(0

.7
)

94
.9

(7
0.

2)
14

7
(1

1)
—

77
94

.5
(1

5.
7)

G
L

A
D

43
(2

0-
67

)
73

(1
-1

07
)

9.
8

(4
-1

3)
6.

3
(2

-8
)

7.
6

(2
-1

4)
3.

8
(1

-6
)

0,
 0

.1
, 0

.5
, 1

, 2
, 3

N
ai

ve
 (

2)
13

0
9.

0
(1

.5
)

74
.8

(5
2.

1)
14

7
(1

1)
7.

3
(1

.4
)

63
91

.8
(1

7.
2)

P
re

tr
ea

te
d

 (
4)

28
2

8.
5

(1
.7

)
70

.7
(4

8.
5)

14
6

(1
3)

7.
0

(1
.1

)
57

87
.6

(1
7.

8)
G

A
L

L
A

N
T

6
58

(4
2-

10
5)

15
2

(1
-1

90
)

9.
5

(4
-1

0)
1.

9
(1

-2
)

8.
7

(2
-1

0)
9.

4
(4

-1
0)

0.
5 

an
d

 1
N

ai
ve

 (
3)

81
9.

4
(1

.5
)

90
.9

(5
6.

5)
14

7
(1

0)
7.

8
(0

.6
)

48
92

.0
(2

3.
3)

P
re

tr
ea

te
d

 (
5)

59
0

7.
5

(1
.7

)
84

.1
(6

0.
4)

14
5

(1
4)

6.
7

(0
.9

)
53

90
.1

(2
0.

4)

F
P

G
, f

as
ti

n
g 

p
la

sm
a 

gl
u

co
se

; F
I,

 f
as

ti
n

g 
in

su
li

n
; H

b,
 h

em
og

lo
bi

n
; H

bA
1c

, f
ra

ct
io

n
-g

ly
co

sy
la

te
d

 h
em

og
lo

bi
n

 A
1c

; D
G

R
, d

is
ea

se
 g

ro
u

p
; S

IR
, S

tu
d

y 
in

 I
n

su
li

n
 R

es
is

ta
n

ce
; G

L
A

D
, G

lu
co

se
 a

n
d

 
L

ip
id

 A
ss

es
sm

en
t 

in
 D

ia
be

te
s.

 at PFIZER, INC. on October 4, 2010jcp.sagepub.comDownloaded from 

http://jcp.sagepub.com/


864  •  J Clin Pharmacol 2010;50:861-872

RIBBING ET AL

Figure 1. Illustration of the disease stage in healthy volunteers and the 5 different disease groups (DGR). The typical drug-naive patients 
in the SIR, GLAD, and GALLANT6 studies can be assumed to have an increasing degree of diabetes. However, it is not obvious how to 
rank the pretreated patients in relation to the drug naive in the same study. (Figures online are in color.)

investigation, their model structure was used as a start-
ing point for further development. Treatment effects 
and impact of disease state on insulin sensitivity (S) and 
BCM21 were added. Model parameters presented by 
Topp et al9 represent mean values for healthy individu-
als. However, these values may change with T2DM. In 
the present data, 5 different disease groups (DGR) were 
defined as subjects with insulin resistance in SIR (DGR 
1), naive patients in GLAD and GALLANT6 (DGR 2 and 
3, respectively), and pretreated patients in GLAD and 
GALLANT6 (DGR 4 and 5, respectively). These disease 
groups could be assigned to different stages of disease,21 
as illustrated by Figure 1.

The net changes for FPG, FI, and BCM are described 
by 3 linked differential equations. These are summa-
rized in the Online Appendix Part 1 (OA1) and  
motivated in the Topp et al9 article. The new semi-
mechanistic PKPD model was developed based on 
these equations. Progression into diabetes was described 

by a decreased S and a disturbed adaptation of the 
BCM. The insulin effect on lowering FPG is the product 
of S, FI, and FPG (equation 9 in OA1). Reduced insulin 
sensitivity alone does not cause diabetes because beta-
cell adaptation acts as a negative feedback, eventually 
bringing the FPG back to the set point, as illustrated by 
Figure 2 (and further described by equation 11 in OA1). 
This phenomenon is found in insulin-resistant subjects, 
as studied in the SIR study. However, the feedback is 
not fully functional in T2DM patients where BCM is 
lower than in non–diabetic subjects.22-25 The impact of 
disease stage on beta-cell adaptation was implemented 
as an offset in beta-cell adaptation (OFFSET) leading 
toward a higher set point FPG, thereby altering the 
equation for change in BCM to

dBCMit=dt ¼ ð�d0 þ R1 · FPG0
it � R2 · FPG0

it
2Þ ·BCMit;  (1)

FPG0
it ¼ FPGit � OFFSETit;  (2)
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where FPG′it is the offset-corrected FPG for individ-
ual i at time t, and the other parameters are described 
in OA1, as well as in the original article by Topp et al.9 
In T2DM patients, FPGit is higher than FPG′it because 
the offset is causing a hyperglycemic FPG set point. The 
equation also includes glucose toxicity to the beta cells 
(R2). Beta-cell adaptation at different FPG levels is illus-
trated for a healthy and an offset (ie, T2DM) individual 
in Figure 2.

The initial modeling attempts were not successful 
in describing treatment effects as observed: FI 
decreased faster than expected given the model param-
eters and the decline in FPG. Therefore, a relation 
between insulin clearance and insulin sensitivity17-19 
was incorporated into equation (10) according to

kit ¼ kH · Sit=SHð ÞRELk�S ;  (3)

where Sit and kit are the insulin sensitivity and 
insulin elimination rate constant in individual i at 
time t, respectively. SH and kH are the values for the 

typical healthy subject. RELk–S describes the nonlin-
ear relation between S and k.

Because study durations were 6 months or shorter, 
no attempt was made to quantify disease progression 
during the study period. In addition, because only 
fasting glucose and insulin were collected, it was 
assumed that these variables were at steady state 
with respect to each other, given the current level of 
BCM and Sit. Furthermore, at the first visit, it was 
assumed that subjects had obtained steady state in 
BCM and Sit. The mathematical implications of these 
assumptions are explained in OA1.

Drug Effect and Statistical Submodels

Treatment effects were incorporated directly on 
OFFSET, where effect delay was accounted for by 
beta-cell adaptation, and on insulin sensitivity, 
where the effect was as implemented as an indirect 
response. FPG offset (OFFSETi) and Si and were 
improved by treatment according to

FPG0
it ¼ FPGit � OFFSETi · 1� EBitð Þ;  (4)

dSit=dt ¼ kin · 1þ ESitð Þ � kout · Sit;  (5)

where EBit is the treatment effect on the OFFSET 
for individual i at time t, ESit is the indirect effect on 
insulin sensitivity, and kout is the rate constant deter-
mining the time course of the indirect response on S. 
Finally, kin = kout · Si, where Si represents the insulin 
sensitivity without treatment effect, that is, an 
underlying (baseline) parameter. The “observed” 
insulin sensitivity (Sit), on the other hand, is a vari-
able that may change with treatment over time (t) 
and replaces S in the original equation (9) in OA1.

The effect of prior antidiabetic treatment at enroll-
ment was incorporated on beta-cell adaptation (pretB, 
which is EB at enrollment) and insulin sensitivity (pretS, 
which is ES at enrollment). The interdependencies 
between tesaglitazar exposure, FPG, FI, S, and BCM in 
the model are schematically illustrated in Figure 3.

The model described differences in the degree of 
disease between DGR and even between individuals 
within the same DGR; the latter was achieved using 
a population model, in this case a nonlinear mixed 
effects model. All models were fitted using the 
population PKPD software NONMEM.26 A popula-
tion model takes into account that model parameter 
values vary between individuals, both due to known 
factors (eg, DGR) but also due to factors that are not 

4 6 8 10 12 14 16

−
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−
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−
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0
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Figure 2. Beta-cell adaptation rate versus fasting plasma glucose 
(FPG). The black curve represents the change in a healthy indi-
vidual and the gray (online: red) in an offset (T2DM) patient. The 
dotted vertical lines mark the physiological fixed points in each 
of the 2 individuals. This is a point of attraction, and beta-cell 
adaptation acts with a negative feedback to bring the FPG back to 
this set point. At FPG much higher than the physiological fixed-
point, severe glucose toxicity causes a positive feedback (below 
the horizontal line). However, such a serious condition, with 
accelerating loss of beta cell mass (BCM), would only be reached 
if the system was provoked (eg, by continuous glucose infusion).
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available in data. The parameter variability within a 
DGR was distributed according to

Pi ¼ TVPi · exp ZPið Þ;  (6)

where Pi is the individual parameter, TVPi is the 
typical parameter value (typical for all subjects or for 
the specific DGR), and ηPi is assumed having a nor-
mal distribution centered around zero with standard 
deviation ωP representing the interindividual varia-
bility (IIV).

The effect of tesaglitazar on Si was described 
according to an Emax model,

ESit ¼
EmaxSi ·Cit

EC50Si þ Cit

;  (7)

where Cit is the plasma concentration of tesaglita-
zar in individual i at time t, EmaxSi is the maximum 
response to tesaglitazar, and EC50Si is the concentra-
tion producing half-of-maximum response on Si. For 
the effect of tesaglitazar on OFFSET (EBit), the initial 
nonsigmoidal Emax model estimated the typical value 
of Emax

B slightly larger than 1. Assuming Emax = 1 for 
a sigmoid-Emax model fit data better, according to

EBit ¼
C
gB
it

EC50
gB
Bi þ C

gB
it

;  (8)

where γB is the factor determining the sigmoidic-
ity. Because EBit >1 would be unreasonable for any 
individual (cf. equation 4) a logit transformation was 
used to restrict the individual pretreatment effect 
(see Online Appendix Part 3, OA3).

Figure 3. Schematic illustration of the semi-mechanistic fasting plasma glucose–fasting insulin (FPG-FI) model, incorporating insulin 
sensitivity (S) and beta-cell mass (BCM). Changes from the steady state are illustrated as indirect effects for all 4 variables, indicated by 
solid or broken arrows. However, responses in FPG and FI are relatively fast and therefore assumed at steady state relative to one 
another, at the given level of S and BCM. Drug treatment exerts an indirect effect on S and BCM, which explains the delay in the response 
of FI and FPG. The indirect effects of drug treatment and the relation between S and insulin clearance are additions to the model from 
that originally suggested by Topp et al.9 This has been indicated by the gray (online: red) line color.
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Model Evaluation

In addition to standard goodness-of-fit graphs, the 
model was evaluated using nonparametric bootstrap27 
and visual-predictive check (VPC),28 including both 
median biomarker profiles over time and the distribu-
tion of observations. For VPC, a graphical comparison 
was made between observed data and the model- 
predicted median and 95% prediction interval (95% PI) 
over time. The Online Appendix Part 2 (OA2) elabo-
rates on more technical details of model fitting and 
selection, including details of the residual error model.

RESULTS

The model could accurately describe the observed 
FPG and FI data over time and provided plausible 
projections of BCM adaptation and Sit following tes-
aglitazar treatment. Final model parameter estimates 
are presented in Table II. All T2DM patients have 
deterioration in BCM and S compared to the normal 
subject. The typical subject in the SIR study (DGR 1) 
has slightly reduced S and FPG above normal. The 4 
groups of T2DM patients typically have an S that is 
reduced by 37% to 50% and FPG elevated by 3.1 to 
3.9 mmol/L over the normal 5.6 mmol/L. The 
dynamic change in S was relatively fast, and new 
steady state is expected after approximately 6 weeks 
of treatment.

Insulin sensitivity increased almost proportional 
to tesaglitazar exposure (indicated by the high 
EC50S), whereas the treatment effect on BCM 
(OFFSET) has nearly reached its maximum at the 
higher doses (2 and 3 mg tesaglitazar). Consequently, 
increasing the dose from 1 to 3 mg would lower FI 
considerably but FPG less. However, the effect on 
BCM (OFFSET) is highly variable between patients, 
as indicated by the high IIV in EC50B (>100%). 
Therefore, some patients would require substan-
tially higher exposure for the same BCM-mediated 
effect on FPG. The model describes correlations in 
the individual parameter values, which can not be 
explained by DGR or drug exposure: subjects who 
have low insulin sensitivity tend to have higher 
OFFSET (ie, higher FPG), and patients who respond 
well to drug treatment with respect to insulin sensi-
tivity also respond well in terms of BCM adaptation 
(i.e. FPG).

Figure 4 compares the model predictions of FPG 
and FI to the observations in the naive patients in 
the GLAD study who were given 0.5 to 3 mg of tes-
aglitazar. Figure 5 shows the subjects in the SIR 

study treated with 0.5 or 1 mg tesaglitazar. In both 
figures, the median and 95% confidence interval of 
data are predicted fairly well at all time points. The 
total data contain 21 unique combinations of DGR 
and tesaglitazar dose. The model describes FPG and 
FI well in all of these, as can be seen from the 2 fig-
ures in OA2.

In Figure 6, the model predictions for FPG, FI, S, 
and BCM for each of the 5 DGR are depicted for a 
hypothetical 42-week study with 1 mg tesaglitazar. 
Insulin sensitivity improved rapidly and greatly in 
both insulin-resistant subjects and patients with 
T2DM, which is expected given the PPAR α/γ activa-
tion. As a consequence of the improved S, FI is 
greatly reduced during the first few weeks of treat-
ment. In T2DM patients (DGR 2-5), a small rebound 
in FI was predicted due to beta-cell adaptation. BCM 
reached a new steady state after about 6 months of 
treatment. In insulin-resistant subjects, there is a fast 
improvement in S and FI but little effect on FPG.

The NONMEM model code for fitting the model 
to data (ie, estimate model parameters) is available 
in OA3.

DISCUSSION

In this article, we have developed a semi-mech-
anistic model for the interaction between tesaglita-
zar exposure, FPG, FI, S, and BCM. The model 
described all observations well, even though data 
originated from heterogeneous populations, rang-
ing from insulin-resistant subjects to T2DM 
patients at different disease stages. The foundation 
of this model has previously been suggested by 
Topp et al.9 However, before the present work, 
their model had not been assessed in a diabetic 
population; instead, it is derived from different 
sources in literature.

In the new PKPD model, patients with T2DM 
were assumed to differ from normal subjects only by 
an offset in the beta-cell adaptation (ie, lower BCM) 
and lower insulin sensitivity coupled to lower insu-
lin clearance. This limitation was necessary given 
the complexity of the model in combination with the 
fact that only fasting observations were available. 
The maximal insulin secretion rate (σ) could not be 
separated from the variable BCM because the latter 
was not measured. Therefore, BCM predicted from 
the model should be seen as a functional mass, 
reflecting the actual mass only if fasting σ is the 
same for patients and healthy individuals. However, 
the relative difference in BCM between normal  
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Table II  Parameter Estimates of the Semi-Mechanistic FPG-FI Model

Parameter values from literature representing a normal subject, according to Topp et al9

Parameter Estimate RSE, %

S, L pmol−1 d−1 0.104 —
R0, mmol L−1 d−1 1.44 —
EG0, d

−1 48.0 —
σ, pmol L−1 d−1 300 —
α, mmol L−1 7.85 —
k, d−1 432 —
d0, d

−1 0.06 —
R1, L mmol−1 d−1 0.0151 —
R2, L

2 mmol−2 d−1 0.000779 —

Parameter values as estimated from SIR, GLAD, and GALLANT6

Parameter Estimate RSE, %a

S, L pmol−1 d−1 0.0842/0.0660/0.0524/0.0654/0.0626b 2/5/6/4/3
OFFSET, mmol L−1 0.199/3.12/3.51/3.92/3.08b 13/3/4/3/3
kout, d

−1 0.0599 7
RELk-S 0.653 3
pretB, % reduction 27.0/52.6c 8/4
pretS, % increase 19.6 19
EmaxS, % 948 30d

EC50S, μmol L−1 7.43 35d

EC50B, μmol L−1 0.463 6
γB 1.12 8
θHOFFSET, mmol L−1 1.64 11

Interindividual variability, IIVe

ωS, % 56.6 3
ωOFFSET, % 26.0/38.7f 7/5
ωpretB, % 81.6/53.0g 14/13
ωEC50S, % 48.4 9
ωEC50B, % 104 10
ωresFPG, % 47.2 3
ωresFI, % 24.0 7
Cor(S,OFFSET) –0.372 6
Cor(EC50S, EC50B) 1 —
Cor(RESFPG, RESFI) 0.696 9

Residual error magnitude for the typical individual

RESFPG, % 8.00 1
RESFI, % 30.9 2

FPG, fasting plasma glucose; FI, fasting insulin; RSE, relative standard error; SIR, Study in Insulin Resistance; GLAD, Glucose and Lipid Assessment in 
Diabetes.
aCalculated by the bootstrap standard deviation relative to the point estimate.
bParameter values have been estimated separately for each of disease groups (DGR) 1 to 5.
cParameter values have been estimated separately for GLAD and GALLANT6.
dThe ratio of EmaxS and EC50S was estimated with 5% RSE.
eThe IIV is given as coefficient of variation (CV) and the correlation between random components as the Pearson-correlation coefficient.
fParameter values have been estimated separately for drug-naive and pretreated patients (ie, DGR 1-3 and 4-5, respectively).
gOnly one parameter was estimated for ωpretB. The 2 IIVs are due to a logit transformation of the individual parameter distribution in combination with 
different typical values for pretB for GLAD and GALLANT6.
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Figure 5. Visual predictive check of fasting plasma glucose (FPG) 
and fasting insulin (FI) on the mechanistic pharmacokinetic- 
pharmacodynamic (PKPD) model, evaluated on the insulin resist-
ant subjects in SIR (DGR 1) who were randomized to 0.5 or 1 mg 
tesaglitazar. Legend as in Figure 4. As seen from the left panel, FPG 
is not much affected when treating nondiabetic subjects. FI, on the 
other hand, decreases due to increasing insulin sensitivity. The 
observed median is described well, but the 95% confidence interval 
is slightly overpredicted by the model. The observations have been 
jittered in the horizontal direction. (Figures online are in color.)
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Figure 4. Visual predictive check of fasting plasma glucose (FPG) 
and fasting insulin (FI) on the semi-mechanistic pharmacoki-
netic-pharmacodynamic (PKPD) model, evaluated on the naive 
patients in GLAD (DGR 2) who were randomized to 0.5, 1, 2, or 3 
mg tesaglitazar. The black and gray (online: blue) solid lines rep-
resent observed and model-predicted median, respectively. The 
light gray (online: light blue) area within the dotted line repre-
sents the model 95% prediction interval (PI). The black circles 
represent observations within the PI, and observations outside the 
PI are represented by a nonblack plotting symbol that is unique 
for each individual. The observed median and 95% confidence 
interval are both described well by the model. The observations 
have been jittered in the horizontal direction. As seen from the 
right panel, FPG decreases over the whole treatment period as a 
result of increased insulin sensitivity and increasing beta-cell 
mass (BCM). FI, on the other hand, first decreases due to increas-
ing insulin sensitivity but then displays a small rebound, as insu-
lin sensitivity has reached treatment steady state and the 
adaptation of BCM is still ongoing.

subjects (DGR 0) and patients with T2DM (DGR >1) 
is in line with previous autopsy data.22-25

Although the model by Topp et al9 is apt to han-
dling both fasting and postprandial data, their 
focus is on fasting dynamics. Consequently, by 
including clinical-experimental studies, our model 
may need expansion (eg, by describing the acute-
phase insulin secretion and the deterioration of this 
response in insulin-resistant subjects and diabetic 
patients).29,30 Including clinical-experimental stud-
ies and observations of the BCM31 may enhance the 
model, making it less reliant on parameters  
suggested by Topp et al.9 However, we would 
also like to emphasize a positive consequence of 
relying on their parameter values. Our model does 
not estimate the rate of BCM adaptation rate. 
Instead, this is completely determined by the 
parameter values from Topp et al9 in combination 

with the offset model we extended to their model 
for describing diabetic patients. The fact that our 
model matches the observed FPG dynamics well 
supports both the parameter values provided by 
Topp et al9 and our implementation of increasing 
set point with diabetes. Moreover, the fixed  
adaptation rate admits decoupling of beta-cell 
adaptation over the first 6 months of treatment and 
the long-term disease progression, so that the latter 
may possibly be assessed with better precision, 
even in studies with limited treatment duration 
(1-2 years).

The model structure described by Topp et al9 
and further developed here is referred to as semi-
mechanistic. The 4 main reasons for this are  
discussed as follows. First, Topp et al9 placed the 
insulin effect on glucose elimination and not on 
glucose production (Figure 3 and equation 9 in 
OA1). This can be regarded as a mechanistic 
description of glucose control after a meal, but dur-
ing fasting, the main action of insulin is on glucose 
production. Second, the incorporation of beta-cell 
dynamics is an important mechanistic improve-
ment compared to other models for glucose dynam-
ics but can be improved further compared to the 
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current use of a polynomial (Figure 2 and equation 
11, OA1). Third, regarding the saddle point, where 
a disturbance of the glucose regulation can push a 
T2DM patient into a state that will lead to severe 
deterioration of BCM (accelerated glucose toxicity), 
this mechanism may be part of the manifestation of 
diabetes mellitus but is unlikely to occur in a study 
with T2DM patients. Simply estimating different 
parameter values in equation (11) (BCM regulation) 
for T2DM patients would put some patients danger-
ously close to the saddle point: without the offset 
model that we implemented, simulations from  

such a model would result in a fraction of patients 
temporarily becoming insulin dependent as a con-
sequence of run-in or placebo. Last, because only  
one parameter can be estimated for how BCM adap-
tation differs between T2DM patients and healthy 
subjects, our approach was to incorporate an offset 
in the glucose level toward which BCM is adapting. 
The offset model relies on that assumption and can 
be justified only by the model describing the 
observed clinical data well. Most recently, De 
Gaetano et al32 suggested a model supposedly 
improving that of Topp et al9 but again not fitting 
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Figure 6. The change in beta-cell mass (BCM), insulin sensitivity (S), fasting insulin (FI), and fasting plasma glucose (FPG) simulated by 
the mechanistic pharmacokinetic-pharmacodynamic (PKPD) model using a fictitious study design, including all 5 disease groups (DGR). 
The median response to 1 mg daily dosing of tesaglitazar is displayed. DGR 1 has a normal BCM, whereas the diabetic patients have 
only 40% to 60% of this at the start of the run-in. Treatment increases the BCM in the diseased but not in DGR 1, where the increased 
S even forces the adaptation in the other direction. Right before the treatment is commenced, the underlying disease is seen, due to the 
long duration of the run-in period. If the patients were to be left untreated in this manner, DGR 3 has the lowest S, whereas DGR 4 has 
the lowest BCM. (Figures online are in color.)
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the model to any observational data. The model 
structure in De Gaetano et al32 may provide sub-
stantial improvements in describing glucose toxic-
ity and its effect on disease progression and is a 
step in the direction of more mechanistic models.

The model identified a strong relation between insu-
lin sensitivity and insulin clearance, which has been 
reported earlier with PPARs.17-19 Both of these processes 
are affected by the level of nonesterified fatty acid 
(NEFA), which is reduced by tesaglitazar treatment.

Using a population modeling approach, within-
subgroup variability was separated into interindi-
vidual variability in the parameters and residual 
variability in FPG and FI. On the individual level, 
there was high correlation between the drug effects 
on insulin sensitivity and the FPG set point (ie, 
EC50Si and EC50Bi). This may be because the 2 effects 
share the same mechanistic pathways or because 
improved insulin sensitivity reduces glucose toxic-
ity. Possibly, beta-cell adaptation is affected by NEFA 
due to lipotoxicity.12,33,34 However, the clinical impli-
cations of this mechanism remain to be established.35

The interest in mechanistic models is growing 
with the increasing use of quantitative pharmacol-
ogy.1,36-41 The benefits of using more mechanistic 
models include the possibility of analyzing a wide 
range of studies and populations under the same 
model, increased knowledge about the drug and 
disease, and better model predictions of previ-
ously unexplored populations or study conditions. 
By including model components describing longi-
tudinal disease progression on BCM and insulin 
sensitivity, the predictions of 10-year outcomes 
can likely become more accurate than performed 
by earlier models.2,4 With such components, the 
model can separate gradual disease progression 
from the symptomatic effects on beta-cell adapta-
tion and insulin sensitivity, which is of interest 
because treatment may affect disease progression 
in a protective (or destructive) way.4 However, this 
requires data from longer studies than available in 
the current analysis.

In conclusion, we have developed a semi- 
mechanistic PKPD model describing the dynamics  
of FPG, FI, S, and BCM and the effect of treatment on 
this system. Model predictions that cannot be assessed 
on available data are well supported by the literature 
(eg, 40% of normal BCM in untreated T2DM 
patients22-25 and a positive relation between insulin 
sensitivity and insulin clearance). The model may ben-
efit from further development using even more hetero-
geneous data. The role of NEFA may be investigated not 
only on the mechanistic pathway to insulin sensitivity  

and insulin clearance17-19 but also to BCM.12,33,34 Clinical-
experimental studies may reduce the dependence  
on the parameter values from Topp et al.9 Finally, as it 
becomes possible to quantify BCM in vivo, longitudinal 
measurements of this biomarker may enhance the 
model.
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