
A Grammar Formalism for Specifying
ISU-based Dialogue Systems

Peter Ljunglöf and Staffan Larsson

Gothenburg University, Dept. of Linguistics,
Renströmsgatan 6, S-41255 Göteborg, Sweden

{peb,sl}@ling.gu.se

Abstract. We describe how to give a full specification of an ISU-based
dialogue system as a grammar. For this we use Grammatical Framework
(GF), which separates grammars into abstract and concrete syntax. All
components necessary for a working GoDiS dialogue system are spec-
ified in the abstract syntax, while the linguistic details are defined in
the concrete syntax. Since GF is a multilingual grammar formalism, it
is straightforward to extend the dialogue system to several languages.
Furthermore, the GF Resource Grammar Library can be used to write a
single concrete instance covering 13 different languages.

1 Introduction

1.1 The Information-State Update Approach

The GoDiS dialogue manager [1] is based on formal semantic and pragmatic
theories of dialogue, and provides general and fairly sophisticated accounts of
several common dialogue phenomena such as interactive grounding, accommo-
dation, multiple conversational threads, and mixed initiative. GoDiS is based
on the Information State Update (ISU) approach to dialogue management [2].
The ISU approach, which has been developed over the last 10 years in several
EU-funded projects, provides a generalization over previous theories of dialogue
management and allows exploring a middle ground between sophisticated but
brittle research systems, and robust but simplistic commercial systems. In the
ISU approach, a dialogue manager is formalized as:

1. an information state (IS) type declaration, indicating which kinds of infor-
mation the system needs to keep track of

2. a set of dialogue moves, i.e., abstract semantic representations of utterances
3. information state update rules, which:

(a) update the IS based on observed dialogue moves
(b) select moves to be performed by the system based on the current IS

The IS is a structured object which can contain e.g. sets, stacks, records, queues,
etc. This allows efficient scripting of ISU system applications. In GoDiS, which
is based on a theory of Issue-Based Dialogue Management (IBDM), a single

script (called a dialogue plan) can be used flexibly by the dialogue manager to
allow for a wide range of dialogues. While it would in principle be possible to
implement many GoDiS dialogues using finite state automata, the processes of
implementing, debugging and modifying these systems would be prohibitive.

The main benefit of the IBDM account as implemented in GoDiS is the com-
bination of advanced dialogue management and rapid prototyping (quick imple-
mentation, debugging and modification) enabled by cleanly separating general
dialogue solutions from application-specific domain knowledge.

1.2 Examples of Flexible Dialogue.

Below are some examples of dialogues enabled by a single dialogue plan in the
IBDM framework. The examples are taken from an implementation of a cell-
phone application. The dialogue plan, in this case the plan for changing a phone
number in the phone book, specifies a default order of system actions to take:

1. ask for the name
2. ask for the type of number (home, cellphone, or work)
3. ask for the new number
4. change the phone book entry for the given name and type to the new number

Example 1. In the first example, after requesting the system to change a number,
the user gives initiative to the system and just answers system questions:

U: Change phone number.
S: Okay, let’s see. What name?
U: Lisa
S: Okay. Home number and work number are available. Which number
do you want to change?
U: Home number
S: Okay. What is the new number?
U: 11 12 13.
S: Okay. I have now changed Lisa’s home number to 11 12 13.

Example 2. Alternatively, the user can combine the request with answers to some
as-yet-unasked questions. The default ordering of system actions in the dialogue
plan can thus be overridden:

U: I would like to change Lisa’s number to 11 12 13.
S: Okay, let’s see. Home number and work number are available. Which
number do you want to change?
U: The home number please.
S: Okay. I have now changed Lisa’s home number to 11 12 13.

Example 3. It is also possible to just throw the system some information, and it
will try to figure out which action the user wants the system to perform. If there
is more than one candidate, the system will generate a clarification question.
(Here we are also using a plan for making calls and a plan for searching for
phone numbers):

U: Lisa’s home number
S: Lisa’s home number. I don’t quite understand. Do you want to make
a call, change a phone number or search for a phone number?
U: Change phone number
S: Okay. What is the new number?
U: 11 12 13.
S: Okay. I have now changed Lisa’s home number to 11 12 13.

Example 4. If we provide the application with additional plans, e.g. for reading
SMS messages, it is possible for the user to take new initiatives (ask questions
or request actions) at any point in a dialogue. The system will enter into a
sub-dialogue, and when the sub-dialogue is finished it will return to the previ-
ous dialogue topic. There is no intrinsic limit to the number of simultaneous
conversational topics that the system can keep track of:

U: I would like to change Lisa’s number to 11 12 13.
S: Okay, let’s see. Home number and work number are available. Which
number do you want to change?
U: Check my messages.
S: You have got this SMS: ”Hi! I have a new home number, it is 11 12 13.
Love, Lisa”. Let’s go back to changing an entry. Which phone number
do you want to change?
U: The home number please.
S: Okay. I have now changed Lisa’s home number to 11 12 13.

In addition to the above, general techniques for dealing with problems of per-
ception, understanding and acceptance enable both user and system to provide
feedback at any point in the dialogue. Such feedback can be either positive (sig-
naling successful perception, understanding and acceptance) or negative (signal-
ing problems).

We want to stress again that all the dialogues above use the same single
dialogue plan. That is, the addition of that single plan to the application domain
knowledge module enables many different dialogues.

1.3 Adding Natural Language to GoDiS

As previously mentioned, GoDiS enables rapid prototyping of systems with ad-
vanced dialogue behavior. However, the GoDiS dialogue manager only commu-
nicates with the outside world using semantic representations called dialogue
moves. The designer of the dialogue system must implement a translation be-
tween natural language utterances and dialogue moves, be it through a simple
lookup table, or an advanced feature-based grammar. If the system is speech-
based, it also needs a statistical language model or a speech recognition grammar.

These components have to be maintained. If we add a new concept, e.g., a
new dialogue plan, we have to add new grammar rules for handling the actions,
questions, answers, etc., that are associated with the concept. Each entity in the
database has to exist, both in the speech recognition component, in the grammar

and in the dialogue system. If the dialogue system is multilingual, we have to
ensure consistency for each language.

There have been attempts of solving parts of these consistency problems.
The Regulus grammar compiler [3] or the Grammatical Framework [4] can au-
tomatically create speech recognition grammars from a higher-level grammar,
thus ensuring consistency between speech recognition and parsing. Both these
formalisms have been used for building grammars for GoDiS systems [5].

One problem is still not sufficiently addressed: consistency between the dia-
logue system and the grammar. The dialogue moves that the grammar outputs
from parsing have to conform to the dialogue moves that the GoDiS system
recognizes; and the other way around: The grammar has to be able to translate
dialogue moves from GoDiS into natural language utterances.

What we want is a single formalism where we can specify the complete dia-
logue system. There have already been some attempts of this, but not for ISU-
based dialogue systems. In [6] it is shown that a simple GF grammar can be
converted into a VoiceXML dialogue system. However, their translation can cur-
rently only handle small domains, and the resulting system has very limited
dialogue handling capabilities. In this paper we show how a GoDiS dialogue
system can be specified as a GF grammar. All components necessary for a full-
fledged ISU-based dialogue system are then automatically generated from the
grammar.

1.4 Grammatical Framework

Grammatical Framework [4] is a grammar formalism based on type theory. The
main feature is the separation of abstract and concrete syntax, which makes it
very suitable for writing multilingual grammars. A rich module system also fa-
cilitates grammar writing as an engineering task, by reusing common grammars.

The main idea of GF is the separation of abstract and concrete syntax. The
abstract part of a grammar defines a set of abstract syntactic structures, called
abstract terms or trees; and the concrete part defines a relation between abstract
structures and concrete structures. This separation of abstract and concrete
syntax is crucial for the treatment of dialogue systems in this article.

The abstract theory of GF is a version of Martin-Löf’s [7] dependent type
theory. A grammar consists of declarations of categories and functions. Cate-
gories can depend on other categories – the following declarations state that
Request and Utterance are categories that depend on a Domain:

cat Domain
cat Request(Domain)
cat Utterance(Domain)

Functions are declared by giving argument and result types. Function declara-
tions can also bind variables to be used in dependent types. Here we state that
an Utterance can consist of a Request, provided that the share the same Domain:

fun request : (d:Domain)→ Request(d)→ Utterance(d)

Concrete Syntax. GF has a linearization perspective to grammar writing,
where the relation between abstract and concrete is viewed as a mapping from
abstract to concrete structures, called linearization terms.

Linearizations are written as terms in a typed functional programming lan-
guage, which is limited to ensure decidability in generation and in parsing. The
language has records and inflection tables; and the basic types are strings and
inflection parameters. There are also local definitions, lambda-abstractions and
global macro definitions. The parameters are declared in the grammar; they can
be hierarchical but not recursive, to ensure finiteness.

The following things are declared in the concrete syntax:

– The inflection parameters have to be declared. E.g., a verb phrase request
in a simple variant of Swedish can be in imperative or infinitive:

param VerbForm = Imperative | Infinitive
– Each category should have a matching linearization type. E.g., a Swedish

verb phrase request depends on the VerbForm:
lincat Request = VerbForm ⇒ Str
lincat Utterance = Str

– For each function in the abstract we define its linearization function. An
utterance for our Swedish requests can either be a direct Imperative, or an
indirect (“I would like to” followed by an Infinitive):

lin request(req) =
variants{req ! Imperative ; “jag vill”++ req ! Infinitive ++“tack”}

– A category can have an optional default linearization, which is used for un-
known terms of that category:

lindef Request =
table{Imperative →“gör n̊agonting” ; Infinitive →“göra n̊agonting”}

With these example definitions, the possible linearizations of the incomplete term
request() are“gör n̊agonting”(“do something”) and“jag vill göra n̊agonting tack”
(“I want to do something please”).

Multilinguality and Resource Grammars. It is possible to define different
concrete syntaxes for one particular abstract syntax. Multilingual grammars can
be used as a model for interlingua translation, but also to simplify localization
of language technology applications such as dialogue systems.

The abstract syntax of one grammar can be used as a concrete syntax of
another grammar. This makes it possible to implement grammar resources to be
used in several different application domains.

These points are currently exploited in the GF Resource Grammar Library
[8], which is a multilingual GF grammar with a common abstract syntax for 13
languages, including Arabic, Finnish and Russian. The grammatical coverage is
similar to the Core Language Engine [9]. The main purpose of the Grammar
Library is as a resource for writing domain-specific grammars.

Note that for ease of presentation we do not make use of resource grammars
in our running example. The interested reader is referred to [10], for a survey of
the GF module system and resource grammars.

2 The GoDiS Dialogue Manager

In this section we give a short description of the building blocks of the GoDiS
dialogue manager. The purpose of this description is to give details on how to
specify a GoDiS system. We are not trying to explain the internals of the dialogue
manager, which is described thoroughly in [1].

The GoDiS system communicates with the user via dialogue moves. There
are three main dialogue moves – requesting actions, asking questions and giving
answers. All three moves take one argument – the action, question or answer
that the move is requesting, asking or giving.

Apart from the three main moves there are also different kinds of feedback
moves – confirmations, failure reports and interactive communications manage-
ment. We will not dwell into how these moves function, except for noting that
they are important for the dialogue flexibility demonstrated in section 1.2.

The basic building blocks in GoDiS are individuals, sorts, one-place predi-
cates and actions:

– The sorts are ordered in an hierarchy of sub- and supersorts. Each predicate
has a domain which is a specific sort.

– Each individual e belongs to a specific sort s, written e : s.
– A predicate p (with domain s’) can be applied to an individual e:s, where s

is a subsort of s’, to form a proposition p(e). A proposition can be used in
an answer, answer(p(e)), or a y/n-question, ask(?p(e)).

– A collection of y/n-questions can be asked as an alternative question,
ask({?p(e), ?p(f), . . . }).

– A predicate p can be eta-expanded to a wh-question ?x.p(x). Wh-questions
can be asked, ask(?x.p(x)).

– An action a can be requested, request(a). After the action has been performed
it is confirmed, confirm(a), or a failure is reported, report(fail(a,. . .)).

– From an action a or a question q we can form the special propositions ac-
tion(a) and issue(q).1 These propositions are mainly used when asking the
user what to do, or in feedback moves.

To specify a GoDiS dialogue system, we have to give the following information:

– The sortal hierarchy, i.e., the subsort relation.
– The individuals and the sorts they belong to.
– The predicates and their domains.
– The actions.
– The dialogue plans.

Apart from these things we have to have an interface for communicating with
the device. The only thing we assume about this interface is that it can accept
actions (using the dev do plan construct) and queries (using dev query).

1 The propositions can be read approximately as “action a should be performed” and
“question q should be resolved”, respectively.

Dialogue Plans. Dialogue plans have already been touched upon in section 1.2.
They convey what the system can do and/or give information about. A dialogue
plan is a receipt for the system, so it knows how to answer a specific question, or
how to perform a given action. The dialogue plans can roughly be divided into
three different kinds – actions, issues and menus.

An action plan is when the user wants to perform an action, e.g., change the
number of a contact in the phone book. Action plans are usually built in the
same way. First the system asks some questions to get enough information, and
then the action is performed. As an example, this is a more formal version of
the plan in section 1.2:

changeNumber: findout(?x.nameToChange(x))
findout(?y.typeToChange(y))
findout(?z.newNumber(z))
dev do(changeNumber)

After the plan has finished, GoDiS reports to the user about the success or failure
of the action.

An issue plan is when the user has (explicitly or implicitly) asked a question,
which the system should answer. Issue plans usually follow the same pattern as
action plans, except that instead of telling the device to execute an action, it is
given a query to solve. Here is the example plan for searching for phone numbers:

?x.searchForNumber(x): findout(?y.nameToSearch(y))
findout(?z.typeToSearch(z))
dev query(?x.searchForNumber(x))

The result of the query is an answer to the question, which GoDiS automatically
reports to the user.

A special kind of action plan is the menu, where the user can select from any
of a given number of sub-plans which the system then performs. Note that these
sub-plans can be menus themselves, which gives a hierarchy of menus.

managePhonebook: findout({ ?action(addContact)
?action(deleteContact)
?action(changeNumber)
?issue(?x.searchForNumber(x))
?issue(?y.searchForName(y)) })

3 Specifying a GoDiS System as GF Abstract Syntax

In this section we show how all necessary components of a GoDiS dialogue system
can be specified in the abstract syntax of a GF grammar. All GoDiS components
can be automatically extracted from the grammar.

3.1 Menus, Actions and Issues

In our GF grammar we define a category Menu, and three categories depending
on Menu, reflecting the actions, issues and sub-menus in a plan.

cat Menu
cat Action(x) [x : Menu]
cat Issue(x) [x : Menu]
cat SubMenu(x,y) [x,y : Menu]

Each action and issue in our dialogue specification belongs to a menu. Now, the
first thing we have to do is to define the menus in our dialogue system:

fun mainMenu, makeCall, managePhonebook : Menu

An action plan is specified by giving a function with result category Action(m)
where m : Menu. An example is the plan for changing the phone number:

fun changeNumber : nameToChange → typeToChange → newNumber →
Action(managePhonebook)

An issue in GoDiS is a wh-question ?x.P(x). This is reflected in the GF grammar
where all issues are functions with the result Issue(m). Here is the issue plan for
searching for a contact’s phone number:

fun searchForNumber : nameToSearch → typeToSearch →
number → Issue(managePhonebook)

Note that there is a crucial difference between the arguments. All arguments
except the last one represent information which the system asks the user for.
The last argument represents the final answer of the query.

Each menu in the specification corresponds to a menu plan in GoDiS. The
elements of a menu are specified by the argument m to the dependent types
Action(m) and Issue(m). E.g., the menu managePhonebook consists of five choices,
of which changeNumber and searchForNumber are already specified above. With
this solution we do not have to specify the menu plans directly, but they can be
deduced automatically from the menu argument to each action and issue.

Finally, the mainMenu in our example asks whether we want to make a phone
call, or manage the phone book. Both these alternatives are menus themselves.
This is specified by creating instances of the SubMenu type:

fun makeCallSubMenu : SubMenu(mainMenu,makeCall)
fun managePhonebookSubMenu : SubMenu(mainMenu,managePhonebook)

3.2 The Dialogue System Ontology

Everything else in the GF grammar specifies the ontology of the dialogue sys-
tem. From the grammar we can extract the sorts and the sortal hierarchy, the
individuals and the sorts they belong to, and the predicates and their domains.

Sorts. In our simple example we want to have two GoDiS sorts, names and
phone numbers. Names are defined as a simple database:

fun anna, bert, charles, diane : name

In our setting a phone number is simply a sequence of small numbers (i.e.,
numbers below 100):

fun single : smallNumber → number
fun cons : smallNumber → number → number
fun 0, 1, 2, . . . , 99 : smallNumber

Each of the GF types is automatically translated to a GoDiS sort, and each
instance becomes a GoDiS individual. The complex functions create non-atomic
individuals, so these are the accepted numbers in our GoDiS application:

single(n) : number if n : smallNumber
cons(n,m) : number if n : smallNumber and m : number

Note that the sort smallNumber will be created, which we do not use at all in
our application. But this is no problem since it doesn’t interfere with the sorts
we are using.

User Answers. Not all sorts are intended to be used in communication. E.g.,
we do not want the user to give answers of the form answer(smallNumber(. . .)),
but only of the form answer(number(. . .)). Therefore the grammar writer has to
specify which sorts can be uttered as answers, by supplying the category Answer:

fun answerName : name → Answer
fun answerNumber : number → Answer

With these two definitions, the user can give answers containing names and
phone numbers, but not small numbers.

Coercions and Subsorts. Each type that occurs as an argument in an Action
or an Issue reflects a system-initiated question. E.g., the action for calling a phone
number is:

fun callNumber : numberToCall → Action(makeCall)

From this specification, numberToCall will be translated to a one-place predicate
in GoDiS. But GoDiS also needs to know the domain of this predicate. This is
specified by a coercion function in GF:

fun coerceNumber : number → numberToCall

A function is a coercion if it, i) takes exactly one argument, and ii) is the only
function with the same result type. We do not translate coercions to instance
rules as we did for the sort of numbers. Instead we state that number is a sub-
sort of numberToCall, which in GoDiS term means that any answer of the form
answer(number(. . .)) is a relevant answer to the question ?x.numberToCall(x).

4 User and System Utterances in the Concrete Grammar

In this section we exemplify how it is possible to specify concrete linearizations
of the abstract syntax, so that the final system can convert utterances to and
from dialogue moves.

4.1 Linearizations of Dialogue Moves

In a GF grammar, each abstract function has a corresponding concrete lineariza-
tion with the same number of arguments. E.g., the callNumber action, and the
sort number, can have the following linearizations:

lin callNumber(x) =“call”++ variants{x ; “a number”}
lin single(x) = x
lin cons(x,y) = x ++ y

Now, the result of parsing the sentence “call twelve nineteen sixty” will be the
GF term:

callNumber(cons(12,cons(19,single(60)))) : Action(makeCall)

There is an automatic translation from GF terms to GoDiS dialogue moves, and
the final result in this case will be:

request(callNumber), answer(numberToCall(cons(12,cons(19,single(60)))))

Note that there is one alternative linearization of callNumber where the argu-
ment is not used. This means that parsing of“call a number”will return callNum-
ber(X), which is a GF term with a metavariable X. The translation to GoDiS
dialogue moves yields:

request(callNumber), answer(numberToCall(X))

This is equivalent to request(callNumber), since the second dialogue move is un-
informative and will be ignored.

The GF linearizations are also used by the system; e.g., when it wants to raise
a question or give an answer. The dialogue moves generated by GoDiS will be
translated to (one or more) GF terms, which in turn are linearized to utterances.
So, when the system wants to ask the question ?action(callNumber), it linearizes
the term askAction(callNumber(X)) to the resulting utterance “Do you want to
call a number?”.

fun askAction : (m:Menu) → Action(m) → DialogueMove
lin askAction()(x) =“Do you want to”++ x ++“?”

4.2 System Wh-questions

In the grammar, the GoDiS predicates are specified as GF categories, not gram-
mar rules. This means that a wh-question such as ?x.numberToAdd(x) does not
correspond to a GF term, but to the category numberToAdd instead. Fortu-
nately, GF has a mechanism for specifying how to linearize unknown terms of a
given category. For each GF category corresponding to a predicate we define a
linearization default :

lindef numberToCall =“Which number do you want to call?”
lindef numberToAdd =“Which number do you want to add?”

When the GF linearizer comes across an unknown term of the category C, it uses
the linearization default for C. This means that we can translate the dialogue
move ask(?x.numberToAdd(x)) to a GF metavariable of type numberToAdd. GF
then linearizes the metavariable to the utterance “Which number do you want
to add?”.

4.3 Using the GF Resource Grammar

To get more grammatically correct utterances (e.g., for congruence or different
word order) we make use of complex linearization types in the GF grammar. One
way to do this is to specify all grammatical parameters for the target language
ourselves.

Another solution is to use the GF Resource Grammar Library for implement-
ing the concrete syntax. The resource library is a common API for 13 languages,
implemented as a large GF grammar. It can be used for writing grammatically
correct domain grammars without needing perfect knowledge of the target lan-
guage. Instead of writing linearization terms in the right-hand sides, we give a
syntax tree from the resource grammar. As an example, the action for calling by
number can be written:

lin callNumber(x) = mkVP (call Verb)
(variants{x ; mkNP (a Det) (number Noun)})

Here, mkVP and mkNP are operations defined in the resource library, and call Verb,
a Det and number Noun are defined in the lexicon.

Finally, recall that a single abstract GF grammar can map to several concrete
syntaxes. This can be used for writing multilingual dialogue system grammars.
In particular, the GF Resource Grammar Library can be used to write a single
concrete instance covering 13 languages.

5 Discussion

We have described how to give a full specification of an ISU-based dialogue
system, as a GF grammar. The abstract syntax specifies the dialogue manager,
and the concrete syntax specifies a mapping between GoDiS dialogue moves and
natural language utterances.

Related Work. Some earlier attempts have been done on specifying dialogue
systems in a single formalism. Most similar to our solution is [6], from which
this article has borrowed some ideas. The advantage of our approach is that
by compiling to GoDiS we get all the nice dialogue handling capabilities as
exemplified in section 1.2.

Another inspiration has been [5], where some parts of a GoDiS system can
be specified as an OWL ontology. The difference here is that in our system all
necessary parts of a GoDiS system are specified in the GF grammar.

Future Work. The implementation is still only a prototype, and we plan to
implement a full-scale version in the near future. A real-sized proof-of-concept
dialogue system will also be implemented.

Multimodal dialogue systems as described in [11] are not currently handled,
but we plan to extend the formalism to handle multiple modalities as well.

The abstract syntax of a GF grammar can be implemented as an OWL
ontology [5]. We plan to explore whether it is fruitful to specify at least parts of
a dialogue system in OWL.

References

1. Larsson, S.: Issue-based Dialogue Management. PhD thesis, Department of Lin-
guistics, Gothenburg University (2002)

2. Traum, D., Larsson, S.: The information state approach to dialogue management.
In Smith, Kuppevelt, eds.: Current and New Directions in Discourse and Dialogue.
Kluwer Academic Publishers (2003) 325–353

3. Rayner, M., Hockey, B.A., Bouillon, P.: Putting Linguistics into Speech Recogni-
tion: The Regulus Grammar Compiler. CSLI Publications (2006)

4. Ranta, A.: Grammatical Framework, a type-theoretical grammar formalism. Jour-
nal of Functional Programming 14(2) (2004) 145–189

5. Ljunglöf, P., Amores, G., Burden, H., Manchón, P., Pérez, G., Ranta, A.: Enhanced
multimodal grammar library. Deliverable D1.5, TALK Project (August 2006)

6. Bringert, B.: Rapid development of dialogue systems by grammar compilation. In
Keizer, S., Bunt, H., Paek, T., eds.: Proceedings of the 8th SIGdial Workshop on
Discourse and Dialogue, Antwerp, Belgium (September 2007)

7. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis, Napoli (1984)
8. Ranta, A., El-Dada, A., Khegai, J.: The GF Resource Grammar Library. (2006)

Can be downloaded from http://code.haskell.org/gf/doc/resource.pdf

9. Rayner, M., Carter, D., Bouillon, P., Digalakis, V., Wirén, M.: The Spoken Lan-
guage Translator. Cambridge University Press (2000)

10. Ranta, A.: Modular grammar engineering in GF. Research on Language and
Computation 5(2) (June 2007) 133–158

11. Bringert, B., Cooper, R., Ljunglöf, P., Ranta, A.: Multimodal dialogue system
grammars. In: DIALOR’05, 9th Workshop on the Semantics and Pragmatics of
Dialogue, Nancy, France (June 2005)

