GoDiS and the Dialogue Move Engine Toolkit*

Peter Bohlin
Goteborg University
Sweden
peb@ling.gu.se

Staffan Larsson
Goteborg University
Sweden
sl@ling.gu.se

April 20, 1999

1 Introduction

A Dialogue Move Engine is the part of a dia-
logue system responsible for updating the sys-
tems information state according to dialogue
moves performed by the participants of a di-
alogue, and for generating appropriate moves
to be performed by the system itself. In the
TRINDI project, a toolkit for building and ex-
perimenting with dialogue move engines and in-
formation states is being developed. Apart from
a general system architecture, the toolkit also
specifies formats for defining information state
update rules, dialogue move selection rules, dia-
logue moves and associated algorithms, and pro-
vides a set of tools for experimenting with dif-
ferent information states, rules, and algorithms.
Simple intepretation, generation, input and out-
put modules are also provided. To build a di-
alogue system, one needs to provide definitions
of rules, moves and (optionally) algorithms, as
well as the structure of the dynamic information
state (DIS).

One may also add inference engines, planners,
plan recognizers, dialogue grammars, dialogue
game automata etc., which can then be used as
resources by the DME.

*We are grateful to the members of the TRINDI
project for clarifying discussion relating to this research.
Work on this paper was supported by TRINDI (Task
Oriented Instructional Dialogue), EC Project LE4-8314,
SDS (Swedish Dialogue Systems), NUTEK/HSFR Lan-
guage Technology Project F1472/1997 and INDI (Infor-
mation Exchange in Dialogue), Riksbankens Jubileums-
fond 1997-0134.

2 General architecture

The general architecture we are assuming is
shown in this diagram:

1| Dynamic ! sic (SIS)
ois = ' 2module
| - DIStypedefinition
i -urles ——
| -stules
| - dmovetypes
N latest_moves=... | - updateagorith e N
) next_moves=.. 1 - sdectionagorithm ! |
E| pois input=. ! - control agorithm
5 output = ! ~
program_state= ~
Optional Resources: (Dynamic o Static) [S
datebase
z dialogue grammar
2 plan library
S .

wisluls

The central components in the architecture are
the following;:

Information State

e Static Information State (SIS). Contains
(at least) u-rules (rules for updating the
DIS), s-rules (rules for selecting d-moves,
dialogue move definitions, DIS type defini-
tion, and algorithms for the update, selec-
tion and control modules

e Dynamic Information State (DIS)

e Provided Dynamic Info State (PDIS)
(toolkit reserved variables, accessible by U-
Rules and S-Rules)

e Additional Resources

Modules

e Update module: Applies update rules to
the DIS according to the update engine al-
gorithm

e Selection module: Selects d-move(s) using
the selection rules and the move selection
algorithm. The resulting moves are stored
in the DIS. The update engine and the se-
lection engine together make up the dia-
logue move engine.

e Control module: wires together the other
modules, either in sequence or through
some asynchronous mechanism.

All resources (including DIS, PDIS and SIS) are
viewed and defined as abstract datatypes, i.e.
by a set of conditions and operations applicable
to them. This provides a uniform way of inte-
grating diverse resources in a dialogue system.
Rule definitions include a set of preconditions
(conditions on datatypes) and a set of effects
(operations on datatypes). DIS, PDIS and SIS
can all be checked by conditions in u-rules and
s-rules (and by modules). Only the dynamic
resources (DIS and PDIS) can be changed by
updates in the rules.

3 GoDiS

GoDiS (Gothenburg Dialogue System) is an ex-
perimental dialogue system built using the DME
toolkit. It uses simple default algorithms for the
control, update and selection modules, as well as
for input, interpretation, generation and output.

The notion of information state we are putting
forward here is basically a modified version
of the dialogue game board which has been
proposed in [Ginzburg(1996)]. We represent
information states of dialogue participants as
records of the following type:

PLAN : LisT(AcCTION)
AGENDA : STACK(ACTION)

BEL : SET(PROP)
PRIVATE :
QUD : STACK(QUESTION)
TMP

SPEAKER : SPEAKER

LM
MOVE : Move

: SET(PRrOP)

STACK(QUESTION)
SPEAKER : SPEAKER
LM

BEL
uD :
SHARED : Q
MOVE : Move

The main division in the information state is be-
tween information which is private to the agent
and that which is shared between the dialogue
participants. The PLAN field contains a dia-
logue plan, i.e. is a list of dialogue actions that
the agent wishes to carry out. The T™P field
keeps track of shared information that has not
yet been grounded. QUD is a stack of questions
under discussion. These are questions that have
been raised and are currently under discussion
in the dialogue.

The update rules include rules for question and
plan accommodation, as well as rules for han-
dling grounding and rules for integrating the
latest move with the DIS. As an example, the
u-rule for accomodating questions (which is nec-
essary when the user answers a question that the
system has yet to ask) is shown in (1). This rule
allows the system to handle dialogue such as (2).
(1) u-rRULE: accommodateQuestion
valRec(shared.Im.speaker, usr)
inRec(shared.lm.moves, answer(A))
emptyRec(shared.qud)
inRec(private.plan, raise(Q))
domain: relevant_answer(Q, A)

delRec(private.plan, raise(Q))
pushRec(shared.qud, Q)

EFF: {

system> Welcome to the travel agency!
user > flights to paris
system> From where do you want to go?

(2)

The text-based WWW demo of GoDiS allows
inspection of the dynamic information state and
the rules applied to it between each utterance in
the dialogue.

References

[Ginzburg(1996)] Ginzburg, J. (1996). Interrog-
atives: Questions, facts and dialogue. In The

Handbook of Contemporary Semantic Theory.
Blackwell, Oxford.

