GOTHENBURG PAPERS IN COMPUTATIONAL LINGUISTICS

99-1
Peter Bohlin, Robin Cooper, Elisabet Engdahl, Staffan Larsson
Information states and dialogue move engines

9th August, 1999

This paper can be found on
http://www.ling.gu.se/publications/GPCL.html
or ordered from
Department of Linguistics, Géteborg University,
Box 200, SE-405 30 Go6teborg, Sweden

Information states and dialogue move engines

Peter Bohlin, Robin Cooper, Elisabet Engdahl, Staffan Larsson
Department of linguistics
Goteborg University
Box 200, Humanisten, SE-405 30 Goteborg, SWEDEN
{peb,cooper,engdahl,sl}@ling.gu.se

Abstract

We explore the notion of information state in
relation to dialogue systems, and in particular
to the part of a dialogue system we call the di-
alogue move engine. We use a framework for
experimenting with information states and di-
alogue move engines, and show how an exper-
imental dialogue system currently being devel-
oped in Goteborg within the framework can be
provided with rules to handle accommodation
of questions and plans in dialogue.

1 Introduction

We use the term information state to mean, roughly, the
information stored internally by an agent, in this case a
dialogue system. A dialogue move engine updates the in-
formation state on the basis of observed dialogue moves
and selects appropriate moves to be performed. In this
paper we use a formal representation of dialogue infor-
mation states that has been developed in the TRINDI',
SDS? and INDI® projects?.

The structure of this paper is as follows: First, we give
a brief description of a general dialogue system archi-
tecture which can be used for experimenting with differ-
ent kinds of information states and dialogue move en-
gines. We explain the distinction between static and
dynamic information state, and discuss how rules for-
mulated in terms of conditions and operations on in-

'TRINDI (Task Oriented Instructional Dialogue), Ec
Project LE4-8314, www.ling.gu.se/research/projects/trindi/

2SDS (Swedish Dialogue Systems), NUTEK/HSFR Language
Technology Project F1472/1997, http://www.ida.liu.se/ nlplab/sds/

SINDI (Information Exchange in Dialogue), Riksbankens Ju-
bileumsfond 1997-0134.

*We will illustrate our discussion from a Swedish dialogue
in the travel booking domain that has been collected by the
University of Lund as part of the SDS project. We quote the
transcription done in Géteborg as part of the same project.

formation states can be used to (1) update informa-
tion states based on observed dialogue moves and (2)
select dialogue moves based on the current information
state. We present a particular notion of dynamic in-
formation state based on Ginzburg’s theory of Ques-
tions Under Discussion (QUD) [Ginzburg, 1996a; 1996b;
1998]. An experimental dialogue system which uses this
notion of information state is presented. We then look at
the role of accommodation in information state transi-
tions and point to examples of two kinds of accommoda-
tion: accommodation of questions under discussion and
of dialogue plan. Finally, we argue that accommodation
should be associated with update rules, or tacit moves
(not associated with an utterance), and show how the
implementation of these rules yields improved behaviour
in the experimental dialogue system.

2 General architecture

The general architecture we are assuming is shown in

(1).

(1)

o o

A ' . N 7 v - “
¥ ! Dialogue Move Engine (DME) y ' EN
Interpreter i Update Selection ! Generator
module module I Output
I

Input

Information State (1S)
,,,,,,,,,,,,,,,,,,,, e

Dynamic (DIS) ! Static (SIS)

| Declarative
= | - DIStypedefinition
1 -plans

- games

- moves

- rules

- database

i Procedural:
- update algorith
- selection algorithm
- control agorithm

The components in the architecture are the following:

e Information State (IS), divided into Dynamic IS
(DIS) and static IS (SIS)

e Interpreter: Takes input utterances from the user
and gives interpretations in terms of moves (includ-
ing semantic content). The interpretation is stored
in the DIS.

e Update module: Applies update rules (specified in
SIS) to the DIS according to the update algorithm
(also specified in SIS)

e Selection module: Selects move(s) using the selec-
tion rules and the move selection algorithm speci-
fied in SIS. The resulting moves are stored in the
DIS. The update module and the selection module
together make up the dialogue move engine.

e Generator: Generates ouput utterances based on
the contents of the DIS.

e Control: wires together the other modules, either in
sequence or through some asynchronous mechanism.

Apart from the general architecture show in (1), the
framework also specifies formats for defining update
rules, selection rules and dialogue moves (see section
2.2), and provides a set of tools for experimenting with
different information states, rules, and algorithms. Sim-
ple intepreters and generators are also provided. To
build a dialogue system, one needs to supplement the
framework with definitions of rules, moves and algo-
rithms, as well as the structure of the dynamic infor-
mation state.

2.1 Static and dynamic information state

We distinguish between static (SIS) and dynamic (DIS)
information states of a dialogue agent. The dynamic
state is the part of the information state which can
change during the course of the dialogue, while the static
state stays the same. In the static state we can include
rules for interpreting utterances, updating the dynamic
information state, and selecting further moves. Also, we
can include dialogue move definitions, plan libraries, di-
alogue game definitions (e.g. in the form of Finite State
Transition Networks) and domain databases, insofar as
these knowledge sources do not change during the dia-
logue. If e.g. the database can be updated during the
dialogue by information from the user or in any other
way, or if the system is capable of learning new rules,
these resources should be included in the dynamic state.

2.2 Moves and rules

Traditionally, dialogue moves (or speech acts) are defined
using preconditions, effects, and a decomposition [Allen,

1987]. From the perspective of implementing a dialogue
move engine, we think it may be useful to think about
what a dialogue system (or any dialogue participant) ac-
tually needs to do (not necessarily in a sequential order):

e interpret utterance from the user

e update the information state according to the
move(s) (supposedly) performed by the user

e select a move/moves to be performed by the system
e generate appropriate utterance to perform move(s)

e update the information state according to the
move(s) performed by the system

Instead of defining the dialogue moves themselves in
terms of preconditions and effects, we define update rules
(u-rules) and selection rules (s-rules) for updating the
DIS based on the recognised move(s) and selecting the
next move(s), respectively.

The update rules are rules that update the (dynamic)
information state, e.g. when the user has input some-
thing to the system. The selection rules are rules that
both update the (dynamic) information state and selects
a dialogue move to be executed by the system. Both rule
types have preconditions and effects. The preconditions
are a list of conditions that must be true of the infor-
mation state. The effects are a list of operations to be
executed if the preconditions are true. The preconditions
must guarantee that the effects can be executed.

Dialogue move definitions consist of a name, a type (op-
tional) and a list of number and types of arguments (e.g.,
speaker, content, etc). Dialogue moves are the output of
analysis and input to generation. Also, they are the ob-
jects selected by s-rules. U-rules may refer to them, and
they may be part of the information state.

We also use the term tacit move to refer to the act of
applying an update rule, i.e. the act of updating the
DIS.

3 Question-based DIS

The question about what should be included in the dy-
namic information state is central to any theory of dia-
logue management. The notion of information state we
are putting forward here is basically a version of the dia-
logue game board which has been proposed by Ginzburg.
We are attempting to use as simple a version as possi-
ble in order to have a more or less practical system to
experiment with.

We represent, information states of dialogue participants
as records of the following type:

PLAN : LiST(ACTION)

AGENDA STACK(ACTION)
PRIVATE : BEL SET(PROP)
TMP : QUD STACK(QUESTION)
LM : MovE
BEL : SET(PROP)
SHARED @ QUD STACK(QUESTION)
LM : MovE

As any abstract datatype, this type of information state
is associated with various conditions and operations
which can be used to check and update the information
state. For example, fstRec(SHARED.QUD,() succeeds if
@ is unifiable with the topmost element on the shared
QUD stack, and popRec(SHARED.QUD) will pop the top-
most element off the stack.

The main division in the information state is between
information which is private to the agent and that which
is shared between the dialogue participants. What we
mean by shared information here is that which has been
established (i.e. grounded) during the conversation, akin
to what Lewis in [Lewis, 1979] called the “conversational
scoreboard”.

The PLAN field contains a dialogue plan, i.e. is a list
of dialogue actions that the agent wishes to carry out.
The plan can be changed during the course of the con-
versation. For example, if a travel agent discovers that
his customer wishes to get information about a flight he
will adopt a plan to ask her where she wants to go, when
she wants to go, what price class she wants and so on.
The AGENDA field, on the other hand, contains the short
term goals or obligations that the agent has, i.e. what
the agent is going to do next. For example, if the other
dialogue participant raises a question, then the agent will
normally put an action on the agenda to respond to the
question. This action may or may not be in the agent’s
plan.

We have included a field TMP that mirrors the shared
fields. This field keeps track of shared information that
has not yet been grounded, i.e. confirmed as having
been understood by the other dialogue participant®. In
this way it is easy to delete information which the agent
has “optimistically” assumed to have become shared if
it should turn out that the other dialogue participant
does not understand or accept it. If the agent pursues
a cautious rather than an optimistic strategy then in-
formation will at first only be placed on TMP until it
has been acknowledged by the other dialogue participant
whereupon it can be moved from TMP to the appropriate
shared field.

The SHARED field is divided into three subfields. One
subfield is a set of propositions which the agent assumes
for the sake of the conversation. The second subfield is

®In discussing grounding we will assume that there is just
one other dialogue participant.

for a stack of questions under discussion (QUD). These
are questions that have been raised and are currently
under discussion in the dialogue. The third field contains
information about the latest move (speaker, move type
and content).

4 GoDiS

In Go&teborg, an experimental dialogue system called
GoDiS (Gothenburg Dialogue System) is being devel-
oped based on the framework described above and using
the type of dynamic information state described in Sec-
tion 3.

4.1 Rules, moves and algorithms

In this section we describe some of the rules and algo-
rithm definitions we use. The current algorithms are
very simple and the behaviour of the system is therefore
mainly dependent on the definitions of the update and
selection rules.

Update algorithm:

1. Are there any update rules whose preconditions are ful-
filled in the current IS? If so, take the first one and
execute the updates specified in the effects of the rule.
If not, stop.

2. Repeat.
Selection algorithm:

1. Are there any selection rules whose preconditions are
fulfilled in the current IS? If so, proceed to step 2. If
not, stop.

2. Does the rule specify a dialogue move? If so, stop. If
not, execute the updates specified in the effects of the
rule.

3. Repeat
Control algorithm:

Call the interpreter

Call the update module
Call the selection module
Call the generator

Call the update module

S o W N

Repeat

The update rules include rules for question and plan ac-
commodation, as well as rules for handling grounding
and rules for integrating the latest move with the DIS.

The latter rules look different depending on whether the
user or the system itself was the agent of the move. As
an illustration, in (2) we see the update rule for inte-
grating an “answer” move when performed by the user,
and in (3) the converse rule for the case when the latest
move was performed by the systemS.

(2) U-RULE: integrateLatestMove(answer(usr))
valRec(SHARED.LM, answer(usr,A))
PRE fstRec(SHARED.QUD, Q),
relevant_answer(@, A)

popRec(SHARED.QUD)
EFF reduce(Q, A, P)
addRec(SHARED.BEL, P)

(3) vu-rULE: integrateLatestMove(answer(sys))
PRE: valRec(PRIVATE.TMP.LM, answer(sys, @, A))

setRec(SHARED.LM, answer(sys, @, A))

popRec(SHARED.QUD)

reduce(Q, A, P)

addRec(SHARED.BEL, P)

In the current implementation, interpretation and gen-
eration are canned, which means that the range of in-
put and output strings is very restricted. However, it is
also possible to communicate using moves directly, e.g.
by typing ask (P"(price=P)) instead of ’What is the
price?’.

The semantics (if it deserves the name) represents
propositions as pairs of features and values, e.g.
(month=april), and questions are M\-abstracts over
propositions, e.g. Az(month = z). A set of proposi-
tions and a query together constitute a database query
which is sent to the database once the system has re-
ceived sufficient information to be able to answer the
question. A question and an answer can be reduced to
a proposition using g-reduction. For example, the ques-
tion Ax(month=x) and the answer april yield the propo-
sition [Az(month = z)](april), i.e. (month = april).

4.2 Dialogue plans

In our implementation, the static information states con-
tains, among other things, a set of dialogue plans which
contain information about what the system should do
in order to achieve its goals. Traditionally [Allen and
Perrault, 1980], it has been assumed that general plan-
ners and plan recognizers should be used to produce
cooperative behaviour from dialogue systems. On this

SNote that this definition embodies an optimistic ap-
proach to grounding by putting answer(sys,@,A) in
SHARED.LM, thereby assuming the systems utterance was un-
derstood by the user. Also, the system optimistically assumes
that the user accepts the resulting proposition P by adding
it to SHARED.BEL.

account, the system is assumed to have access to a li-
brary of domain plans, and by recognizing the domain
plan of the user, the system can produce cooperative
behaviour such as supplying information which the user
might need to execute her plan. Our approach is to
directly represent ready-made plans for engaging in co-
operative dialogue and producing cooperative behaviour
(such as answering questions) which indirectly reflect do-
main knowledge, but obviates the need for dynamic plan
construction.

Typically, the system has on the agenda an action to re-
spond to a question. However, the move for answering
the question cannot be selected since the system does not,
yet have the necessary information to answer the ques-
tion. The system then tries to find a plan which will
allow it to answer the question, and this plan will typ-
ically be a list of actions to raise questions; once these
questions have been raised and the user has answered
them, the system can provide an answer to the initial
question. This behaviour is similar to that of many nat-
ural language database interfaces, but the difference is
that the architecture of our system allows us to improve
the conversational behaviour of the system simply by
adding some new rules, such as the accommodation rules
described above.

5 Accommodation

We define dialogue moves as updates to information
states directly associated with utterances. If you take a
dialogue or information update perspective on Lewis’ no-
tion of accommodation, it corresponds to moves that are
tacit (i.e. not associated with an utterance). Tacit moves
can be seen as applications of update rules, which specify
how the information state should be updated given that
certain preconditions hold. Tacit moves could also be
called “internal” or “inference” moves. The motivation
for thinking in terms of accommodation has to do with
generality. We could associate expressions which intro-
duce a presupposition as being ambiguous between a pre-
suppositional reading and a similar reading where what
is the presupposition is part of what is asserted. For
example, an utterance of “The king of France is bald”
can either be understood as an assertion of that sentence
and a presupposition that there is a king of France or as
an assertion of the sentence “There is a king of France
and he is bald”. However, if we assume an additional
tacit accommodation move before the integration of the
information expressed by the utterance then we can say
that the utterance always has the same interpretation.

In a similar way we can simplify our dialogue move
analysis by extending the use of tacit moves so that
the updates to the information state normally associ-
ated with a dialogue move are actually carried out by
tacit moves. One argument for doing this is that very

few (if any) effects of a move are guaranteed as a con-
sequence of performing the move; rather, the actual re-
sulting updates depend on reasoning by the addressed
participant. Thus, we define an update rule intergrate-
LatestMove which, given that the latest move was ac-
cepted by the system, performs the appropriate update
operations. The updates for a move are different depend-
ing on whether it was the system or the user who made
the move, but the same module is used in both cases.

5.1 Accommodating a question onto QUD

Dialogue participants can address questions that have
not been explicitly raised in the dialogue. However, it is
important that a question be available to the agent who
is to interpret it because the utterance may be elliptical.
Here is an example from our dialogue:

(4) $J: vicken manad ska du aka
(what month do you want to go)
$P: ja: typ den: &: tredje fjdrde april /
nan gang dar
(well around 3rd 4th april / some time there)
$P: sa billit som mojlit
(‘as cheap as possible)

The strategy we adopt for interpreting elliptical utter-
ances is to think of them as short answers (in the sense
of Ginzburg [Ginzburg, 1998]) to questions on QUD. A
suitable question here is What kind of price does P want
for the ticket?. This question is not under discussion at
the point when P says “as cheap as possible”. But it
can be figured out since J knows that this is a relevant
question. In fact it will be a question which .J has as an
action in his plan to raise. On our analysis it is this fact
which enables A to interpret the ellipsis. He finds the
matching question on his plan, accommodates by plac-
ing it on QUD and then continues with the integration
of the information expressed by as cheap as possible as
normal. Note that if such a question is not available
then the ellipsis cannot be interpreted as in the dialogue
in (5).

(5) A. What time are you coming to pick up Maria?
B. Around 6 p.m. As cheap as possible.

This dialogue is incoherent if what is being discussed is
when the child Maria is going to be picked up from her
friend’s house (at least under standard dialogue plans
that we might have for such a conversation).

5.2 Accommodating the dialogue plan

After an initial exchange for establishing contact the first
thing that P says to the travel agent in our dialogue is:

(6) $P: flyg ti paris
< flights to Paris >

This is again an ellipsis which on our analysis has to be
interpreted as the answer to a question in order to have
content. As no questions have been raised yet in the di-
alogue (apart from whether the participants have each
other’s attention) the travel agent cannot find the appro-
priate question on his plan. Furthermore, as this is the
first indication of what the customer wants, the travel
agent cannot have a plan with detailed questions. We
assume that the travel agent has various plan types in
his domain knowledge determining what kind of conver-
sations he is able to have. E.g. he is able to book trips
by various modes of travel, he is able to handle com-
plaints, book hotels, rental cars etc. What he needs to
do is take the customer’s utterance and try to match it
against questions in his plan types in his domain knowl-
edge. When he finds a suitable match he will accommo-
date his plan, thereby providing a plan to ask relevant
question for flights, e.g. when to travel?, what date? etc.
Once he has accommodated this plan he can proceed as
in the previous example. That is, he can accommodate
the QUD with the relevant question and proceed with
the interpretation of ellipsis in the normal fashion.

This example is interesting for a couple of reasons. It
provides us with an example of “recursive” accommoda-
tion. The QUD needs to be accommodated, but in order
to do this the dialogue plan needs to be accommodated.
The other interesting aspect of this is that accommodat-
ing the dialogue plan in this way actually serves to drive
the dialogue forward. That is, the mechanism by which
the agent interprets this ellipsis, gives him a plan for a
substantial part of the rest of the dialogue. This is a way
of capturing the intuition that saying flights to Paris to
a travel agent immediately makes a number of questions
become relevant.

5.3 Associating accommodation with tacit
moves

Update rules can be used for other purposes then in-
tergrating the latest move. For example, one can pro-
vide update rules which accommodate questions and
plans. One possible formalization of the accommo-
date_question move is given in (7). When interpreting
the latest utterance by the other participant, the sys-
tem makes the assumption that it was a reply move
with content A. This assumption reqires accommodat-
ing some question @ such that A is a relevant answer to
Q. The check operator “answer-to(4,Q)” is true if A
is a relevant answer to) given the current information
state, according to some (possibly domain-dependent)
definition of question-answer relevance.

(7) U-rRULE: accommodateQuestion(Q, A)
valRec(SHARED.LM, answer(usr,A4)),
PRE inRec(PRIVATE.PLAN, raise(Q))
answer-to(A4,Q)
—_— { delRec(PRIVATE.PLAN, raise(Q))
pushRec(SHARED.QUD, @)

6 Accommodation in a dialogue system

In this section we show an example of how the dialogue
system described above can handle accommodation of
questions and plans. The example is actual (typed) dia-
logues with the system, supplemented with information
about dialogue moves, tacit moves, and (partial) illustra-
tions of the systems dynamic information state at differ-
ent stages of the dialogue.

$S: Welcome to the travel agency

$U: flights to paris.

plan
agenda
tmp

private =

oo
N~

bel
shared = qud

{}

answer (usr, [how=plane,to=paris])

accommodatePlan
setRec(private.plan, [raise(A” (how=4)),
raise(B" (to=B)),
raise(C” (return=C)),
raise(D” (month=D)),
raise(E" (priceclass=E)),
respond (F" (price=F))1)

accommodateQuestion
delRec(private.plan,raise(A” (how=4)))
pushRec(shared.qud,A” (how=4))

integratelatestMove (answer (usr))
popRec(shared.qud)
addRec(shared.bel,how=plane)

accommodateQuestion
delRec(private.plan,raise(A” (to=4)))
pushRec(shared.qud,A” (to=A))

integratelatestMove (answer (usr))
popRec(shared.qud)
addRec(shared.bel,to=paris)

refillAgenda
popRec(private.plan)
pushRec(private.agenda,raise(A” (return=A4)))

private =

agenda = [raise(A” (return=4))]
plan = [raise(A” (month=4)),
raise(B” (priceclass=B)),
respond (C” (price=C))]
shared
bel

[(to = paris)
(how = plane)]
Im = answer(usr, [how=plane,to=paris])

$S: From where do you want to go?

raise(R” (return=R)),
raise(M” (month=M)),

. _ plan = (raise(C” (class=C)),)
private - respond(P" (price=P))
agenda = ()
tmp = -
bel = { (to=paris), (how=plane) }
shared = qud = (X" (from=X))

1m ask(sys,Y" (from=Y))

After interpreting the users utterance as an answer
move with the content [how=plane,to=paris], the sys-
tem starts checking if there are any u-rules which apply.
Following the ordering of the rules given in the list of
rule definitions, it first checks if it can perform inte-
grateLatestMove(answer(usr)). However, this rule
requires that the content of the answer must be rele-
vant to the topmost question on QUD. Since the QUD
is empty, the rule does not apply. It then tries to apply
the accommodateQuestion rule, but since the plan is
empty this rule does not apply either. However, accom-
modatePlan (8)7 does apply, since there is (in the SIS)
a plan such that the latest move is relevant to that plan.
More precisely, the latest move provides an answer to a
question) such that raising () is part of the plan.

(8) U-RULE: accommodatePlan
emptyRec(PRIVATE.PLAN)
emptyRec(SHARED.QUD)

PRE: emptyRec(PRIVATE.AGENDA)
valRec(SHARED.LM, LM)
relevant_to_plan(LM, Plan)

EFF: { setRec(PRIVATE.PLAN, Plan)

Once this rule has been executed, the update algorithm
starts from the beginning of the rule list. This time, it
turns out the preconditions of accommodateQuestion
hold, so the rule is applied. As a consequence of this, the
preconditions of integrateLatestMove(answer(usr))
now hold, so that rule is applied. Actually, it turns out
that the latest move is also relevant to a second question
(concerning the destination) in the plan, so that question
is also accommodated and its answer integrated. Since
no additional u-rules apply, the system proceeds to per-
form the next action on the plan: asking where the user
wants to travel from. At the end of the dialogue frag-
ment, the dynamic information state after the system
has uttered this question is shown.

"In the case where a move is relevant to several plans, this
rule will simply take the first one it finds. This clearly needs
further work.

References

[Allen and Core, 1997] J. Allen and M. Core. DAMSL:
Dialogue act markup in several layers. Draft contri-
bution for the Discourse Resource Initiative, October
1997.

[Allen and Perrault, 1980] J. F. Allen and C. Perrault.
Analyzing intention in utterances. 15(3):143-178,
1980.

[Allen, 1987] J. F. Allen. Natural Language Understand-
ing. Benjamin Cummings, Menlo Park, CA, 1987.

[Carletta, 1996] J. et. al. Carletta. Here dialogue struc-
ture coding manual. Technical Report HCRC/TR-82,
HCRC, 1996.

[Cooper and Larsson, 1999] R. Cooper and S. Larsson.
Dialogue moves and information states. In Proc. of
the Third IWCS, Tilburg, 1999.

[Ginzburg, 1996a] J. Ginzburg. Dynamics and the se-
mantics of dialogue. In Seligman and Westerstahl
[Seligman and Westerstahl, 1996).

[Ginzburg, 1996b] J. Ginzburg. Interrogatives: Ques-
tions, facts and dialogue. In The Handbook of Con-
temporary Semantic Theory [Lappin, 1996].

[Ginzburg, 1998] J. Ginzburg. Clarifying utterances. In
J. Hulstijn and A. Niholt, editors, Proc. of the Twente
Workshop on the Formal Semantics and Pragmatics of
Dialogues, pages 11-30, Enschede, 1998. Universiteit
Twente, Faculteit Informatica.

[Lappin, 1996] ed. Lappin, Shalom. The Handbook of
Contemporary Semantic Theory. Blackwell, Oxford,
1996.

Lewis, 1979] D. K. Lewis. Scorekeeping in a language
g guag
game. Journal of Philosophical Logic, 8:339-359, 1979.

[Seligman and Westerstahl, 1996] Jerry Seligman and
Dag Westerstahl, editors. Logic, Language and Com-
putation, volume 1. CSLI Publications, 1996.

TRINDI homepage: www.ling.gu.se/ research/
projects/ trindi/

