
Transition-based parsing

Peter Ljunglöf
Department of Linguistics

Gothenburg University
peb@ling.gu.se

In this paper we introduce a general framework
for transition-based parsing algorithms. Among
the algorithms that can be described in this
framework are deterministic and generalized LR-
parsing (Tomita, 1986), incremental tabular pars-
ing such as the Earley algorithm (Earley, 1970),
and projective and non-projective depenency pars-
ing (Nivre, 2008).

In the framework parsing is not viewed as a de-
ductive process, as is common for tabular parsing
strategies (Sikkel and Nijholt, 1997), but instead
as a functional process in the spirit of recursive as-
cent parsing (Leermakers, 1993).

1 Automata
An automaton in this framework is a tuple
(Σ,Φ,φ0,ΦF , S,R), where Σ is the input alpha-
bet, Φ is a set of parsing states (forming a monoid
together with the operation ⊕ and the zero ⊥),
φ0 ∈ Φ is the initial state, ΦF ⊆ Φ are the final
states, and S ∈ Σ × Φ → Φ and R ∈ Φ → Φ are
the transition functions for the automaton (called
shift and reduce respectively).

A configuration is a pair 〈β, φ〉 ∈ Σ∗ × Φ, of
the remaining input and the current state of the au-
tomaton. The basic idea of transition-based pars-
ing is to shift one word from the remaining input
to the current state, and then reduce the state any
number of times. This is repeated until the input is
exhausted. Reducing any number of times means
that we take the union (⊕) of all possible reduc-
tions. This can be defined recursively as the aux-
iliary function R∗(φ) = φ ⊕ R∗(R(φ)), with the
base case R∗(⊥) = ⊥.

The parsing function P ∈ Σ∗ × Φ → Φ can
finally be defined recursively by:

P (wβ, φ) = P (β, R∗(S(w,φ)))
P (ε,φ) = φ

An input string w1 . . . wn is accepted by the au-
tomaton if P (w1 . . . wn,φ0) ∈ ΦF

2 Examples

Here we give some brief examples of algorithms
that have a natural formulation as a transition-
based automaton. Due to space limitations, we
only describe the type Φ of parsing states, and the
transition functions S and R. The initial and fi-
nal states, as well as correctness proofs, are left as
exercises for the interested reader.

2.1 Deterministic LR(0) parsing

LR parsing uses a set Q of LR states, a goto re-
lation G ⊆ Σ × Q × Q, and a reduce relation
R ⊆ Q × Σ × N. These relations are compiled
from a context-free grammar (Knuth, 1965).

A parsing state φ ∈ Φ is a stack of LR states, or
the failure state ⊥. When combining two stacks,
φ⊕φ′, we assume that one of them is⊥. Otherwise
the grammar is not LR(0), and we cannot parse
it deterministically. The top state of a stack φ is
denoted top(φ), and the result of popping the top
state is denoted pop(φ).

The shift function S is defined as S(w,φ) =
qφ, if there is a q such that G(w, top(φ), q), ⊥
otherwise. The reduce function R is defined as
R(φ) = S(w,popn(φ)), if there are w, n such that
R(top(φ), w, n), ⊥ otherwise.

2.2 Generalized LR(0) parsing

Conceptually, GLR parsing handles a set of stacks
in parallel, shifting and popping on each one of
them. The naive implementation leads to an expo-
nential number of stacks, and the problem is how
to store these stacks in a compact way. One way
to store the stacks is to implement the parsing state
φ ∈ Φ as a directed acyclic graph where each node
q〈i〉 is an LR state q annotated by an input position
i. The topmost nodes in φ are denoted top(φ).
Popping is an operation that applies to nodes in φ:

popφ(q〈k〉0 ) = {q〈i〉 | (q〈k〉0 )→ q〈i〉) ∈ φ}



Shifting a new token w onto the graph means that
we add a new edge [q〈k+1〉 )→ q〈k〉0 ] for each q〈k〉0 ∈
top(φ) and each q such that G(w, q0, q):

S(w,φ) = φ ∪ {q〈k+1〉 )→ q〈k〉0 |

q〈k〉0 ∈ topφ, G(w, q0, q)}

Reducing means that for each q〈k〉0 ∈ top(φ) such
that R(q0, w, n), we pop n times to get q〈i〉n , and
add a new edge [q〈k〉 )→ q〈i〉n ], where G(w, q):

R(φ) = φ ∪ {q〈k〉 )→ q〈i〉n |
q〈k〉0 ∈ topφ, R(q0, s, n),

q〈i〉n ∈ popn
φ(q〈k〉0 ), G(s, qn, q)}

2.3 Earley parsing
The Earley algorithm (Earley, 1970) is often for-
mulated in a deductive setting, but it can also be
regarded as a transition-based algorithm. A pars-
ing state φ ∈ Φ is a sequence of Earley states
〈E0, . . . , Ek〉, where each Ej is a set of Earley
items [i, A → α ·β]. Shifting w means that we add
a new Earley state Ek+1 constisting of the items
which search for w:

S(w, 〈E0, . . . , Ek〉) = 〈E0, . . . , Ek, Ek+1〉
where Ek+1 = {[i, A → αw · β] |

[i, A → α · wβ] ∈ Ek}

This new state is created by the Earley rule shift.
The other two inference rules, predict and com-
bine, are used when reducing the current Earley
state Ek:

R(〈E0, . . . , Ek〉) = 〈E0, . . . , Ek ∪ E′
k ∪ E′′

k 〉
where E′

k = {[k, B → ·γ] |
[j, A → α ·Bβ] ∈ Ek,

B → γ}
E′′

k = {[i, A → αB · β] |
[j, B → γ·] ∈ Ek,

[i, A → α ·Bβ] ∈ Ej})

2.4 Projective dependency parsing
Projective dependency parsing (Nivre, 2008) is
not based on a context-free grammar and does
not build phrase structure trees, instead it uses a
trained oracle to build dependency structures. De-
spite being very different from the previous exam-
ples, there is a natural formulation as a transition-
based automaton.

A parsing state φ ∈ Φ is a pair 〈σ, A〉 of a stack
σ ∈ Σ∗ of input tokens and a dependency graph
A ⊆ Σ2×L, where Σ are the nodes and the edges
are labelled with dependency labels ' ∈ L.

Shifting a symbol just puts it first in the stack:
S(w, 〈σ, A〉) = 〈wσ, A〉. The result of reducting a
state φ depends on the oracle O ∈ Φ → {0, 1,⊥}.
If i = O(φ) ∈ {0, 1}, then we continue reducing:

R(〈w0w1σ, A〉) = 〈wiσ, A ∪ {wi
")→ w1−i}〉

If i = ⊥, we stop reducing by returning ⊥.
Since the same word form can occur in several

positions, we assume that each input token is la-
beled by its input position. The input should thus
be of the form: “the1 cat2 sat3 on4 the5 mat6”.

3 Discussion
We have introduced a framework for transition-
based parsing, which incorporates many differ-
ent parsing algorithms. In the present description
there is no lookahead to help decide when and how
to do the reduction, which many algorithms make
use of. This is not a real problem, since only small
straightforward changes has to be made.

All abstract frameworks hide some implemen-
tation issues that are necessary for efficiency, and
so does this. In particular, the function R∗ can be
implemented slightly differently depending on the
underlying parsing state. However, compared to
deductive approaches, our framework is neverthe-
less closer to a practical implementation while still
being an abstract framework.

References
Jay Earley. 1970. An efficient context-free parsing al-

gorithm. Comm. ACM, 13(2):94–102.

Donald E. Knuth. 1965. On the translation of lan-
guages from left to right. Information and Control,
8:607–639.

René Leermakers. 1993. The Functional Treatment of
Parsing. Kluwer Academic Publishers.

Joakim Nivre. 2008. Sorting out dependency parsing.
In Bengt Nordström and Aarne Ranta, editors, Go-
TAL’08, Gothenburg, Sweden.

Klaas Sikkel and Anton Nijholt. 1997. Parsing of
context-free languages. In G. Rozenberg and A. Sa-
lomaa, editors, The Handbook of Formal Languages,
volume II, pages 61–100. Springer-Verlag.

Masaru Tomita. 1986. Efficient Parsing for Natural
Language. Kluwer Academic Press.


