
Dialogue Management as Interactive Tree Building

Peter Ljunglöf

Department of Philosophy, Linguistics and Theory of Science

University of Gothenburg, Sweden

peb@ling.gu.se

Abstract

We introduce a new dialogue model and a
formalism for limited-domain dialogue sys-
tems, which works by interactively build-
ing dialogue trees. The model borrows
its fundamental ideas from type theoreti-
cal grammars and Dynamic Syntax. The
resulting dialogue theory is a simple and
light-weight formalism, which is still capa-
ble of advanced dialogue behaviour.

1 Background

1.1 Dialogue models beyond finite-state

A finite-state dialogue system employs dialogue
states, connected by transitions, which represent
where the dialogue participants are in the progress
of the dialogue. This is a very low-level formal-
ism, which only is feasible for very limited dialogue
domains. The dialogues become system-driven –
there is not much room for the user to take ini-
tiatives. A number of formalisms have been intro-
duced to improve on this, that are based on richer,
more powerful models of dialogue structure. Here
are a few examples:

Form-based dialogue systems A form-based
dialogue system divides different tasks into forms,
similar to web forms, containing slots to be filled.
VoiceXML (Oshry, 2007) is a W3C standard for
writing form-based systems. This is a more power-
ful formalism than finite-state, but it too becomes
difficult to manage when the complexity of the do-
main increases. One main reason for this is that
form-based systems cannot handle underspecified
or ambiguous information in a good way. Although
the user is allowed to take some initiative within a
form, it is the system that drives the dialogue on
a higher level.

Dialogue grammars The idea of modelling di-
alogue in terms of a grammar is based on the idea
of adjacency pairs, which describe facts such as
that questions are generally followed by answers,
proposals by acceptances, etc. Grammar-based di-
alogue systems were quite popular in the 1990’s
(Jönsson, 1997; Gustafson et al., 1998), but tend

to be better at representing the surface linguistic
expression involved in dialogue rather than the se-
mantic content and its relation to context which is
very often of central importance in determining the
range of options available to a dialogue participant
at a given point in a dialogue.

Plan- and logic-based approaches Plan-
based dialogue systems construct or infer plans
for fulfilling the goals of the dialogue participants.
This is accomplished by using AI techniques such
as planning and plan recognition. The related
logic-based approach represents dialogue and di-
alogue context in some logical formalism. These
systems tend to be computationally complex, since
they perform general AI reasoning or theorem
proving. For examples see, e.g., Allen et al. (2001),
Sadek et al. (1997) and Smith et al. (1995).

The information state update approach To
overcome the limitations of form-based systems,
a theory of dialogue modelling was introduced,
known as the information state update (ISU) ap-
proach (Larsson and Traum, 2000). It is based on
a structured information state to keep track of di-
alogue context information. The information state
is updated by update rules which are triggered by
dialogue moves performed by the participants in
the dialogue. The ISU approach enables a modu-
lar architecture which allows generic solutions for
dialogue technology.

However, there are problems with ISU-based di-
alogue systems, such as the GoDiS dialogue man-
ager (Larsson et al., 2000; Larsson, 2002). The
update rules tend to get very complicated, making
it difficult to foresee the side effects of changing a
rule, or adding a new one.

Dynamic Syntax Dynamic Syntax is a com-
bined syntactic and semantic grammatical theory
(Kempson et al., 2001; Cann et al., 2005), which
takes into account dialogue phenomena such as
clarifications, reformulations, corrections, and ac-
knowledgements.

The idea is that syntactic trees represent sim-
ple propositional sentences, and trees can be con-
nected by links to form complex utterances. Dy-
namic Syntax can be seen as a kind of ISU for-



malism; the trees are built incrementally word-by-
word, where an incomplete tree corresponds to an
incomplete utterance. Words whose function is
not determined yet (e.g., whether a noun in ini-
tial position should act as a subject or an object),
are added as unfixed nodes below the current tree.
Further on, when the interpreter has read some
more words and its function has been determined,
an unfixed node becomes a fixed part of the tree.

Since the minimal linguistic units in Dynamic
Syntax are words, it is in practise only used for
analysing single sentences or short dialogue ex-
changes. For full-size dialogues, the input reso-
lution is too fine-grained.

Dialogue as proof editing Ranta and Cooper
(2004) describe how a dialogue system can be im-
plemented in a syntactical proof editor based on
type theory, originally developed for editing math-
ematical proofs. Metavariables in the proof term
represents questions that needs to be answered by
the user so that the system can calculate a final
answer. This is very similar to the Prolog-style
proof-searching dialogue of Smith et al. (1995), but
with a foundation in type-theory. However, Ranta
and Cooper only support information-seeking dia-
logues, and the backbone is a fairly simple form-
based dialogue system. Furthermore, there is no
account for underspecified answers, anaphoric ex-
pressions, or ambiguous answers.

Our proposed dialogue model can be seen as
a development of the approaches of Ranta and
Cooper, and Smith et al., using ideas from Dy-
namic Syntax and ISU to make the system more
flexible.

1.2 The Logic of Finite Trees

Dynamic Syntax is based on the underlying Logic
of Finite Trees (Blackburn and Meyer-Viol, 1994),
a logical theory which makes it possible to interac-
tively build a tree in a logically well-founded man-
ner. We will use two concepts from this logic; un-
fixed nodes and linked trees:

Unfixed nodes An unfixed node is a subtree
which we know should be attached somewhere be-
low a given node, but we do not yet know exactly
where. Figure 1 contains three unfixed nodes: the
A node dominates the B node, while the C node
dominates both the D and E nodes. This means
that in the final tree, C will contain both D and E as
descendants. Note that this doesn’t say anything
about the order between D and E, it can even be
the case that one of them will dominate the other
in the final tree.

In Dynamic Syntax, unfixed nodes are used
when the syntactic function of a phrase is un-
known. E.g., a noun in initial position can func-
tion as a subject or an object, depending on the

t:Action

?A

b:B

?C

d:D e:E

Figure 1: Unfixed nodes in a tree.

t:Action

?A

q:Action

lin
k

Figure 2: Two linked trees.

context. In the framework we introduce, unfixed
nodes will be used for representing underspecified
and/or ambiguous information.

Linked trees Any node in a tree can have links
to other trees. A link between two trees does not
say that one of them dominates the other, it is
merely a link between tree nodes. We assume that
all links are labelled, as in figure 2.

In Dynamic Syntax, linked trees are used for,
e.g., relative clauses, prepositional phrases, def-
inites, anaphoric expressions and such things,
whereas we will used them for question answering,
sub-dialogues, and anaphoric references.

1.3 Type-theoretical grammar

Type theory is based on the Curry-Howard cor-
respondence – “formulae-as-types” – where types
correspond to propositions and terms correspond
to proofs. To prove a proposition T we have
to build a syntactic term t : T . An interactive
proof editor builds a term interactively, where a
metavariable ?T is used for an unknown subterm
of type T . As Ranta and Cooper (2004) noted,
?T can be seen as a question posed by the system,
“Which term of type T do you want to put here?”.

Grammatical Framework (GF) is a grammar for-
malism based on type theory (Ranta, 2004). The
main feature is the separation of abstract and con-
crete syntax, which makes it very suitable for writ-
ing multilingual grammars. The abstract part of
a GF grammar defines a set of abstract syntactic
structures, called abstract terms or trees; and the
concrete part defines a relation between abstract
structures and concrete structures. This separa-
tion of abstract and concrete syntax is crucial for
our treatment of dialogue systems. A rich mod-
ule system also facilitates grammar writing as an
engineering task, by reusing common grammars.

Abstract syntax The abstract theory of GF
is a version of Martin-Löf’s (1984) type theory.



A grammar consists of declarations of categories
and functions. In figure 3 is an example gram-
mar, which we will use as our example domain.
With the declaration route(?Dest,?Dept):Route, we
mean that route(x,y):Route whenever x:Dest and
y:Dept.1 Furthermore, the grammar can contain
function definitions, which we will use for calculat-
ing dialogue actions.

Concrete syntax GF has a linearization per-
spective to grammar writing, where the relation
between abstract and concrete is viewed as a
compositional mapping from abstract to concrete
structures, called linearization terms. Lineariza-
tions are written as terms in a typed functional
programming language, which is limited to ensure
decidability in generation and in parsing.

It is possible to define several concrete syntaxes
for one particular abstract syntax. Multilingual
grammars can be used as a model for interlingua
translation, but also to simplify localization of lan-
guage technology applications such as dialogue sys-
tems.

Since this article is about the abstract dialogue
model, and not about parsing and generation, we
will not give any examples of linearization defini-
tions. Examples of GF linearizations for dialogue
systems can be found in Bringert et al. (2005) and
Ljunglöf and Larsson (2008).

2 A tree-based ISU dialogue model

Our proposed dialogue model is an ISU model in
that it operates on an information state which is
modified by update rules. However, the informa-
tion state is not a flat representation of plans and
questions under discussion, as in, e.g., the GoDiS
dialogue manager (Larsson, 2002). Instead the in-
formation state is represented by an incomplete
tree in a similar way as is done in Dynamic Syntax,
where incomplete nodes in the tree correspond to
information that remains to be given.

In contrast with Dynamic Syntax, the minimal
linguistic units are user and system utterances, and
not single words. This makes it possible to model
practical full-length dialogues, instead of being re-
stricted to single sentences or short dialogue ex-
changes.

The goal of the dialogue is to build a tree, and
when this tree is completed, it represents a task
which the user wants the system to perform in
some way. This is similar to a form in a form-
based system, and a dialogue plan in an ISU sys-
tem such as GoDiS, but it has a hierarchical, tree-
based, structure instead of being flat. Using a tree-
based information state means among other things

1Note that we use a different GF grammar syn-
tax than is common, to emphasise the similarities with
tree-building and incomplete trees.

that we can treat tasks, issues, plans and forms in
exactly the same way as we treat the ontology of
individuals, properties and predicates, thus simpli-
fying the underlying logic. The use of trees, here, is
related to the use of dialogue trees in, for example,
work by Lemon et al. (2002), and are also found in
dialogue grammar approaches. However, the kinds
of trees we are using and the relationships we ex-
press between them are more complex. The main
difference is that we used unfixed nodes and linked
trees, which adds flexibility to the dialogue which
has been a problem for grammar-based systems.

2.1 Specifying the dialogue domain

Simliar to our previous work (Bringert et al., 2005;
Ljunglöf and Larsson, 2008), we use a type theoret-
ical grammar to specify all aspects of the dialogue
domain – tasks, issues, plans and forms, as well
as individuals, properties and predicates. We can
then make use of type checking for constraining
the dialogue trees, and type checking can also be
used when interpreting user utterances and when
providing the user with suggestions of what to say
next.

Another advantage with using a type theoretical
grammar formalism, is that it is a multiple-level
formalism, which can be used to specify the con-
crete user and system utterances which correspond
to the tree structures that are used in the informa-
tion state. Furthermore, Grammatical Framework
is a multiple-language formalism, meaning that we
can specify the dialogue domain as the language-
independent part of the grammar, which is shared
with all different language-dependent parts. Fi-
nally, type-checking is used to ensure that the dif-
ferent grammar instances are sound with respect
to the dialogue domain.

To specify a dialogue domain, we have to de-
clare all possible ways of forming trees. As al-
ready mentioned, an example travel agency do-
main is shown in figure 3, where with the dec-
laration route(?Dest,?Dept):Route, we mean that
route(x,y):Route whenever x:Dest and y:Dept. In
this domain the user can book an event, ask for
the price of an event, and ask when something hap-
pens. The possible events are oneway and round
trips, hotel stays and conferences.

An example dialogue tree according to the spec-
ification is book(oneway(route(to(lon),from(gbg)),
tomorrow)), which is also shown in figure 4. The
concrete syntax defines translations between trees
and utterances, and one possible translation of the
example tree is “Book a oneway trip tomorrow
from Gothenburg to London”. We assume that the
concrete syntax also defines translations of shorter
phrases, such as “Book a oneway trip tomorrow”,
book(oneway(route(?,?),tomorrow)), and “A trip to
London”, route(to(lon),?).



book(?Event), how-much(?Price), when(?Date) : Action
event-price(?Event) : Price
oneway(?Route,?Date), return(?Route,?Date,?Date),

hotel(?City,?Date), conf(?Conference) : Event
today, tomorrow, date(?Month,?Day),

conf-date(?Conference,?Year) : Date

route(?Dest,?Date) : Route
to(?City) : Dest
from(?City) : Dept
2008, 2009, . . . : Year
jan, feb, . . . : Month
1st, 2nd, . . . : Day
lon, gbg, . . . : City
acl, diaholmia, . . . : Conference
€450, €600, . . . : Price

Figure 3: Example domain

book:Action

oneway:Event

route:Route

to:Dest

lon:City

from:Dept

gbg:City

tomorrow:Date

Figure 4: A completed dialogue tree

2.2 Dialogue as interactive tree building

The dialogue system tries to build a complete tree
by successive refinement. In the middle of the di-
alogue, we represent the uninstantiated parts of
the tree with metavariables. In this framework the
metavariables are typed (which we write as ?T ) –
when a new variable is created we can always infer
its type from the types of the constants in the tree.

During the dialogue there can be several active
dialogue trees, but there is always one current tree,
and in that tree there is one single node which has
focus. The focus node is highlighted like ⋆this⋆ in
our example trees. The dialogue tree and its focus
are operated with commands, such as changing fo-
cus to another node, inserting subtrees below the
focus node, refining metavariables, etc.

The general idea is that the system moves the
focus to a metavariable node, and asks the user to
refine that node. User utterances are translated
to incomplete subtrees, which the system tries to
incorporate. If the user utterance is of the same
type as the focused metavariable, the tree can be
extended directly. Otherwise the system tries to
add the utterance as an unfixed node below the fo-
cus, if possible, or tries to change focus to another
metavariable which has the correct type.

2.3 System-driven dialogue

The dialogue starts with an incomplete tree, with
only one metavariable stating the final type of the
tree. In the example domain this final type is Ac-

⋆?:Action⋆

route:Route

to:Dest

lon:City

?Dept

Figure 5: An incomplete dialogue tree.

tion, so the initial tree is ?Action. The system then
asks the question “What do you want to do?”.

Direct answer If the user gives a direct answer
“Book a oneway trip tomorrow”, book(oneway(
route(?,?),tomorrow)), it is inserted at the focus
node.

Being helpful If the user asks for help, or re-
mains silent for a while, the system tries to re-
fine the focus node itself. According to the spec-
ification, there are three possible actions, so the
node is refined to the disjunction ?(book∨how-
much∨when):Action. This is interpreted as an al-
ternative question, “Do you want to book an event,
ask for the price, or know a date?”.

2.4 Handling underspecified information

The user is not required to always give direct an-
swers to the system’s questions; (s)he can, e.g.,
give underspecified answers. For incorporating un-
derspecified information we use unfixed tree nodes,
which is similar to how Dynamic Syntax does it:
If the syntactic function of a word is unknown, its
corresponding node in the tree becomes underspec-
ified; e.g., a noun in initial position can be used
as subject or object, and we cannot know which
until more words are incorporated. This also cor-
responds to clarifications in GoDiS, within a single
plan or between different plans.

If the user answers “A trip to London”
(route(to(lon),?)), it is not a direct answer to the
question ?Action. But since the answer type Route
is dominated by Action, the system adds the an-
swer tree as an unfixed node to the focus node.
This is shown in figure 5.

Now, there are (at least) three different re-
finement strategies, depending on how the sys-
tem searches for new metavariable nodes. We
call these strategies top-down, bottom-up and
“bottom-down”.

Top-down refinement After this the system
tries to refine the focus using the dominated tree
as a constraint. Of the three possible Action re-
finements, only book and price can dominate a
Route, so the focus node is refined to ?(book∨how-
much):Action. This is shown in figure 6.



⋆?(book∨price):Action⋆

route:Route

to:Dest

lon:City

?Dept

Figure 6: Top-down refinement of figure 5

?Action

⋆?(oneway∨return):Event⋆

route:Route

to:Dest

lon:City

?Dept

Figure 7: Bottom-up refinement of figure 5

The same thing will happen later in the di-
alogue, when the system wants to know which
event to book (assuming that was what the user
intended). When trying to refine the ?Event
metavariable, only two of the four possible events
can dominate a Route, so the node is refined to
?(oneway∨return):Event.

Bottom-up refinement Top-down refinement
tries to connect a metavariable node with its un-
fixed tree by successively refining the dominating
node. An alternative strategy is to instead connect
the nodes by refining the dominated node. We call
this strategy bottom-up refinement. The idea is
that whenever the focus node has an unfixed child,
the focus is moved to that child and refinement is
done upwards. This means that when bottom-up
refining the user answer “A trip to London”, the
system asks whether the user meant a oneway or a
return trip, as shown in figure 7.

Furthermore, there are two different flavours of
this dialogue strategy – non-aligned and aligned
refinement. The most straight-forward variant
of bottom-up refinement is to collect the possi-
ble immediate parents of the dominated node in
the alternative question. Now, assume that the
user only answered “London” to the initial ?Ac-
tion question. There are three possible parents to
a City – to:Dest, from:Dept and hotel:Event – which
means that the system will have to ask the question
?(to:Dest∨from:Dept∨hotel:Event), which could be
translated as “Do you mean to London, from Lon-
don or a hotel in London?”.

If it feels awkward to ask alternative questions
about terms of different types, we can use aligned
bottom-up refinement instead. In this variant, we

?Action

route:Route

to:Dest

lon:City

⋆?Dept⋆

Figure 8: Bottom-down refinement of figure 5

collect the closest possible parents all having the
same type. Since both Dest and Dept are domi-
nated by Event, the question we get in our example
is ?(oneway∨return∨hotel):Event.

“Bottom-down” refinement A third possible
dialogue strategy, which we call “bottom-down” re-
finement, is to immediately dig into the tree that
the user provided and try to complete that tree,
before returning to the original top-level question.
This means that after the system has attached the
user answer “A trip to London” as an unfixed child
of the ?Action node, focus is moved to the first
metavariable in the given tree. The next question
will therefore be “From where do you want to go?”,
as shown in figure 8. When the dominated tree is
completed, the system can either proceed by top-
down refining the dominating Action node, or by
bottom-up refining the dominated Route node.

2.5 When the dialogue tree is complete

After hopefully a successful interaction, the dia-
logue tree is completed and represents an action
that the user wants the system to execute. We
model this with functional definitions, mapping the
trees into action descriptions that the system can
execute. In our example domain we can distinguish
two kinds of actions:

Answering a question Some of the trees in
the dialogue domain represent questions asked by
the user. In our example both how-much(?Price)
and when(?Date) represent user questions. To an-
swer the question the system needs to consult a
database, which can be encoded as function defi-
nitions in the domain:2

def conf-date(acl, 2009) = date(aug, 2)
def conf-date(. . . ) = . . .
def event-price(oneway(route(gbg,lon),

tomorrow) = €450
def event-price(. . . ) = . . .

After the dialogue tree is completed, the system
evalutes it into an answer which then can be told
to the user. The evaluated tree is added as a new

2Note that we are allowed to generate these function
definitions automatically from the database in advance,
or even on demand.



when:Action

conf-date:Date

acl:Conf 2009:Year

date:Date

aug:Month 2nd:Day

answer

Figure 9: Answering a question

tree with a link to the original completed tree. The
exact phrasing of the answer is specified in the con-
crete syntax.

For example, suppose the user asks “When
is ACL?”, which is recognised as when(conf-
date(acl,?)). The system moves the focus to
the metavariable, asking “Which year do you
mean?”, to which the user answers “2009”. Now
we get the final tree when(conf-date(acl,2009)),
which is reduced by the function definitions to
when(date(aug,2)). The system uses the concrete
syntax to translate this into the answer “ACL
starts 2nd August”. The final dialogue state con-
tains the question tree and the answer tree, con-
nected by a link, as shown in figure 9.

Performing an action If the final tree is a
booking of an event, the system needs a way of
communicating with the outside world. Our sim-
ple solution is to attach side-effects to the type-
theoretical function definitions. The problem with
this is that the side-effects will reside outside the
logical framework, which means that we cannot
rely on type-checking or logical reasoning, for out-
side world interaction.3 For example, the re-
sult of applying the term book(event) could be
success(booking(id)) if the booking succeeds with
booking number id, or failure(reason) otherwise,
where reason is some explanation of why the book-
ing failed.

2.6 Sub-dialogues

One important property of a flexible dialogue sys-
tem is the possibility to engage in a sub-dialogue,
and when that dialogue is finished, to return to
the original dialogue. Here is an example from our
example domain:

U: “I’d like to book a trip from Gothen-
burg to Singapore”

S: “When do you want to leave?”

U: “When is ACL?”

S: “Which year do you mean?”

U: “This year”

S: “ACL starts 2nd August.”

U: “Okay, I’ll leave the day before”

3Note that this is a problem that is shared with
other existing dialogue frameworks. A more logically
sound solution would be to, e.g., use a state monad for
modeling the outside world (Wadler, 1997).

book:Action

oneway:Event

route:Route ?Date

when:Action

conf-date:Date

acl:Conf ⋆?Year⋆

su
b-

di
al

og

Figure 10: Engaging in a sub-dialogue

S: “I have booked a trip to Singapore on
1st August.”

We treat sub-dialogues in a similar way as Dy-
namic Syntax treats relative clauses: Since a rel-
ative clause is a statement of its own, it is inter-
preted as a complete tree, which is connected with
a link to the referring node in the main tree. And
in the same way a sub-dialogue is a tree of its own,
with a link to the node where the sub-dialogue was
introduced in the main dialogue tree. Figure 10
shows the dialogue state when the system asks the
question “Which year do you mean?”. After the
user has answered this question, the system will
create an answer tree just as in figure 9, after which
focus is returned to the remaining ?Date metavari-
able in the main tree.

To be able to recognise the final user utterance
correctly, the system needs to be able to handle
anaphoric references (“the day before”) by follow-
ing sub-dialogue links.

2.7 Anaphoric expressions

In Dynamic Syntax, linked trees are also used
for anaphoric references. A pronoun, or a defi-
nite noun phrase, suggests that there is a match-
ing reference somewhere in the context. We treat
anaphora in a similar way, by linking the anaphoric
node to a previous dialogue tree.

U: “How much is a flight from Gothen-
burg to London tomorrow?”

S: “It costs €450.”

U: “Okay, book it”

S: “I have booked a flight to London to-
morrow.”

After the first two utterances we have two dialogue
trees – one representing the user question which is
linked to the answer tree. Since these trees are
completed, the next user utterance creates a new
dialogue tree. The pronoun “it” is translated to a
special constant it:Event, which triggers a lookup
in the dialogue context for a matching subtree of
the same type. The system finds a matching tree
and creates an anaphoric link, as is shown in figure
11. When executing the booking, the system can
use the event referred to by the link.



price:Action

event:Price

oneway:Event

route:Route tomorrow:Date

€450:Price

book:Action

it:Event

answer

anaphor

Figure 11: Handling anaphoric expressions

3 Discussion

We have introduced a dialogue model which works
by interactively building dialogue trees. The model
is a development of the “dialogue as proof editing”
idea by Ranta and Cooper (2004), enhanced with a
treatment of underspecification and references in-
spired from Dynamic Syntax.

Specifying user and system utterances By
using a type-theoretical grammar formalism such
as Grammatical Framework, we can specify all user
and system utterances together with the abstract
specification. The type checker can be used for
catching errors in the specification, and the modu-
lar features of GF can be used for reusing grammar
resources.

Questions under discussion The metavari-
ables in the active dialogue tree correspond to the
QUD (Questions Under Discussion), introduced by
Ginzburg (1996). The QUD is a partial ordered
set, and its topmost element corresponds to the fo-
cus node in our framework. The partial ordering
of the QUD is implicit in our model, in the domain
specification together with the order in which the
algorithm searches the tree for metavariables.

Unified treatment of plans and items If we
look at the domain specification in figure 3, we see
that there is no conceptual difference between the
plans (e.g., asking for the price or specifying an
event) and the individual entities (e.g., the cities,
dates or conferences). In fact, a declaration of a
function such as route(?Dest,?Dept), both defines a
dialogue plan (asking for a destination and a depar-
ture city) and the resulting individual (a specific
route between two cities). This is in contrast with
traditional form-based systems such as VoiceXML,
and ISU systems such as GoDiS, where plans and
individuals are separate concepts.

Unfixed tree nodes We use unfixed tree nodes
for representing underspecified information, much
in the same way as Dynamic Syntax does. The
underlying Logic of Finite Trees automatically
uses these nodes as constraints on the dominat-
ing nodes. We have described several differ-
ent strategies for handling underspecified informa-

tion (top-down, bottom-up and “bottom-down”),
which then correspond to different strategies for
accommodation in existing ISU dialogue models.

Links between trees Similar to Dynamic Syn-
tax, we use links between trees for question answer-
ing, sub-dialogues and anaphoric expressions. The
GoDiS dialogue manager handles sub-dialogues by
having a stack of active plans, but it has no treat-
ment of anaphoric references.

Function definitions for system replies

Type-theoretical function definitions represent sys-
tem replies to user questions and requests. This
corresponds to external database calls in other for-
malisms, the difference being that we are using
a well-founded logical theory, hopefully making it
easier to reason logically about the properties of
the system.

3.1 Future work

There are some issues that we have not addressed
in this article, which are necessary for a working
dialogue system.

Feedback We have not described how feedback
should be treated. The reason is that since feed-
back cannot be defined in terms of the dialogue
tree, its treatment is an orthogonal matter. Our
aim is to incorporate the Interactive Communica-
tions Management (ICM) of Larsson (2002) into
the system. This means that we need to add feed-
back information to the dialogue state, in parallel
with the linked dialogue trees.

Corrections We have not described how the
user can correct erroneous information in the di-
alogue tree. To be able to do this we need com-
mands for deleting and changing tree nodes, as well
as a functioning feedback system for clarifying the
corrections.

Implementation We have rudimentary imple-
mentations in the programming languages Haskell
and Python, but they need much more work to be
useable as dialogue systems.

Acknowledgments

I am grateful to Staffan Larsson and four anony-
mous referees for constructive comments and sug-
gestions.

References

James Allen, Donna K. Byron, Myroslava
Dzikovska, George Ferguson, Lucian Galescu,
and Amanda Stent. 2001. Toward conversa-
tional human-computer interaction. AI Maga-
zine, 22(4):27–37.



Patrick Blackburn and Wilfried Meyer-Viol. 1994.
Linguistics, logic, and finite trees. CWI Report
CS-R9412, Centrum voor Wiskunde en Infor-
matica, Amsterdam, Netherlands.

Björn Bringert, Robin Cooper, Peter Ljunglöf, and
Aarne Ranta. 2005. Multimodal dialogue sys-
tem grammars. In Proc. Dialor’05, 9th Work-
shop on the Semantics and Pragmatics of Dia-
logue, Nancy, France.

Ronnie Cann, Ruth Kempson, and Lutz Marten.
2005. The Dynamics of Language. Elsevier.

Jonathan Ginzburg. 1996. Dynamics and the se-
mantics of dialogue. In J. Seligman, editor, Lan-
guage, Logic and Computation, volume 1, CSLI
Lecture Notes. CSLI Publications.

Joakim Gustafson, Patrik Elmberg, Rolf Carl-
son, and Arne Jönsson. 1998. An educational
dialogue system with a user controllable dia-
logue manager. In Proc. ICSLP’98, 5th Inter-
national Conference on Spoken Language Pro-
cessing, Sydney, Australia.

Arne Jönsson. 1997. A model for habitable and
efficient dialogue management for natural lan-
guage interaction. Natural Language Engineer-
ing, 3(2-3):103–122.

Ruth Kempson, Wilfried Meyer-Viol, and Dov
Gabbay. 2001. Dynamic Syntax: The Flow of
Language Understanding. Blackwell.

Staffan Larsson and David Traum. 2000. Infor-
mation state and dialogue management in the
TRINDI Dialogue Move Engine Toolkit. Natu-
ral Language Engineering, 6(3–4):323–340.

Staffan Larsson, Peter Ljunglöf, Robin Cooper,
Elisabet Engdahl, and Stina Ericsson. 2000.
GoDiS – an accommodating dialogue system. In
Proc. ANLP–NAACL’00 Workshop on Conver-
sational Systems, Seattle, Washington.

Staffan Larsson. 2002. Issue-based Dialogue Man-
agement. Ph.D. thesis, Department of Linguis-
tics, University of Gothenburg.

Oliver Lemon, Alexander Gruenstein, and Stan-
ley Peters. 2002. Collaborative activities and
multi-tasking in dialogue systems. TAL: Trait-
ment Automatique des Langues, 43(2):131–154.

Peter Ljunglöf and Staffan Larsson. 2008. A gram-
mar formalism for specifying ISU-based dialogue
systems. In Proc. GoTAL’08, 6th International
Conference on Natural Language Processing,
number 5221 in Springer-Verlag LNCS/LNAI,
Gothenburg, Sweden.

Per Martin-Löf. 1984. Intuitionistic Type Theory.
Bibliopolis, Napoli.

Matt Oshry, editor. 2007. Voice Ex-
tensible Markup Language (VoiceXML) 2.1.
W3C Recommendation, http://www.w3.org/
TR/voicexml21/.

Aarne Ranta and Robin Cooper. 2004. Dialogue
systems as proof editors. Journal of Logic, Lan-
guage and Information, 13(2):225–240.

Aarne Ranta. 2004. Grammatical Framework, a
type-theoretical grammar formalism. Journal of
Functional Programming, 14(2):145–189.

M. David Sadek, Philippe Bretier, and Franck
Panaget. 1997. Artimis: Natural dialogue meets
rational agency. In Proc. ĲCAI’97, 15th Inter-
national Joint Conference on Artificial Intelli-
gence, Nagoya, Japan.

Ronnie W. Smith, Alan W. Biermann, and
D. Richard Hipp. 1995. An architecture
for voice dialog systems based on prolog-style
theorem proving. Computational Linguistics,
21(3):281–320.

Philip Wadler. 1997. How to declare an impera-
tive. ACM Computing Surveys, 29(3):240–263.


