Multivalued dependencies and GENERALIZED QUANTIFIERS

Oxford LINT Workshop

Fredrik Engström, Göteborg

April 3, 2011

Introduction

Branching

Generalized quantifiers in Dependence Logic

Mulivalued Dependencies

Branching

Motivation from natural languages

Some relative of each villager and some relative of each townsmen hate each other. (Hintikka 1974)

$$
\binom{\forall x \exists y}{\forall z \exists w}(V(x) \wedge T(z) \rightarrow(R(x, y) \wedge R(z, w) \wedge H(y, w)))
$$

Most of the dots and most of the stars are all connected by lines. (Barwise 1979)

Each of two examiners marked each of six scripts.
(Davies 1989)

Branching

For monotone quantifiers the branching of Q_{1} and Q_{2}

$$
\binom{Q_{1} x}{Q_{2} y} R(x, y)
$$

is $\operatorname{Br}\left(Q_{1}, Q_{2}\right) x y R(x, y)$, where $\operatorname{Br}\left(Q_{1}, Q_{2}\right)$ is the quantifier

$$
\left\{R \mid \exists A \in Q_{1}, B \in Q_{2}, A \times B \subseteq R\right\}
$$

Example:

$$
R \in \operatorname{Br}(\forall \exists, \forall \exists)
$$

iff
$\exists S_{1}, S_{2} \in \forall \exists$ such that $S_{1} \times S_{2} \subseteq R$

iff

$$
\exists f, g: M \rightarrow M \text { such that } \forall x, z R(x, f(x), z, g(z))
$$

Branching in Dependence Logic

$$
\begin{gathered}
M \vDash \operatorname{Br}(\forall \exists, \forall \exists) x y z w R(x, y, z, w) \\
\text { iff } \\
M \vDash \forall x \exists y \forall z \exists w(=(z, w) \wedge R(x, y, z, w))
\end{gathered}
$$

What about generalized quantifiers?

$$
\begin{gathered}
M \vDash \operatorname{Br}\left(Q_{1}, Q_{2}\right) x y R(x, y) \\
\text { iff } \\
M \vDash Q_{1} x Q_{2} y(=(y) \wedge R(x, y))
\end{gathered}
$$

Generalized quantifiers in Dependence Logic

Lifting functions

The Hodges space of order ideals on the power set is

$$
\mathcal{H}(A)=\mathcal{L}(\mathcal{P}(A))
$$

Given $h: \mathcal{P}(A) \rightarrow \mathcal{P}(B)$ we define the Hodges lift:

$$
\mathcal{L}(h): \mathcal{H}(A) \rightarrow \mathcal{H}(B), \mathscr{X} \mapsto \downarrow\{h(X) \mid X \in \mathscr{X}\},
$$

where $\downarrow \mathscr{X}$ is the downward closure of \mathscr{X}, i.e.

$$
\downarrow \mathscr{X}=\{X \mid \exists Y \in \mathscr{X}, X \subseteq Y\} .
$$

Lifting Quantifers

- Q a monotone type $\langle 1\rangle$ quantifier.
- $Q: \mathcal{P}\left(M^{n+1}\right) \rightarrow \mathcal{P}\left(M^{n}\right)$
- $\mathcal{H}(Q): \mathcal{H}\left(M^{n+1}\right) \rightarrow \mathcal{H}\left(M^{n}\right)$
- Gives truth conditions for Q in Hodges semantics:

$$
M \vDash_{X} Q x \varphi \text { iff there is } F: X \rightarrow Q \text { such that } M \vDash_{X[F / x]} \varphi .
$$

where $X[F / x]=\{s[a / x] \mid a \in F(s)\}$.

- $\mathcal{H}(\exists)$ and $\mathcal{H}(\forall)$ give the same truth conditions for \exists and \forall as before.

Proposition
For formulas φ without dependence atoms:

$$
M \vDash_{X} \varphi \text { iff for all } s \in X, M \vDash \varphi[s] .
$$

Quantifiers and dependence

If Q contains no singletons then $M \not \forall_{X} Q x(=(x) \wedge \varphi)$.
Assume that $D(x, y)$ is an atom closed under subteams satisfying:

$$
\forall x Q y(D(x, y) \wedge R(x, y)) \leftrightarrow \operatorname{Br}(\forall, Q) x y R(x, y) .
$$

Fix $M=\{0,1,2\}$, then $\left(M, M^{2}\right) \vDash \operatorname{Br}(\forall, \exists \geq 3) x y R(x, y)$, thus:
$M \vDash_{\left[M^{2} / x, y\right]} D(x, y)$. Using that D is closed under taking subteams:

$$
X=(\{0,1\} \times\{0,1\}) \cup(\{2\} \times\{1,2\})
$$

satisfies the atom D and thus $(M, X) \vDash \forall x \exists \geq 2 y(D(x, y) \wedge R(x, y))$.
However $(M, X) \not \models \operatorname{Br}\left(\forall, \exists^{\geq 3}\right) x y R(x, y)$.
Thus no single atom $D(x, y)$ closed under taking subteams does the job intended with both the quantifiers $\exists \geq 2$ and $\exists \geq 3$.

Multivalued Dependencies

A course database

Course	Student	Credits
LC1510	Svensson	7.5 hp
LC1510	Johansson	7.5 hp
LC1520	Svensson	15 hp
LC1520	Andersson	15 hp

- = (Course, Credits)
- It is not true that $=$ (Course, Student).
- $=()$ is context independent: $X \vDash=(\bar{x})$ iff $Y \vDash=(\bar{x})$, where Y is X with some columns / variables, not in \bar{x}, removed.
- $=()$ is closed downwards: If $X \vDash=(\bar{x})$ then $Y \vDash=(\bar{x})$, where Y is X with some rows / assignments removed.

A course database

Course	Student	Credits	Year
LC1510	Svensson	7.5 hp	2010
LC1510	Johansson	7.5 hp	2011
LC1520	Svensson	15 hp	2011
LC1520	AnderssonJohansson	15 hp	2011

- $F^{\text {Student }}$ takes values for Course and Credits and gives set of possible values for Student.
- $F^{\text {Student }}($ LC1510, 7.5 hp$)=\{$ Svensson, Johansson $\}$
- $F^{\text {Student }}$ is determined by the value of Course.
- [Course \rightarrow Student]
- $[\rightarrow]$ dependent on context.
- $F^{\text {Student }}($ LC1510, $7.5 \mathrm{hp}, 2010)=\{$ Svensson $\}$
- $F^{\text {Student }}($ LC1510, $7.5 \mathrm{hp}, 2011)=\{$ Johansson $\}$
- $[\rightarrow]$ not closed downwards.
- not $[\rightarrow$ Student $]$

Multivalued dependence and teams

- If $s \in X$ then $F_{X}^{y}(s)=\{a \mid s[a / y] \in X\}$.

Definition
$X \vDash[\bar{x} \rightarrow y]$ if F_{X}^{y} is determined by the values of \bar{x}. (Only for $y \notin \bar{x}$.)
Proposition
$X \vDash[\bar{x} \rightarrow y]$ iff for all $s, s^{\prime} \in X$ such that $s(\bar{x})=s^{\prime}(\bar{x})$ there exists $s_{0} \in X$ such that $s_{0}(\bar{x})=s(\bar{x}), s_{0}(y)=s(y)$, and $s_{0}(\bar{z})=s^{\prime}(\bar{z})$, where \bar{z} are the variables in $\operatorname{dom}(X) \backslash(\{\bar{x}\} \cup\{y\})$.

- $X \vDash[\bar{x} \rightarrow y]$ is dependent on context and not closed downwards.
- $X \vDash=(\bar{x}, y)$ iff $X \vDash[\bar{x} \rightarrow y]$ and F_{X}^{y} only takes singleton values.

Generalized Quantifiers and multivalued dependence

Proposition
If Q is monotone then $M \vDash \operatorname{Br}(Q, Q) x y R(x, y)$ iff

$$
M \vDash Q x Q y([\rightarrow y] \wedge R(x, y)) .
$$

- $\vDash \forall x[\rightarrow x]$, but $M \not \vDash \forall x=(x)$ for $|M| \geq 2$, thus $M \not \models \forall x \forall y(=(y) \wedge R(x, y))$.
- $\operatorname{Br}(\forall, \forall) x y R(x, y)$ is equivalent to $\forall x \forall y R(x, y)$.

Proposition

FOL + multivalued dependencies has the same strength, on the level of sentences, as ESO, and thus as Dependence Logic.

In a DL-formula with all occurrences of dependence atoms of the form $\exists y(=(\bar{x}, y) \wedge \cdot)$ we can replace the $=()$ s with $[\rightarrow]$ s keeping the meaning.

Axiomatization of multivalued dependence

- Fix a set V of variables. X is sets of assignments $s: V \rightarrow M$.
- $D \cup\{d\}$ is a (finite) set of atoms of the form $[\bar{x} \rightarrow \bar{y}]$.
- $D \vDash d$ if for all $X, X \vDash D$ implies $X \vDash d$.

Proposition (Beeri, Fagin, Howard, 1977)
$D \vDash d$ iff d is derivable from D using the following inference rules:

- Complementation: If $\bar{x} \cup \bar{y} \cup \bar{z}=V, \bar{y} \cap \bar{z} \subseteq \bar{x}$, and $[\bar{x} \rightarrow \bar{y}]$ then $[\bar{x} \rightarrow \bar{z}]$
- Reflexivity: If $\bar{y} \subseteq \bar{x}$ then $[\bar{x} \rightarrow \bar{y}]$.
- Augmentation: If $\bar{z} \subseteq \bar{w}$ and $[\bar{x} \rightarrow \bar{y}]$ then $[\bar{x}, \bar{w} \rightarrow \bar{y}, \bar{z}]$.
- Transitivity: If $[\bar{x} \rightarrow \bar{y}]$ and $[\bar{y} \rightarrow \bar{z}]$ then $[\bar{x} \rightarrow \bar{z} \backslash \bar{y}]$.

Embedded multivalued dependence

- Multivalued dependence is dependent on context.

Definition
$X \vDash[\bar{x} \rightarrow \bar{y} \mid \bar{z}]$ iff $Y \vDash[\bar{x} \rightarrow \bar{y}]$ where Y is the projection of X onto $\{\bar{x}, \bar{y}, \bar{z}\}$.

- $[\bar{x} \rightarrow \bar{y} \mid \bar{z}]$ is independent on context.
- Observe that this is the independence atom:

$$
\bar{y} \perp_{\bar{x}} \bar{z} \text { iff }[\bar{x} \leftrightarrow \bar{y} \mid \bar{z}]
$$

- However, this relation is not axiomatizable. [Sagiv Walecka 1982]

To Do

- What are the definable sets of teams in multivalued dependence logic?
- What is the exact relationship with the Independence Logic of Grädel and Väänänen?
- Which generalized quantifiers Q have uniform definitions in Dependence Logic?
- What should $\left[t_{1} \rightarrow t_{2}\right]$ mean?

Thank you for your ATTENTION.

