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Abstract

Bilevel optimization models, and more generally MPEC (mathematical program with equilibrium
constraints) models, constitute important modelling tools in transportation science and network
games, as they place the classic “what-if” analysis in a proper mathematical framework. The MPEC
model is also becoming a standard for the computation of optimal design solutions, where “design”
may include either or both of network infrastructure investments and various types of tolls. At
the same time, it does normally not sufficiently well take into account possible uncertainties and/or
perturbations in problem data (travel costs and demands), and thus may not a priori guarantee robust
designs under varying conditions. We consider natural stochastic extensions to a class of MPEC
traffic models which explicitly incorporate data uncertainty. In stochastic programming terminology,
we consider “here-and-now” models where decisions on the design must be made before observing
the uncertain parameter values and the responses of the network users, and the design is chosen to
minimize the expectation of the upper-level objective function. Such a model could, for example, be
used to derive a fixed link pricing scheme that provides the best revenue for a given network over a
given time period, where the varying traffic conditions are described by distributions of parameters
in the link travel time and OD demand functions.

For a general such SMPEC network model we establish not only the existence of optimal solutions,
but in particular their stability to perturbations in the probability distribution. We also provide
convergence results for general algorithmic schemes based on the penalization of the equilibrium
conditions or possible joint upper-level constraints, as well as for algorithms based on the discretization
of the probability distribution, the latter enabling the utilization of standard MPEC algorithms.
Especially the latter part utilizes relations between the traffic application of SMPEC and stochastic
structural topology optimization problems.

Keywords: traffic equilibrium, communication networks, stochastic programming, stochastic math-
ematical program with equilibrium constraints, network design, solution stability, penalization, dis-
cretization, Monte Carlo simulation, sample average approximation.

1 Introduction and motivation

1.1 Motivation

When addressing network design and pricing problems under user equilibrium, or any kind of traffic
assignment model for that matter, in the form of a hierarchical (that is, bilevel) optimization model (or,
mathematical programming problem with equilibrium constraints, MPEC) it is almost always understood
that data is certain or that uncertain data can be given some deterministic representation, such as a mean
value. It is at the same time understood by all who develop or utilize traffic equilibrium or assignment
models, that this assumption is rather simplistic. One might take the extreme approach that hierarchical
models based on simple deterministic and static assignment models therefore are of little use, and that
position would most likely not change even if the underlying static traffic model would be replaced by a
dynamic model. Replacing a deterministic traffic equilibrium model by a stochastic one does not really
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solve the problem either, because at least the classic ones (logit and probit, and the latter’s modern
relatives) also produce unique equilibrium solutions in general; hence the mapping from data to solution
is not stochastic even in such models.

Since uncertainty in data is prevalent in traffic assignment models (for discussions regarding the
demand function, see, e.g., Yang et al. 1991, Flyvbjerg et al. 2005, Yang et al. 2005; and Chen et al.
2006); discussions on proper travel cost/time functions are too numerous to mention, but a few basic
references are Qutram & Thompson (1978), Akgelik (1991), and Uchida & Tida (1993), and because bilevel
models provide such an attractive modelling approach, there is a need for a bilevel model that can take
into account the uncertainty in data.

One possibility is to use a classic ‘'multi-load’ approach, taken from the engineering sciences, in which
several representative scenarios are included through an averaging in the upper-level objective function.
Structural optimization is the science of producing structures that carry loads optimally. Variations
in, for example, loading conditions are often taken into account such that the effectiveness of a design is
defined as the average value of the effectiveness of several load cases’. Because of the anticipated fact that
the ’real’ probability model is never known, and the reported high sensitivity of solutions to stochastic
structural optimization problems with respect to small changes in the probability measure (Ben-Haim &
Elishakoff 1990, pp. 20-22), many probability-free worst-case (’pessimistic’) models of uncertainty have
been developed as alternatives to probabilistic ones. In such worst-case models, uncertain parameters
are assumed to vary in convex sets (see further below). An efficient numerical approach to solve certain
convex problems of this type is known (Ben-Tal & Nemirovski 1997), but it has considerable drawbacks,
the most serious in our context being that the uncertain data must lie in some small ellipsoid around the
primal data values, which of course reduces the generality of the algorithm substantially.

This paper seeks to extend the scope of bilevel traffic models to take into account data variations in the
form of a stochastic bilevel model, or SMPEC. In order to do so we must consider complications that do
not arise in standard bilevel traffic models: SMPEC models are infinite-dimensional, so even the existence
of optimal solutions is non-trivial to establish. The main focus of our study of the SMPEC traffic model
of this paper is however one that, to some degree, can be used to validate the use of MPEC models
in network design applications and in particular multi-load approaches and discretizations: we wish to
establish conditions under which optimal designs change continuously with the probability distribution.
We say that such solutions are stable, and the model therefore is 'robust’ in some sense. Establishing
the robustness of the stochastic bilevel model to be developed in this paper is also an alternative to the
approach taken in some papers, where robust models are produced through reformulation (see below).

This work is built on a talk at the Royal Society discussion meeting “Networks: modelling and control”
held in London 24-25 September 2007, and on the corresponding discussion paper (Patriksson 2008); the
current work however is much more complete, including proofs of all the theorems stated (some of which
are also new) as well as including a more thorough section on further research and a more complete
bibliography, compared to the afore-mentioned discussion paper.

1.2 Stochastic programming and robust optimization

The problem of data uncertainty has been recognized as important for quite some time in the oper-
ations research community. The most well-known technique for dealing with uncertainty is stochastic
programming (e.g., Van Slyke & Wets 1969; Rockafellar & Wets 1976; Kall & Wallace 1994; and Birge
& Louveaux 1997). Typically, one wants to minimize the expected cost of decisions, that must be made
without the complete knowledge of data. In ’here-and-now’ models decisions are made once, but in certain
types of applications decisions can be made at one or several future recourse stages. In the latter case,
the here-and-now decision represents the first-stage decision which is made to properly hedge against
future outcomes of the uncertain data. In these types of problems one assumes that the distribution of
uncertainty is known, or, at least, can be well approximated.

The term ’robust optimization’ (RO) has been and is used in a variety of contexts. An important
aspect in most applications is the assumption that the distribution of data is known to be confined to
certain (typically bounded) ’uncertainty sets’. For particular problem types, such as linear programming
(e.g., Soyster 1973; Ben-Tal & Nemirovski 1999, 2002), convex quadratic programming (e.g., El Ghaoui
& Lebret 1997), and certain maximum-stiffness truss topology optimization problems (e.g., Ben-Tal
& Nemirovski 1997, Ben-Tal et al. 1999), and particular uncertainty sets, RO offers computationally
tractable (i.e., polynomially solvable) robust versions. Because feasibility is required for every realization
of the data, the robust counterparts include a semi-infinite system of constraints (whence tractability is



only possible to obtain in the above types of instances). Importantly, it is at the same time a worst-case
modelling approach.

Through the above modelling technique one imposes robustness on a model. Qur main interest is to
investigate the robustness of SMPEC models, particularly in transportation science and network games,
in the hope that a reformulation is not necessary. As we shall see, it is in some circumstances possible
to establish the robustness of an SMPEC model, but reformulations may be necessary in some cases.
SMPEC models, and indeed also MPEC models, are normally not tractable; robust reformulation will
therefore tend not to be tractable either.

1.3 Stochastic mathematical programs with equilibrium constraints

A mathematical program with equilibrium constraints (MPEC) is an optimization problem with two types
of variables: primary ones, or ’design’ variables, and secondary variables, or responses’. The responses
are evaluated as part of the constraints of the problem, often in the form of a secondary optimization
problem (then often referred to as the "lower-level problem’). The overall objective is optimized according
to a criterion in terms of both design and response.

In order to represent this common framework in mathematical notation, suppose the design is rep-
resented by a vector z € R™ and the response by a vector y € R™. If the objective is to minimize the
function f : R™ x R™ — R and the response can be described by the point-to-set mapping S : R™ = R™,
then we can describe the MPEC problem as that to

minimize f(z,y),
(z.y)

(MPEC) subject to (z,y) € Z,
y € S(x),

where Z C R™ x R™ is the set of admissible designs and responses.
If the mapping = — S(z) describes the solution of a variational inequality (VI), parameterized by z,
then the inclusion y € S(z) holds if and only if

*F(l‘,y) € NY(m)(y)v (1)

where Y(z) € R™ is the feasible set of the VI, F(x,-) : R™ — R™ is the VI cost mapping, and
Ny (q) : Y(z) = R™ is the normal cone mapping associated with the set Y'(x), all parameterized by .
We assume throughout that the set Y(z) is closed and convex, whence its normal cone is the standard one
in convex analysis: for y ¢ Y (z), Ny(,)(y) := 0, and for y € Y (), Ny () (y) := {2z e R™ | 2T (w — y) <
0, weY(x)}. If F(z,") = Vy(z,-) for some C! function ¢(z,-) : R™ — R then (1) is the first-order
optimality conditions for the parameterized optimization problem to

minimize o(x,y). 2
inimize ¢(.9) )

The mapping x — S(x) could also be associated with KKT conditions for an optimization problem like
(2), and hence also would include explicit Lagrange multipliers. For general overviews of MPEC and VI
models and their analysis, see Luo et al. (1996), Bard (1998) and Outrata et al. (1998), and Facchinei &
Pang (2003a,b), respectively.

The existence of optimal solutions to the problem (MPEC) follows under standard assumptions that
hark back to a version of Weierstrass’ Theorem: if the set of feasible solutions to (MPEC) is non-empty
and closed, and the objective function is lower semi-continuous' and weakly coercive? (this combination
of properties is called ’inf-compact’), then there exists a closed and bounded set of optimal solutions
(see, e.g., Zhang 1994). In particular, closedness of the feasible set follows in general from a closedness
assumption on the mapping S and of the set Z. In the examples to follow, generally stronger properties
still will hold. In particular, for reasons of computational ease and also for a well-defined optimal value
one normally imposes conditions on the lower-level problem such that it is unique. The mapping = — S(x)

1Suppose S C R™ is non-empty and closed. A function f : S — R is said to be lower semi-continuous on S if for every
z € S it holds that if z, — z then f(z) < liminfy_, . f(zx). In other words, any discontinuous jumps are downward ones.
Equivalently, all level sets of f are closed sets.
2Again let S C R™ be non-empty and closed. A function f : S — R is said to be weakly coercive with respect to S if
either S is bounded or lim;|| oo f(z) = oo holds. Equivalently, all level sets of f on S are bounded.
zeS



then is single-valued, and for a given design x, the objective value equals f(z,y(x)), where {y(z)} = S(z).
In order to be able to utilize descent methods one often also imposes still stronger conditions, such that
the upper-level objective function z — f(x, S(x)) is (locally) Lipschitz continuous; in these circumstances
one can calculate and hence utilize subgradients of f.

Notice that efficient computations require that the structure of S is known; in other words, normally
it is required of the mapping S that it is defined as the solution of an explicit system, as in the case of
the parameterized VI (1) or the parameterized optimization problem (2); otherwise we face a problem
that might be referred to as a ’black box’ optimization problem. (Such problems often arise in opti-
mization problems where a simulation is part of the objective function evaluation; the SMPEC model
could certainly be an appropriate modelling framework also for such problems, but only under the above-
mentioned requirement that something is known about the structure of the simulation problem and the
associated uncertainties.)

We focus here on traffic and communication networks, whence z is the vector of design parameters,
while the mapping S describes the solution to a traffic equilibrium (or, assignment) type model having
y as the corresponding equilibrium traffic flows and (dis)utilities. The set Z could represent constraints
on the available investments (or, tolls, etcetera), which then are independent on the response y; it could
also represent maximum allowed travel times (e.g., Abdulaal & LeBlanc 1979; Marcotte 1986; Friesz et
al. 1992; Marcotte & Marquis 1992; Cree et al. 1998; Meng et al. 2001; Chiou 2005; and Josefsson &
Patriksson 2007), exhaust emissions, or constraints defined by equity measures in a multi-class model
(e.g., Meng & Yang 2002, Eliasson & Mattsson 2006, and Stewart 2007), or equilibrium travel times (e.g.,
Chen et al. 2002 and Sumalee et al. 2006), which are examples of joint upper-level constraints.

The subject of rate control in computer communication networks is also strongly related to congestion
control in traffic networks, although the intrinsic existence of link flow capacity constraints in the former
enforces the need to rephrase the Wardrop principle (cf. Larsson & Patriksson 1994b). Ralph (2008)
establishes the equivalence of rate flow equilibria for a model of the transmission rate protocol (TCP;
see Kelly et al. 1998; and Kelly & Voice 2005) to a mixed complementarity problem; various design
and control problem of the MPEC type are then discussed. Robust such models that determine good
transmission rates in the light of uncertainties in, e.g., link capacities, in the form of SMPECs are very
natural extensions to study in the future, as are the corresponding SMPECs that are based on side
constrained traffic equilibria (Larsson & Patriksson 1994b, 1998, 1999).

We have already and will also in the following discuss in brief certain applications to structural
(topology) optimization, wherein z refers to design variables describing an amount of material (thicknesses
or volumes), while y refers to an equilibrium state (stresses and displacements); the equilibrium, described
by the mapping S, corresponds to an energy minimization problem, parameterized by z. The set Z
represents possible constraints on available material and/or on the (maximum) stresses. For an overview
of structural (topology) optimization, see Bendsge & Sigmund (2003).

Our focus is on the analysis of a stochastic extension of the MPEC problem. It is known in the
literature as stochastic MPEC, or SMPEC, a term coined in the paper by Patriksson & Wynter (1999).
We suppose that (€2, ©,P) is a complete probability space. When considering the space R™ x Q we equip
it always with the sigma algebra given by the product of the Borel sigma algebra of R™ and ©.

The SMPEC problem then is that to

minimize E,[f(z,y(w),w)] := /Qf(z,y(w),w)P(dw),

(z,y(+))
(SMPECQ) SubjGCt to (.’L‘7y(W>> c Z((U), P—a.S.,

y(w) € S(z,w), P-a.s.

where E,, denotes expected value, y : 2 — R™ is a random element of the probability space (2, 0, P),
Z : Q) = R™"xR™ is a point-to-set mapping representing the upper-level constraints, and S : R x Q) = R™
defines the set of solutions to the lower-level parametric variational inequality problem,

S(wi) = {y € R™ | *F(:L‘,y#x)) € NY(m,w)(y) } (3)

The above lower-level problem is defined by a mapping F' : R” x R™ x Q@ — R™ and a feasible set
mapping Y : R" x ) — R™ having closed convex images with Ny (, ) : R™ = R™ denoting the normal
cone mapping to the set Y (z,w).

The problem (SMPECq) represents a generalization of the problem (MPEC) wherein we explicitly
incorporate uncertainties in the problem data to obtain robust solution. Uncertainties are here taken



into account in the minimization of the expectation of the objective values over the uncertainty set.
Alternative approaches, such as worst-case, or maximum regret, models are discussed briefly below.

It should be noted that the stochastic formulation (SMPEC,) is very different from the deterministic
problem where the optimization is performed over x given an average (or, mean) scenario over the
uncertainty space; a simple example in Giirkan et al. (1999b) illustrates this fact clearly; see also Wallace
(2000) for comments on the inappropriate use of what-if analyses to a truly stochastic problem.

As for the case of the problem (MPEC) we must decide on how to interpret the objective value of
(SMPECq,) when the lower-level solution is not unique for given = and wj as is the tradition for (MPEC),
we will assume that the choice of solution y is the one that minimizes the objective value for given x and
w; this explains the notation underneath the minimization operator in (SMPECjg).

A forerunner to the paper by Patriksson & Wynter (1999) was the conference presentation “Bilevel
stochastic programming for network equilibrium problems” at the International Symposium on Mathe-
matical Programming (ISMP97) by Wynter (1997) (see also Wynter 2002), in which the combination of
stochastic programming and bilevel optimization was discussed in the context of two network planning
problems: a toll setting problem under user equilibrium and a pricing problem in a spatial-price equi-
librium setting, where in both cases demand is stochastic. In that presentation stochasticity enters in a
discretized manner. The paper by Patriksson & Wynter (1999) analyzes continuously distributed cases
of SMPEC but discusses stochastic bilevel (Stackelberg) models only in principle.

The first published real application of SMPEC where the distribution is continuous was topology
optimization models in structural mechanics. In Christiansen et al. (2001) and Patriksson & Peters-
son (2002) the existence and computation of discretized versions of topology optimization models were
analyzed, while Evgrafov et al. (2002, 2003) analyzed the continuously distributed case. The paper by
Evgrafov & Patriksson (2004) provides the first existence analysis for general SMPEC models as well as
an inexact penalty method, while Evgrafov & Patriksson (2003a,b) investigated stability issues in the
context of topology optimization; in particular, the latter two references established that in general the
optimal design cannot be expected to vary continuously with the probability measure, but that continuity
indeed could be established in some special circumstances for convex problems. We shall in this paper
provide a corresponding analysis in the context of optimal design in networks, and reach stronger results
in that they do not impose convexity on the model.

Other applications of special cases of SMPEC include Stackelberg—Nash—Cournot equilibrium prob-
lems (De Wolf & Smeers 1997; Xu 2005), in which case the lower-level problem is a nonlinear complemen-
tarity problem (see also the recent extension in Hobbs & Pang 2007); the special SMPEC model is then
referred to as SMPCC (stochastic program with complementarity constraints) which is characterized by
the presence of a nonlinear complementarity system. Further technical developments of SMPEC include
the work of Shapiro (2006), which in particular studies the measurability and continuity properties of the
integrand functions involved. The paper also studies numerical approaches for cases of the problem where
the lower-level problem is a special generalized equation, in particular Monte Carlo sampling approaches.
The resulting sample average approximation algorithm is also studied in detail in Shapiro & Xu (2005)
for a special SMPCC model, as well as in Shapiro (2008) for a multitude of stochastic problems. The
present, paper offers as well a summary analysis of the application of discretization approaches to SMPEC
models in the context of traffic networks.

1.4 Outline

The next section provides an existence result for the problem (SMPECq,), taken from Evgrafov & Pa-
triksson (2004, Theorem 2.1), as well as some additional discussions on problem interpretations. Section 3
then introduces our traffic SMPEC model. The lower-level problem is a standard (possibly asymmetric)
deterministic traffic equilibrium model; the technical results that then follow hold also if the SMPEC
model is built upon a variety of stochastic traffic equilibrium models (see further Section 6 on this is-
sue). For future use, we introduce two versions of the hierarchical model: the first one allows for joint
upper-level constraints, that is, simultaneous constraints in the designs x and the responses (lower-level
solutions) y, while the second model has upper-level constraints only in z. The reason for this has already
been alluded to in the context of our discussion on structural topology optimization: some results are in
general not possible to obtain for the first type of model.

Section 4 establishes the main result of this paper: that in the absence of joint upper-level constraints
the optimal designs are continuous in the probability distribution; hence, we can conclude that optimal
design solutions are stable, and the SMPEC traffic model is robust. Section 5 establishes the convergence



of solution approaches to the SMPEC problem at hand. The first is a classic inexact exterior penalty
method in which either the lower-level problem or any joint upper-level constraints are penalized. The
second is a natural approach for the continuously distributed problem (SMPECq): we consider two
related discretization approaches; the first is based on the method of mechanical quadratures, while the
second is a straightforward application of sample average approximation. A final section discusses some
interesting future research topics.

2 Existence of optimal solutions

Let X denote the projection of the feasible set of the problem (SMPECg) onto the space of = variables:
X ={zeR"|Jyw): (z,y(w)) € Z(w) for almost every w },

and let
Zyp(w) :={y eR™ [ (z,y) € Z(w) }.
Let us also denote by T;(w) the a-slice of the feasible set of (SMPECy,),

T,(w) = Z,(w) N S(z,w).

The existence result is based on the measurability in w for fixed x of this mapping. (A closed valued
mapping A : Q = R is said to be measurable if A=*(V') € © for every closed set V C R", cf. Himmelberg
1975, Section 2; Castaing & Valadier 1977, Chapter III; Aubin & Frankowska 1990, Chapter 8; or Rock-
afellar & Wets 1998, Chapter 14.) We shall assume throughout that Z,(w) and Y (z,w) are measurable
in w for every x € R"™; notice that this continuity type of assumption is not very restrictive.

According to Evgrafov & Patriksson (2004, Lemma 2.1) (see also Rockafellar & Wets 1998, Theo-
rem 14.26 and Example 14.15(b)), if in addition F' is continuous in y and measurable in w (which is
referred to as the ’Carathéodory property’) for every x, and Y has closed convex images for every x
and almost every w, then the mapping S is measurable in w for every x. Results such as Rockafellar
& Wets (1998, Theorem 14.37) refer to the measurability of solution mappings of parameterized opti-
mization problems rather than of solutions to the more general variational inequality problems that we
are concerned with, but as remarked in Shapiro (2006) variational inequalities can be transformed to
optimization problems through the use of merit (or, gap) functions (e.g., Auchmuty 1989; Fukushima
1992; Larsson & Patriksson 1994a; and Facchinei & Pang 2003a), to which Theorem 14.37 in Rockafellar
& Wets (1998), for example, can be applied. Thanks to the measurability of S and the above assumptions
it then follows that the integrand function is measurable as well.

The following result, quoted from Evgrafov & Patriksson (2004, Theorem 2.1), establishes the existence
of optimal solutions to the problem (SMPECg). This theorem, in turn, generalizes existence results for
(MPEC) in a natural manner.

THEOREM 1 (existence of optimal solutions) Suppose that the following assumptions are fulfilled: the
mappings Z,(-) and S(z,-) are measurable for every x; the set Z(w) and the mapping © — S(z,w)
are closed for almost every w € Q and every x; the function f is continuous in (x,y), measurable in w,
uniformly weakly coercive with respect to x over the set X ,®> and bounded from below by a (©, P)-integrable
function; for every x € X, there is a neighborhood U, > x such that the set Uzcy, Zz(w) is bounded for
almost every w € ; and the set T, (w) is nonempty for some xg € X and almost every w € Q. Then,
the problem (SMPEC,) has at least one optimal solution.

Clearly, the case of joint upper-level constraints is a complicating factor, and we shall see later that
robustness results and computations are more easily discussed in a framework where Z is independent of
y. A corollary to the above theorem illustrates how the analysis then simplifies.

COROLLARY 2 (existence of optimal solutions) Suppose that the upper-level feasible set Z is independent
of y, and hence the upper-level constraints can be written as x € X C R™. Then, the assumptions of
the theorem can be replaced by the following: the mapping S(z,-) is measurable for every x; the set X
is closed, and the mapping x — S(x,w) is closed for almost every w € Q; the function f is continuous
in (z,y), measurable in w, uniformly weakly coercive with respect to x over the set X, and bounded from
below by a (O, P)-integrable function; the set S(xo,w) is nonempty for some xo € X and almost every
w € .

3That is, that the set {z € X | Jy € R™, w € Q such that f(z,y,w) < c} is bounded for every c € R.




In this latter case where the upper-level constraints are defined only in terms of z, we can provide a
simple interpretation of the problem (SMPEC,). First, we recall that we select the response y for which
we obtain the minimum value of the upper-level objective; we can then write the problem (SMPEC,) as
the problem to

minimize E[f(z,y(w),w)], 4

minimize [ (2. (). ) (@

where the optimization is performed over all € X and all measurable selections y(w) € S(z,w). Equiv-
alently, we may write the problem as that to

o N
minimize w(zx) [v(z,w)],
where
v(r,w):= inf T,Y,w).
(@w)i= _int  flz,.0)
Notice that if for a given « € X the set S(z,w) is empty with a positive probability we define w(x) := oo;
implicitly, therefore, the optimization over z is performed such that the set S(x,w) is non-empty for
almost every w € (.
A comparison is finally made with the case of a finite support of Q. Suppose that Q = {w1,...,wk}
is finite with probabilities p1,...,px (satisfying p; > 0fori=1,..., K and Zfil p; = 1). Then we may
write the problem (4) as the problem to

K
minimize Zpkf(xv Yk, Wk)7

(z,91,-YK)

(SMPEC ) k=1
subject to z € X,

yr € S(x,wg), k=1,...,K.

In the field of structural topology optimization this is a classic modelling approach which was discussed
already in the first section. If, for example, the external load is stochastic, then (SMPECg ) represents
a 'multi-load case’ model where K load scenarios are incorporated into the same design optimization
model, together with their probabilities, resulting in a minimum average design ’cost’. (See, e.g., Marti
1997; Patriksson & Wynter 1999; and Christiansen et al. 2001.) Alternative modelling approaches utilize
reliability constraints (e.g., Marti 1997) or robust optimization via semidefinite programming (e.g., Ben-
Tal & Nemirovski 1997; and Ben-Tal et al. 1999). Notice that the discretized problem (SMPECk) is
nothing but a larger-scale version of (MPEC), and can therefore, in principle, be solved by the same type
of methods.

In the context of transportation science, a recent example of the statement of a simple traffic model
of the form (SMPEC) is found in Ukkusuri & Patil (2006), where the uncertain (fixed) demand is
represented by scenarios. (The more recent paper by Ukkusuri et al. 2007, introduces an objective
function incorporating both the expected total system travel cost and its standard deviation as a measure
of 'robustness’, and also includes binary investment variables.) We will return to this type of model later
on when considering discretization approaches to the problem (SMPECq).

3 A representative SMPEC traffic model

We provide a representative traffic equilibrium model, for use in the analysis of the sections that follow.
While the discussion concerns traffic on roads, the same model form is of course also applicable to the
analysis of (computer) communication network problems, and potentially also in other, similar, fields.

3.1 Traffic equilibrium

Let G = (N, L) be a transportation network, where A and £ are the sets of nodes and directed links,
respectively. For certain ordered pairs of nodes, (p,q) € C, where node p is an origin, node ¢ is a
destination, and C is a subset of A’ x A, there is a transport demand, which may be constant or given
by a function of the travel cost. We assume that the network is strongly connected, so that at least one
route joins each origin—destination (OD) pair.



Wardrop’s user equilibrium principle (Wardrop 1952; Beckmann et al. 1956; Sheffi 1985; Patriksson
1994; and Marcotte & Patriksson 2007) states that for every OD pair (p,q) € C, the travel costs of
the routes utilized are equal and minimal for each individual user. We denote by R, the set of simple
(loop-free) routes for OD pair (p, ¢), by h, the flow on route r € R,q, and by ¢, the travel cost on the
route as experienced by an individual user.

We introduce the design parameter x € R". This parameter could be present in one or both of the
travel cost and demand functions. We assume that the (continuous) travel cost function has the form
e(x, ) : R‘f' — RIRI given a value of x, where |R| denotes the total number of routes in the network, and
R, := {z € R |z > 0}. Further, the demand function is given by g(z,-) : RI°l — R’/ Regarding the
latter function we shall, for simplicity and familiarity, assume that either ¢ is independent of the travel
cost (hence a case of a fixed demand model) or is such that —g(z,-) is (at least) strictly monotone for
each z; in the latter case we can then utilize the standard VI formulation based on the inverse of g(z,-).
(These assumptions are rather standard in the literature on traffic modelling.)

In an application to equilibrium network design, pricing and control models (e.g., Marcotte 1986;
Patriksson & Rockafellar 2002; Kelly 2006; Eliasson & Mattsson 2006; and Josefsson & Patriksson 2007)
n & |£| may hold, while in an application to OD estimation (e.g., Gur et al. 1979; Cascetta & Nguyen
1988; Yang 1995; and Chen & Florian 1998) n is in the order of |C|.

We also introduce the matrix I' € RI®IXICI| which is the route-OD pair incidence matrix (i.e., the
element 7, is 1 if route r joins OD pair k = (p,q) € C, and 0 otherwise). Then, demand-feasibility is
described by the conditions that h € R'f‘ and

I'"h = g(z,7) (5)
holds, while the Wardrop equilibrium conditions for the route flows are that

hr >0 = ¢ (x,h) =Tpg, T € Rpgs (p,q) €C, (6a)
hy =0 = c¢q(x,h) > Tpg, T € Rpgs (p,q) €C, (6b)

holds, where the value of 7, := mpe(x, h) is the minimal (i.e., equilibrium) route cost in OD pair (p, q).
By the non-negativity of the route flows, the system (5)—(6) can more compactly be written as the mixed
complementarity problem (MCP)

0%l < h L (e(z,h) —Tm) > 0%, (7a)
I''h = g(z,7), (7b)

where a L b, for two arbitrary vectors a,b € R™, means that a*b = 0. (By non-negativity, this implies
that a; - b; = 0 for all j5.)

While we here work with a link-route representation of flows there is a corresponding link—node
representation, where conditions are imposed on the conservation of flows at intersections; see, e.g.,
Patriksson (1994) and Marcotte & Patriksson (2007). The analysis that follows is valid without any
alterations for such a problem representation.

In general, we shall need to assume that the route cost is additive. For each link [ € £, the travel cost
has the form #;(x,v), where v € RI*l is the vector of link flows. The route and link travel costs and flows
are related through a route-link incidence matrix, A € {0, 1}/*/XI®| whose element ), equals one if route
r € R utilizes link | € £, and zero otherwise. Route r has an additive route cost ¢,.(x, h) if it is the sum
of the costs of using all the links defining it. In other words, ¢.(x,h) = >, Ai-ti(z,v). In short, then,
c(z,h) = ATt(x,v). Also, implicit in this relationship is the assumption that the pair (h,v) is consistent,
in the sense that v equals the sum of the route flows: v = Ah. We shall use the representation in terms of
v, as it is an entity for which we can introduce conditions ensuring that uniqueness holds at equilibrium.
In general, we shall assume that ¢ is (at least) strictly monotone in v for every x. Notice, however, that
it is in each of the results to follow possible for the function ¢ to be only monotone for some values of v
for every z, as long as it is strictly monotone around the equilibrium solution for every z; thus, so called
“flat spots” of the travel cost are allowed, again as long as these are not situated around an equilibrium.

A more familiar representation of the Wardrop conditions (7) is that of a variational inequality,

—F(x,y) € Nc(y), (8)

where y € R™, C C R™ is a closed and convex set, F(z,-) : C — R™ is smooth, and where the normal
cone mapping is as defined in Section 1.3.



Letting

h
y:= 7] e RI®I x RICl x RI#I, (9a)
v
ATt(z,v) — I
F(z,y):=| I'Th—g(z,7) |, and (9b)
v—Ah
C :=RIF x RIC 5 RIAI, (9¢)

we obtain an equivalent VI formulation from (7), where F' is parameterized by x. The equivalence between

a nonlinear complementarity problem (NCP) [that is, (7a)] and a VI over the non-negative orthant [that

is, —[c(w,h) — I'm| € Nyi=|(h)] was established by Karamardian (1969a,b). That (7b) is equivalent to
+

the statement that —[['"Th — g(x, 7)] € Ngie/ () follows trivially, since Nyic is identically zero. Similarly,
the equation v = Ah comes out as the last row of (8), (9): —[v — Ah] € Ngjz(v). Solutions exist to the
problem (8), (9) whenever #(x,-) is continuous and ¢(z,-) is non-negative and upper bounded by some
nonnegative vector (cf., e.g., Marcotte & Patriksson 2007, Theorem 4).

As remarked above, (9) is a mixed complementarity problem. If it can be shown that the travel costs
are always positive then (9) can equivalently be transformed into a nonlinear complementarity problem
(e.g., Aashtiani & Magnanti 1981). In any case, our SMPEC model can be written in terms of an SMPCC,
which in turn enables us to utilize specialized algorithms (e.g., Fukushima & Pang 1999; Scholtes 2001;
Hu & Ralph 2004; Shapiro & Xu 2005; Leyfler et al. 2007; and Ralph 2008).

We remarked above that the demand function is assumed to be of either of two different forms. In the
case when the corresponding variational inequality models define first-order optimality conditions for an
optimization problem, the two corresponding optimization formulations illustrate an important feature
of the lower-level traffic equilibrium problem that we utilize heavily: its constraints do not depend on the
design vector z; hence the equilibrium problem always exhibits feasible solutions, and according to the
properties of the cost and demand functions assumed, equilibria will therefore also always exist. In the
case of fixed demands, the optimization formulation is that to

v
minimize  ¢(z,v) := Z/ ti(x, s) ds,
! tec 0
subject to T'Th =d,

h > OIR\,
v = Ah,

while in the case of a strictly negatively monotone demand function (whence it has an inverse, denoted
&(z,-)), the optimization formulation is that to

vl dk
minimize z,v,d) := ti(x,s)ds — / x,s)ds,
nimizeo(e.0.d) =3 [t ds= 3 [t

leL kec
subject to I'"h = d,
h > O\Rl7
v = Ah.

In order to produce a hierarchical traffic model, we introduce finally a continuous function f : R™ x
R™ — R, and a possible set of jointly feasible designs and responses, Z C R™ x R™. The corresponding

MPEC model then is to
mi?im)ize f(z,y),
T,y

subject to (x,y) € Z,
y € S(x),

(HTM)

where S(z) := {y € R™ | (8), (9) holds }.

The existence of solutions to the problem (HTM) follows under standard arguments, as it is an instance
of (MPEC). The mapping S is closed as soon as t and g are continuous, which we have assumed. We
further assume that the set Z and the function f are so defined that there exist feasible solutions, and



that f is inf-compact there. The most natural assumptions under which this is guaranteed to hold is
that f is continuous, t(x, ) and —g(z,-) are strictly monotone, and the set Z is independent of y and
compact; indeed, in most applications it is simply a box in x corresponding to investment bounds.

3.2 An SMPEC traffic model

We next introduce a natural stochastic extension of this model, following the notation developed on
Section 1.3. Consider the problem to

minimize B, [f(z. (). )] = / f(,y(w), w) P(dw),

}
subject to (z,y(w)) € Z(w), P-a.s.,
y(w) € S(z,w), P-a.s.,

(SHTMg)

where y : @ — R™ is a random element of a complete probability space (2,0,P), Z: Q = R*" x R™ is a
point-to-set mapping representing the upper-level constraints, and S : R” x  — R" now defines the set
of solutions to a lower-level parametric variational inequality problem of the form

S(z,w) :={y e R™ | —F(z,y,w) € Nc(y) }, (10)
where

ATt(z,v,w) — T
F(z,y,w):= | TTh —g(x,m,w) |. (11)
v—Ah

In this hierarchical model we take into account possible uncertainties in the modelling of the travel costs
and/or demands when evaluating the upper-level objective function for a given value of the parameters
in z; further, we take the uncertainties into account in the optimization by minimizing the expectation of
these objective values over the uncertainty set. In the case of the travel time/cost function, the random
element w can represent variations in road conditions as well as in properties regarding the trip-makers.
Variations and uncertainties in the demand elasticities are also naturally reflected through the random
element w in the demand function. (See, e.g., Buchanan 1969 for an early discussion on the effect of
market demand uncertainties on proper taxation schemes.)

Due to the fact that we study stochastic models of network control and pricing, we here effectively
rule out from consideration such classic cases as that which models first-best’ toll pricing, including, for
example, the marginal cost pricing concept in the case of seeking a system optimal flow (e.g., Dafermos &
Sparrow 1969; Sender & Netter 1970). This is a kind of inverse mathematical model, where a desired link
flow is fixed and the only variables are the tolls to be set, typically on every link, in order to reproduce
this flow as a traffic equilibrium one; see Larsson & Patriksson (1998, 1999) and Larsson et al. (2003) for
further discussions on this topic, and Marcotte & Patriksson (2007) for a select bibliography on link toll
pricing especially for obtaining system (or, social) optimal flows. Our model, in the context of link tolls,
therefore belongs to the ’second-best’ school, as discussed, for example, by Lawphongpanich & Hearn
(2004) and Yang et al. (2005).

We note that, in isolation, simple cases of the inclusion (10) have been studied previously. In, e.g.,
Gwinner & Raciti (2006), the traffic model is a fixed demand one where data in both the demand and
in the travel costs are stochastic, and the goal is to find the mean equilibrium solution as well as the
variance in the equilibrium flows.

We next restate Theorem 1 in the context of this problem.

THEOREM 3 (existence of optimal solutions) Suppose that the following assumptions are fulfilled: the
mappings t(x,-), g(x,-) and Z,(-) are measurable for every x; the set Z(w) is closed for almost every
w € Q; the function f is continuous in (x,y), measurable in w, uniformly weakly coercive with respect to
x over the set X, and bounded from below by a (©, P)-integrable function; for every x € X, there is a
neighborhood U, > x such that the set Uzcy, Zz(w) is bounded for almost every w; and the set T, (w) is
nonempty for some xo € X and almost every w. Then, the problem (SHTMq) has at least one optimal
solution.

Again, a corollary to follow shows that the absence of joint upper-level constraints makes life easier.
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COROLLARY 4 (existence of optimal solutions) Suppose that the upper-level feasible set Z is independent
of y, and hence the upper-level constraints can be written as © € X C R™. Then, the above assumptions
can be replaced by the following: the mappings t(x,-) and g(x,-) are measurable for every x; the set X is
closed; and the function f is continuous in (x,y), measurable in w, uniformly weakly coercive with respect
to x over the set X, and bounded from below by a (©, P)-integrable function.

Notice that the most important technical condition to check here is that of the uniform weak coercivity
of f, which is fulfilled automatically whenever X is bounded. Since this is a quite natural assumption to
make, any realistic application of the SMPEC to a traffic context is one where optimal designs exist.

4 Solution stability

The question of the continuity of optimal solutions to (SMPECg) with respect to changes in the proba-
bility distribution is of great importance. From the computational point of view, a positive answer to this
question would allow us to solve the problem by approximating the underlying probability measure with
a sequence of discrete probability measures, and hence approximating the original infinite-dimensional
optimization problem with a sequence of finite-dimensional optimization problems. From the theoretical
point of view, we would conclude the robustness of the resulting optimal solutions with respect to errors
in the modelling of uncertainty.

In structural optimization, owing to the anticipated fact that the real probability measure is unknown,
and owing to the reported high sensitivity of the solutions with respect to small changes in the probabil-
ity measure, many probability-free worst-case (pessimistic) models of uncertainty have been utilized as
alternatives to probabilistic models, cf. Section 1. These approaches do yield stable structures, but do
not take into account the probability of occurrence of the different scenarios, thereby often resulting in
unnecessarily costly designs. In the area of structural optimization, there are example problems where the
optimal solutions do not change continuously even if the probability distribution measure changes only
locally (that is, only the density of the probability measure changes); cf. Evgrafov et al. (2003). There
are example models in the area where no joint upper-level constraints are present, and whose optimal
solutions are robust (Evgrafov et al. 2003), and there are also examples where a possible reformulation
(that is, relaxation) of a non-robust problem yields a robust model (Evgrafov & Patriksson 2003b).

Certain convex problems in stochastic programming have been proven robust (e.g., Robinson & Wets
1987; Romisch & Schultz 1991; Romisch 2003; Henrion & Romisch 2004; and Heitsch et al. 2006), in
some cases even with quantitative stability measures. Since stochastic programming is an instance of the
framework of (SMPEC,) (e.g., Patriksson & Wynter 1999, and Shapiro 2006), the latter clearly contains
robust models. As remarked in Evgrafov & Patriksson (2004), however, finding generic conditions on
the mappings Z and S under which one can expect a continuous behaviour of the optimal solutions
to non-convex models within the framework of (SMPEC) (or at least the continuous behaviour of the
optimal values of the upper-level variables x) remains an open problem.

We establish in this section that optimal solutions to (SHTMg) are stable under natural conditions
when there are no joint upper-level constraints. In order to do so, we utilize a technique developed in
previous work on structural topology optimization (Evgrafov & Patriksson 2003b; and Evgrafov et al.
2003).

Consider a sequence {Py} of probability measures defined on B(f2), together with the associated
sequence of optimization problems:

minimize E,[f(z,y(w),w)] := / f(z,y(w),w) Pr(dw),
subject to T € X,
y(w) € S(z,w), Pj-a.s.

(SHTMq,)"

We assume that each measure Py has a density pi(-) with respect to a Lebesgue measure on ) and
that the sequence {pi(-)} converges to a density p(-) of P Lebesgue-almost everywhere. The existence
of densities is not a very restrictive assumption from the theoretical point of view. In what follows, the
notation val W refers to the optimal objective value of the problem W.

We then have the following result for the problem (SMPECq).

THEOREM 5 (stability of optimal solutions) In addition to the conditions of Theorem 3 suppose that the
mapping t(x, -, w) is strictly monotone for each x € X and w € Q and that g is either a constant mapping
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inm or —g(x,-,w) is strictly monotone for each © € X and w € Q. Suppose that the sequence {Py} of
probability measures weakly converges to P and that (z,yx(-)) solves (SHTMq)* for each k. Then, each
limit point (and there is at least one) of the sequence {(xk,yr(-))} is an optimal solution to (SHTMgq).

PrOOF. Consider an optimal solution (z*,y*(-)) to (SMPECg). Thanks to the properties of ¢(z,-,w)
and g(z,-,w) the components v and 7 of the mapping y are continuous in  and w and the h component
therefore also belongs to a bounded set (e.g., Marcotte & Patriksson, 2007). It follows, since f is inf-
compact, that any sequence of feasible designs and responses is bounded and hence has a limit point.
The optimal solution (z*,y*(-)) to (SMPECg) is moreover feasible in (SMPECq)* for all k. It follows
that val (SHTMgq) > lim sup,_. ., val (SHTMg)¥.

Conversely, let {(zx,yx(-))} be a sequence of optimal solutions to (SMPECgq)*. By inf-compactness,
this sequence is bounded; let (Z, 7(-)) denote a limit point, which moreover automatically is feasible for
almost every w in (SMPECg). Then, also utilizing the lower semi-continuity of f and Fatou’s Lemma,
we obtain that

val (SHTMg) < /Qf(o_:7 j(w),w)p(w) dw

< / liminf f (2, ya (@), 0)p(w) do

k—o0

< 1iminf/ﬂf(xk,yk(w)vw)m(w)dw

k—o0

= lim inf val (SHTMg)*.
The combination of the two inequalities thus derived implies the result sought. O

The conditions of the theorem are naturally satisfied in applications. First, the strict monotonicity
assumption on the mappings describing the link travel cost and the negative of the demand function is
standard in the literature on traffic equilibria. Further, any continuous probability distribution used in
practice, such as the uniform and normal distributions, has a density. This means, for example, that
according to the above theorem, small changes in, say, the support of a uniform distribution, leads to
small changes in the optimal design. The distribution of discrete random variables however does not
have a density. The above theorem can therefore not be utilized to assert that discretization approaches
converge. This is, however, the topic of Section 5.2.

Establishing the stability of globally optimal solutions to special SMPEC models with joint upper-
level constraints is an interesting avenue for future research. Similarly, the stability of stationary points
or locally optimal design solutions certainly are of interest to obtain, as they are the likely vectors that
can be reached with most numerical methods. See also the future research discussions in Section 6.

5 Solution approaches

5.1 Inexact penalization

Compared to one-level problems, bilevel optimization algorithms are much less straightforward to develop
owing to the non-convex nature of the problem and the absence of constraint qualifications for nonlinear
programming (Luo et al. 1996; Scheel & Scholtes 2000). One approach is to move the equilibrium con-
straint as a penalty into the objective function. For examples of penalty functions leading to algorithmic
constructions to MPEC, see Luo et al. (1996), Pang (1997), Ye et al. (1997), Scholtes & Stohr (1999),
and Hu & Ralph (2004). In particular, exact penalties are of great importance, since they lead to exact
solutions while they do not require the penalty parameter to tend to infinity (Burke 1991). However, one
cannot expect to be able to construct an exact penalty for SMPEC problems, given an exact penalty for
each w, as an example in Evgrafov & Patriksson (2004) illustrates. Again, the reason is the presence of the
coupling upper-level constraints. The following approach is however possible; the result is quoted from
Evgrafov & Patriksson (2004, Theorem 4.1), and is a rather straightforward type of result for penalty
methods in nonlinear programming,.

THEOREM 6 (inexact penalization of lower-level constraints) Suppose the conditions of Theorem 1 are
satisfied, so that there exists an optimal solution to (SMPECgq). Let also the function (x,y,w) —
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G(z,y,w) be non-negative, continuous in (x,y) for almost every w, measurable in w for every (z,y) €
R™ x R™, and such that
S(z,w)={yeR™| G(z,y,w) =0}.

Then, the penalized problem

minimize E,[f(z,y(w),w) + pG(x, y,w)],
(SMPECq),, (@y())
subject to (z,y(w)) € Z(w), P-a.s.,

has an optimal solution for every ;. > 0 and

supval(SMPEC,,)! = lim val(SMPEC,,)! = val(SMPEC,,).
Q/p Qlp Q

©>0 p—00

Furthermore, any limit point of the sequence of upper-level optimal solutions {x,} to (SMPECQ)}L (and
there is at least one) is an upper-level optimal solution to (SMPECq).

While we in the above approach lift the equilibrium constraints into the objective, thus reducing
the original bilevel optimization problem into a series of one-level problems, we have previously argued
that joint upper-level constraints imply complications and may therefore alternatively conclude that it is
the constraints that ’(z,y(w)) € Z(w) holds P-almost surely’ that should be penalized in order to turn
the problem into a more ’standard’ SMPEC model. (This is indeed an approach that has been utilized
previously; see, e.g., Evgrafov & Patriksson 2003a.) Providing a general theory of such an approach is a
quite interesting avenue for future research. For now, we establish the correctness of such an approach
in the transportation domain.

THEOREM 7 (inexact penalization of upper-level constraints) Suppose the conditions of Theorem 5 are
satisfied. Let also the function (z,y,w) — G(z,y,w) be non-negative, continuous in (z,y) for almost
every w, measurable in w for every (z,y) € R™ x R™, and such that

Z(w) ={(z,y) eR" xR™ | G(z,y,w) =0}
Then, the penalized problem

minimize E,[f(z,y(w),w) + pG(x, y,w)],
(SHTMQ)Z (=,y(-))
subject to y(w) € S(x,w), P-a.s.,

has an optimal solution for every ;. > 0 and

supval(SHTM,,)? = lim val(SHTM,,)> = val(SHTM,,).
>0 Qp 500 Q/p Q
u>

Furthermore, any limit point of the sequence of upper-level optimal solutions {x,} to (SHTMg)? (and
there is at least one) is an upper-level optimal solution to (SHTMg,).

PRrROOF. For every p > 0 the problem (SHTMQ)i satisfies the assumptions of Theorem 3. Let us denote

by (,,y(-)) an arbitrary optimal solution to (SHTMg)?. Following the proof of Lemma 9.2.1 and
Theorem 9.2.2 in Bazaraa et al. (1993) we get
val(SHTM,,) > sg% val(SHTM,)”, = MILH;O val(SHTM,)”, = klggo Eolf (@, Y, (W), w)], (12)
p>

for some sequence {py} with pr — oo.

By the uniform coercivity (an assumption of Theorem 3) of f in x, and by the properties of a penalty
function G, the sequence {z,, } is bounded. Switching to a subsequence if necessary, we may assume that
limy oo Ty, = T

Owing to the lower boundedness of f (an assumption of Theorem 3), we have that

klggo Eu[f (T Yy (W), w)] > Eq hknigff(muwyuk (w),w)
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By using the same boundedness arguments for the sequence {y,, (w)} of responses as in the proof of
Theorem 5, we can conclude that there is a sequence k(w) such that y,,  — 7(w) and

hkn_{géf f(muk y Y (w)7 w) = k((}zl)goo f(xuk(u) ’ y#k(w) (UJ), (U) > f(j7 g(w)a w)a
for P-almost every w. Owing to the closedness of S (due to the continuity of ¢ and g and the strict
monotonicity of ¢(z, -) and —g(z, -) for every z), it follows that g(w) € S(Z,w), P-almost surely. Following
the proof of Theorem 9.2.2 of Bazaraa et al. (1993) we get

0= klim Eu Gy, Yy (W), w)] =2 By [likm inf G(z ., Y, (W), w)]
and
likminf Gz, Y, (W), w) > G(Z,y(w),w) >0,

for P-almost every w by the continuity and non-negativity of G, thus showing that (Z,g(w)) € Z(w) for
P-almost every w.
Considering the parametric optimization problem in the variables y(w) to

minimize f(Z,y(w),w),
subject to (Z,y(w)) € Z(w), P-a.s.,
y(w) € S(Z,w), P-a.s.,

we can apply Theorem 8.2.11 in Aubin & Frankowska (1990) to obtain the existence of a measurable
function g(w) such that f(Z,g(w),w) < f(Z,§(w),w) P-almost surely, thus showing that

sup val(SHTMy,)? > E,[f (&, (w),w)] > val(SHTMj,).
n=>0

Together with (12), this proves the claim. O

5.2 Discretization approaches

A popular method for solving a stochastic programming problem involving a non-discrete probability
measure is to approximate it with a sequence of finite-dimensional problems with discrete measures. To
implement such a procedure one needs a discrete measure P, in some sense close to the original one. A
common choice is to start from a finite partition A = {Q; | U;Q2; = Q} and define its probability as
P; = P(Q;). This involves the calculation of probabilities which we may want to avoid and replace by
estimations. We also need approximations ¢ of random elements ¢ of the original problem, which could
involve conditional means. Instead we would like to choose sampling points @; € €2; and set, as before,
i = q(@i)-

Examples of discretizations of stochastic programming problems with recourse based on the ideas of
conditional means can be found in Olsen (1976), Birge & Wets (1986). One generic scheme that allows us
to avoid such computations is the 'method of mechanical quadratures’ (Vainikko 1971) which will be used
below; it was successfully used to discretize stochastic programming problems with complete recourse in
Lepp (1990), and for stochastic structural topology optimization problems in Evgrafov and Patriksson
(2003a,b).

Suppose €2 is a compact metric space with a metric p(-,-). Let © D B(Q), P{w | p(w,wp) < r}) =
P{w | plw,wo) < r}) for every wy € Q, r > 0, and P is a regular measure. Consider a sequence
of partitions of O, A* = {Ak, ... AF} satisfying the following properties for each k and 1 < [ < k:
P(AF) > 0; U AF = Q5 Af N AF =0, # j; limy_. diam(Af) = 0; and P(9AF) = 0. The collection of
sets A" generates an algebra ©, C ©.

Define a sequence of discrete measures Pj, with support supp Py, = {w¥, ..., wk}, satisfying the follow-
ing properties for each k and 1 <1 < k: wf € AF; and limy_, oo max; <;<j, Pr(wf)/P(AF) = 1.

We further assume that the functions t(z, -), g(z,-) and f(z,-) are ©g-measurable and bounded. The
problem (10)—(11) transforms into the following:

S(z,wf) = {y € R™ | —F(z,yf,w}) € Ne(yf) }, (13)
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with

hk ATt(z,vF, wF) — Txf
yr = o and  F(z,yf, o) = IThr — g(a,nf,wl) | . (14)
oF vf — ARF

The discretized collection of problems has the following appearance:

k
mir;imizke Z Py (wlk)f(xa ylk (Wlk)v
(I7y1 ----- yk) =1

(SHTM)*
subject to z e X,
yr(wh) € S(z,wr), l=1,... k.

Let ((z*)*, (y*)*) denote an optimal solution to the problem (SHTM)* where the vector y* is the
concatenation of the vectors ylk, l=1,... k. The following result can be obtained.

THEOREM 8 (convergence of discretized solutions) In addition to the conditions of Theorem 3 suppose
that the mapping t(z,-,w) is strongly monotone for each x € X and w € Q and that g is either a
constant mapping in w or —g(x,-,w) is strongly monotone for each x € X and w € Q. Consider the
sequence {(SHTM)"} of discretizations of the problem (SHTMq,). Then, any limit point of the sequence
{((z*)*, (y*)*)} of optimal solutions to these problems (and there is at least one such point) is an optimal
solution to the problem (SHTMg).

PROOF. We first remark that it is not difficult to establish that every limit state vector 7 of the sequence
{(y*)*} is not only feasible in the limit lower level problem corresponding to a limit Z of the sequence
{(z*)*} but it also solves this limit problem; this is due to the boundedness of these sequences and the
integrability of the lower level solution (cf. Castaing & Valadier 1977, Lemma I11.39; and Lepp 1994,
Remark 2). Moreover the discrete convergence of the (v, 7)-components is strong. The remainder of the
proof is similar to that of Theorem 5; see also Evgrafov & Patriksson (2003a). O

Notice that the strong monotonicity assumption is introduced in the above result in order to be able
to infer the strong regularity of the equilibrium solution, which in fact can be established under slightly
less stringent assumptions (e.g., Patriksson & Rockafellar 2003, and Patriksson 2004).

The above algorithm is similar to a Monte Carlo technique used previously in stochastic programming
and for some special cases of SMPEC models. It is known as the sample path method, sample average
approximation, stochastic counterpart method, and the simulated likelihood method (see, e.g., Plambeck
et al. 1993, 1996; Rubinstein & Shapiro 1993; Robinson 1996; Giirkan et al. 1998, 1999a,b; Kleywegt et
al. 2001; Shapiro 2003, 2006, 2008; Shapiro & Xu 2005; Meng & Xu 2006; and the references therein).
Using N random samples w',w?, ..., w" of the random vector w, a problem of the form

(z,yx

N
1

minim%ze N Z flz,y"),

(SHTM)™ k=1

subject to z € X,

y* € S(z,wh), k=1,...,N

is solved, for increased values of N.

Its main difference to the discretization approach resulting in the problem (SHTM)* above is that
the sampling is made such that the scenario probabilities all are the same. Shapiro & Xu (2005) study
the convergence of this method for (SMPCC)q under conditions that, translated into our notation, are
fulfilled if y(-,w) is unique and continuous for almost every w, X is non-empty and compact, and the
function f(z,y(x,-),) is bounded over X almost surely. Under additional conditions on S and f such that
the expected value function is differentiable, it is also established in Shapiro & Xu (2005) that stationary
points to discretized versions of (SMPCC)g converge to the set of stationary points to (SMPCC)g.
Because of the smoothing effect of the averaging operation, it is remarked that differentiability of the
expected value function may hold in many more cases than for the non-deterministic problem (MPCC).
We expect the same to hold for (SHTM)q,.
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The conditions imposed in the similar work in Giirkan et al. (1999a) in particular imply that the
lower-level problem has strongly regular solutions (Robinson 1980), but on the other hand the result
quite immediately extends to inexact solutions of the approximate problems (SHTM)Y. (Notice also
that the conditions of the above theorem imply the strong regularity of the lower-level solution in the
relevant entities, cf. Yen 1995; Patriksson & Rockafellar 2003; and Patriksson 2004.)

In Birbil et al. (2006) the above-mentioned sample path method was applied to a special case of
(SMPCC)q modelling a toll pricing problem. Using the classic separable polynomial BPR travel cost
functions (US Bureau of Public Roads 1964) in a fixed demand traffic assignment model, the problem is
stated as follows: Suppose that tolls are to be set during the beginning of a fairly long time period, during
which time the tolls cannot be altered. The parameters of the BPR formula are considered stochastic
in order to represent varying road conditions during this time period, and the model (SMPCC)g then
represents a means to derive the best link tolls ’on average’. A test case using the Sioux Falls network
(LeBlanc et al. 1975), where n = |£| = 76, is reported; in this example the exact solution can be
computed before-hand, making it possible to establish, in this case, convergence to an optimal solution.

The main interest in the above techniques is of course that SMPEC models can be solved through a
sequence of MPEC models, for which relatively efficient algorithms exist (e.g., Fletcher et al. 2006; Ralph
2008; and references therein). Shapiro (2006) establishes that convergence in some cases is exponential,
which implies that relatively few samples may be needed to reach at least a near-optimal (or, near-
stationary) solution; numerical experiments in Shapiro & Xu (2005) and Birbil et al. (2006) confirm this
belief at least in small-scale examples.

Therefore, there is a hope that SMPEC traffic models can be solved approximately with a computa-
tional effort that is not several orders of magnitude larger than for one instance of a discretized problem.
In particular, a rough design solution that is at least a lot better than any individual MPEC solution
can probably be achieved through the solution of one single problem of the form (SHTM)* or (SHTM)®,
provided of course that the samples are well chosen. The analysis performed in this paper in fact—to at
least some degree—validates such a simple approach, through the combined results of Theorems 5 and 8.

6 Final remarks and future research directions

While the lower-level traffic model defined in Section 3 is built upon a deterministic (possibly multi-class)
traffic equilibrium model with inelastic or elastic demands, the above development can be performed based
also upon a stochastic model. Indeed, the properties needed for our theoretical results are not connected
to the route-choice principles per se, but rather to the properties of the equilibrium solution. The main
property needed is that the lower-level optimal link flow and demand is closed (in some cases continuous)
as a function of x and w, which is a property present also for, say, the logit-based stochastic model of
Fisk (1980) (see also Patriksson 2004, for a sensitivity analysis of this model) and for probit models (e.g.,
Von Falkenhausen 1966; Daganzo & Sheffi 1977; Daganzo 1983; Davis 1994; and Maher et al. 2001; see
also the sensitivity analyses in Clark & Watling (2000, 2002, 2005). For a recent account of research
done on link tolling under stochastic user equilibrium, see Stewart (2007). As far as this author is aware,
the present paper is the first that (essentially) covers an analysis of a stochastic MPEC model where
the lower level model is a stochastic user equilibrium (SUE) model; a standard MPEC model built on a
lower-level SUE traffic model does not constitute an SMPEC model.

As mentioned already in Section 1.3, congestion control in communication networks is a very important
topic; its relationships to traffic MPEC models were also alluded to. Several parameters in the definition
of the problem through whose solution one determines the transmission rates are likely to be subject
to random fluctuations and are also difficult to measure exactly, in particular the capacity of the links
(in terms of flow rates). Therefore, it seems natural to study stochastic models of transmission control,
which then would have the form of SMPEC problems.

A natural future research task is to investigate the possible convergence of inexact solutions to the
subproblems in the algorithms investigated in this paper to (in)exact solutions to the original one. Along
these lines, it would be interesting also to analyze and extend to our situation a convergence result in
Giirkan et al. (1999a): In their application of the sample path method the maximum value of N (that is,
the total number of samples) required to reach a given accuracy of the final solution while also solving
each subproblem inexactly grows linearly with the number n of design parameters.

An interesting research issue related to the above is whether stability results extending that for globally
optimal solutions can be verified also for locally optimal design solutions, and/or solutions to a suitably
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stated necessary (or, stationarity) condition for a local optimum. The latter conditions are certainly
interesting in their own light, as KKT-type optimality conditions for general SMPEC problems are not
well developed yet. Results along these lines are currently under investigation.

Another interesting question is whether convergence is achieved for the natural combination of pe-
nalization and discretization; it has previously been successfully applied and established in structural
topology optimization in Evgrafov & Patriksson (2003a).

A related issue regards the stability of optimal solutions to SMPEC traffic models with joint upper-
level constraints. We have in Section 4 described the unlikelihood of the existence of such a result for
SMPEC traffic models in general, but we have also related to work in Evgrafov & Patriksson (2003b)
that has showed that certain relaxations of joint upper-level constraints (in particular stress constraints in
topology optimization problems) may in fact induce robustness. The form of such relaxations is naturally
highly dependent on the type of constraints considered. It would be interesting to investigate the existence
of good relaxations for particular classes of joint upper-level constraints in the SMPEC traffic framework
that would induce robustness. It would also be of interest to learn whether any sound solution approaches
could be derived from them. Indeed, in topology optimization such algorithms are now quite well-known
and established; see, e.g., Kirsch (1990), Rozvany & Birker (1994), Cheng & Guo (1997), Guo et al.
(2001), Petersson (2001), Stolpe & Svanberg (2001), and Evgrafov & Patriksson (2003b, 2005) for both
classic work on the ’stress singularity phenomenon’ and specially designed relaxation methods for dealing
with stress constraints. In relation to the negative result in Evgrafov & Patriksson (2003b) that one
cannot expect convergence of a scheme in which {Pj} converges to P and the relaxation parameter tends
to zero simultaneously, one must observe that in that particular application the objective function of
the lower-level variational inequality is not everywhere finite; the situation in the SMPEC traffic context
should be more favourable.

A potentially interesting modification transforms the constraint that Po[(x,y(w)) € Z(w)] = 1 holds
into the relaxation that, for some given a € (0,1), Po[(z,y(w)) € Z(w)] > « holds. This is the classic
’probabilistic’ or ’chance constraint’ of stochastic programming (see Charnes et al. 1958; and Prékopa
2003) and the classic ’reliability constraint’ from structural optimization. Whether interesting stability
properties can be derived from an SMPEC model equipped with this relaxed joint upper-level constraint
is an interesting future research question.

Applications to toll pricing and design problems in traffic networks have been mentioned previously.
SMPEC models can of course also be utilized to similarly model and analyze networks of other commodi-
ties. One example is optical data communication networks where, for example, revenue maximization
models (known as stochastic traffic engineering) involving bandwidth provisioning in the face of stochastic
elastic bandwidth demands are discussed in Mitra & Wang (2005). The analysis and numerical solution
of this and other problems in communication networks within the framework of SMPEC, is a fruitful
research avenue.

Finally, it would be interesting to investigate whether, in the context of network design and/or pricing
the analysis of this paper may offer contributions to the study of reliability of traffic flows (see, e.g., Bell
& Tida 1997; Bell 2000; and Clark & Watling 2005).
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