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Abstract
Antimicrobial resistance is a rapidly growing challenge for the healthcare
sector and multi-drug resistant bacterial infections are the cause of nearly a
million deaths annually worldwide. Antibiotic resistance is conferred by either
antibiotic resistance genes (ARGs) which can be acquired by horizontal gene
transfer between bacterial cells or by mutations in pre-existing DNA. Large
collections of ARGs are present in the bacterial communities hosted by hu-
mans and animals, and in the external environments. Most of these ARGs are
uncharacterized and not well-studied. Furthermore, antimicrobial resistance
has significantly hindered our ability to treat infections and novel diagnostic
solutions are therefore needed to ensure efficient treatment. In paper I, the
abundance and diversity of 24,074 ARGs of 17 classes were studied in metage-
nomic data. The majority of the ARGs were previously uncharacterized, of
which several were commonly reoccurring and shared across the digestive
system of humans and animals, suggesting that they are under strong selection
pressures. The data-driven work in this paper showed that the analysis of
all ARGs, including those that have previously not been described, is nec-
essary to provide a comprehensive description of the resistance potential of
bacterial communities. In paper II, an AI method for the prediction of bacte-
rial susceptibility towards antibiotics is presented. The method is based on
transformers and artificial neural networks and exploits the strong and highly
non-trivial dependencies present in the resistance patterns of bacteria. The
model was highly successful in predicting susceptibility for most antibiotics
from the classes cephalosporins and quinolones but had a lower performance
on penicillins and aminoglycosides. The AI-based methodology described in
this paper may be used to improve the diagnostics chain of infectious diseases
with the potential to reduce the morbidity and mortality of patients. This
thesis provides methodologies for improved surveillance and diagnostics of
antibiotic-resistant bacteria and, thereby, contributes to a more sustainable use
of antibiotics.
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formers
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1 Background

One of the most important advances in human health was the discovery of
antibiotics and their introduction as a treatment for infectious diseases. During
the first half of the 20th century, which is sometimes known as the golden age of
antibiotics, several classes of antibiotics, with different targets and mechanisms,
were discovered, massively produced and effectively employed to cure diseases
of epidemic proportion (Mohr, 2016), having a great impact on life expectancy
(Hutchings et al., 2019). Originally, antibiotics were chemical or biological
compounds that were naturally secreted by fungi or bacteria, such as penicillin
produced by the fungus Penicillium. More recently, antibiotics have also been
synthetically produced (Hutchings et al., 2019), such as nalidixic acid, the first
quinolone employed and introduced in the 1960’s (Andersson and MacGowan,
2003). The rapid increase in the use of antibiotics was accompanied by the
adaptation of bacteria to thrive in the presence of these compounds. Indeed,
bacteria have developed and acquired a diverse set of molecular mechanisms
to overcome antibiotics. The great development of antibiotics, was therefore,
followed by the growing threat of antibiotic resistance. The main objectives in
this thesis are the identification and localization of resistant mechanisms in the
environment and the prediction of the resistance profiles in bacterial infections
for personalized treatment.

1.1 Antibiotic resistance

Bacteria typically become resistant to antibiotics through mutations in their
genome (Woodford and Ellington, 2007) and the acquisition of antibiotic resis-
tance genes (ARGs) through the process of horizontal gene transfer (HGT)(Blair
et al., 2015). Horizontal gene transfer is the (“lateral”) flow of genetic material
between organisms not conditioned to reproduction (“vertical”) (Burmeister,
2015). Antibiotic resistance genes provide the bacteria with the tools to de-
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2 1. Background

grade, eject or modify antibiotics or to change their target in the cell, so they
become less harmful to the host (Peterson and Kaur, 2018). Although ARGs
are naturally present in microbial communities, the overuse of antibiotics by
humans has created a selection pressure that enables the promotion of ARGs
in pathogens, a process happening in both, external environmental and host-
associated bacterial communities. In pathogenic bacteria, ARGs are most often
found on mobile genetic elements (MGEs), e.g. transposons or conjugative
elements such as plasmids (Rodríguez-Beltrán et al., 2021), which eases and
facilitates HGT. Bacteria can be resistant to multiple antibiotics due to the
accumulation of several ARGs or by having multi-drug ARGs (Nikaido, 2009).
Several ARGs can be co-localized on one MGE, and a bacterium recruiting that
MGE could become resistant to multiple antibiotics by acquiring a single MGE
(Paulsen et al., 1996; Botts et al., 2017). Multi-drug resistance can also be caused
by a combination of ARGs co-localized on one MGE, multiple MGEs carrying
ARGs, multi-drug ARGs and chromosomal ARGs.

The origins of most of the well-characterized and clinically relevant ARGs
identified to this date are unknown and only a small fraction of them has their
origin in human pathogens and commensals (Ebmeyer et al., 2021b). This
suggests that the vast majority of ARGs originates in environmental bacteria
(Allen et al., 2010; Bengtsson-Palme et al., 2017). In order to assess the threat
that ARGs pose for humans, we need to investigate where ARGs are found
and how they are transferred into pathogens. We should be aware that it is
difficult, if not impossible, to have a compilation of all ARGs present in nature.
This is due to the large biodiversity with over 1012 microbial species estimated
on earth (Locey and Lennon, 2016) compared to only 1.5 million species that
have been whole-genome sequenced (Schloss et al., 2016). Furthermore, it
is unfeasible to do functional studies of all known bacterial sequences, and
new genes conferring resistance can arise at any time, e.g. through mutations
conferring resistance.

Public ARG databases, such as ResFinder (Zankari et al., 2012) and CARD
(McArthur et al., 2013), contain collections of ARGs and often their associated
phenotype. ResFinder focuses on mobile ARGs that have been detected within
MGE, many of which are clinically relevant and found in pathogens. In addi-
tion, computational methods have been developed and employed recently to
predict ARGs from sequence data available in public repositories (Berglund
et al., 2019; Arango-Argoty et al., 2018; Ruppé et al., 2019), creating a vast list
of predicted ARGs. One of them, fARGene, uses optimized Hidden Markov
Models, has been shown to have a high sensitivity and specificity, and has
contributed to a significant repertoire of resistant genes (Berglund et al., 2019,
2017; Lund et al., 2021; Berglund et al., 2020; Boulund et al., 2017). Most of these
genes are latently present in bacterial communities but do not yet constitute a

1.2. Diagnostics 3

clinical problem.

1.2 Diagnostics

The recovery from a bacterial infection depends on a prompt prescription of
an antibiotic that is efficient against the infecting bacteria. Any delay in the
treatment can have a negative impact on the morbidity and mortality of bacte-
rial infections (Friedman et al., 2016). Furthermore, the lag in administering a
correct treatment for an infection is also linked to high societal and economi-
cal costs (European Centre for Disease Prevention and Control and European
Medicines Agency, 2009). Although antibiotics have been used as the main
treatment for bacterial infections since the 20th century, their effectiveness has
been compromised by the increasing antibiotic resistance in bacteria.

It is common practice to assess the antibiotic susceptibility of the bacteria
causing the infection prior to the prescription of a drug. The results from
these diagnostic tests provide medical doctors with crucial information for
the selection of antibiotic(s) to treat an infection. Diagnostics is thus both
important to cure infections but also to limit the spread of pathogens and
reduce the consumption of antibiotics.

Antibiotic susceptibility testing is a diagnostic method that aim to detect
resistance and quantify the degree of susceptibility to antimicrobial agents
(Jorgensen and Ferraro, 1998). The testing is most often performed using
cultivation-based techniques, such as disc diffusion, gradient diffusion and
broth micro-dilutions tests(Reller et al., 2009). In those tests, the bacterium is
grown in the presence of different antibiotics at different concentrations. The
bacterium is classified as resistant, intermediate or susceptible to an antibiotic
depending on its growth under the different conditions. Although cultivation-
based techniques are accurate, they are also time-consuming and depend on
the growth rate of each bacterium. Often, antibiotics are tested sequentially
in order to reduce costs and save resources. Consequently, if an appropriate
antibiotic is not found in an early stage, the correct treatment could be signifi-
cantly delayed. The increment of antibiotic resistance and multi-drug resistant
bacteria in the later years, together with the duration of antibiotic susceptibility
testing and the limited time and resources pose a growing challenge for the
healthcare. Therefore, innovative solutions that are able to provide diagnostic
information in the early stages are needed.
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4 1. Background

1.3 Metagenomics

Metagenomics is the high-throughput sequencing of the genetic material
present in an environment and is employed to identify the taxonomic and
functional composition of microbial communities (Fricke et al., 2011). In ad-
dition, metagenomics allows us to study bacterial populations directly from
their source, without the need to isolate individual bacteria or create cultures:
all genetic material is potentially sequenced at once (Schloss and Handelsman,
2005).

The information contained in metagenomic sequences enables us to study the
ARGs present specific environments (Garmendia et al., 2012). Using alignment
tools, e.g. BLAST (Altschul et al., 1990) and DIAMOND (Buchfink et al., 2015),
we can search for DNA sequences of ARGs within metagenomes. Thereby, we
can establish the diversity of ARGs carried by bacteria in a sample, i.e. how
many different genes are found in a sample, and their abundance, i.e. how
much genetic material from each gene is found. Using public metagenomic
repositories, such as the European Nucleotide Archive (Harrison et al., 2021)
and MGnify (Mitchell et al., 2019), we can investigate the resistomes, such as the
collection of ARGs (Kim and Cha, 2021; Allen et al., 2010), of environmental and
host-associated microbiomes. Moreover, for each environment (marine water,
soil, human gut, etc.) we can identify its pan-resistomes, i.e. the collection
of all ARGs present in any metagenome from the investigated environment,
and its core-resistome, i.e. ARGs commonly present in the metagenomes
of that environment. The abundance and diversity, together with the pan-
and core-resistome form a valuable source of information for studies on the
origin of ARGs and the selection pressures governing the spread of ARGs
across environments and between environmental, commensal and pathogenic
bacteria.

The ease and costs linked to next-generation sequencing have promoted a sig-
nificant increase of data in the last years (Keegan et al., 2016). The challenge has
therefore shifted to finding efficient ways to store and access the data, as well
as developing computational and analytical tools to explore it. For reference,
150TB of data containing 22,272 metagenomes and 4× 1011 reads served as the
initial data set for the first paper in this thesis. The complexity of the data is
not limited to storage needs, the data is high-dimensional, sparse, and contains
large technical and biological variability. Nevertheless, a wide range of tools
and techniques have been developed to work with genomic and metagenomic
data. These include among others, alignment tools, normalization techniques,
and a mix of unsupervised and supervised methods that all together provide
reliable statistically valid results.

2 Summary of results

This chapter provides a summary of the overall aims and findings from the
two papers included in the thesis, to facilitate the understanding of their
contribution to the research field.

2.1 Paper I

In paper I, we analyzed the abundance and diversity of antibiotic resistance
genes in different microbial environments. We considered well-characterized
and clinically relevant genes (“established” ARGs) as well as putative resis-
tance genes that are novel and have not yet been thoroughly characterized
(“latent” ARGs). The established genes have been more thoroughly studied
while the latent genes have so far been overlooked in literature. The resistome
we built composed of both established and latents ARGs of different gene
classes is, therefore, more comprehensive. Additionally, we described the pan-
and core-resistomes of external and host-associated microbial environments
depicting the selection pressures present in each environment that contribute
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6 2. Summary of results

The pan-resistomes of both external and host-associated environments were
composed mainly of latent genes (91%-98% and 71%-90%, respectively). Addi-
tionally, 40%-73% of the core-resistomes of host-associated environments were
latent genes. The pan-resistomes of external environments were on average
larger than the host-associated environments, representing a wider diversity
and reservoir of ARGs.

We found that the size of the core-resistome of external environments was
significantly smaller than host-associated environments. This suggests that the
selection pressures in external environments may not be sufficiently strong to
select for specific gene variants to be fixated in these environments. Another
explanation is the between-sample variability, which is higher in the external
environments, and where taxonomic distribution and environmental factors
may limit the promotion of specific resistance genes variants. Interestingly, the
core-resistomes in human and animal digestive systems and wastewater were
extensive, had a large degree of similarity, indicating that these environments
have common selection pressures that are acting on individual gene variants.

Furthermore, the abundance and diversity of each ARG class differed between
environments, and the composition of the pan-resistome contrasted signifi-
cantly from that of the core-resistome, suggesting that selection pressures are
acting differently on each ARG class. Finally, our analysis suggested that the
wastewater bacterial communities are hot-spots for the mobilization of latent
ARGs, as they satisfy both criteria to make them high-risk environments: a
large and diverse pan-resistome of latent ARGs as well as a high abundance of
established mobile ARGs suggesting the presence of mobile genetic elements
necessary for mobilization.

Our results indicate that the latent part of the resistome is present in both
external and host-associated environments. Latent ARGs dominated the pan-
resistomes, and several of the latent ARGs were commonly reoccurring in
human- and animal-associated metagenomes. Thus, we argue that latent ARGs
should play a more relevant role in future resistome studies.

2.2 Paper II

Diagnostics of bacteria before treatment, e.g. susceptibility testing, have been
implemented in hospitals due to, among others, the increment of antibiotic
resistance in pathogens. Although diagnostics are vital to finding the optimal
treatment, current methods can take several days, time that can be crucial for
the patient. Moreover, when no diagnostics are available, treatment is based on

2.2. Paper II 7

medical doctors’ educated guesses, often failing to achieve the desired effect.
Faster and precise diagnostic methods are needed in order to reduce morbidity
and mortality of patients, to prevent the spread of bacterial infections, and
lower the societal costs related to them. In paper II, we build and train a deep
learning model to do predictions of susceptibility and resistance of bacterial
isolates based on patient data and partial diagnostics information.

We investigated strong and highly non-trivial resistant dependencies present in
9,224,373 antibiotic susceptibility tests done between 2013 and 2017 on 261,378
Escherichia coli isolates from 30 European countries retrieved from The Euro-
pean Surveillance System. The susceptibility tests corresponded to a minimum
of seven and a maximum of sixteen antibiotics of four classes (five penicillins,
five quinolones, four cephalosporins and two aminoglycosides). For each bac-
terial isolate, the age, country and gender of the patient where the isolate was
taken from and the date were also available in the data. A made-up exam-
ple of the final information for one isolate is the sentence: “SV 30 M 2013_01
LVX_R AMC_S CAZ_S AMP_S CIP_S CTX_S GEN_S TZP_R”, representing a
bacterium isolated at a hospital from Sweden (SV), from a 30 years old male
patient in January of 2013. The isolate was resistant to levofloxacin (LVX) and
piperacillin/tazobactam (TZP), and susceptible to amoxicillin/clavulanic acid
(AMC), ceftazidime (CAZ), ampicillin (AMP), ciprofloxacin (CIP), cefotaxime
(CTX) and gentamicin (GEN).

The deep learning model presented is a combination of transformers and
artificial neural networks. We trained the model using the resistance profiles of
six out of sixteen different antibiotics, age, country and gender of the patient
and date, as input to predict the resistance profile of the antibiotics that were
masked and not used as input. We evaluated the performance of the model by
determining the major error (ME) rates, i.e. the proportion of true susceptible
isolates that are predicted as being resistant, and the very major error (VME)
rates, i.e. the proportion of true resistant isolates that are predicted as being
susceptible. We obtained ME and VME rates for each antibiotic and different
number of input information in the test data set. We analyzed the performance
of the model both when used to predict masked data and when used as an
autoencoder to reconstruct the input data. Furthermore, we examined the
distribution of the decision scores for the correct predictions, the MEs and the
VMEs.

The model showed high performance for the prediction of resistance (low VME
rates) and susceptibility (low ME rates) for cephalosporins and the majority of
quinolones, but a lower performance for penicillins and aminoglycosides. In
general, the model showed a better performance when predicting susceptible
compared to resistant bacterial isolates, i.e. lower ME rates compared to
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VME rates. Similar results were observed when the model was evaluated
as an autoencoder. Although this is ongoing research, we have shown that
artificial intelligence models can be used to predict diagnostic tests results. The
implementation of this model can provide information about resistance to the
physician in an earlier phase and suggest proper treatments, thereby, benefiting
the life quality of the patients and improving the healthcare system.

3 Future work

For each of the latent antibiotic resistance genes present in the core-resistomes
from paper I, we would like to determine if these genes are already present on
mobile genetic elements. In order to achieve that, we intent to annotate their
genetic context using GEnView Ebmeyer et al. (2021a) and several databases
containing sequence information of commonly occurring MGEs.

The development and evaluation of the model proposed in paper II is an
ongoing work and planned actions include a more systematic evaluation of the
model’s topology and hyper-parameters. Examples of that are the network and
embedding sizes, and implementing different embeddings for the patient data
and the isolate susceptibility data. We would also like to implement individual
losses for each antibiotic, allowing us to weight the major errors and the very
major errors separately for each antibiotic. Furthermore, we would also like to
use a variable number of antibiotics as input to train the model. Additionally,
we would like to implement conformal prediction as a measure of certainty for
the predictions Vovk et al. (2005); Papadopoulos (2008).

9



8 2. Summary of results

VME rates. Similar results were observed when the model was evaluated
as an autoencoder. Although this is ongoing research, we have shown that
artificial intelligence models can be used to predict diagnostic tests results. The
implementation of this model can provide information about resistance to the
physician in an earlier phase and suggest proper treatments, thereby, benefiting
the life quality of the patients and improving the healthcare system.

3 Future work

For each of the latent antibiotic resistance genes present in the core-resistomes
from paper I, we would like to determine if these genes are already present on
mobile genetic elements. In order to achieve that, we intent to annotate their
genetic context using GEnView Ebmeyer et al. (2021a) and several databases
containing sequence information of commonly occurring MGEs.

The development and evaluation of the model proposed in paper II is an
ongoing work and planned actions include a more systematic evaluation of the
model’s topology and hyper-parameters. Examples of that are the network and
embedding sizes, and implementing different embeddings for the patient data
and the isolate susceptibility data. We would also like to implement individual
losses for each antibiotic, allowing us to weight the major errors and the very
major errors separately for each antibiotic. Furthermore, we would also like to
use a variable number of antibiotics as input to train the model. Additionally,
we would like to implement conformal prediction as a measure of certainty for
the predictions Vovk et al. (2005); Papadopoulos (2008).

9



10 3. Future work

Bibliography

Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., and
Handelsman, J. (2010). Call of the wild: antibiotic resistance genes in natural
environments. Nature Reviews Microbiology, 8(4):251–259.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic
local alignment search tool. Journal of Molecular Biology, 215(3):403–410.

Andersson, M. I. and MacGowan, A. P. (2003). Development of the quinolones.
J Antimicrob Chemother, 51 Suppl 1:1–11.

Arango-Argoty, G., Garner, E., Pruden, A., Heath, L. S., Vikesland, P., and
Zhang, L. (2018). DeepARG: a deep learning approach for predicting anti-
biotic resistance genes from metagenomic data. Microbiome, 6(1):23.

Bengtsson-Palme, J., Kristiansson, E., and Larsson, D. G. J. (2017). Environmen-
tal factors influencing the development and spread of antibiotic resistance.
FEMS Microbiology Reviews, 42(1). fux053.

Berglund, F., Böhm, M.-E., Martinsson, A., Ebmeyer, S., Österlund, T., Johnning,
A., Larsson, D. G. J., and Kristiansson, E. (2020). Comprehensive screening
of genomic and metagenomic data reveals a large diversity of tetracycline
resistance genes. Microbial Genomics, 6(11).

Berglund, F., Marathe, N. P., Österlund, T., Bengtsson-Palme, J., Kotsakis, S.,
Flach, C.-F., Larsson, D. J., and Kristiansson, E. (2017). Identification of 76
novel b1 metallo-β-lactamases through large-scale screening of genomic and
metagenomic data. Microbiome, 5(1):1–13.

Berglund, F., Österlund, T., Boulund, F., Marathe, N. P., Larsson, D. G. J., and
Kristiansson, E. (2019). Identification and reconstruction of novel antibiotic
resistance genes from metagenomes. Microbiome, 7(1):52.

11



10 3. Future work

Bibliography

Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., and
Handelsman, J. (2010). Call of the wild: antibiotic resistance genes in natural
environments. Nature Reviews Microbiology, 8(4):251–259.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic
local alignment search tool. Journal of Molecular Biology, 215(3):403–410.

Andersson, M. I. and MacGowan, A. P. (2003). Development of the quinolones.
J Antimicrob Chemother, 51 Suppl 1:1–11.

Arango-Argoty, G., Garner, E., Pruden, A., Heath, L. S., Vikesland, P., and
Zhang, L. (2018). DeepARG: a deep learning approach for predicting anti-
biotic resistance genes from metagenomic data. Microbiome, 6(1):23.

Bengtsson-Palme, J., Kristiansson, E., and Larsson, D. G. J. (2017). Environmen-
tal factors influencing the development and spread of antibiotic resistance.
FEMS Microbiology Reviews, 42(1). fux053.

Berglund, F., Böhm, M.-E., Martinsson, A., Ebmeyer, S., Österlund, T., Johnning,
A., Larsson, D. G. J., and Kristiansson, E. (2020). Comprehensive screening
of genomic and metagenomic data reveals a large diversity of tetracycline
resistance genes. Microbial Genomics, 6(11).

Berglund, F., Marathe, N. P., Österlund, T., Bengtsson-Palme, J., Kotsakis, S.,
Flach, C.-F., Larsson, D. J., and Kristiansson, E. (2017). Identification of 76
novel b1 metallo-β-lactamases through large-scale screening of genomic and
metagenomic data. Microbiome, 5(1):1–13.

Berglund, F., Österlund, T., Boulund, F., Marathe, N. P., Larsson, D. G. J., and
Kristiansson, E. (2019). Identification and reconstruction of novel antibiotic
resistance genes from metagenomes. Microbiome, 7(1):52.

11



12 BIBLIOGRAPHY

Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., and Piddock, L.
J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews
Microbiology, 13(1):42–51.

Botts, R. T., Apffel, B. A., Walters, C. J., Davidson, K. E., Echols, R. S., Geiger,
M. R., Guzman, V. L., Haase, V. S., Montana, M. A., La Chat, C. A., Mielke,
J. A., Mullen, K. L., Virtue, C. C., Brown, C. J., Top, E. M., and Cummings,
D. E. (2017). Characterization of four multidrug resistance plasmids captured
from the sediments of an urban coastal wetland. Frontiers in microbiology,
8:1922–1922. Publisher: Frontiers Media S.A.

Boulund, F., Berglund, F., Flach, C.-F., Bengtsson-Palme, J., Marathe, N. P.,
Larsson, D. J., and Kristiansson, E. (2017). Computational discovery and
functional validation of novel fluoroquinolone resistance genes in public
metagenomic data sets. BMC genomics, 18(1):1–9.

Buchfink, B., Xie, C., and Huson, D. H. (2015). Fast and sensitive protein
alignment using DIAMOND. Nature Methods, 12(1):59–60.

Burmeister, A. R. (2015). Horizontal Gene Transfer. Evol Med Public Health,
2015(1):193–194.

Ebmeyer, S., Coertze, R. D., Berglund, F., Kristiansson, E., and Larsson, D. G. J.
(2021a). GEnView: a gene-centric, phylogeny-based comparative genomics
pipeline for bacterial genomes and plasmids. Bioinformatics.

Ebmeyer, S., Kristiansson, E., and Larsson, D. J. (2021b). A framework for identi-
fying the recent origins of mobile antibiotic resistance genes. Communications
Biology, 4(1):1–10.

European Centre for Disease Prevention and Control and European Medicines
Agency (2009). The bacterial challenge : time to react : a call to narrow the
gap between multidrug-resistant bacteria in the EU and the development of new
antibacterial agents. Publications Office.

Fricke, W. F., Cebula, T. A., and Ravel, J. (2011). Chapter 28 - genomics. In
Budowle, B., Schutzer, S. E., Breeze, R. G., Keim, P. S., and Morse, S. A.,
editors, Microbial Forensics (Second Edition), pages 479–492. Academic Press,
San Diego, second edition edition.

Friedman, N. D., Temkin, E., and Carmeli, Y. (2016). The negative impact of
antibiotic resistance. Clin Microbiol Infect, 22(5):416–422.

Garmendia, L., Hernandez, A., Sanchez, M. B., and Martinez, J. L. (2012).
Metagenomics and antibiotics. Clin Microbiol Infect, 18 Suppl 4:27–31.

BIBLIOGRAPHY 13

Harrison, P. W., Ahamed, A., Aslam, R., Alako, B. T. F., Burgin, J., Buso, N.,
Courtot, M., Fan, J., Gupta, D., Haseeb, M., Holt, S., Ibrahim, T., Ivanov, E.,
Jayathilaka, S., Balavenkataraman Kadhirvelu, V., Kumar, M., Lopez, R., Kay,
S., Leinonen, R., Liu, X., O’Cathail, C., Pakseresht, A., Park, Y., Pesant, S.,
Rahman, N., Rajan, J., Sokolov, A., Vijayaraja, S., Waheed, Z., Zyoud, A.,
Burdett, T., and Cochrane, G. (2021). The European Nucleotide Archive in
2020. Nucleic Acids Res, 49(D1):D82–D85.

Hutchings, M. I., Truman, A. W., and Wilkinson, B. (2019). Antibiotics: past,
present and future. Current Opinion in Microbiology, 51:72–80. Antimicrobials.

Jorgensen, J. H. and Ferraro, M. J. (1998). Antimicrobial susceptibility testing:
general principles and contemporary practices. Clin Infect Dis, 26(4):973–980.

Keegan, K. P., Glass, E. M., and Meyer, F. (2016). MG-RAST, a Metagenomics
Service for Analysis of Microbial Community Structure and Function. Meth-
ods Mol Biol, 1399:207–233.

Kim, D.-W. and Cha, C.-J. (2021). Antibiotic resistome from the one-health
perspective: understanding and controlling antimicrobial resistance trans-
mission. Experimental & Molecular Medicine, 53(3):301–309.

Locey, K. J. and Lennon, J. T. (2016). Scaling laws predict global microbial
diversity. Proc Natl Acad Sci U S A, 113(21):5970–5975.

Lund, D., Kieffer, N., Parras-Moltó, M., Ebmeyer, S., Berglund, F., Johnning, A.,
Larsson, J. D., and Kristiansson, E. (2021). Large-scale characterization of
the macrolide resistome reveals high diversity and several new pathogen-
associated genes. Submitted.

McArthur, A. G., Waglechner, N., Nizam, F., Yan, A., Azad, M. A., Baylay,
A. J., Bhullar, K., Canova, M. J., De Pascale, G., Ejim, L., Kalan, L., King,
A. M., Koteva, K., Morar, M., Mulvey, M. R., O’Brien, J. S., Pawlowski,
A. C., Piddock, L. J. V., Spanogiannopoulos, P., Sutherland, A. D., Tang, I.,
Taylor, P. L., Thaker, M., Wang, W., Yan, M., Yu, T., and Wright, G. D. (2013).
The comprehensive antibiotic resistance database. Antimicrobial agents and
chemotherapy, 57(7):3348–3357. Edition: 2013/05/06 Publisher: American
Society for Microbiology.

Mitchell, A. L., Almeida, A., Beracochea, M., Boland, M., Burgin, J., Cochrane,
G., Crusoe, M. R., Kale, V., Potter, S. C., Richardson, L. J., Sakharova, E.,
Scheremetjew, M., Korobeynikov, A., Shlemov, A., Kunyavskaya, O., Lapidus,
A., and Finn, R. D. (2019). MGnify: the microbiome analysis resource in 2020.
Nucleic Acids Research, 48(D1):D570–D578.



12 BIBLIOGRAPHY

Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., and Piddock, L.
J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews
Microbiology, 13(1):42–51.

Botts, R. T., Apffel, B. A., Walters, C. J., Davidson, K. E., Echols, R. S., Geiger,
M. R., Guzman, V. L., Haase, V. S., Montana, M. A., La Chat, C. A., Mielke,
J. A., Mullen, K. L., Virtue, C. C., Brown, C. J., Top, E. M., and Cummings,
D. E. (2017). Characterization of four multidrug resistance plasmids captured
from the sediments of an urban coastal wetland. Frontiers in microbiology,
8:1922–1922. Publisher: Frontiers Media S.A.

Boulund, F., Berglund, F., Flach, C.-F., Bengtsson-Palme, J., Marathe, N. P.,
Larsson, D. J., and Kristiansson, E. (2017). Computational discovery and
functional validation of novel fluoroquinolone resistance genes in public
metagenomic data sets. BMC genomics, 18(1):1–9.

Buchfink, B., Xie, C., and Huson, D. H. (2015). Fast and sensitive protein
alignment using DIAMOND. Nature Methods, 12(1):59–60.

Burmeister, A. R. (2015). Horizontal Gene Transfer. Evol Med Public Health,
2015(1):193–194.

Ebmeyer, S., Coertze, R. D., Berglund, F., Kristiansson, E., and Larsson, D. G. J.
(2021a). GEnView: a gene-centric, phylogeny-based comparative genomics
pipeline for bacterial genomes and plasmids. Bioinformatics.

Ebmeyer, S., Kristiansson, E., and Larsson, D. J. (2021b). A framework for identi-
fying the recent origins of mobile antibiotic resistance genes. Communications
Biology, 4(1):1–10.

European Centre for Disease Prevention and Control and European Medicines
Agency (2009). The bacterial challenge : time to react : a call to narrow the
gap between multidrug-resistant bacteria in the EU and the development of new
antibacterial agents. Publications Office.

Fricke, W. F., Cebula, T. A., and Ravel, J. (2011). Chapter 28 - genomics. In
Budowle, B., Schutzer, S. E., Breeze, R. G., Keim, P. S., and Morse, S. A.,
editors, Microbial Forensics (Second Edition), pages 479–492. Academic Press,
San Diego, second edition edition.

Friedman, N. D., Temkin, E., and Carmeli, Y. (2016). The negative impact of
antibiotic resistance. Clin Microbiol Infect, 22(5):416–422.

Garmendia, L., Hernandez, A., Sanchez, M. B., and Martinez, J. L. (2012).
Metagenomics and antibiotics. Clin Microbiol Infect, 18 Suppl 4:27–31.

BIBLIOGRAPHY 13

Harrison, P. W., Ahamed, A., Aslam, R., Alako, B. T. F., Burgin, J., Buso, N.,
Courtot, M., Fan, J., Gupta, D., Haseeb, M., Holt, S., Ibrahim, T., Ivanov, E.,
Jayathilaka, S., Balavenkataraman Kadhirvelu, V., Kumar, M., Lopez, R., Kay,
S., Leinonen, R., Liu, X., O’Cathail, C., Pakseresht, A., Park, Y., Pesant, S.,
Rahman, N., Rajan, J., Sokolov, A., Vijayaraja, S., Waheed, Z., Zyoud, A.,
Burdett, T., and Cochrane, G. (2021). The European Nucleotide Archive in
2020. Nucleic Acids Res, 49(D1):D82–D85.

Hutchings, M. I., Truman, A. W., and Wilkinson, B. (2019). Antibiotics: past,
present and future. Current Opinion in Microbiology, 51:72–80. Antimicrobials.

Jorgensen, J. H. and Ferraro, M. J. (1998). Antimicrobial susceptibility testing:
general principles and contemporary practices. Clin Infect Dis, 26(4):973–980.

Keegan, K. P., Glass, E. M., and Meyer, F. (2016). MG-RAST, a Metagenomics
Service for Analysis of Microbial Community Structure and Function. Meth-
ods Mol Biol, 1399:207–233.

Kim, D.-W. and Cha, C.-J. (2021). Antibiotic resistome from the one-health
perspective: understanding and controlling antimicrobial resistance trans-
mission. Experimental & Molecular Medicine, 53(3):301–309.

Locey, K. J. and Lennon, J. T. (2016). Scaling laws predict global microbial
diversity. Proc Natl Acad Sci U S A, 113(21):5970–5975.

Lund, D., Kieffer, N., Parras-Moltó, M., Ebmeyer, S., Berglund, F., Johnning, A.,
Larsson, J. D., and Kristiansson, E. (2021). Large-scale characterization of
the macrolide resistome reveals high diversity and several new pathogen-
associated genes. Submitted.

McArthur, A. G., Waglechner, N., Nizam, F., Yan, A., Azad, M. A., Baylay,
A. J., Bhullar, K., Canova, M. J., De Pascale, G., Ejim, L., Kalan, L., King,
A. M., Koteva, K., Morar, M., Mulvey, M. R., O’Brien, J. S., Pawlowski,
A. C., Piddock, L. J. V., Spanogiannopoulos, P., Sutherland, A. D., Tang, I.,
Taylor, P. L., Thaker, M., Wang, W., Yan, M., Yu, T., and Wright, G. D. (2013).
The comprehensive antibiotic resistance database. Antimicrobial agents and
chemotherapy, 57(7):3348–3357. Edition: 2013/05/06 Publisher: American
Society for Microbiology.

Mitchell, A. L., Almeida, A., Beracochea, M., Boland, M., Burgin, J., Cochrane,
G., Crusoe, M. R., Kale, V., Potter, S. C., Richardson, L. J., Sakharova, E.,
Scheremetjew, M., Korobeynikov, A., Shlemov, A., Kunyavskaya, O., Lapidus,
A., and Finn, R. D. (2019). MGnify: the microbiome analysis resource in 2020.
Nucleic Acids Research, 48(D1):D570–D578.



14 BIBLIOGRAPHY

Mohr, K. I. (2016). History of Antibiotics Research. Curr Top Microbiol Immunol,
398:237–272.

Nikaido, H. (2009). Multidrug resistance in bacteria. Annual review of biochem-
istry, 78:119–146.

Papadopoulos, H. (2008). Inductive conformal prediction: Theory and ap-
plication to neural networks. In Tools in Artificial Intelligence, chapter 18.
IntechOpen, Rijeka.

Paulsen, I. T., Brown, M. H., and Skurray, R. A. (1996). Proton-dependent
multidrug efflux systems. Microbiological Reviews, 60(4):575–608.

Peterson, E. and Kaur, P. (2018). Antibiotic resistance mechanisms in bacte-
ria: Relationships between resistance determinants of antibiotic producers,
environmental bacteria, and clinical pathogens. Frontiers in Microbiology,
9:2928.

Reller, L. B., Weinstein, M., Jorgensen, J. H., and Ferraro, M. J. (2009). Antimi-
crobial Susceptibility Testing: A Review of General Principles and Contem-
porary Practices. Clinical Infectious Diseases, 49(11):1749–1755.

Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R., MacLean, R. C., and
San Millán, Á. (2021). Beyond horizontal gene transfer: the role of plasmids
in bacterial evolution. Nature Reviews Microbiology, pages 1–13.

Ruppé, E., Ghozlane, A., Tap, J., Pons, N., Alvarez, A.-S., Maziers, N., Cuesta,
T., Hernando-Amado, S., Clares, I., Martínez, J. L., Coque, T. M., Baquero,
F., Lanza, V. F., Máiz, L., Goulenok, T., de Lastours, V., Amor, N., Fantin, B.,
Wieder, I., Andremont, A., van Schaik, W., Rogers, M., Zhang, X., Willems,
R. J. L., de Brevern, A. G., Batto, J.-M., Blottière, H. M., Léonard, P., Léjard,
V., Letur, A., Levenez, F., Weiszer, K., Haimet, F., Doré, J., Kennedy, S. P.,
and Ehrlich, S. D. (2019). Prediction of the intestinal resistome by a three-
dimensional structure-based method. Nature Microbiology, 4(1):112–123.

Schloss, P. D., Girard, R. A., Martin, T., Edwards, J., and Thrash, J. C. (2016).
Status of the Archaeal and Bacterial Census: an Update. mBio, 7(3).

Schloss, P. D. and Handelsman, J. (2005). Metagenomics for studying uncultur-
able microorganisms: cutting the Gordian knot. Genome Biol, 6(8):229.

Vovk, V., Gammerman, A., and Shafer, G. (2005). Algorithmic Learning in a
Random World. Springer-Verlag, Berlin, Heidelberg.

Woodford, N. and Ellington, M. J. (2007). The emergence of antibiotic resistance
by mutation. Clin Microbiol Infect, 13(1):5–18.

BIBLIOGRAPHY 15

Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S.,
Lund, O., Aarestrup, F. M., and Larsen, M. V. (2012). Identification of ac-
quired antimicrobial resistance genes. Journal of Antimicrobial Chemotherapy,
67(11):2640–2644.



14 BIBLIOGRAPHY

Mohr, K. I. (2016). History of Antibiotics Research. Curr Top Microbiol Immunol,
398:237–272.

Nikaido, H. (2009). Multidrug resistance in bacteria. Annual review of biochem-
istry, 78:119–146.

Papadopoulos, H. (2008). Inductive conformal prediction: Theory and ap-
plication to neural networks. In Tools in Artificial Intelligence, chapter 18.
IntechOpen, Rijeka.

Paulsen, I. T., Brown, M. H., and Skurray, R. A. (1996). Proton-dependent
multidrug efflux systems. Microbiological Reviews, 60(4):575–608.

Peterson, E. and Kaur, P. (2018). Antibiotic resistance mechanisms in bacte-
ria: Relationships between resistance determinants of antibiotic producers,
environmental bacteria, and clinical pathogens. Frontiers in Microbiology,
9:2928.

Reller, L. B., Weinstein, M., Jorgensen, J. H., and Ferraro, M. J. (2009). Antimi-
crobial Susceptibility Testing: A Review of General Principles and Contem-
porary Practices. Clinical Infectious Diseases, 49(11):1749–1755.

Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R., MacLean, R. C., and
San Millán, Á. (2021). Beyond horizontal gene transfer: the role of plasmids
in bacterial evolution. Nature Reviews Microbiology, pages 1–13.

Ruppé, E., Ghozlane, A., Tap, J., Pons, N., Alvarez, A.-S., Maziers, N., Cuesta,
T., Hernando-Amado, S., Clares, I., Martínez, J. L., Coque, T. M., Baquero,
F., Lanza, V. F., Máiz, L., Goulenok, T., de Lastours, V., Amor, N., Fantin, B.,
Wieder, I., Andremont, A., van Schaik, W., Rogers, M., Zhang, X., Willems,
R. J. L., de Brevern, A. G., Batto, J.-M., Blottière, H. M., Léonard, P., Léjard,
V., Letur, A., Levenez, F., Weiszer, K., Haimet, F., Doré, J., Kennedy, S. P.,
and Ehrlich, S. D. (2019). Prediction of the intestinal resistome by a three-
dimensional structure-based method. Nature Microbiology, 4(1):112–123.

Schloss, P. D., Girard, R. A., Martin, T., Edwards, J., and Thrash, J. C. (2016).
Status of the Archaeal and Bacterial Census: an Update. mBio, 7(3).

Schloss, P. D. and Handelsman, J. (2005). Metagenomics for studying uncultur-
able microorganisms: cutting the Gordian knot. Genome Biol, 6(8):229.

Vovk, V., Gammerman, A., and Shafer, G. (2005). Algorithmic Learning in a
Random World. Springer-Verlag, Berlin, Heidelberg.

Woodford, N. and Ellington, M. J. (2007). The emergence of antibiotic resistance
by mutation. Clin Microbiol Infect, 13(1):5–18.

BIBLIOGRAPHY 15

Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S.,
Lund, O., Aarestrup, F. M., and Larsen, M. V. (2012). Identification of ac-
quired antimicrobial resistance genes. Journal of Antimicrobial Chemotherapy,
67(11):2640–2644.



16 BIBLIOGRAPHY


