THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING

Noise Handling For Improving Machine Learning
Based Test Case Selection

KHALED WALID AL-SABBAGH

Department of Computer Science & Engineering
Division of Interaction Design and Software Engineering
Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden, 2021

Noise Handling For Improving Machine Learning Based Test Case
Selection

KHALED WALID AL-SABBAGH

Copyright (©)2021 Khaled Walid Al-Sabbagh
except where otherwise stated.
All rights reserved.

Department of Computer Science & Engineering

Division of Interaction Design and Software Engineering
Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden

This thesis has been prepared using IXTEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2021.

ii

“Lwe as if you were to die tomorrow. Learn as if you were to live
forever.”
- Mahatma Gandhia.

iv

Abstract

Background: Continuous integration is a modern software engineering prac-
tice that promotes rapid integration and testing of code changes as soon as
they get committed to the project repository. One challenge in adopting this
practice lies in the long time required for executing all available test cases to
perform regression testing. The availability of large amounts of data about
code changes and executed test cases in continuous integration systems poses
an opportunity to design data-driven approaches that can effectively select a
subset of test cases for regression testing.

Objective: The objective of this thesis is to create a method for selecting test
cases that have the highest probability of revealing faults in the system, given
new code changes pushed into the code-base. Using historically committed
source code and their respective executed test cases, we can utilize textual
analysis and machine learning to design a method, called MeBoTs, that can
learn the selection of test cases.

Method: To address this objective, we carried out two design science re-
search cycles and two controlled experiments. A combination of quantitative
and qualitative data collection methods were used, including testing and code
commits data, surveys, and a workshop, to evaluate and improve the effective-
ness of MeBoT's in selecting effective test cases.

Results: The main findings of this thesis are that: 1) using an elimina-
tion and a relabelling strategy for handling class noise in the data increases the
performance of MeBoTs from 25% to 84% (F1-score), 2) eliminating attribute
noise from the training data does not improve the predictive performance of
a test selection model (F1-score remains unchanged at 66%), and 3) memory
management changes in the source code should be tested with performance,
load, soak, stress, volume, and capacity tests; the algorithmic complexity
changes should be tested with the same tests for memory management code
changes in addition to maintainability tests.

Conclusion: Our first conclusion is that textual analysis of source code
can be effective in test case selection if a class noise handling strategy is applied
for curating incorrectly labeled data points in the training data. Secondly,
test orchestrators do not need to handle attribute noise in the data, since it
does not lead to an improvement in the performance of MeBoTs. Finally, we
conclude that the performance of MeBoTs can be improved by instrumenting
a tool that automatically associates code changes of specific types to test cases
that are in dependency for training.

Keywords

Test Case Selection, Continuous Integration, Machine Learning, Textual Anal-
ysis

Acknowledgment

Through the support of many individuals, I have managed to be here today,
realizing a major milestone in my academic career. First and foremost, I
would like to thank my supervisors, Miroslaw Staron and Regina Hebig, for
the mentorship and support that they have given me. I deeply appreciate their
patience and guidance. I will remain forever thankful to my fountain of cherish
and support Joumana, without whom this thesis could not be finished. To my
astonishingly strong family in Syria and the United States; my mother, sisters,
uncle, and brother who have been my rock from different sides of the planet. I
am also thankful to my second family in Sweden, the Bradley’s, who made me
perceive Sweden as my first homeland. My acknowledgement and gratitude also
go to a long list of friends and colleagues, including Khaled Khaled, for showing
me how to cherish life, no matter how imperfect it gets; to Francisco Gomez
for always being available to support and provide valuable advice; to Alaa
Al-Nuweiri for the long walks and deep conversations, to Yasmine Moussalli,
Rasha Al-Sabbagh for the positive vibes they disseminated during my short
visits to Syria. Last but not the least, I would like to thank all my colleagues in
the division of Interaction Design and Software Engineering and in the metric
team at Software Center.

vii

List of Publications

Appended publications

This thesis is based on the following publications:

[A]

[B]

KW. Al-Sabbagh, M. Staron, R. Hebig, W. Meding “Predicting Test
Case Verdicts Using Textual Analysis of Committed Code Churns”
IWSM-Mensura. 2019, pp. 1538-153.

KW. Al-Sabbagh, M. Staron, R. Hebig “The Effect of Class Noise on
Continuous Test Case Selection: A Controlled Experiment on Industrial
Data”

International Conference on Product-Focused Software Process Improve-
ment. Springer. 2020, pp. 287-303.

KW. Al-Sabbagh, M. Staron, R. Hebig “Improving test case selection by
handling class and attribute noise”
Accepted for publication in Journal of Systems and Software.

KW. Al-Sabbagh, M. Staron, R. Hebig, F Gomez “A classification of
code changes and test types dependencies for improving machine learning
based test selection”

Proceedings of the 17th International Conference on Predictive Models
and Data Analytics in Software Engineering. PROMISE 2021. Athens,
Greece: Association for Computing Machinery, 2021, pp. 40-49.

ix

Other publications

The following publications were published before and during my Ph.D studies,
but were not included in this thesis due to contents overlapping that of appended
publications or contents not related to the thesis.

[a]

KW. Al-Sabbagh, M. Staron, M Ochodek, R. Hebig, W. Meding “Selective
Regression Testing based on Big Data: Comparing Feature Extraction
Techniques”

2020 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). IEEE. 2020, pp. 322-329.

KW. Al-Sabbagh, M. Staron, M Ochodek, W. Meding “Early Prediction
of Test Case Verdict withBag-of-Words vs. Word Embeddings”

46th International Conference on Current Trends in Theory and Practice
of Computer Science Workshops. (2020).

KW. Al-Sabbagh and L. Gren “The connections between group maturity,
software development velocity, and planning effectiveness”
Journal of Software: Evolution and Process, 30(1), p.e1896.

KW. Al-Sabbagh and L. Gren “Group Developmental Psychology and
Software Development Performance ”

International Conference on Software Engineering Companion (ICSE-C).
IEEE. 2017, pp. 232-234.

KW. Al-Sabbagh, L. Bradley, L. Bartram “Mobile language learning
applications for Arabic speaking migrants — a usability perspective ”
Language Learning in Higher Education9.1 (2019), pp. 71-95.

L. Bradley, L. Bartram, KW. Al-Sabbagh, A. Algers “Designing mobile
language learning with Arabic speaking migrants ”
Interactive Learning Environments, pp.1-13.

Research Contribution

We adopted the CRediT (Contribution Roles Taxonomy) model, proposed
by Brand et al. [1], to define the authors’ contributions to the appended
publications in this thesis. Table 1 summarizes these contributions.

Table 1: The authors’ contributions to the appended papers that comprise this

thesis.

Role Khaled Miroslaw Regina Wilhelm Francisco
Sabbagh Staron Hebig Meding Gomes
Conceptual- Papers Papers Paper Paper
ization B,C,D A/ B, C,D B A
Papers Papers Papers
Methodology B, C A, B, C.D A B
Papers Papers Paper
Software A B, C A, C A
1 Papers Papers Paper
Validation A B, C.D A B A
Formal Papers Papers Paper
analysis A, C, D A, B, D A
L Papers
Investigation A, B, C.D
Papers Papers Papers
Resources | \ ‘p"c'p | B, C D B,C,D
Data Papers
curation A, B, C,D
Writing Papers Papers Papers Paper Paper
original draft | A, B, C, D A, B, D A'B A D
r\e]\\]z?etmi Papers Papers Papers Paper Paper
o A,B,C,D | A,B,C,D | A B,C C D
editing
. .. Papers Papers Paper Paper
Visualization A.B.C,D | A, B,C,D A D
.. Papers Papers Paper
Supervision A, B,C,D A, B, C A
l;gﬂfst Papers Papers Papers Paper Paper
. o A, B,C,D| A BCD]|ADBCD A D
1stration
Funding Papers Papers
acquisition A, B, C, D A/ B, C, D

xii

Contents

Abstract

v
Acknowledgement vii
List of Publications ix
Personal Contribution xi
1 Introduction 1
1.1 Theoretical Framework 2
1.1.1 Test Case Selection 3
1.1.2 Example of Dependency Between Test Case Outcome
and Code Changes 4
1.1.3 Class and Attribute Noise in Code Changes 4
1.1.4 Class Noise in Test Case Selection 6
1.1.5 Noise Handling Strategies 7
1.1.6 Attribute Noise in Test Case Selection 8
1.1.7 Test Case Types and Code Change Categories 9
1.2 Related Work 11
1.2.1 Test Case Selection Approaches 11
1.2.2 Class and Attribute Noise Handling Approaches 13
1.3 Research Design 13
1.3.1 Research Focus 14
1.3.2 Research Methodology 15
1.3.3 Using Textual Analysis and Machine Learning For Im-
proving Test Case Selection (Paper A) 15
1.3.3.1 Problem Conceptualization 15
1.3.3.2 Design Artifact 16
1.3.3.3 Empirical Validation. 17
1.3.4 The Effect of Class Noise on Test Case Selection (Paper B) 18
1.3.4.1 Goal Definition 18
1.3.4.2 Experimental Design 19
1.343 Execution. 19
1.3.4.4 Hypotheses Testing 20
1.3.5 Improving Test Case Selection By Handling Class and
Attribute Noise (Paper C) 20
1.3.5.1 Controlled Experiment 20
1.3.5.2 Design science research 21

xiii

xiv CONTENTS
1.3.6 Improving Test Case Selection By Creating a Dependency
Taxonomy (Paper D). 22
1.3.6.1 Problem Conceptualization 22
1.3.6.2 Design Artifact 23
1.3.6.3 Empirical Validation 23
1.4 Summary of the Findings 24
1.4.1 Predicting Test Case Verdicts Using Textual Analysis of
Committed Code Churns (Paper A) 24
1.4.1.1 Homogeneous and small revisions 24
1.4.1.2 The choice of the ML model in MeBoTS . .. 24
1.4.2 The Effect of Class Noise On Test Case Selection (Paper
B) . 25
1.4.2.1 Class noise decreases the predictive performance
for test selection 25
1.4.3 Improving Test Case Selection By Handling Class and
Attribute Noise (Paper C) 26
1.4.3.1 Handling attribute noise is not necessary . . . 26
1.4.3.2 Using domain knowledge for handling class
noise is effectiveo 26
1.4.4 TImproving Test Case Selection By Creating a Dependency
Taxonomy (Paper D). 26
1.4.4.1 Performance tests are strongly dependent on
memory and complexity changes 27
1.4.4.2 Mixed views on security tests 27
1.5 Discussion L 27
1.6 Threats to Validity 28
1.6.1 External Validity 28
1.6.2 Internal Validity 29
1.6.3 Construct Validity 29
1.6.4 Conclusion Validity 30
1.7 Summary 30
1.8 Future Work oo 31
2 Paper A 33
2.1 Imtroduction 34
2.2 Backgroundo 35
2.2.1 Categories of Machine Learning 35
2.2.2 Tree-based and Deep Learning Models 35
223 Code Churns 36
2.3 Related Work 36
2.3.1 ML-based Test-Case Selection 36
2.4 Method using Bag of Words for Test Selection (MeBoTS) . . . 37
2.4.1 Code Churns Extraction (Step 1) 37
2.4.2 Textual Analysis and Features Extraction (Step 2) . . . 38
2.4.3 Training and Applying the Classifier Algorithm
(Step 3) . . . o 39
2.5 Research Design 40
2.5.1 Collaborating Company 40

2.5.2 Dataseto 40

CONTENTS XV

2.5.3 Evaluating and Selecting a Classification Model 41
2.6 Results. 43
2.6.1 Training the Models on Churns of Varying Sizes 43
2.6.2 Training the Models on Churns of Small Sizes 44
2.6.3 Implication oL 44
2.7 Validity analysis o 44
2.8 Recommendations 0oL 45
2.9 Conclusion and Future Work 46
3 Paper B 47
3.1 Introduction. 48
3.2 Definition and Example of class Noise in Source Code 49
3.3 Related Work o 50
3.3.1 The Impact of Noise on Classification Performance . . . 51
3.3.2 Text Mining for Test Case Selection and Defect Prediction 51
3.4 Experiment Design L. 52
3.4.1 Data Collection Method 52
3.4.2 Independent Variable and Experimental Subjects 53
3.4.3 Dependent Variables 53
3.4.4 Experimental Hypotheses 53
3.4.5 Data Analysis Methods 54
3.5 Experiment Operations 54
3.5.1 Creation of The Control Group 54
3.5.2 Class Noise Generation 55
3.5.3 Performance Evaluation Using Random Forest 56
3.6 Results. 56
3.6.1 Descriptive Statistics 57
3.6.2 Hypotheses Testing 57
3.7 Threats to Validity L. 60
3.8 Conclusion and Future Work, 61
4 Paper C 63
4.1 Introduction 64
4.2 Related Worko 66
4.2.1 Text Mining For Defect Prediction and Test Case Selection 66
4.2.2 Class Noise Handling Research 68
4.2.3 Attribute Noise Handling Research 69
4.3 Background, Definitions, and Examples 70
4.3.1 Core Conceptso e 70
4.3.2 Method Using Bag of Words For Test Case Selection
(MeBoTS) oo o 70
4.3.3 Noise Definitions and Examples 73
4.3.3.1 Example of the dependency between code churns
and test case verdict 73
4.3.3.2 Definition and Example of Class Noise in Code
Churns Data 73
4.3.4 Definition and Example of Attribute Noise in Code
Churns Data 74

4.4 Noise Handling and Removal Approaches 75

xvi CONTENTS
4.4.1 Class Noise Approach 76
4.4.2 Selected Attribute Noise Handling Approach 7

4.5 Research Methodology 78
4.5.1 Original DataSet. 78
4.5.2 Random Forest For Evaluation 79
453 ClassNoiseo 80
4.5.4 Attribute Noise L. 80

4.5.4.1 Adopted Data-Set 80
4.5.4.2 Independent Variable and Experimental Subjects 81
4.5.4.3 Dependent Variables 81
4.5.4.4 Experimental Hypotheses 81
4.5.4.5 Data Analysis Methods 82
4.5.4.6 Attribute Noise Removal 82

4.6 Evaluation Results 83
4.6.1 Original vs. Class Noise Cleaned Data 83
4.6.2 Class Noise Cleaned vs. Class and Attribute Noise

Cleaned Data 84

4.7 Discussion e 88

4.8 Threats to Validity oL 91

4.9 Conclusion and Future Work, 93

4.10 Appendix A 93

5 Paper D 97

5.1 Imtroduction 98

5.2 Related Worko o 99
5.2.1 Defect Taxonomies 99
5.2.2 Taxonomies in Software Testing 99

5.3 Research Method 100
5.3.1 Planning Lo 100
5.3.2 Identification and Extraction 100
5.3.3 Design and Construction 101

5.3.3.1 Survey 101
5.3.3.2 Workshop with Testers 102
5.3.4 Validation oo 103

54 Results. L 103
5.4.1 Test Case Types 103
5.4.2 Code Change Categories and Dependencies with Test

Case Types 105
5.4.3 Dependency Patterns and Strengths 107
54.3.1 Survey. 107
5432 Workshop L. 108
5.4.3.3 Memory Management 109
5.4.3.4 Complexity code changes 112
5.4.4 Resulting Taxonomy 113

5.5 Taxonomy Validation 113
5.5.1 Orthogonality of the Taxonomy’s Facets 114
5.5.2 Instrumenting Prediction of Dependencies 114

5.6 Threats tovalidity 116

5.7 Conclusion and Future Work 116

CONTENTS Xvii

Bibliography 119

xviii CONTENTS

Chapter 1

Introduction

As software is becoming more pervasive in everyday life, contemporary software
companies need to keep up with the growing pace of market demands to deliver
complex features at higher quality and lower cost. In an attempt to accommo-
date for these growing demands, companies have started to increasingly adopt
the practice of continuous integration (CI), which advocates for continuously
building and testing newly pushed code changes at frequent time intervals [2]. A
well-known challenge that impedes the success of CI concerns the testing activ-
ities required at each integration cycle [3]. One example of a testing activity is
regression testing, which seeks to verify that no new faults in existing software
artifacts arise as a consequence of introducing new code changes. This type
of testing is central for assuring software quality and reducing cost overruns
in software development projects. A straightforward approach for leveraging
confidence about the soundness of code changes is to execute all existing set of
test cases in a suite [4]. However, the consequent effect of using this approach is
a prolonged feedback loop cycle between the CI system and software developers,
and an increased need for hardware resources to test code submissions made at
frequent time intervals.

To address the problem of cost overruns in regression testing, several test
case selection (TCS) approaches have been proposed [5], [6], [7], [8]. These ap-
proaches seek to reduce the size of regression suites by finding an effective subset
of test cases from the pool of reusable tests. Despite the recent advancements
in the area of TCS, the majority of existing techniques advocate for selecting
test cases based on test coverage criteria, which are reported to produce limited
success, as they involve costly static code analysis [9], [10], [11], [12], [13].

In the context of CI, the number of executed test cases gets large as new code
changes get integrated into the development branch several times every day. For
example, a recent study reports that in Google, more than 20 code changes are
submitted by developers every minute, which leads to executing 1.5 million test
cases every day [14]. This large volume of data available from CI systems poses
an opportunity to design data-driven approaches that investigate the relation
between pushed code changes and test execution outcomes (Passed/Failed).
One strategy for utilizing the CI data is the use of machine learning (ML) for
predicting which subset of test cases should be executed given newly submitted
code changes.

2 CHAPTER 1. INTRODUCTION

However, applying ML for TCS is hindered by the quality of the underlying
data, which often comes with irrelevant or meaningless data known as noise [15].
The effects that noise has on ML models range from a prolonged time of learning
to a lower classification accuracy [16]. Two categories of noise are reported in
the body of literature: class and attribute noise. Class noise (also known as
label or annotation noise) occurs as a result of either having contradictory or
mislabelled data-points in the training data, whereas attribute noise occurs
when the attributes contain irrelevant or missing information [15]. In the
context of TCS, class noise can be observed when, for example, a code line in
the data appears more than once with different class labels (test outcomes) for
the same test. These duplicate appearances for the same line become class noise
for ML models that might potentially hamper their classification performance.
Similarly, attribute noise can be observed, when lines of code in the system un-
der test appear to deviate in their attributes from the majority of similar lines.
Such deviations in the attributes of lines can be become noise to the ML model
if, for example, they indicate spurious correlations that coincidentally appear
in the training data only, and not as often in unseen lines of code. Accordingly,
handling noise in lines that belong to the less representative set of data points
is here hypothesized to reduce the effect of learning spurious correlations, and
ultimately improve the learning performance of ML models for TCS. To address
the problem of noise, both in the class and attributes, several research studies
proposed noise handling strategies that can be classified under three broadly
categories: 1) tolerance, 2) elimination, and 3) correction [17], [18], [19], [20]. In
this research, the term “noise handling” refers to the reduction in the number
of noisy lines of code that appear in the training data, which is here achieved
by using a combination of eliminating and correction based approaches. The
high-level goal of this thesis is to create a method for selecting test cases that
have the highest probability of revealing faults in the system under test, given
new code changes pushed into the code-base. The general research question
that this thesis aims to answer is the following:

How to improve the performance of ML-based test case selection models by
handling noise?

This thesis is structured as follows: In Section 1.1, we introduce and de-
scribe the theory that explains why the research problem presented in this
thesis is questioned. After that, Section 1.2 presents related studies that shed
light on existing test case selection and noise handling techniques. In Section
1.3, the research design of the included papers is described. Section 1.4 presents
the main findings that were drawn from each of the included papers. Section
1.5 answers the general research question. Section 1.6 discusses the threats to
the validity. Sections 1.7 and 1.8 conclude the results and provide an outlook
for future work.

1.1 Theoretical Framework

This section introduces key concepts and code examples that are necessary to
allow the reader of this thesis to understand its content. We begin by describing

1.1. THEORETICAL FRAMEWORK 3

the use of test case selection techniques. After that, we demonstrate, through
a code example, the dependency between test execution outcome and code
changes. Then, we define the existing types of noise that were examined for an
effect on test case selection in this research. Finally, we present and define the
set of code change categories and test case types that were investigated for a
dependency in this research.

1.1.1 Test Case Selection

Executing large test suites is undesirable in software development projects since
it requires both time and computer resources [21]. Therefore, it is important
to avoid executing unnecessary tests (passing tests) and strive to execute tests
that have high potentials in revealing faults (failing tests). Test case selection
is an approach that aims at addressing this problem of large test suite by
searching for a subset of effective test cases according to a criterion of interest.
Minimizing the size of test suite becomes more essential in CI, as it allows
developers to quickly fix faults as early as new code changes are pushed into
the development repository. Figure 1.1 illustrates a timeline for executing
several test suites that are set up to continuously test every integration made
by software developers. The CI system tries to reduce the size of the executed
suit after every build/commit, represented by circles, using a test case selection
approach.

According to Narciso et al. [21], test case selection covers two main paradigms.
In the first paradigm, the criteria of test selection is based on the modifications
made to the program under test, where the selection of tests depends on their
relevance to the modified code. The second paradigm uses heuristics, such as
similarity based criteria between test cases and code coverage to select test
cases. The hypothesis on which heuristic approaches build on is that the more
diverse the selected test cases, the higher possible it becomes to detect faults in
the source code. Our research belongs to the first paradigm of approaches for
test selection, where tests are selected based on their relevance to the modified
parts in the code.

Builds

Build n

\' Main branch

Build 1 Build 2

OK’ “OK” K’
oK “OK” oK
“oK” imited ok NOK'
test scope (every build) Errors <<i_
o “NOK’

Limited
test scope (daily)

Full Full

test scope (weekend) test scope (weekend)

Figure 1.1: An illustration of test case selection in continuous integration.

4 CHAPTER 1. INTRODUCTION

1.1.2 Example of Dependency Between Test Case Out-
come and Code Changes

This research builds on the assumption that test case execution outcomes
are dependent on changes made in the code base. In this section, a C++
code example is provided to illustrate what we mean by a dependency. In
this research, a dependency is defined as a reaction of one or more test case
types (e.g., performance and security) to a specific set of changes made in code
revisions. A revision is a unique identifier that gets created by a version control
system(e.g., git) to identify a set of code changes made by developers at a
particular time. The set of changes referenced by each revision is then retrieved
and compiled by the CI server (e.g., Jenkins) to create a “build”. Therefore, a
build comprises the set of code changes that were made in a revision.

Figure 1.2 shows two code fragments that belong to a C++ program. The
getNetSalary function in revision 1 instantiates a pointer to the class Leave
using the new code construct. The function then computes the net salary of a
given employee empId based on the number of leaves that was registered for
the designated employee. The code fragment in revision 2 is a modified version
of the program, containing a set of changes made to function getNetSalary.
The framed lines in revision 2 are the changed lines.

performanceTestGetSalary is a performance test case that verifies whether
the function getNetSalary can retrieve the net salary of 10,000 employees
in less than 1,500 micro seconds. To do this, performanceTestGetSalary
measures the elapsed time between the beginning and end of the function call
for 10,000 employees. Assuming that the test case performanceTestGetSalary
was one of several test cases that got executed in the regression suites of
builds 1 and 2 in Figure 1.1, then the following test outcomes will be recorded
< Revision;: failed, Revisions: passed>. These test outcomes are not surprising,
since the code in revision 1 creates the object Leave by allocating memory in a
heap-space that never gets freed from memory (e.g., using the delete keyword).
In contrast, the memory allocation in revision 2 was modified to become stack-
based, which is advantageous over heap-based since the allocation is done by the
compiler. In other words, the size of memory to be allocated for object Leave is
known to the compiler and gets automatically de-allocated after the function call
is over. Therefore, the reaction of test case performanceTestGetSalary (i.e.,
from failed to passed) in revision 2 can be explained by the change in memory
allocation from heap-based to stack-based. We use the term dependency to
refer to such reactions of test cases to new changes in the code base.

1.1.3 Class and Attribute Noise in Code Changes

Data are considered as the most important input for empirical software engi-
neering research, since they aid the discovery of new strategies and support
practitioners to make strategic decisions [15]. Existing reports suggest that 60
to 95% of the effort on data analysis is spent on data cleaning activities [22].
Among the most common activities is to handle noise in the data, which, in
this research, is defined as data points that come with irrelevant or meaningless
values. The inaccuracies can be found either in the attributes (independent
variables), the class labels (dependent variable), or in both. Accordingly, noise

1.1.

THEORETICAL FRAMEWORK

Revision 1 i Revision 2 , ,
| X) Modified lines
uint16_t getNetSalary(uint16_t empId) 1 uintle t getNetSalary(uintil6 t empld)
{ [.
Leave* leave = new Leave();) Leave Teave;
leave->setEmpId(empId); ! leave.setEmpId(empId);
uint16_t leaveDays = leave->getLeaveDays(3); | uint16_t leaveDays - leave.getleaveDays(3);
return 1200 - (leaveDays * 40); ! return 1200 - (leaveDays * 40);
[
i
i

void performanceTestGetsalary()

‘performanceTestGetSalary()’
failed execution
® " Microsoft Visual Studio Debug Console

‘performanceTestGetSalary()’ Enplo
passed execution

ce* employees = new

std::chrono::s

| Microsoft Visual Studio Debug Co

i=0; 1< 10000; i++)

t sal = employees[i].getNetsalary(i);

t actual = std: :chrono: :duration_cast

<std: :chrono: :microseconds>(end - begin).count();

CPPUNIT_ASSERT(actual <= 1500);

Figure 1.2: An example illustrating the dependency between a performance

test case and a change in the code base

can be categorized under two categories; attribute and class noise.

The effect of both categories of noise has been intensively studied in different
domain areas [23], [16], [24], and a general consensus about their negative impact
on ML models has been reported, as pointed out in [15]. Figure 1.3 provides
an overview of causes that trigger both categories of noise.

Attribute

Causes Causes

Our point of
intervention

Our point of
intervention

¥
Contradictory
entries

Misclassification Missing values Outliers

Figure 1.3: An overview of noise categories and their causes.

In this research, we study the impact of class and attribute noise on the
performance of the ML model for TCS with respect to two causes - contradictory
entries and outliers. Contradictory entries are one or more duplicate lines of
code that appear with different test execution results (class values), whereas

6 CHAPTER 1. INTRODUCTION

outliers are exceptional values in the attributes of lines of code in comparison
with the rest of similar lines. The purpose is to gain an understanding of
whether handling noise can improve the predictive performance of the TCS
model.

1.1.4 Class Noise in Test Case Selection

To illustrate the problem of class noise in the context of test case selection,
Figures 4.3 exemplifies a scenario in which class noise might occur in a software
program. The equivalent vector representations of the majority of lines in the
program and their class labels are illustrated in the matrix to the right side of
Figure 4.3. Details about how these line vectors are derived can be found in
Papers A and B. The class label of each line vector in the Figure is determined
by the outcome of a test case that was executed against the program revisions
in CI. In the example presented in Figure 4.3, lines 1 to 12 belong to the same
program revision, and their class label (‘0’) was determined by the execution
result of a test case in which the revision failed during CI. Similarly, lines
13 to 17 belong to another program revision, and their class label (‘1’) was
determined by a test case in which the revision passed during CI. These line
vectors and their class labels are then fed into a machine ML model to predict
whether lines of code in future program revisions will trigger a test case failure
or pass.

Feature vectors generated from bag-of-words Test result
))
1 = "pch.h”)|
2 <iostream> line | literal | int | main | include | { } | quote | std | cout | for | class
using namespace std; 1 1 0 0 1 0 0 2 0 0 0 0
5 =int main() 2 1 [0 1 0|0 [0 0 0 0
{ 3 o [o] o 0 olo] o [o[oo o
//lines 8 to 11 were added in the first commit
8 = for (int i = @; i < 18; i++) 4 0 o 0 0 ojo 0 0 0 0 o
9 { 5 o |[1] o o [ofo| o [ofo oo
10 std::cout << "double number: " << i*2;
1 } 6 0 0 0 0 1|0 0 o| o0 0 0
12 //lines 13 to 16 were added in the second commit| 7 1 0 0 0 olo 0 0 0 0 0
13 S for (int i = @; i < 18; i++)
14 { 8 0 1 0 0 0|0 0 0 0 1 0
15 std::cout << "plus 1 number: " << i+1; 9 0 0 0 0 1]/0 0 0 0 0 0
16 }
- . g 10 1 0 0 0 0|0 0 1 1 0 [
17 } Contradictory
entries 11 0 0 0 0 0|1 0 0 0 0 0
- - - 12 1 (o] o 0 olol o oo | o0 |oO
Lines 8 and 13 are contradictory lines that were ;
extracted from two revisions. 4B 0 1] 0 o ojoj 0o jojo 1)1
14 0 0 0 0 1]/0 0 0 0 0 1
- In the first revision, the test case failed -> class is set to ‘0".
- In the second revision, the test case passed -> class is set to ‘1’. 15 1 ° ° 0 o0 ° L 1 0 1
16 0 0 0 0 0|1 0 0 0 0 1
17 0 [0 0 0|1 0 0 0 0 1

Figure 1.4: An example of class noise with two contradictory data points.

The shaded lines in the matrix of feature vectors (lines 8 and 13), (lines 9
and 14), and (lines 11 and 16) are three pairs of duplicate line vectors, where
each line in a pair is assigned a different class label than its duplicate line in
the pair. Following this description and illustration of class noise, the formula
for calculating the ratio of class is:

.) Number of Contradictory data points
Noise ratio =

Total Number of data points

1.1. THEORETICAL FRAMEWORK 7

Since the example program in Figure 4.3 has a total of six contradictory
lines, the formula for calculating the noise ratio for this example is thus:

6
Noi tio= — = 0.
oise ratio 7 0.35

1.1.5 Noise Handling Strategies

Approaches for automatically handling noise in the data can be categorized
under three broad categories, as pointed out in [17], [18], [19], [20]. These
categories are as follows:

[a] Tolerance: In this category of approaches, noisy data points are dealt
with by leaving the noise in place and designing ML algorithms that can
tolerate a maximum threshold of noise.

[b] Elimination: Approaches in this category identify noisy data points that
are suspected for being mislabelled or redundant, and remove them from
the training data.

[c] Correction: In the category of approaches, instead of removing the
undesired data points, these points get corrected by replacing their values
with more appropriate ones.

Table 1.1 summarizes the advantages and disadvantages associated with
each category of approaches. In the tolerance category, the negative impact of
noisy data points is handled by designing robust algorithms that are assumed
to be less sensitive to noise than others - typically using tree pruning and
rule truncation [17]. For example, the C4.5 algorithm uses pruning strategies
to eliminate statistically insignificant parts of the tree to construct the final
model [25]. The most prominent advantage of this category is the fact that
no time needs to be invested in cleaning the data. Conversely, relying on the
robustness of algorithms to handle noisy points has been reported to have a
limited success when the noise level exceeds a threshold, as pointed out in [26].
That is, even robust algorithms may encounter poor learning performance if
the noise level gets relatively high.

Compared with other noise handling categories, elimination based ap-
proaches are computationally expensive due to their iterative nature, where
in every iteration only one or a few points can be detected as noisy [27]. In
addition, elimination based approaches have a tendency of removing data points
that are not actually noisy. For example, a data point that comes with an incor-
rect class label and is in contradiction with one or more duplicate data points
might be detected and removed. This means that we compromise information
loss at the interest of retaining a data set with non-contradictory data points.
On the other hand, an advantage of this category over the others is the explicit
detection of potentially noisy points and the plausibility of showing them to
the user, who can decide whether the detected points should be removed from
the data or not [27].

In the last category of approaches (i.e., correction), noisy data points are
corrected rather than removed or left in place. Thus, much of the information
from the originally collected data-set would be preserved. The major drawback

8 CHAPTER 1. INTRODUCTION

of correcting noisy data points is the relatively high time complexity involved
in existing approaches, such as [28], [18]. Another disadvantage is the fact
that we risk introducing bias towards one of the classes when correcting the
class labels of noisy points. Finally, existing correcting approaches operate in
a supervised ML environment, disqualifying their use when the class label is
unavailable [25].

Table 1.1: Advantages and disadvantages of existing noise handling approaches

Tolerance Elimination Correction
- No time is needed
to handle noisy data. - Explicit detection of

Pros - No information loss.

noisy data points.
- No information loss.

- High computational
cost to detect and
correct noisy data.
- High computational

cost to detect and - Introduce bias
- Reduces the perform- .
. remove noisy data. towards one of
Cons | ance of classifiers as the .
. .. points. the classes.
noise ratio increases.

- Information loss. - Applicable in
supervised
classification
tasks only.

1.1.6 Attribute Noise in Test Case Selection

In addition to studying the impact of class noise, we also studied the impact of
attribute noise on the performance of the ML model in MeBoTS.

Figure 4.4 is a C++ example program that illustrates a scenario in which
attribute noise is incurred. Lines 12, 13, 14, are three if statements, each
containing one conditional expression that guards the execution of their scopes.
Line 15 is a fourth if statement in the same code fragment, containing two
conditional expressions. By examining the corresponding matrix of feature
vectors in the figure, we notice that the attribute values of line 15 deviate
substantially from the majority of if statements in the program. We refer to
such lines that deviate from the majority of similar lines in the code as noisy
with respect to the attributes, since they seldom appear in the data. To identify
lines of code that come with high attribute noise, we used an existing algorithm
from the literature, called PANDA. The PANDA algorithm identifies such data
points by comparing pairs of attributes in the space of feature vectors. The
output is an ordered list of noise scores for each line of code - the higher the
noise score for a line, the higher it deviates from normal. Upon ranking noisy
instances, the generated list can be used to eliminate lines of code that come
with the highest rank with respect to attribute noise.

The algorithm starts by iterating through all attributes in the input feature
vectors. During each iteration, a single attribute x; gets partitioned into a
number of bins, set by the user. Each bin will have the same amount of data

1.1. THEORETICAL FRAMEWORK 9

Feature vectors generated from bag-of-words Test result
S#include "pch.h"
#include clostreamy line | if | wvar (Y|y < > | and | ; |class
3 using namespace std; 1 |o 0 0 ofofo|o0o]| o 0 0 1
4 2 (o] o o [ofofofo| o] oo
intx 1 3 o o o [ofofofofo o | 1]1
inty=12;
. 4 |0 0 0 ojofof|o| o 0 0 1
intz=7,
intd=4 5 [o 1 0 olofofo| 0o 0 1 1
6 [0 1 0 ojofo|o| o 0 1 1
Fint main() 7 o 1 0 ojofo|o| o 0 1 1
{ 8 o] 1 o [ofofofo| oo 1|1
if (x> y) {std::coutec "x is greater than y" «cendl;} s | o 0 o olololol] o 0 1 1
i >1 1icout<< "y is greater than 2" « H
%f (y > z) {std::cout ") ?sgeate tha ' endl;} o 1o I I TToTolo o o 1 1
4 if (x> z) {std::cout<< "x is greater than 2" < endl;}
. o . 1 |0 0 0 ol1f(o0of|0| 0 0 1 1
if (x>yandy<z) {std:icout <« "x is greater than z* ¢ endl; }
} 12 |1 2 1 111|001 0 1 1
13 |1 2 1 111|001 0 1 1
'I-'heAattribute values in line 15 deviate from the values 4 | 1 2 1 10110 2 0 1 1
in lines 12, 13, and 14.
15 |1 4 1 111|121 | 1 1 1 1

Figure 1.5: An example of attribute noise with one outlier line of code.

points, given that the number of input points is divisible by the number of
partitions. In the absence of tied values, the algorithm includes all boundary
instances that fall outside the range of the bin size in the last bin. After the
partitioning is complete, the mean and standard deviation for instances in each
bin are calculated and used to derive a standardized value for each instance in
attribute z;. The standardized value is then calculated by subtracting the ratio
of mean to standard deviation in the bin relative to x; from each instance value
in z. This approach is repeated for all attributes in the input space of vectors.
The final step in the algorithm is to compute the max or the sum value of each
data point. Large sum or max values indicate a high ratio of attribute noise
compared to the other data points. Figure 1.6 shows the output from running
the PANDA algorithm on the program example illustrated in Figure 4.4. The
attribute noise column contains the attribute noise scores for each data point
in the input data, whereas the remaining columns are the standardized values
for each instance relative to other columns.

Line index Comparisons between pairs of attribute values Attribute Noise
Most Noisy
14 3.40 040 0.40 040 0.40 0.60 040 0.60 040 3.40 .. 1.00 2.00 1.00 1.00 1.00 1.00 2.00 1.00 2.00 4.00
0 060 060 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 .. 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
1 060 060 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 .. 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
2 060 060 060 0.60 0.60 0.60 0.60 0.60 0.40 0.60 .. 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
Least Noisy

Figure 1.6: An ordered list of line vectors from most to least noisy.

1.1.7 Test Case Types and Code Change Categories

In this research, several dependency links between test case types and code
change categories were identified. All of the test case types explored for
dependency were extracted from the international standard ISO/IEC/IEEE
CD 29119-1:2020 document [29], whereas the categories of code changes were

10 CHAPTER 1. INTRODUCTION

compiled from different studies in the literature. Table 5.2 presents definitions
of 18 test case types and six categories of code changes that were investigated
for a dependency in this research.

Table 1.2: The ISO/IEC/IEEE CD 29119-1:2020 definitions of test case types

Test Case Type Test Case Definition
Smoke Determine whether subsequent testing is worthwhile.
Performed over extended periods to check the effect
Soak . .
on the test item for long periods.
Evaluate a test item’s behaviour under conditions
Stress
of loading above anticipated requirements.
Performed to evaluate the capability of the test item to
Volume .
process specified volumes of data.
Load Performed to evaluate the behaviour of a test item

under anticipated conditions of varying loads.
Statement Constructed to force execution of individual statements.
Evaluate the degree of effectiveness and efficiency with

Maintainability which a test item may be modified.
Security Evaluate the degree to which a test item, and associated
data, are protected against unauthorized access.
Performance Evaluate the degree to which a test item accomplishes
its designated functions within a given time.
Capacity Evaluate the level at which increasing load affects
a test item’s ability to sustain required performance.
Portability Evaluate the ease with which a test item can be
transferred from one environment to another.
Installability Evaluate whether a set of test items can be installed
as required in all specified environments.
Compatibility Measure the degree to which a test item can function
alongside other independent products.
sy Evaluate the ability of a test item to perform its required
Reliability functions under stated conditions.
s Determine the ease by which users with disabilities can
Accessibility

use a test item.

An alternative version of the system is used as an
oracle to generate expected results for comparison.
Backup and Measures the degree to which a system state can be
recovery restored from backup within specified time.

Evaluate whether procedural instructions for interacting
with a test item to meet user requirements.

Back-to-back

Procedure

A total of six categories of code changes could be identified from the
literature. These are as follows:

[a] Memory management: This category of change is concerned with the
management of the program memory during run-time. Examples of these
memory related changes introducing memory leaks, buffer overflow, point-
ers’ assignments, and resource interference when using multi-threading
programming.

[b] Complexity: This category represents changes that affects the time

1.2. RELATED WORK 11

complexity of the program. It includes changes such as adding/removing
loops, conditional statements, nesting blocks and/or recursions.

Design: This category involves changes that include code refactoring,
adding or removing methods, classes, interfaces, and enumerators, and
code smells.

[c] Dependency: This category describes a code change that involves adding/
removing/ modifying a dependency to another module/ library. It can
be importing/ removing/modifying a new library, a new namespace, or a
new class.

[d] Conditional: This category of change occurs when a logical operator
or a comparative value in a condition is modified. A misuse of logical
expressions in conditional statements will affect the intended purpose of
the program and will thus generate false outputs.

[e] Data change: This category involves 1) changing functions’ parameters,
2) passing parameters of incompatible types to modules/functions, and
3) adding/fixing assignments of incompatible types to variables, cast-
ing statements, and array size allocations, and 4) modifying variable
declarations

1.2 Related Work

Prior research on TCS can be broadly categorized into dynamic and static
techniques [30]. This section highlights related work under these categories,
and compare their effectiveness. Thereafter, we highlight related work that
propose different class and attribute noise handling techniques for improving
the learning of ML models.

1.2.1 Test Case Selection Approaches

Generally, TCS approaches search for dependencies between the modifications
made to the source code and the set of affected test cases. Static analysis based
approaches find these dependencies by constructing and traversing relational
graphs in which the graph nodes represent classes, and connecting edges
represent inheritance relationships [31].

Legunse et al. [30] implemented two static based test case selection tech-
niques, one that collects dependencies on a file-level and another on a method-
level. The tool parses the byte code of each changed file between two revisions
and generates a class graph that captures dependency between multiple files.
The tool takes two program revisions as input and the regression test suite.
The output is a subset of tests from the input suite that s recommended for
execution. Zhang [32] presented HyRTS, an approach that combines file and
method granularity to analyze test dependency and change information. On a
file-level granularity, the tool selects all the tests that cover file-level changes
for execution; On a method-level granularity, the tool selects all the tests
that overlap with the method-level changes for execution. Then, both sets of
selected tests from the two granularity levels get merged and executed. Shi et

12 CHAPTER 1. INTRODUCTION

al. [31] conducted an experiment to investigate the safety and precision of three
static analysis based techniques (Naive Analysis, String Analysis, and Border
Analysis). The techniques showed an over-approximation of test dependencies,
but a high safety in terms of not missing out affected tests.

Several techniques for TCS relied on information relating test cases to
coverage of code [33] [34]. Rothermel et al. [33] investigated the use of statement
(or branch) coverage to improve the rate of fault detection. Srivastava and
Thiagarajan [34] proposed a prioritisation technique that is based on the
changes that were made to the program, and focused on the objective function
of block coverage to prioritize test cases. These techniques use greedy and
genetic algorithms to gradually add prioritized test cases to an empty subset
of test cases. The decision under which test cases get prioritized is based on
the code coverage that they achieve. That is, the higher code coverage a test
case achieves, the more prioritized it gets.

Other researchers employed similarity based test case selection to maximize
test coverage, where the hypothesis is that the more diverse test cases get,
the higher their faults revealing capacity becomes. To measure the diversity
between test cases, similarity functions that compare different properties of
test cases are employed. De Oliveira Neto et al [35] evaluated a similarity
based technique, with respect to test coverage and time to execute the selected
tests, on automated integration level testing. The similarity functions used in
their study included Normalised Levenshtein, Jaccard Index and Normalised
Compression Distance. Similarly, Hemmati et al. [36] employed a similarity-
based TCS technique in the context of model-based testing. Their technique
was designed to diversify elements in the test model, such as transitions and
states that represent steps or conditions in abstract test cases.

Most of the existing techniques for TCS suffer from several drawbacks.
First, a large number of these techniques use static code analysis, which does
not scale well with large projects or higher level of testing, such as integration
and system testing. Second, static analysis promotes for over-approximation
of impacted tests, which means that a lot of unnecessary tests will still be
executed (low precision) - resulting in limited success to reduce the cost of
physical resources for testing. Third, using code coverage as the main criterion
of interest for TCS leads to limiting conclusions about defects in the code,
since no information about the detected faults is captured. Fourth, using code
coverage based techniques requires maintaining dependency links between each
test unit and test case identifiers, which is not feasible at large scale projects
for regression testing. In the approach presented in this research, we aim to
overcome these drawbacks by learning a ML model from data of historically
committed code changes and impacted test cases. Unlike static analysis based
techniques, our approach does not require parsing the code nor generating
relational graphs to identify dependent files/methods that are affected by a
change. Instead, the approach learns dependencies between impacted test cases
and new code changes by analyzing the statistical count of previously occurring
features (code constructs) that triggered a reaction among test cases.

1.3. RESEARCH DESIGN 13

1.2.2 Class and Attribute Noise Handling Approaches

Brodley et al. [18] uses an ensemble of classifiers, named Consensus Filter
(CF), to identify and remove mislabeled instances. Using a majority voting
mechanism with the support of several supervised learning algorithms, noisy
instances are identified and removed from the training set. If the majority of
the learning algorithms fail to correctly classify an instance, a tag is given to
label the misclassified instance as noisy and later tossed out from analysis. The
evaluation results show that when the class noise level is below 40%, filtering
leads to better predictive accuracy than not filtering. On the basis of their
experiments, the authors suggest that using any types of filtering strategies
would improve the classification accuracy more than not filtering.

Guan et al. [17] introduced CFAUD, a variant of the approach proposed
by Brodley et al. [18], which involves a semi-supervised classification step in
the original approach to predict unlabeled instances. The approach was tested
for an effect on learning for three ML algorithms (1-NN, Naive Bayes, and
Decision Tree) using benchmark data-sets. The empirical results indicate that
both majority voting and CFAUD have a positive effect on the learning of the
three ML algorithms under four noise levels (10%, 20%, 30%, and 40%).

Muhlenbach et al. [37] introduced an outlier detection approach that uses
neighbourhood graphs and cut edge weight algorithms to identify mislabeled
data points. Instances identified as noisy are either removed or relabeled
to the correct class value. Relabeling is done for instances whom neighbours
are correctly labeled, whereas data points whom neighbouring classes are
heterogeneously distributed get eliminated. The general data point drawn from
the analysis showed that starting from 4% noise removal level and onward,
using the filtering approach yielded better performance in 9 out of 10 of the
domains data-sets.

Khoshgoftaar et al. [38] presented a rule-based approach that detects noisy
data points using Boolean rules. data points that are detected as noisy are
removed from the data before training. The approach was compared for efficiency
and effectiveness against the C4.5 consensus filter algorithm presented in [18].
The results drawn from the case study suggests that when seeding noise in 1 to
11 attributes at two noise levels, the consensus filter outperforms the rule-based
approach.

While the majority of the reported studies provide empirical evidence that
support handling both class and attribute noise in data, the results from our
research provide counter-evidence, opposing these findings when it comes to
attribute noise. Our key data point from these counter-evidence results is in line
with that described in [15], suggesting that the definition of noise is very much
tied to the domain in which noise occur. In other words, handling attribute
noise by identifying outliers in the attributes is observed not be harmful in the
context of test case selection.

1.3 Research Design
This section describes the research focus of this thesis, the research methodology,

and the data collection and analysis methods used in each of the appended
papers.

14 CHAPTER 1. INTRODUCTION

1.3.1 Research Focus

The goal of this thesis is to create a method for selecting test cases that have
the highest probability of revealing faults in the system under test, given new
code changes pushed into the code-base. Figure 1.7 provides an overview of
the appended papers in this thesis, and the order in which these papers were
conducted. We began this research by designing an ML-based approach, called
MeBoTS, (Paper A) for predicting and executing test cases given new code
changes made by software developers. The conclusion drawn from this paper
was that utilizing ML for TCS requires curating the training data by excluding
large revisions and keeping smaller ones.

In Paper B, we focused on empirically examining the relationship between
class noise, at different ratios, and the learning performance of the model
in MeBoTS. The analysis showed a negative impact of class noise on the
performance with respect to four evaluation measures (precision, recall, F1-
score, and MCC). This called for designing a class noise handling algorithm to
improve the performance of the ML model in MeBoTS (Paper C). Further, we
examined the effect of attribute noise on the performance of MeBoTS in the
same study presented in Paper C. The conclusion drawn from that study was
that attribute noise is not necessarily harmful on the prediction of the model
in MeBoTS.

In Paper D, we focused on identifying dependency links, by creating a
taxonomy, between different types of code changes and test cases. The purpose
was two-fold. First, we wanted to understand how to systematically map
code changes and their relevant test case types in the training data of the
ML model in MeBoTS. Second, we wanted to guide testers on deciding about
which types of test cases should be executed during each CI cycle, given code
changes of specific types. The conclusion from this paper was that testers
should use performance related test cases to test code changes that are memory
management and algorithmic complexity related.

The research questions in the included publications are as follows:

— RQ1: How to reduce the number of executed test cases by selecting the
most effective minimal test suite when integrating new code churns into
the product’s main branch? (Paper A).

— RQ2: Is there a statistical difference in predictive performance for a
test case selection ML model in the presence and absence of class noise?
(Paper B).

— RQ3: How can we improve the predictive performance of a learner for
test selection by handling class and attribute noise? (Paper C).

— RQ4: To which degree do software testers perceive content of a code
commit and test case types as dependent? (Paper D).

We will now present the research methodology used to answer each of the
research questions in the included publications.

1.3. RESEARCH DESIGN 15

highest probability of revealing faults in the system

Goal: create a method for selecting test cases that have the
under test

Design
JRE—
Noise in data Handle ML-based Improve Taxonomy of
RQ2 and RQ3 TCS method dependencies
Improve RQ1 RQ4

RQ: How to improve the performance of ML-based test case selection models by handling noise?

Figure 1.7: A summary of research focus.

1.3.2 Research Methodology

In this thesis, we address four research questions whose answers lead to an-
swering the general research question. This section describes the research
methodologies that we adopted to answer the four research questions of the
appended papers in this thesis.

1.3.3 Using Textual Analysis and Machine Learning For
Improving Test Case Selection (Paper A)

In Paper A, we chose to adopt the design science research as the methodology
for answering the research question of How to reduce the number of executed
test cases by selecting the most effective minimal test suite when integrating
new code churns into the product’s main branch?. We followed the general
three-steps process proposed by Runeson et al. [39], which consists of problem
conceptualization, solution design, and empirical validation.

1.3.3.1 Problem Conceptualization

The problem of regression testing is widely discussed and studied in the lit-
erature. Most researchers in this field propose using test prioritization, mini-
mization, or selection techniques to overcome the cost overhead in performing
a re-test all approach for regression testing [40] [41] [42]. These techniques,
however, suffer from a number of shortcomings that impede their usage, as
pointed out in the related work section. Examples of the most commonly
reported shortcomings include 1) high computational cost for parsing the code
and generating relational graphs, and 2) imprecise approximation of the set of
impacted tests, given new code changes.

Therefore, in Paper A, we set out to design and evaluate a new test case
selection technique that utilizes machine learning and textual analysis for
reducing the number of executed test cases in regression suites.

16 CHAPTER 1. INTRODUCTION

1.3.3.2 Design Artifact

We designed MeBoTS, a machine learning based approach, that is language-
agnostic and does not require the code being analysed to be parsed. The method
was inspired from a previous study conducted by Knauss et el. [3], where the
authors used a statistical model to explore the relationship between historical
code changes and test execution results. MeBoTS expands on this approach
by utilizing textual analysis to extract code tokens from previously integrated
code changes made in the main development branch, and uses those tokens
as predictors for predicting the execution results (Pass and Fail) of test cases.
MeBoTS treats code tokens as features and represents a code line with respect
to its tokens’ frequencies. To our knowledge, this way of extracting feature
vectors from the source code is new, compared with other popular approaches
for test selection. Unlike static code analysis techniques, MeBoTS can directly
recognize what is written in the code without the need of parsing the code and
accessing its abstract syntax tree for generating feature vectors.

Figure 1.8 provides an overview of the steps that comprise MeBoTS. A
summary of each step is as follows:

[a] Step 1: The first step in the method is to collect a sample of previously
committed code changes into the development repository as well as the
respective set of test cases that was executed against the integrated code.
For each pair of consecutive revisions from the drawn sample of revisions,
all lines of code that were either added or modified are extracted and
stored in a corpora of code changes. These lines are then assigned a label
value that corresponds to the execution result of a test case that gets
selected randomly from the extracted set of test cases.

[b] Step 2: The second step in the method is to extract feature vectors
from the cumulative corpora of code changes (extracted in step 1) via
a textual analysis technique. MeBoTS uses an open source tool called
CCFlex [43] that utilizes the bag of words (BoW) model for performing
features extraction (more details about how CCFlex works can be found
in Paper A).

[c] Step 3: The final step in the method is to exploit the set of extracted
feature vectors provided by the textual analyzer in step 2 for learning
an ML model on classifying lines of code into either triggering a test
case failure or pass. The goal is to form a generalization from the set of
extracted training data that can be used to predict test execution result
for newly pushed code changes and accordingly select impacted test cases
for execution in the regression suite.

To better illustrate how the training data of MeBoTS gets constructed, we
provide an example for a program written in the C++ language. Figure 4.2
illustrates two code fragments that belong to two revisions (revision 1 and
revision 2). The framed line in revision 2 highlights the modified line in the
program, relative to revision 1. Consider a scenario where we decide to use
the execution result of test case testis0dd, shown in Figure 4.2, to guide the
labelling of the modified line in revision 2. Then, a class value of ‘0’ would be
used to annotate a test failure, and a class value of ‘1’ to annotate a test pass.

1.3. RESEARCH DESIGN 17

Method using Bag of Words for Test Selection (MeBoTS)

Step 1: Code Changes Step 2: Features Extraction Step 3: Learn a Model
and Test Extraction

I” ----- Y = \n
! AN 1 _ i | Predict test
! .E Extracts [|Q|0)] | Trainson ! I outcomes
: | O I O : : : »
1
1 Features Feature E i Machine !
| extractor vectors I\ learning ’,' Regression Suite

_____________________ - ————————

Development Vocabulary
repository

Figure 1.8: An overview of the MeBoTS method for test case selection.
Since test case testis0dd revealed no faults in revision 2 (i.e., the test passed),

then a value of ‘1’ is assigned to the modified line in the revision before it gets
added to the training data of MeBoTS.

Revision 1 Revision 2
miclass Arithmetic =iclass Arithmetic
{ { Added modified lines to the
public: public: training data of MeBoTS
public: public:
- std:: g checkNum(int num) { = std: m) { Changed lines Class
= if (num % 1 == @) { = - if (num % 2 == @) { 1
return "even"; return "even";
} }
= else { - else {
return "odd"; return “odd";
} }
IH s

Unit test written in the CppUnit framework
‘testisOdd’ passed execution |51 c:

‘testisOdd’ failed execution

B Microsoft Visual Studio Debug Console B Microsoft Visual Studio Debug Co

void testisodd()

I

i
std::s g actual(t->checkNum(5));
std::string expected("odd");
CPPUNIT_ASSERT_EQUAL(expected, actual);|

]
i
]
i
]
i
]
i
]
i
]
'
]
‘
i
]
i
]
i
]
i
]
i
]
} i }
]
i
]
'
]
‘
i
]
i
]
i
]
i
]
i
]
i
]
'
]
‘
i
'

Figure 1.9: An example of how the training data for MeBoTS is constructed.

1.3.3.3 Empirical Validation

We evaluated the effectiveness of MeBoTS using an industrial data-set that
belonged to a legacy system written in the C language. The collected data-set
used for evaluation comprised of 82 code revisions that were integrated into
the main development branch and verified during the build creation phase
in the CI pipeline. Two evaluation trials of the ML model in MeBoTS were
carried out. In the first trial, a total of 1.4 million lines of code and 82 test
execution results were used for training and testing five different ML models -

18 CHAPTER 1. INTRODUCTION

three tree-based models and two deep learning networks. In the second trial,
we chose to train and test the ML models on code check-ins that contained
less than 100 thousand lines of code. The evaluation was done by measuring
two performance metrics: precision and recall. We chose these metrics since
they measure the model’s ability to predict unimpacted test cases by new code
changes. Particularly, recall measures the model’s ability in identifying tests
that require no execution, whereas precision would indicate the correctness of
predictions with respect to the tests that were identified as unimpacted.

Since the goal of this study is to reduce the amount of test executions
without altering the effectiveness of testing, we need to minimize the risk of
missing out impacted tests in the regression suite. Therefore, we can accept
some false alarms in the prediction of impacted tests, at the cost of running
extra test cases over-nightly or weekly regression suites. Accordingly, we believe
that the measure of precision is more important than recall in the context of
this research.

After the evaluation of MeBoTS was completed, we inspected the type
of source files (e.g., ".h’, .c¢’, >.xml’) in which the collected lines were modi-
fied/added. This was done as a sanity check to find out whether the evaluation
of the ML models was based on lines that belonged to specific file types. The
key observation from this inspection was that a lot of duplicate lines in the
corpora appeared with different class labels. This data point called for further
investigation to understand the impact of those duplicate lines on the predictive
performance of the ML models in MeBoTS.

1.3.4 The Effect of Class Noise on Test Case Selection
(Paper B)

The goal of the study presented in Paper B was to understand the impact of
class noise in data-sets of code changes on the predictive performance of the
ML model in MeBoTS. To answer the research question of Is there a statistical
difference in predictive performance for a test case selection ML model in the
presence and absence of class noise?, we designed and implemented a controlled
experiment where we examined possible causality between class noise and the
performance of the ML model in MeBoT'S.

1.3.4.1 Goal Definition

The fact that two identical lines of code can be labelled differently - as pass or
fail, is known in the literature as the class noise problem. In the context of
this research, it can occur that duplicate lines of code are labeled with different
test execution results for the same test. Such occurrences of duplicate lines in
the training data become noise when fed as input to an ML model. While the
problem of class noise is adequately discussed in the literature [16], [23], [44],
there is a lack of studies that discuss its effect in the context of test case
selection. The goal of this experiment was two-fold: 1) to understand the
impact of different class noise ratios on the performance of the ML model in
MeBoTS, and 2) to provide testers with an understanding on how to handle
class noise before training a ML model for test selection.

1.3. RESEARCH DESIGN 19

1.3.4.2 Experimental Design

Following the guidelines proposed by Juristo et al. [45] for conducting controlled
experiments in software engineering, we began the experiment by hypothesizing
that class noise has a detrimental effect on the performance of the ML model in
MeBoTS. We then broke down this hypothesis into more concrete hypotheses
that specify the effect of class noise (independent variable) on four different
performance evaluation measures (dependent variables), namely precision,
recall, Fl-score, and Matthew Correlation Coefficient (MCC).

The F1-score measure is a harmonic mean between precision and recall,
indicating the exactness and completeness of the predictions made by the ML
model. A drawback in using F1-score as a standalone metric is the fact that
it only accounts for three elements in the confusion matrix (true positives,
false positives, and false negatives). This can generate misleading conclusions
about the performance of the model, particularly when the distribution of
the binary classes in the data is imbalanced, as pointed out by Shepperd et
al. [46]. Further, since the Fl-score is only based on three elements in the
confusion matrix, the count of true negatives is left unknowable. In our case,
true negatives correspond to tests that are correctly predicted by the model to
be impacted, and thus require execution. Software developers and other key
stakeholders in a software project will probably appreciate knowing the number
of correctly failing tests, given new code changes. Thus, neglecting the count
of true negatives leads to missing valuable insights into the rate of faults in the
source code. To mitigate these drawbacks that suffice in F1-score, we decided
to measure the model’s MCC, which takes into account the four elements in
the confusion matrix. The closer the MCC score gets to 1, the higher the
performance of the model is deemed. Measuring both the F1l-score and MCC
values would help us to increase confidence in the evaluation results. If both
values showed different signs (positive and negative) then our evaluation to the
model’s performance will be different, depending on which performance metric
we will choose.

To aid the hypotheses testing, a control group with 0% ratio of class noise
was designed from the data-set presented in Paper A. This group was needed
to build a baseline measure for comparing the learning performance of a model
that gets trained on data without class noise.

1.3.4.3 Execution

Six variations of class noise (treatment levels) were selected in the experiment
(10%, 20%, 30%, 40%, 50%, and 60%) to examine the effect of class noise on
the four evaluation measures. We began by applying 15-fold stratified cross
validation on the control group to generate experimental subjects into which
the treatment was seeded. Each subject was treated as a hold out group for
validating the ML model in MeBoTS after being trained on the remaining
fourteen subjects. After seeding each treatment level into the experimental
subjects, we fed those into a random forest ML model for training and evaluated
its performance with respect to the four evaluation measures using the hold-out
subject.

20 CHAPTER 1. INTRODUCTION

1.3.4.4 Hypotheses Testing

Finally, we tested the hypotheses of there is a statistically significant difference
in the performance of a test selection model in the presence and absence of class
noise using the Mann-Whitney and Kruskal-Wallis inference tests. The results
revealed a statistically significant difference in the ML model’s performance
when being trained on a data-set with 0% class noise and with six variations of
the treatment.

1.3.5 Improving Test Case Selection By Handling Class
and Attribute Noise (Paper C)

In Paper C, we addressed the question of how can we improve the predictive
performance of a learner for test selection by handling class and attribute
noise? by carrying out a controlled experiment and a DSR methodology. The
controlled experiment was designed to examine the effect of attribute noise
removal on the performance of the ML model in MeBoTS, whereas the DSR
was adopted to evaluate the effectiveness of a class noise handling algorithm in
improving the performance of the ML model in MeBoTS.

1.3.5.1 Controlled Experiment

We followed the guidelines proposed by Juristo et al. [45] to design and imple-
ment the controlled experiment.

Goal Definition According to statistical literature, the presence of outliers
in the data can introduce skewed results that lead to creating less precise ML
models and a prolonged time of training [47], [48]. Therefore, a lot of studies
that concern handling outliers has been proposed in the ML and statistical
literature [49], [50], [51] .

Attribute noise occurs in training data as a result of selecting attributes
that are irrelevant for characterizing the training instances. In the domain of
test selection, such instances may occur when, for example, a small fraction
of the overall number of conditional statements in the analyzed code deviates
in syntax from the majority of conditional statements in the code. These
deviations result in generating different feature vectors for similar lines, which
may influence the performance of the ML model in MeBoTs. Therefore, the
goal of the controlled experiment presented in Paper C was to examine the
effect of removing lines of code that come with high attribute noise on the
performance of the ML model in MeBoTs.

Experimental Design We began the design of the experiment by assuming
that attribute noise removal can increase the learning performance of the test
selection ML model in MeBoTS. To that effect, we used an existing attribute
noise technique from the literature, called PANDA [25], which allows its users
to remove as many noisy data points as desired from the training data before
building a learning model. The PANDA algorithm recognizes training data
points with large deviations from normal by comparing all pairs of attributes
that were extracted from the training data. In total, four concrete hypotheses

1.3. RESEARCH DESIGN 21

were defined according to the goal definition. The hypotheses assume a positive
effect of attribute noise removal on the ML. model’s precision, recall, F1-score,
and MCC.

Execution The first experimental operation in this study was to implement
the PANDA algorithm and to run it against the same data used in the study of
Paper B. To examine the effect of attribute noise removal on the four evaluation
measures, ten treatment levels were selected (5%, 10%, 15%, 20%, 25%, 30%,
35%, 40%, 45%, and 50%). Each treatment level corresponds to a fraction of
training data points that gets removed from the training data before building
the ML model in MeBoTS. In this experiment, we used 25-fold stratified cross
validation to derive 25 experimental subjects on which the treatment was
applied.

Hypotheses Testing Similar to the class noise experiment presented in
Paper B, the Mann-Whitney and Kruskal-Wallis statistical test methods were
performed to validate the hypothesis of whether attribute noise removal has a
statistically significant effect on the performance of a model for test selection.
The Mann—Whitney test was selected to perform a pairwise comparison between
the evaluation measures under each treatment level and the same measures
with no treatment (0% noise removal).

1.3.5.2 Design science research

The second part of the study presented in Paper C was concerned with designing
a new class noise handling approach for improving the performance of the
ML model in MeBoTS. For this purpose, we adopted the DSR methodology,
following the same guidelines proposed by Runeson et al. [39], to evaluate the
effectiveness of the algorithm in the context of test case selection.

Problem conceptualization The results from both experiments presented
in Papers B and C provided us with insights into the effect of class and
attribute noise in the context of test selection. Therefore, since class noise was
identified as the only impeding type of noise on the classification performance
of the ML model in MeBoTS, we decided to design and implement a tool that
relies on domain knowledge for fixing the class value of training data points
that are contradictory. The design of our algorithm is motivated by the low
computational cost required for handling class noise, compared with existing
approaches that use machine learning for identifying data points with class
noise, such as majority voting [52] or entropy measurements [53].

Design artifact The algorithm starts by sequentially assigning a unique
8-digit hash value for each line of code in the original data set and creating
an empty dictionary for storing unfiltered lines of code. After that, it iterates
through the set of hashed lines in the original data set and saves non-repeated
(syntactically unique) lines of code in the dictionary. Finally, the algorithm
compares the class labels of each pair of duplicate lines in the original
and dictionary sets. If the class label in the original set is labelled with 1
(passed) and the class label of the same instance in the dictionary is labelled

22 CHAPTER 1. INTRODUCTION

with 0 (failed), then the algorithm would relabel the class label of the line in
the dictionary from 0 to 1. If the class values of both duplicate lines are
assigned a class label of 1, then the algorithm would skip adding the line from
the original set into the dictionary.

This way of handling class noise can be seen as both corrective and elimi-
nating, since it 1) corrects the label of duplicate data points that first appear
as failing and then pass the test execution, and 2) removes duplicate lines that
are labeled as passing. Defective lines (labelled with 0) often occupy a small
proportion of the overall fragment of code changes. Thus, a random line from
a fragment, which was overall labeled as failing is more likely not to be the
cause of the failure. Therefore, a design decision in the construction of the
algorithm was to relabel lines as ‘passed’, if they have already been seen as part
of non-failing fragments before. Thus, we select a more conservative approach
when it comes to labeling lines as failing, in order to minimize the likelihood of
mislabeling training data points.

Empirical Validation As soon as we finished from implementing the algo-
rithm, we evaluated its effectiveness on the performance of the ML model in
MeBoTS in the following manner: Firstly, we ran the algorithm against the
original data-set (presented in Paper A), which resulted in a reduced data-set
of 140,130 lines of code. Secondly, we trained the model in MeBoTS on both
the original data and the class-noise handled version of the data respectively.
Lastly, we compared the learning performance of the two models with respect
to precision, recall, and F1-score.

1.3.6 Improving Test Case Selection By Creating a De-
pendency Taxonomy (Paper D)

In Paper D, we adopted a design science research methodology to answer
the question of To which degree do software testers perceive content of a code
commit and test case types as dependent? The goal of this paper was to design
a taxonomy of dependencies between different test case types and code change
categories. To aid the creation of the taxonomy, a combination of qualitative
and quantitative methods were carried out, including literature review, survey,
and a workshop with testers.

1.3.6.1 Problem Conceptualization

MeBoTS learns test case selection from training examples that include a
mapping between code changes and execution results of test cases that were
executed against the respective code. Since the current way of mapping occurs
without a prior knowledge on what lines in the code triggered a test case
reaction (to fail or pass), we risk introducing wrong training examples that do
not characterize the underlying assumption of dependency. Therefore, in Paper
D, we set out to create a faceted taxonomy (the design artifact) of dependency
patterns between code changes and test case types to facilitate the construction
of valid mappings in the training data of MeBoTS.

1.3. RESEARCH DESIGN 23

1.3.6.2 Design Artifact

To guarantee a systematic creation of the taxonomy, we followed the frame-
work proposed by Usman et al. [54], which consists of four steps: planning,
identification and extraction, design and construction, and validation.

Identification and extraction This phase is concerned with identifying
the main categories that will be used in the taxonomy. The main categories
correspond to types of code changes and test cases. To identify the categories
and terms, we started by analyzing papers from the literature which discussed
discussed a dependency pattern between code changes and test case types.
In total, six categories of code change and 18 test case types were extracted.
Further, 21 dependency links between the six categories of code changes and
eight out of the 18 extracted test case types were identified.

Design and Construction In this phase, we utilized the extracted cate-
gories from the literature to develop a survey. The aim of the survey was to
collect the opinions of industry experts from the testing community about
possible dependency patterns between the extracted categories. The survey
requested the invitees to provide a mapping between the categories extracted
in the previous phase, where a single mapping corresponds to a dependency. In
total, we received nine responses from testers who worked at three software
development companies. The analysis of the survey responses showed that the
strongest dependency patterns from the viewpoint of testers were concentrated
around two categories of code changes and twelve test case types.

Due to the high level of agreement among the surveyed testers on the
dependency between these two categories of code changes and the twelve test
types, we decided to hold a workshop with testers to gain a deeper understanding
about the connections and their strengths. Three out of the nine testers, who
participated in the survey, and three other testers from another software
company attended the workshop. During the workshop, the entire group of the
six testers were asked to provide a ranking score (in a scale from 1 to 5) that
reflects the dependency strengths between the two categories of code changes
and the test types, where 1 in the scale corresponds to the least sensitive and 5
corresponds the highest sensitive. After discussing the sensitivity strengths, we
asked the testers to justify their views about the sensitivity of each dependency
by providing explanations for their ranking.

1.3.6.3 Empirical Validation

We validated our taxonomy by demonstrating and discussing the orthogonality
between strongly dependent categories based on the input given by testers
during the workshop. The demonstration offers a discussion about unique
classifications that highlights types of test cases that are in relations with two
categories of code changes. Nevertheless, we are aware of the importance of
validating the taxonomy using utility demonstration or benchmarking, since
both methods apply the knowledge gained on software artefacts, allowing
researchers to empirically validate the taxonomy.

24 CHAPTER 1. INTRODUCTION

1.4 Summary of the Findings

The main goal of this thesis is to effectively select test cases that have the highest
probability of revealing faults in the source code. This section summarizes the
main findings drawn from each of the four appended papers in this thesis.

1.4.1 Predicting Test Case Verdicts Using Textual Anal-
ysis of Committed Code Churns (Paper A)

To find which test cases should be selected and executed in regression suites, we
designed MeBoT'S, a machine learning based method that learns the execution
results of test cases by analyzing their relation with historically integrated
code commits during CI. In Paper A, we evaluate the effectiveness of MeBoTS
in selecting test cases using an industrial data-set of historical code changes
and test execution results. In the following, we present two findings that were
drawn from the study presented in Paper A.

1.4.1.1 Homogeneous and small revisions

The first finding is concerned with whether the size of code changes extracted
from program revisions can affect the learning performance of the model
in MeBoTS. The evaluation results showed that using a mix of large and
small revisions for training the model in MeBoTS leads to producing random
predictions of test execution outcomes (precision of 55% and 17.4% recall). On
the other hand, the predictive performance of the same model was found to
improve when using revisions that contain less than 100 thousand lines of code
for training (73% precision and 49% recall). These validation results suggest
that using MeBoTS allows testers to reduce the size of test suites by excluding
7 out of the 10 predicted passing test cases. However, there is a probability of
30% that we miss a test case failure, which means that the reduction of the test
suite comes with a cost. This cost can be reduced, for example, if we collect
the test cases that were not executed and execute them with lower frequency
during a nightly or weekly test suite instead of hourly builds. Similarly, the
measurement of the model’s recall revealed an improvement in its ability to
identify unimpacted tests by 32%, when being trained on smaller revisions.
Based on this finding, we conclude that using a training data of smaller code
revisions yields to building more effective model for test case selection.

1.4.1.2 The choice of the ML model in MeBoTS

The second finding from paper A is concerned with the suitability of different
types machine learning models in MeBoTS. Namely, we compared the effective-
ness of three conventional tree-based and two deep learning models in predicting
test case execution outcomes. We found that the learning performance of the
five models was almost similar. Specifically, the precision scores attained by the
models ranged from 67% to 71%, whereas the recall scores ranged from 36% to
49%. Despite the similar performance scores produced by both tree-based and
deep learning models, we argue that using a tree-based model in MeBoTS is a
more appropriate choice due to the following reasons:

1.4. SUMMARY OF THE FINDINGS 25

e tree-based models require lower computational cost compared with deep
learning models

e tree-based models have a white-box nature, which allows testers/developers
to gain access to the feature importance charts and thus trace and avoid
pushing faulty patterns in future commits

All the papers included in this thesis contribute in finding an answer to
the research question in Paper A. However, the findings drawn from Paper
A formed the foundation to understand the suitability of different machine
learning algorithms in MeBoTS and the effect of building a training data using
a mix of large and small code changes on the effectiveness of MeBoTS.

1.4.2 The Effect of Class Noise On Test Case Selection
(Paper B)

Class noise is the ratio of contradictory data points to the total number of points
in the data-set at hand. Based on this definition, we designed and implemented
a controlled experiment to empirically identify the effect of different ratios of
class noise on the performance of the ML model in MeBoTS. In Paper B, we
present the design and implementation of the controlled experiment. In the
following, two findings from the controlled experiment are described.

1.4.2.1 Class noise decreases the predictive performance for test
selection

The hypotheses testing results reported in Paper B revealed an inverse causality
relationship between class noise and the performance of the model in MeBoTS.
That is, as the noise level increased in the data, a decrease in the performance of
the ML model was recorded. By seeding six treatment level of class noise (10%,
20%, 30%, 40%, 50%, and 60%), we statistically compared the effect of each
noise level on the precision, recall, F1-score, and MCC of the model in MeBoTS.
We found a significant difference between the precision, F1-score, and MCC
scores under all the levels of class noise. Conversely, a significant difference
between the recall scores was found only when the ratio of class noise exceeded
20%. The concordance between the Fl-score and MCC metrics provided us
with more confidence in the evaluation results, since both metrics recorded
a negative trend when the level of class noise increased in the data. These
findings suggest that the performance of the model in MeBoTS is hindered by
the increase in the ratio of class noise.

The findings drawn from this experiment helped us to answer RQ2, which
was positive (i.e., there is a statistical difference in the performance of the
model in MeBoTS when class noise is present and absent from the data).
The strong empirical evidence about a relation between class noise and the
performance measures of the model in MeBoTS raised our awareness to the
importance of using a class noise handling strategy before building the model in
MeBoTS. Therefore, in the next paper, we introduce a noise handling strategy
and evaluate its effectiveness on the performance of the model in MeBoTS.
Further, in the same paper, we perform a controlled experiment to examine
the effect of attribute noise removal on the data.

26 CHAPTER 1. INTRODUCTION

1.4.3 Improving Test Case Selection By Handling Class
and Attribute Noise (Paper C)

In Paper C, we examine the effect of attribute noise removal on the performance
of MeBoTS by carrying out a controlled experiment. Then, we present and
evaluate the effectiveness of a class noise handling strategy that relies on
domain knowledge for removing and relabelling contradictory data points in
the training data. Lastly, we compare the effectiveness of the model in MeBoTS
under three training trials: 1) using data with class and attribute noise, 2)
using data with reduced class noise, and 3) using data with reduced class and
attribute noise.

1.4.3.1 Handling attribute noise is not necessary

Our first finding suggests that removing data points with high attribute noise
from the training data has no statistically significant impact on the learning
of the model. Counter-intuitively, we found that training the ML model after
removing 20% of data points with the highest attribute noise ratio is penalized
by a 3% decrease in the model’s precision and an 8% decrease in recall. As such,
the removal of data points that come with attribute noise implies information
loss and thus a higher risk of missing faults in the code. Therefore, testers are
recommended not to account for handling attribute noise in the data using an
elimination based approach.

1.4.3.2 Using domain knowledge for handling class noise is effective

We found that handling class noise in the data using a domain knowledge based
strategy improves the predictive performance of the ML model in MeBoTS.
Using the noise handling strategy presented in Paper C allows testers to correctly
exclude 8 out of 10 actually passing test cases from execution (precision =
81%). Further, using the noise handling strategy results in a 70% reduction in
the amount of false negatives (recall improvement from 17% to 87%), which
means that the probability of missing out passing tests is reduced by 70%.

In summary, the findings drawn from Paper C provide empirical evidence
that support the use of a class noise handling strategy to improve the predictive
performance of the model in MeBoTS. Further, they counter-act exhaustive
noise handling efforts by showing that attribute noise removal is not necessarily
important for improving the performance of the model in MeBoTS. To further
improve the effectiveness of MeBoTS in test selection, we conducted the study
presented in Paper D.

1.4.4 Improving Test Case Selection By Creating a De-
pendency Taxonomy (Paper D)

In Paper D, the aim was to improve the effectiveness of MeBoTS by identifying
dependency links between code changes and test case types. The identification
of these links can guide the creation of training data that correctly maps the
analyzed code with the execution results of dependent test case types.

1.5. DISCUSSION 27

1.4.4.1 Performance tests are strongly dependent on memory and
complexity changes

During the workshop conducted in the study presented in Paper D, testers were
mainly focused on software quality aspects such as performance and security
when discussing the dependencies between different test case types and memory
and algorithmic complexity changes. The identified dependency patterns in
Paper D suggest that the performance of the ML model in MeBoTS can be
improved by mapping memory management code changes with the execution
results of either performance, capacity, load, stress, soak, and volume test cases.
Similarly, complexity code changes were found to be in dependency with the
same test case types in addition to maintainability test cases.

1.4.4.2 Mixed views on security tests

We found a wide disparity in the views of testers regarding the sensitivity of
this test type. 33% of the testers perceived this test type to be sensitive to
memory changes, 17% perceived it to be somewhat sensitive, whereas 50% of
testers perceive a low sensitivity to memory changes. Testers who considered
this test type to be sensitive argued that memory changes lead to memory leaks
which, if not properly managed, might expose the system to security breaches.
Disagreeing participants argued that resource leaks result in performance
issues rather than security breeches. Further, they linked the sensitivity of
security tests to the program domain, as being a strong determining factor
for establishing dependency links. This lack of consensus among testers about
security testing on the one hand and memory and complexity changes on the
other hand calls for future work that empirically investigates the causality
between code changes and security tests.

1.5 Discussion

The results of this thesis show that utilizing textual analysis and machine
learning for test case selection has a promising potential in reducing the size
of regression test suites. The value of the presented approach lies in being
language agnostic, and not in need to parse the code being tested. The ultimate
goal of this approach is to improve the effectiveness of performing regression
testing during build suites in CI, and not to abolish practices of exhaustive
testing that companies perform over nights or on a weekly basis.

In our quest to improve the performance of the ML-based method, we
found that class noise has an impeding effect on the learning of the model,
resulting in an over-approximation of tests that require execution (lower F1-
score and MCC). Hence, a first step towards improving the effectiveness of
MeBoTS is to handle class noise in the data before learning a model for TCS.
Generally, the appropriateness of which strategy to use for handling class noise
depends on the domain in which noise is incurred. In the domain of TCS, it
is not trivial to define a general rule to identify which class label should be
corrected /removed in the training data, since we do not know exactly which
lines in the code are mislabelled and by what sources of noise. We cannot
simply re-label any line, as suggested in the majority voting algorithm [52],

28 CHAPTER 1. INTRODUCTION

since we risk loosing information that can lead to drawing correct predictions
about test case outcomes. Another factor that acts against the use of existing
tools in the testing domain is the fact that they are computationally expensive.
Since “time” is a crucial factor in determining the success of TCS tools, we
need to aim at minimizing the use of tools that require high computational
power, if possible. For these reasons, a lightweight tool that uses domain
knowledge was designed and evaluated in this research. Whilst the designed
tool showed a positive impact on the performance of the ML model in MeBoTS,
it is important to note the following remarks. First, there is no guarantee that
an even distribution of points in the noisy data-set will be maintained after
the tool relabels contradictory entries. Thus, there is a possibility of either
including or excluding fault revealing tests in the regression suites. Excluding
more tests in the suites implies higher risks that defects remain undetected,
whereas including more tests implies higher cost of testing. Based on this, it
is recommended that testers ensure an even distribution of the classes after
cleaning class noise from the data. Second, the corrections made by the tool
assume that faulty lines always appear in less frequency than non-faulty ones,
which means that the tool is susceptible to make erroneous labelling when
faulty lines are labelled correctly in the original data. However, this risk is
exhibited by the majority of existing ML-based correction techniques, such as
majority voting and CFAUD [17] [18]), which require high computational cost.
Therefore, we compromise some errors in mislabelling at the interest of saving
time for testing.

Contrary to the finding that confirms the importance of handling class noise
before learning a model, we could not draw a similar conclusion about the
impact of removing attribute noise on the performance of the learning model
in MeBoTS. In other words, removing lines that contain exceptional attribute
values did not lead to any improvement in the learning of the ML model. The
key observation from this finding is that the harmfulness of attribute noise is
tightly coupled with the domain in which the noise is presented.

1.6 Threats to Validity

In this thesis, we analyze the threats to validity by relying on the framework
recommended by Wohlin et al. [55] and discuss the validity in terms of external,
internal, construct, and conclusion.

1.6.1 External Validity

External validity is concerned with generalization. It addresses the question
of is there a relation between the treatment and the outcome that allows the
findings to be generalized outside the scope of the current study?

Small sample sizes. The data sets under which the appended papers in this
thesis were conducted belonged to small sample sizes. Papers A, B, and C
were based on the analysis of a sample that belonged to twelve test cases and
82 code revisions for a single industrial program. Paper D was based on the
analysis of the opinions of a small sample of testers (nine testers in the survey
and six testers in the workshop) about dependency between code changes and
test case types. We are aware that using such a small sample of test cases and

1.6. THREATS TO VALIDITY 29

and testers can hinder the generalization of the findings outside their context.
However, we minimized this threats by randomly selecting both samples of test
cases and testers such that the likelihood of drawing a representative sample
increases.

1.6.2 Internal Validity

Internal validity concerns issues that may indicate a causal relationship between
independent and dependent variables, although there is none.

Machine learning models. In the work presented in Papers B and C, we
used a random forest ML model to evaluate the effectiveness of MeBoTS in
the presence and absence of class and attribute noise. However, we did not
experimentally assess the effectiveness of tuning the model’s hyper-parameter on
the predictive performance. Therefore, there is a likelihood that the evaluation
results drawn in Papers B and C will differ when other configuration parameters
are set for the model. However, in Paper C, we minimized this threat by running
an additional trial of training where we evaluated the effect of changing the
number of trees in the model from 100 to 300. The results showed that the
learning performance of the model was similar when using 100 or 300 trees.

Another internal threat to the validity lies in the work presented in Paper
D, which concerns the long waiting time between receiving the survey responses
and the conduct of the workshop. During this time, testers who answered
the survey and participated in the workshop may have changed their views
about the dependency patterns. As a consequence, a misalignment in the
dependency links provided by the testers in the survey and the workshop may
have occurred. However, we minimized the impact of this threat by defining
and explaining all the terms (code change categories and test case types) that
were provided in the survey during the workshop. Another internal threat to
validity is the likelihood that testers were influenced by the opinions of each
other. However, since we construct our taxonomy based on a triangulated
approach, we minimize the likelihood of such a risk.

1.6.3 Construct Validity

Construct validity refers to the degree to which experimental variables accu-
rately measure the concepts they purport to measure.

Nature of test case failures. In this research, it is difficult to determine
whether the collected execution results of test cases are connected to faults in
the code base and not due to external factors such as flaky tests, machinery
failures, or an environment upgrade during test execution. This poses a threat
to the construct validity since our research is concerned with finding a statisti-
cal dependency between changes in the code and test case execution results.
However, this threat was minimized by randomly selecting test execution results
from the pool of executed tests.

Majority class problem. After applying the treatment on the experimental
subjects in Papers B and C, there is a chance that we imbalanced the distribution
of the binary classes in the training data. This implies a risk of introducing a
bias in the predictions towards one of the classes. Due to the high computational
cost required to check the balance across all experimental subjects, we could

30 CHAPTER 1. INTRODUCTION

only verify that the distribution of the classes was balanced under 1 treatment
level. However, the downward trend in the predictive performance of the four
evaluation metrics, after seeding each level of noise, indicated no bias towards
a particular class.

Assumption of dependency. This research is built on the assumption that
there exists a dependency between code changes and test types. Nevertheless,
there is a chance that such a dependency does not exist and that the depen-
dencies reported in Paper D were derived coincidentally. We minimize this risk
by constructing the taxonomy in Paper D from the viewpoints of practitioners.

1.6.4 Conclusion Validity

Conclusion validity focuses on the ability to draw correct conclusions about rela-
tions between the treatment and the outcome of our study. Over-approzimation
of impacted test cases. The biggest threat to the conclusion validity of this
research lies in the fact that the ML model in MeBoTS over-approximated the
number of impacted test cases. Particularly, in Paper A, the highest recall
score attained by the ML model was at 49%, which implies that 51% of test
cases that the model predicted to fail were actually false alarms and should
not be executed in the regression suite. However, in Paper C, we mitigated
this threat by handling class noise in the data, which resulted in constructing
a less over-approximating model (recall at 87%).

Differences among subjects. The descriptive statistics in Papers B and C
indicated that we have a few outliers in the performance measures obtained by
the models across the experimental subjects. These outliers can impact the
conclusions drawn from the analysis results. Therefore, we mitigated this risk
by running two trials of analysis - with and without outliers - to check if the
outliers had any impact on the results. Based on the analysis, we found that
removing the outliers did not change the results. Thus, we decided to include
the outliers in the analysis.

Bias in extracting terms from the literature. The identification and ex-
traction of terms for the taxonomy building in Paper D was derived from
the literature. However, this was not based on a systematic literature review
guidelines, which introduces a risk of possible bias in the selection of code
categories and test case types. However, we minimize this risk by inviting
testers to propose other types of code changes and test cases that are not
provided in the survey and the workshop.

1.7 Summary

Software test case selection is a broad area of active research that is needed to
reduce the cost of testing and to increase the speed of products’ delivery to
the market. Finding an effective and an easy-to-maintain test case selection
solution that can accommodate for the growing need of quick code integration
and deployment during CI remains as an open challenge for researchers and
practitioners.

This research set out to develop and investigate the effectiveness of a
test selection method, called MeBoTS, that utilizes machine learning and
textual analysis. By conducting a series of studies using both design science

1.8. FUTURE WORK 31

and controlled experiment, we found potentially promising results about the
applicability of the method in achieving an effective test case selection. In
this research, we particularly focused on gaining empirical evidence on the
importance of handling class and attribute noise in the training data before
using MeBoTS. Additionally, we designed a taxonomy of dependencies between
code changes and test case types to further improve the effectiveness of MeBoTS
in learning test case selection. The findings drawn from this work support the
necessity of handling class noise from the training data before using MeBoTS. In
contrast, no statistical evidence to support the necessity for handling attribute
noise could be found. Finally, the training data for MeBoT'S should be done
based on a systematic mapping between memory management code changes
and performance, load, soak, stress, volume, and capacity tests. Similarly, the
same types of tests, in addition to maintainability tests, should be used for
mapping with complexity code changes.

1.8 Future Work

The long-term goal of this research is to integrate MeBoTS as a plug-in to
existing IDEs, such as Visual Studio or Eclipse, ideally, to allow developers
pinpoint exactly which lines in their code will trigger a test failure at pre-
commit, and thereby to save companies large cost of testing. We believe that
there are still several questions that need to be answered before realizing this
vision in practical terms. However, the empirical results reported in this thesis
provided us with an understanding of the challenges and future work that need
to be carried out in the future. We now present a road map for future work
that we plan to carry out.

Evaluate the effectiveness of MeBoTS in predicting unobserved code
revisions: In this research work, the ML model in MeBoTS was built and
validated on data-sets that were collected from the same code revisions. As
a future work, we plan to validate the model on unseen code changes that
belong to future revisions. An additional plan is to determine the amount of
time required to retrain MeBoTS on new code revisions before its predictive
performance deteriorates over time.

Evaluate the effectiveness of MeBoTS when trained on validated
dependency patterns: The taxonomy presented in Paper D was validated
by discussing the orthogonality between different categories of code changes
and test types. A future work is to continue working on refining the taxonomy
by investigating additional dependency links between code changes and test
case types. Further, we aim at increasing the validity of the taxonomy by
evaluating it on industrial software artefacts. After that, we plan to construct
training data using the validated dependency links and evaluate potential
learning improvements attained by the ML model in MeBoTS.

Evaluate the effectiveness of other attribute and class noise handling
strategies in different contexts: A future work is to examine the versatility
of different class and attribute noise handling strategies in improving the

32 CHAPTER 1. INTRODUCTION

prediction performance of ML models in solving different software engineering
tasks, including code reviews and fault predictions.

Evaluate the effectiveness of MeBoTS using more data-sets and dif-
ferent programming languages: In this research, the effectiveness of
MeBoTS was evaluated on an industrial data-set of code changes written
in the C++ programming language. Future work aims at expanding the set of
explored languages to include Java and Python software programs.

Compare the effectiveness of MeBoTS with existing test case selec-
tion techniques: Future directions aim at comparing the effectiveness and
efficiency of MeBoTS with existing test case selection techniques, such as those
that use static code analysis and heuristics-based algorithms.

Evaluate the effectiveness of MeBoTS when trained on different
granularity levels: In this research, we evaluated the effectiveness of MeBoTS
in predicting test case verdicts by carrying out a line-level analysis of code
changes. Future work aims at exploring the effectiveness of MeBoT'S on different
levels of granularity, including method and class levels.

Evaluate the effectiveness of MeBoTS when trained on test scripts
changes: This research examined the effectiveness of MeBoTS in predicting
test case verdicts, given changes made to the code base. Future work aims at
investigating the effectiveness of the method by analysing changes made to the
test scripts. Additionally, the same analysis of test scripts is planned to be
used for predicting flaky tests.

Chapter 2

Paper A

Predicting Test Case Verdicts Using Textual Analysis of
Committed Code Churns

Al-Sabbagh, K.W., Staron, M., Hebig, R., Meding, W.
In IWSM-Mensura, pp. 138-153. 2019.

33

Abstract

Background: Continuous Integration (CI) is an agile software development
practice that involves producing several clean builds of the software per day.
The creation of these builds involve running excessive executions of automated
tests, which is hampered by high hardware cost and reduced development
velocity.

Goal: The goal of our research is to develop a method that reduces the
number of executed test cases at each CI cycle.

Method: We adopt a design research approach with an infrastructure provider
company to develop a method that exploits Machine Learning (ML) to predict
test case verdicts for committed source code. We train five different ML models
on two data sets and evaluate their performance using two simple retrieval
measures: precision and recall.

Results: While the results from training the ML models on the first data-set
of test executions revealed low performance, the curated data-set for train-
ing showed an improvement on performance with respect to precision and recall.

Conclusion: Our results indicate that the method is applicable when training
the ML model on churns of small sizes.

34 CHAPTER 2. PAPER A

2.1 Introduction

CI is a modern software development practice, which is based on frequent
integration of codes from developers and teams into a product’s main branch [56].
One of the cornerstones of its popularity is the promise of higher quality
delivered by frequent testing and the ability to quickly pinpoint the code that
does not meet quality requirements. To achieve this, CI systems execute tests
as part of the integration [57]. However, excessive execution of automated
software tests is penalized with high hardware cost and reduced development
velocity that may consequently hinder agility and time to market.

In order to address this challenge, a CI system should be able to pinpoint
exactly which test cases should be executed in order to maximize the probability
of finding defects (i.e. to reduce the “empty” test executions). To achieve
this, the CI system needs to be able to predict whether a given test case has
a chance of finding a defect or not, or at least whether it will fail or pass —
predict the verdict of a test case execution.

We set off to address the problem of predicting test case verdicts by training
five ML models on a large data set of historical test cases that were executed
against changes made to a software developed at company A. The term ”code
churn” is defined as a measure that quantifies these changes. Throughout the
remaining sections of this paper, we use this term to refer to committed code
made during different CI cycles.

Our research is inspired from a previous study conducted by Knauss et el. [3],
where the authors explored the relationship between historical code churns and
test case executions using a statistical model. Their method used precision
and recall metrics in predicting an optimal suite of functional regression tests
that would trigger failure. In this paper we expand on that approach by going
one step further — conducting a textual analysis of what is the code that is
actually being integrated. For example, instead of using code location as the
parameter, we use such measures as the number of ’if” statements or whether
the code contains data definitions. Similarly, our choice of using code churns
is inspired from the work of Nagappan and Ball [58], in which the authors
presented a technique for early faults prediction using code churn measures.
In their publication, the authors identified a positive correlation between the
size of code churns and system defects density. Our method builds on this and
uses the Bag of Words (BOW) approach to extract features from code churns.
This enables the identification of statistical dependency between keywords and
test case verdicts. For example, a churn containing a frequent occurrence of
keywords like ‘new’ or ‘delete’ might trigger specific tests to fail. More precisely,
we aim at investigating the following research question:

How to reduce the number of executed test cases by selecting the
most effective minimal test suite when integrating new code churns
into the product’s main branch?

Our study was conducted in collaboration with a large Swedish-based
infrastructure providing company. We study a software product that has
evolved over a span of a decade by different cross functional teams. As a result
of our study, we present a method that uses ML to predict test case verdicts
(MeBoTS).

2.2. BACKGROUND 35

To address this research question, we conduct a design research study, where
we develop a new method and evaluate it on the company’s data set. Our
method is based on the research by Ochodek et al. [43], which uses textual
analyses to characterize source code. Our MeBoTS method builds on that by
using historical test verdicts as predicted variables and uses Random Forest
algorithms to make the predictions.

The remainder of this paper is organized as follows: Section II provides
background information about two categories of ML. The sections that follow
provide: an overview of the most related studies in this area, a description
of the method that we developed in our study as well as the results, validity
analysis, recommendations, and finally, conclusion.

2.2 Background

2.2.1 Categories of Machine Learning

Machine learning is a class of Artificial Intelligence that provides systems the
ability to automatically make inferences, given examples relevant to a task [59].
The main advantage of using Machine learning over classical statistical analysis,
is its ability to deal with large and complex data-sets [60]. These systems
can be classified into four categories depending on the type of supervision
involved in training: a) Supervised, b) Unsupervised, ¢) Semi-supervised, d)
Reinforcement Learning [59]. Since we view the problem of predicting test case
verdicts as a classification problem, we briefly mention the supervised learning
category.

In supervised learning the training data-set fed into the ML model contains
the desired solution, called labels. The model tries to find a statistical structure
between these examples and their desired solutions [60]. A typical task for this
kind of learning is classification.

2.2.2 Tree-based and Deep Learning Models

In Machine learning, a decision tree is an algorithm that belongs to the
family of supervised learning algorithms. The algorithm has an inherent tree-
like structure and is commonly used for solving classification and regression
problems [61]. Starting from the root node, the algorithm uses a binary
recursive scheme to repeatedly split each node into two child nodes, where the
root node has the complete training sample [62]. The resulting child nodes
correspond to features in the training data, whereas the leaf nodes correspond
to class labels (binary or multivariate). Other algorithms, such as Random
Forest and Adaptive Boosting, use Decision trees as a primary component in
their structure. These algorithms build a collection of decision trees, called an
ensemble, to increase the overall learning of the classification or regression task
at hand [60].

Deep Learning is a branch of ML that was founded on the premise of using
successive learning ”layers” to achieve more useful representation of the data [59].
The learning of these successive layers are achieved via models called Neural
Networks (NN) [59]. A multilayer NN is one that consists of at least three
layers: 1) one input layer, 2) at least one hidden layer, 3) and an output layer

36 CHAPTER 2. PAPER A

of artificial neurons [63]. Similarly, a Convolutional network (CNN) consists of
a set of learning layers [59]. The main difference between the two networks is in
the way they search for patterns in the input space [60]. More precisely, a CNN
works by sweeping a matrix-like window, called filter, over every location in
every patch to extract patterns from the input data [60]. As opposed to Decision
Trees, ANN have a black box nature, which means that no insight about how
their predictions were made can be easily accessible [60]. Nevertheless, the
main advantage of using deep learning comes from their ability to handle large
and complex data-sets of features.

2.2.3 Code Churns

The amount of changes made to software over time is referred to as code
churn [58]. As new churns are added, new risks of introducing defects into the
system emerge [64]. According to Y. Shin et al. [64], each check-in made into
a version control system includes newly added or deleted code that increase
the chances of triggering failures. At some point in time, an evolving system
may be vulnerable, on average, to one extra fault for every new additional
change [65]. For example, in C programming, the declaration of ’static’ local
and global variables are among the most confused keywords by developers, as
each static local and global declaration has a different effect on how the data
will be retained in the program’s memory [66].

2.3 Related Work

In the following we discuss related work on the specific use of machine learning
for test case selection or prioritization.

2.3.1 ML-based Test-Case Selection

Around 2015/16, we find the first machine learning based approaches for test-
case selection. With only 4 studies included in the systematic mapping study
by Durelli et al. [67], the use of machine learning for test case prioritization
seems to be new.

Busjaeger and Xie [68] present an industrial case study in which a linear
model is trained with the SVMmap algorithm using the features Java code
coverage, text path similarity, text content similarity, failure history, and test
age. The evaluation on the industrial case study, considering 2000 changes and
over 45 000 test executions shows an Average Percentage of Faults Detected
(APFD) of around 85%.

Chen et al. [69] prioritize test programs for compilers ”identifies a set of
features of test programs, trains a capability model to predict the probability
of a new test program for triggering compiler bugs and a time model to predict
the execution time of a test program.”

Spieker et al. [70] introduced Retecs, a reinforcement learning-based ap-
proach to test case selection and prioritization. Retecs considers duration of
a test case’s execution, previous last execution and failure history. Online
learning is used to improve test case selection between continuous integration
cycles. The approach was evaluated on 3 industrial data sets, including together

2.4. METHOD USING BAG OF WORDS FOR TEST SELECTION (MEBOTS) 37

L Lines of Bag of

Executions Step 1 Code Step 2 Words.csv
O e Features Extractor [———>|
Extractor
CSv Csv
Step 3

| Classification |

Version Contral
System

Figure 2.1: The MeBoTS method.

more than 1.2 million verdicts, and achieved a normalized Average Percentage
of Faults Detected (APFD) of around 0.4 to 0.8 depending on the data set.

Most recently, Azizi and Do [71] perform test case prioritization by calculat-
ing a ranked list of components considering the access frequency of a component
as well as a fault risk. The fault risk for each component is thereby predicted
using a linear model of change and bug histories. Test cases associated with
highly ranked components are prioritized. The approach was evaluated on
three web-based systems and where it could reduce the number of test cases
by 20% while still finding over 80% of the errors.

Palma et al. [72] replicate and extend a work of Noor and Hemmati [73]
and [74], to predict test case failure based on a machine learned model basing
on test quality metrics as well as similarity-based metrics.

However, to the best of our knowledge, no other learning-based method
works for code-churns. The only exception is one of our previous collaboration
with Knauss et al. [3]. The introduced code-churn based test selection method
(CCTS) analyzes correlations between test-case failure and source code change.
The approach was evaluated in several configurations, leading to results ranging
from 26% precision up to a 54% with a 97% recall. We deem these results
promising and one of the main motivations for this study.

2.4 Method using Bag of Words for Test Selec-
tion (MeBoTS)

The following section is a description of the MeBoTS method used in this
research, which comprises of three sequential steps, as shown in Figure 2.1.
The method utilizes two Python programs and an open source textual analyzer
program, called CCFLEX [43].

2.4.1 Code Churns Extraction (Step 1)

A Python-based code churn extraction program was created to collect and
compile code churns committed in the source code repository. The program
takes one input parameter: a time ordered list of historical test case execution
results extracted from a database, where each element in the list represents an
instance of a previously run test case and holds information about: the name
of the executed test case, the baseline code in Git against which the test case

38 CHAPTER 2. PAPER A

Table 2.1: An Excerpt of the Historical Test Case Executions List

Baseline Test Case Name | Verdict
ca82a6dff817ec66f ST-case 22 FAILED
cal82a6dff817ec66f FT-case 42 PASSED

34bb5e22134200896 FT-case-333 FAILED
34bbbe22134200333 FT-case-3 PASSED

Table 2.2: Input to the textual analysis and feature extraction

Filename Path Content Hash

firstFile.c c:/folder | if (condition == true) aa00111
printf (’Hello World’);

firstFile.c c:/folder | printf(’\n’); aa00111

secondFile.c | c:/folder | int i = 10; aa00111

was executed, and the verdict value - as shown in Table 2.1.

The program first loops through the extracted list of tests and looks at the
change history log maintained by Git and performs a file comparison utility
(diff) on a pair of consecutive baselines in the tests list. Note that each baseline
value is a hash representation of a revision (build), pointing to a specific
location in Git’s history log. The result is a fine-grained string that comprises
the committed code churns, where each LOC in the churn is compiled with its:
1) filename, 2) physical file path, 3) test case verdict, 4) baseline hash code.

The resulting string is then arranged in a table-like format and written in a
csv file, named as ’Lines of Code’ in Figure 2.1.

2.4.2 Textual Analysis and Features Extraction (Step 2)

The result of the extract from Git is saved as an array (code churn, filename,
physical file path, test case verdict and baseline). This file is the input to
our textual analysis and feature extraction. The textual analysis and feature
extraction use each line from the code churn and:

e creates a vocabulary for all lines (using the bag of words technique, with
a specific cut-off parameter),

e for the words that are used seldom (i.e. fall outside of the frequency
defined by the cut-off parameter of the bag of words), a token is created,

e finds a set of predefined keywords in each line,

e check each word in the line whether it is part of the vocabulary, it should
be tokenized or if it is a predefined feature.

An example input is presented in Table 2.2. The input contains an example
code in C.

For the textual analyses, we can pre-define (arbitrarily for this example)
two features: “if” and “int”. The bag of words analysis also found the word
“printf” as frequent. It has also defined the following tokens:

2.4. METHOD USING BAG OF WORDS FOR TEST SELECTION (MEBOTS) 39

Table 2.3: Output from the feature extraction algorithm

Filename Path if int | a Aa Content

firstFile.c | c:/folder | 1 0 3 2 if (condition ==
true) printf("Hello
World");

firstFile.c | c:/folder | 0 0 2 0 printf("\n");
secondFile.c| c:/folder | 0 1 1 0 int i = 10;

e “a” — to denote the words (of any length) that contain only lowercase
letters (e.g. “condition”),

e “Aa” —to denote the words that start with capital letters and continue
with lowercase letters (e.g. “Hello”),

e “0” — to denote the numbers, i.e. sequence of numbers of any length (e.g.
“10”)

The manual features and the bag of words results are then used as features
in the feature extraction. Table 2.3, which corresponds to the input from Table
2.2.

Table 2.3 is a large array with the numbers, each representing the number of
times a specific feature presents in the line. This way of extracting information
about the source code is new in our approach, compared to the most common
approaches of analyzing code churns. Compared to the other approaches,
MeBoTS recognizes what is written in the code, without understanding of the
syntax or semantics of the code. This means that we can analyze each line
of code separately, without the need to compile the code or without the need
to parse it. This means, that we can take code churns from different files in
the same baseline and analyze them together. MeBoTS also goes beyond such
approaches like Nagappan et al. [58], which characterizes churns in terms of
metrics like number of churned lines or churn size.

2.4.3 Training and Applying the Classifier Algorithm
(Step 3)

We exploit the set of extracted features provided by the textual analyzer in
step 2 as the independent variables and the verdict of the executed test cases as
the dependant variable, which is a binary representation of the execution result
(passed or failed). The MeBoTS method uses a second Python program that
utilizes and trains an ML model to classify test case verdicts. The program
reads the BOW vector space file in a sequence of chunks, merging the extracted
feature vectors and the verdicts vector into a single data frame that gets split
into a training and testing set before it is fed into the models for training.
Table 2.4 shows an excerpt of the generated data frame.

40 CHAPTER 2. PAPER A

Table 2.4: Input to the Classifier Model

File Name | Line Number | F1 | F2 | F3 | F4 | F5 | .. | F500 Verdict
firstFile 1 0 0 6 1 0 0 PASSED
firstFile 2 0 0 5 3 2 0 PASSED

secondF'ile 1 0 0 6 1 0 0 FAILED

2.5 Research Design

2.5.1 Collaborating Company

The study has been conducted at an organization, belonging to a large infrastruc-
ture provider company. The organization develops a mature software-intensive
telecommunication network product. The organization consists of several hun-
dred software developers, organized in several empowered agile teams, spread
over a number of continents. Given that they have been early adopters of lean
and agile software development methodologies, they have become mature in
these areas of work. They have also implemented CI and continuous deliveries.

The organization is also mature with regard to measuring. For instance
every agile team, as well as leading functions/roles, uses one or more monitors
to display status and progress in various development and devops areas. A well-
established and efficient measurement infrastructure, automatically collects and
processes data, and then distributes the information needed by the organization.

2.5.2 Dataset

The data-set provided by company A contained historical test case execution
results for a mature software product that has evolved for almost a decade. The
analyzed product consisted of over 10 thousand test cases and several million
lines of code written in the C language. We decided to test the MeBoTS on
a set of randomly selected tests that, presumably, reacted to changes in the
source code during different CI cycles. Our selection of test cases was based
on the granularity of test executions whose verdicts changed from one state to
another(see Table 2.1).

The extracted data-set belonged to twelve test cases that were executed
82 times during different CI cycles. The size of the extracted churns was 1.4
million lines of code, among which 618 thousand lines were labeled as passed
and 776 thousand as failed. To better understand the shape of the data-set,
we visually inspected the size of code churns covered by each test execution.
The scatter plot in Figure 2.2 shows the distribution of the 82 extracted test
executions, belonging to the twelve test cases. Each mark on the plot represents
one test case execution. The x-axis represents the number of lines in the code
churn the test case was executed on. The y-axis represents the overall number
of test executions for the executed test case. Test executions of the same test
case are marked with the same symbol. The visual inspection of the scatter
plot suggests that our data-set comprised of churns of varying sizes (large and
small). We interpreted this distribution with uncertainty of whether large
churns contain additional noise that would adversely affect the training of the
ML models. As a result, we decided to curate the original data-set by filtering

2.5. RESEARCH DESIGN 41

191 . e 8 8 L LN]
18 4
174
16
15 4 . m
14
12 L L -
g
s 12
2
o 1l 4
]
101
o
s
8 2
&
E 81 b
= ® testcasel
7 ® testcase 2
% testcase 3
61 A testcase 4
: ®m testcase S
* testcased
4 test case 7
34 - ' m testcaseB
test case 9
24 A » test case 10
1 » ® testcase 11
testcase 12
0 T r T T T T T T T
o 30000 80000 80000 120000 150000 180000 210000 240000 270000
Line of Code

Figure 2.2: Churn Size per Test Execution Plot.

out tests that were executed on churns whose total size exceeded 110 thousand
lines. The visual inspection of the curated data-set is represented in Figure 2.3,
which comprised of 290 thousand lines of code, containing a fairly balanced
representation of the binary classes (passed and failed), with 110 thousand
lines belonging to the passed class and 180 thousand lines belonging to the
failed class.

The two data-sets described above were used for training the ML models.
The first data-set was used in the first phase, whereas the second curated
data-set was used in the second phase of ML training, and ultimately became
our focus due to data size homogeneity.

2.5.3 Evaluating and Selecting a Classification Model

To select the most suitable model for classifying test verdicts, we selected five
different ML models and trained them sequentially. The five models are: 1)
Decision Tree, 2) Random Forest, 3) AdaBoost, 4) Multilayer NN, 5) CNN
The choice of selecting the three tree-based models was due to their low
computational cost and white box nature, whereas the selection of ANN models
were based on their ability to abstract large and complex number of features.
Each of the five classification models for test verdicts uses i) the historical test
case verdicts ii) the feature vectors in the bag of words table as the baseline of
prediction. The evaluation was done in two iterations. In the first iteration,
the five models were trained on the original data-set, which contained a mix of
large and small churns, comprising a total of 1.4m lines of code for 500 feature
vectors. The second iteration involved training the models on the curated
data-set, which almost contained 290 thousand lines for the same 500 features,
as in the first iteration. Both data sets, curated and original, were split as

42 CHAPTER 2. PAPER A

-
B

18 4
17 4
16 4
151 @ -
14
131 =
e 124
-]
=
T
2
w101
#
= a4
]
2 g mm
5
z 7
6 @ testcasel
m testcase Z
51 # ltestcase 3
ad A& testcase 4
m testcase S
3d{ » S & testcase 6
test case 7
21 = * m testcase8
14 & test case 9
» bestcase 10
04— T T T T T T
o 30000 E0000 S0000 120000 150000 180000 210000 240000 270000

Line of Code
Figure 2.3: Churn Size per Test Execution After Curation Plot.

Table 2.5: The Evaluated Models and Their Hyper-Parameters

Classifier | Random State | Number of Trees | Number of Layers | Epochs
DT 123 - - -
RF - 50 - -

AdaBoost - 100 - -
NN - - 3 100

CNN - - 8 100

follow: 70% for the training set and 30% for the test set.

To save the long run time required by automated hyper-parameter tuning
tools such as grid and random search, the configuration of the models was done
manually. Table 2.5 summarizes the hyper-parameters used for training the
models. We used the implementation of Decision Tree, Random Forest, and
AdaBoost algorithms available in the Python scikit-learn library [75] and then
used the Keras library [76] for the implementation of Multilayer NN and CNN.

The hyper-parameters of the three tree-based models were kept in their
default state as found in the scikit-learn library. The only alterations made
were in the 'random state’ value in Decision Trees and the n_estimator (number
of trees) in both Adaboost and Random Forest. With respect to the ANN
models, the architecture of the multilayer ANN was represented with three
sequential dense layers that consisted of: one input layer, one hidden layer, and
one output layer. For the CNN, the stack of layers comprised of: a Reshape
layer, a Convolution layer, a Maxpooling layer, and four Dense layers. The
learning in both models was induced over 100 epochs (iterations), as can be
seen in table 2.5

2.6. RESULTS 43

The performance of the classifiers were evaluated using simple retrieval
measure: recall and precision.
These measures are based on the following four categories of errors:

e True positives: correct prediction of test executions that pass
e True negatives: correct prediction of test executions that fail
e False positives: incorrect prediction of test executions that pass
e False negatives: incorrect prediction of test executions that fail

Precision is the number of correctly predicted tests divided by the total number
of predicted tests, calculated as follows:

|TruePositive|

precision = |TruePositive| + |False Positive]

Recall is the number of correctly predicted tests divided by the total number
of tests that should have been positive.

|TruePositive|

I=
reca |TruePositive| + |FalseN egative|

While recall and precision measures relate to one another, precision is a mea-
sure of exactness, whereas recall is a measure of completeness indicating the
percentage of all predicted failed tests in our case. Since the goal of this study
is to reduce the amount of test executions without altering the effectiveness of
testing, we needed to minimize the risk of missing tests that will actually fail
and, therefore, accept some false alarms in the prediction of failed tests. Thus,
we believe that the measure of the model’s precision is more important than
its recall.

2.6 Results

To answer the research question, we present the results of using MeBoTS for
predicting test case verdicts. We interpret the results of the analysis in light of
the reported rates of precision and recall and the values of the four categories
of errors: true negatives, false positives, false negatives, and true negatives, as
shown in Tables 2.6 and 2.7 list the results of training the five models using
the original and curated data sets.

2.6.1 Training the Models on Churns of Varying Sizes

The evaluation of the five models in the first iteration reports a mean precision
of 47% and a mean recall of 17%, suggesting that all models achieved low
performance. The best result was obtained by the Multilayer NN model with
a precision rate of 50.3% and a recall rate of 31%. The precision and recall
rates for the five models can be seen in Figure 4. The interpretation of these
values suggest that out of the 406,948 lines of code that actually triggered a
test case failure, the model correctly predicted test failure for 226,994 lines,

44

CHAPTER 2. PAPER A

Table 2.6: Models Evaluation before Data Curation

Model Precision | Recall | True Neg | False Pos | False Neg | True Pos
DT 43.9% 17.2% 191,883 40,781 153,709 32,003
RF 44% 17.7% 190,864 41,800 152,794 32,918

AdaBoost | 51.9% 6.5% | 221,472 11,192 173,590 12,122
NN 50.3% 31% 226,994 5,670 179,954 5 758
CNN 50.7% 16.5% 202,745 29,919 154,890 30,822

whereas it could correctly predict a passing test verdict for 5,758 out of 11,428
lines. Similarly, the results of the four categories of errors for the other models
can be seen in Table 2.6 and interpreted in the same fashion.

2.6.2 Training the Models on Churns of Small Sizes

The second iteration of analysis involved training the same set of models on the
curated data-set, which excluded tests covering churns with quantities above
110k lines of code. The results, shown in Figure 2.5, indicate an improvement
in precision and recall when compared to the results in the first iteration for
the same types of models. Table 2.7 reports the results from the second round
of training, showing a mean precision of 70% and a mean recall of 44.5%.
The Multilayer NN model performed best in prediction, such that, it correctly
predicted 48,755 lines that actually triggered a test case failure, out of 67,363
lines in the test set.

Table 2.7: Models Evaluation after Data Curation.

Model Precision | Recall | True Neg | False Pos | False Neg | True Pos
DT 68% 48.4% 46,445 7,548 17,011 15,981
RF 67.9% 49.5% 46,252 7,741 16,637 16,355

AdaBoost 69% 36% 48,656 5,337 21,075 11,917
NN 73.3% 43.6% 48,755 5,238 18,608 14 384
CNN 71.75% 44.9% 48,162 5,831 18,179 14,813

2.6.3 Implication

The results show that we can predict the verdict of a test case with a precision
of 73.3%. This means that we can use the results to reduce the test suite by
excluding tests that are predicted to pass, but we need to know that there
is 26.7% probability that we miss a test case failure. This means that the
reduction of the test suite comes with a cost. This cost can be reduced, for
example, if we collect the test cases which were not executed and execute them
with lower frequency (e.g. during a nightly test suite instead of hourly builds).

2.7 Validity analysis

When analyzing the validity of our study, we used the framework recommended
by Wohlin et al. [55]. We discuss the threats to validity in two categories:
internal and external. Typically, a number of internal threats to validity emerge

2.8. RECOMMENDATIONS 45

80
71 m precision
» 66 67 63 - Recall

50

30

20

10

Figure 2.5: Precision and Recall of The Models After Data Curation

in studies that involve designing an ANN architecture, namely that the number
of hyper-parameters to tune is large that we cannot cover all combinations
to decide on the best configuration for the network. To minimize this threat,
we used two different multilayer neural networks and trained them during the
two iterations of analysis. This provided us with a sanity check on whether
the networks produce similar results. Another threat to internal validity is
in the random selection of test cases. There is a chance that the extracted
test executions contain one or more test that failed due to factors that do not
pertain to functional deficiencies, but due to, for instance, an environment
upgrade or machinery failure at execution time. Similarly, there is a chance
that the extracted test executions may have failed as a result of defects in
the test script code and not the base code. In order to minimize this threat,
we collected data for multiple test cases, thus minimizing the probability of
identifying test cases which are not representative.

The major threat to external validity for this study comes from the number
of extracted tests that were used for training the classifiers. We only studied
one company and one product and a limited number of test cases. This was a
design choice as we wanted to understand the dynamics of test execution and
be able to use statistical methods alongside the machine learning algorithms.
However, we are aware that the generalization of the results for different types
of systems require further investigations using tests and churns from different
systems.

2.8 Recommendations

In this section, we provide our recommendations for practitioners who would
like to utilize MeBoTS for early prediction of test case verdicts.

e The choice of using deep learning or tree-based models for solving this
supervised ML problem does not lead to better prediction performance.
For this reason, we suggest the use of Decision Trees, since they require
less computational time and provide knowledge as to how the results of
classification were derived.

e We suggest to only utilize code churns that are homogeneous and small in

46 CHAPTER 2. PAPER A

size prior to applying features extraction with BOW. Small code churns
introduce less noise and therefore the quality of the predictions is higher.
This can also save practitioners ample time for data curation.

e We recommend that practitioners only extract historical test executions
that have failed due to reasons related to functional defects for training
the ML model. This knowledge can be obtained from testers/developers
who are familiar with the recurrent issues in the source code.

2.9 Conclusion and Future Work

This paper has presented a method (MeBoTS) for achieving early prediction
of test case verdicts by training a machine learning model on historical test
executions and code churns. We have evaluated the method using two data sets,
one containing a variation of large and small churns, and a second containing
only small churns. The results from training the models on small churns
revealed a precision rate of 73% and a recall of 43.6%, suggesting that the
application of the method is promising, yet more investigation is required
to validate the findings. Moreover, contrary to other existing methods that
use statistical correlations for predicting test verdicts, the main advantage of
MeBoTS is the ability to predict verdicts of new code changes as they emerge
during development and before they get integrated into the main branch.

We believe that the results of this study open new directions for studies
to investigate the effectiveness of MeBoTS on different types of systems using
larger set of small churns with more test case executions. Finally, studies
that investigate the impact of using different feature extraction techniques,
such as word embedding are encouraged to identify any changes in the overall
performance of MeBoTS.

Acknowledgment

This research has been partially carried out in the Software Centre, University
of Gothenburg, and Ericsson AB.

Chapter 3

Paper B

The Effect of Class Noise On Continuous Test Case Selec-
tion: A Controlled Experiment on Industrial Data

Al-Sabbagh KW, Hebig R, Staron M.

In International Conference on Product-Focused Software Process
Improvement (pp. 287-303). Springer, Cham, 2020.

47

Abstract

Continuous integration and testing produce a large amount of data about
defects in code revisions, which can be utilized for training a predictive learner
to effectively select a subset of test suites. One challenge in using predictive
learners lies in the noise that comes in the training data, which often leads
to a decrease in classification performances. This study examines the impact
of one type of noise, called class noise, on a learner’s ability for selecting test
cases. Understanding the impact of class noise on the performance of a learner
for test case selection would assist testers decide on the appropriateness of
different noise handling strategies. For this purpose, we design and implement
a controlled experiment using an industrial data-set to measure the impact of
class noise at six different levels on the predictive performance of a learner. We
measure the learning performance using the Precision, Recall, F1l-score, and
Mathew Correlation Coefficient (MCC) metrics. The results show a statistically
significant relationship between class noise and the learner’s performance for
test case selection. Particularly, a significant difference between the three
performance measures (Precision, F1-score, and MCC) under all the six noise
levels and at 0% level was found, whereas a similar relationship between recall
and class noise was found at a level above 30%. We conclude that higher class
noise ratios lead to missing out more tests in the predicted subset of test suite
and increases the rate of false alarms when the class noise ratio exceeds 30%.

48 CHAPTER 3. PAPER B

3.1 Introduction

In testing large systems, regression testing is performed to ensure that recent
changes in a software program do not interfere with the functionality of the
unchanged parts. Such type of testing is central for achieving continuous
integration (CI), since it advocates for frequent testing and faster release of
products to the end users’ community. In the context of CI, the number of test
cases increases dramatically as commits get integrated and tested several times
every hour. A testing system is therefore deployed to reduce the size of suites
by selecting a subset of test cases that are relevant to the committed code.
Over the recent years, a surge of interest among practitioners has evolved to
utilize machine learning (ML) to support continuous test case selection (TCS)
and to automate testing activities [77], [78], [79]. Those interests materialized
in approaches that use data-sets of historical defects for training ML models to
classify source code as defective or not (i.e. in need for testing) or to predict
test case verdicts [78], [80], [77].

One challenge in using such learning models for TCS lies in the quality of
the training data, which often comes with noise. The ML literature categorized
noise into two types: attribute and class noise [81], [82], [26]. Attribute
noise refers to corruptions in the feature values of instances in a data-set.
Examples include: missing and incomplete feature values [83]. Class noise, on
the other hand, occurs as a result of either contradictory examples (the same
entry appears more than once and is labeled with a different class value) or
misclassification (instances labeled with different classes) [84]. This type of
noise is self-evident when, for example, analyzing the impact of code changes
on test execution results. It can occur that identical lines are labeled with
different test outcomes for the same test. These identical lines become noise
when fed as input to a learning model.

To deal with the problem of class noise, testers can employ a number of
strategies. These can be exemplified by eliminating contradictory entries or
re-labeling such entries with one of the binary classes. These strategies have an
impact on the performance of a learner and the quality of recommendations of
test cases. For example, eliminating contradictory entries results in reducing the
amount of training instances, which might lead to a decrease in a learner’s ability
to capture defective patterns in the feature vectors and therefore decreases the
performance of a learner for TCS. Similarly, adopting a relabeling strategy might
lead to training a learner that is biased toward one of the classes and therefore
either include or exclude more tests from the suite. Excluding more tests
in CI implies higher risks that defects remain undetected, whereas including
more tests implies higher cost of testing. As a result, it is important for test
orchestrators to understand how much noise there is in a training data set and
how much impact it has on a learner’s performance to choose the right noise
handling strategy.

Our research study examines the effect of different levels of class noise on
continuous testing. The aim is to provide test orchestrators with actionable
insights into choosing the right noise handling strategy for effective TCS. For
this purpose, we design and implement a controlled experiment using historical
code and test execution results which belong to an industrial software. The
specific contributions of this paper are:

3.2. DEFINITION AND EXAMPLE OF CLASS NOISE IN SOURCE CODE 49

e providing a script for creating a free-of-noise data-set which can facilitate
the replication of this experiment on different software programs.

e presenting an empirical evaluation of the impact of class noise under
different levels on TCS.

e providing a formula for measuring class noise in source code data-sets.

By seeding six variations of class noise levels (independent variable) into the
subjects and measuring the learning performance of an ML model (dependent
variables), we examine the impact of each level of class noise on the learning
performance of a TCS predictor. We address the following research question:

RQ: Is there a statistical difference in predictive performance for a
test case selection ML model in the presence and absence of class
noise?

3.2 Definition and Example of class Noise in
Source Code

In this study, we define noise as the ratio of contradictory entries (mislabelled)
found in each class to the total number of points in the data-set at hand. The
ratio of noise can be calculated using the formula:

Number of Contradictory Entries
Total Number of Entries

Since the contradictory entry can only be among two (or more) entries, the
number of all entries for which a duplicate entry exists with a different class
label. A duplicate entry is an entry that has the same line vector, but can
have different labels. For example, a data-set containing ten duplicate vectors
with nine that are labeled true and one labeled false has ten contradictory
entries. It is not trivial to define a general rule to identify which class label
is correct based on the number of entries. For example, noise sources might
systematically tend to introduce false ”false” labels. Since we do not know
exactly which class should be used in this context, we cannot simply re-label
any instance, as suggested by the currently used solutions (e.g. using majority
voting [52] or entropy measurements [53]) and therefore we count all such entries
as contradictory. As an illustration of the problem, in the domain of TCS,
Figure 3.1 shows how a program is transformed into a line vector and assigned
a class label. It illustrates how a data-set is created for a classification task to
predict whether lines of a C++ program trigger a test case failure (class 0) or
a test case pass (class 1). The class label for each line vector is determined by
the outcome of executing a single test case that was run against the committed
code fragment in CI. In this study, a class value of '0” annotates a test failure,
whereas a class value of '1’ annotates a passed test. The Figure shows the
actual code fragment and its equivalent line vector representation achieved via
a statistical count approach (bag-of-words). The line vectors in this example
correspond to source code tokens found in the code fragment. Note how lines 5
and 11 are included in the vector representations, since brackets are associated
with loop blocks and function declarations, which can be important predictors

Noise ratio =

50 CHAPTER 3. PAPER B

Features
Vector Transformation !

)) line | char | cin | std | cout | literal | [[]|>|<|:|endl | num |;| class
1 #include <lostream 61000 0 1 |1zoojo] o] 1 |1 o
2 using namespace std 7/0 (|10 0 1 |ofoj2folo] 0 | O (1 1
3 5 8 0 0 1 1 2 |ofojo|6|2| 1 0 (1] 1
4 -int main() Noise i 9 0 i @ 0 1 |0(0j2|0(0| O © il ©
5 { 10 0 O It 1 2 |(0|0|0f6(|2| 1 0 |1 0
6 char temp[10];
7 ¢in > tem;
8 std::cout << "you entered: " << temp << endl;
9 cin > temp;
10 std: cout << "you entered: " << temp << endl;

i

Figure 3.1: Class Noise in Code Base.

to capture defective patterns. All shaded vectors in the sparse matrix (lines 7
to 10) are class noise since pairs (7,9) and (8,10) have the same line vectors,
but different label class — 1 and 0. The green shaded vectors are 'true labeled
instances’ whereas the gray shaded vectors are 'false labeled instances’. Note
that the Table in Figure 3.1 shows an excerpt of the entries for this example.
Since there are 11 lines of code, the total number of entries is 11. The formula
for calculating the noise ratio for this example is thus:

4
Noi tio= — = 0.
oise ratio 11 0.36

If lines 7 to 10 are fed as input into a learning model for training, it is
difficult to predict the learner’s behavior. It depends on the learner. We also do
not know which case is correct — which lines should be re-labelled or whether
we should remove these lines. The behavior of the learner, thus, depends on
the noise removal strategy, which also impacts the test selection process. If we
choose to re-label lines 7 and 8 with class 0 (test case failure), this means that
the learner is biased towards suggesting to include the test in the test suite.
If we re-label lines 9 and 10 with class 1 (test case pass), then the learner is
biased towards predicting that a test case should not be included in a test
suite. Finally, if we remove all contradictory entries (7, 8, 9, and 10), then we
reduce the learner’s ability to capture the patterns in the feature vectors for
these lines — we have fewer training cases (11 — 4 = 7 cases).

3.3 Related Work

Several studies have been made to identify the effect of class noise on the
learning of ML models in several domains [16], [23], [24]. To our knowledge, no
study addresses the effect of class noise on the performance of ML models in
a software engineering context. Therefore, understanding the impact of class
noise in a software engineering context, such as testing, is important to utilize
its application and improve its reliability. This section presents studies that

3.3. RELATED WORK 51

highlight the impact of class noise on performances of learners in a variety of
domains. It also mentions studies that use text mining and ML for TCS and
defect prediction.

3.3.1 The Impact of Noise on Classification Performance

The issue of class noise in large data-sets has gained much attention in the ML
community. The most widely reported problem is the negative impact that
class noise has on classification performance.

Nettletonet et al. [16] examined the impact of class noise on classification of
four types of classifiers: naive Bayes, decision trees, k-Nearest Neighbors, and
support vector machines. The mean precision of the four models were compared
under two levels of noise: 10% and 50%. The results of the comparison showed
a minor impact on precision at 10% noise ratio and a larger impact at 50%.
In particular, the precision obtained by the Naive Bayes classifier was 67.59%
under 50% noise ratio compared with 17.42% precision for the SVM classifier.
Similarly, Zhang and Yang [23] examined the performance of three linear
classification methods on text categorization, under 1%, 3%, 5%, 10%, 15%,
20% and 30% class noise ratios. The results showed a dramatic, yet identical,
decrease in the classification performances of the three learners after noise ratio
exceeded 3%. Specifically the Fl-score measures for the three models ranged
from 60% to 60% under 5% noise ratio and from 40% to 43% under 30% noise
ratio. Pechenizkiy et al. [44] experimented on 8 data-sets the effect of class
noise on supervised learning in medical domains. The kNN, Naive Bayes and
C4.5 decision tree learning algorithms were trained on the noisy datasets to
evaluate the impact of class noise on accuracy. The classification accuracy
for each classifier was compared under eleven class noise levels 0%, 2%, 4%,
6%, 8%, 10%, 12%, 14%, 16%, 18%, and 20%. The results showed that when
the level of noise increases, all classifiers trained on noisy training sets suffer
from decreasing classification accuracy. Abellan and Masegosa [24] conducted
an experiment to compare the performance of Bagging Credal decision trees
(BCDT) and Bagging C4.5 in the presence of class noise under 0%,5%,10%,20%
and 30% ratios. Both bagging approaches were negatively impacted by class
noise, although BCDT was more robust to the presence of noise at a ratio
above 20%. The accuracy of BCDT model dropped from 86.9% to 78.7% under
a noise level of 30% whereas the Bagging C4.5 accuracy dropped from 87.5%
to 77.2% under the same level.

3.3.2 Text Mining for Test Case Selection and Defect
Prediction

A multitude of early approaches have used text mining techniques for leveraging
early prediction of defects and test verdicts using ML algorithms. However,
these studies omit to discuss the effect of class noise on the quality of the
learning predictors. In this paper, we highlight the results of some of these
work and validate the impact of class noise on the predictive performance of a
model for TCS using the method proposed in [77].

A previous work on TCS [77] utilized text mining from source code changes
for training various learning classifiers on predicting test case verdicts. The

52 CHAPTER 3. PAPER B

method uses test execution results for labelling code lines in the relevant
tested commits. The maximum precision and recall achieved was 73% and
48% using a tree-based ensemble. Hata et al. [78] used text mining and spam
filtering algorithms to classify software modules into either fault-prone or non-
fault-prone. To identify faulty modules, the authors used bug reports in bug
tracking systems. Using the ’id’ of each bug in a given report, the authors
tracked files that were reported as defective, and consequently performed a
‘diff’ command on the same files between a fixed revision and a preceding
revision. The evaluation of the model on a set of five open source projects
reported a maximum precision and recall values of 40% and 80% respectively.
Similarly, Mizuno el al. [85] mined text from the ArgoUML and Eclipse BIRT
open source systems, and trained spam filtering algorithms for fault-prone
detection using an open source spam filtering software. The results reported
precision values of 72-75% and recall values of 70-72%. Kim et al. [79] collected
source code changes, change metadata, complexity metrics, and log metrics to
train an SVM model on predicting defects on file-level software changes. The
identification of buggy commits was performed by mining specific keywords
in change log messages. The predictor’s quality on 12 open source projects
reported an average accuracy of 78% and 60% respectively.

3.4 Experiment Design

To answer the research question, we worked with historical test execution data
including results and their respective code changes for a system developed
using the C language in a large network infrastructure company. This section
describes the data-set and the hypotheses to be answered.

3.4.1 Data Collection Method

We worked with 82 test execution results (passed or failed) that belonged to
12 test cases and their respective tested code (overall 246,850 lines of code)?.
First, we used the formula presented in section 3.2 to measure the level of class
noise in the data-set - this would help us understand the actual level of class
noise found in real-world data-sets. Applying the formula indicated a class
noise level of 80.5%, with 198,778 points identified as contradictory. For the
remainder of this paper, we will use the term ’code changes data-set’ to refer
to this data-set. Our first preparation task for this experiment was to convert
the code changes data-set into line vectors. In this study, we utilized a bi-gram
BoW model provided in an open source measurement tool [43] to carry out the
vector transformation. The resulting output was a sparse matrix with a total
of 2251 features and 246,850 vectors. To eliminate as many confounding factors
as possible, we used the same vector transformation tool and learning model
across all experimental trials, and fixed the hyper-parameter configurations in
both the vector transformation tool and the learning model (see section 3.5.3)

IDue to non-disclosure agreements with our industrial partner, our data-set can unfortu-
nately not be made public for replication.

3.4. EXPERIMENT DESIGN 53

3.4.2 Independent Variable and Experimental Subjects

In this study, class noise is the only independent variable (treatment) examined
for an effect on classification performance. Seven variations of class noise
(treatment levels) were selected to support the investigation of the research
question. Namely, 0%, 10%, 20%, 30%, 40%, 50%, 60%. To apply the treatment,
we used 15-fold stratified cross validation on the control group (see section 3.5.1)
to generate fifteen experimental subjects. Fach subject is treated as a hold out
group for validating a learner which gets trained on the remaining fourteen
subjects. A total of 105 trials derived from the 15-folds were conducted. Each
fifteen trials was used to evaluate the performances of a learner under one
treatment level.

3.4.3 Dependent Variables

The dependent variables are four evaluation measures used for the performance
of an ML classifier — Precision, Recall, F1-score, and Matthews Correlation
Coefficient (MCC) [86]. The four evaluation measures are defined as follows:

e Precision is the number of correctly predicted tests divided by the total
number of predicted tests.

e Recall is the number of correctly predicted tests divided by the total
number of tests that should have been positive.

e The Fl-score is the harmonic mean of precision and recall.

e The MCC takes the four categories of errors and treats both the true
and the predicted classes as two variables. In this context, the metric
calculates the correlation coefficient of the actual and predicted test cases
for both classes.

3.4.4 Experimental Hypotheses

Four hypotheses are defined according to the goals of this study and tested
for statistical significance in section 6. The hypotheses were based on the
assumption that data-sets with class noise rate have a significantly negative
impact on the classification performance of an ML model for TCS compared
to a data-set with no class noise. The hypotheses are as follow:

e HOp: The mean Precision is the same for a model with and without noise
e HOr: The mean Recall is the same for a model with and without noise
o HOf: The mean F1-score is the same for a model with and without noise

o HOmcc: The mean MCC is the same for a model with and without noise

For example, the first hypothesis can be interpreted as: a data-set with a higher
rate of class noise will result in significantly lower Precision rate, as indicated
by the mean Precision score across the experimental subjects. After evaluating
the hypotheses, we compare the evaluation measures under each treatment
level with those at 0% level.

54 CHAPTER 3. PAPER B

3.4.5 Data Analysis Methods

The experimental data were analyzed using the scikit learn library with Python
[75]. To begin, a normality test was carried out using the Shapiro-Wilk test to
decide whether to use a parametric or a non-parametric test for analysis. The
results showed that the distribution of the four dependent variables did not
deviate significantly from a normal distribution (see section 3.6.2 for details). As
such, we decided to use two non-parametric tests, namely: Kruskal-Wallis and
Mann-Whitney. To evaluate the hypotheses, the Kruskal-Wallis was selected
for comparing the median scores between the four evaluation measures under
the treatment levels. The Mann—Whitney U test was selected to carry out a
pairwise comparison between the evaluation measures under each treatment
level and the same measures at a 0% noise level.

3.5 Experiment Operations

This section describes the operations that were carried out during this experi-
ment for creating the control group and seeding class noise.

3.5.1 Creation of The Control Group

To support the investigation of the hypotheses, a control group was needed
to establish a baseline for comparing the evaluation measures under the six
treatment levels. This control group needs to have a 0% ratio of class noise,
i.e. without contradictory entries. To have control over the noise ratio in the
treatment groups, these will then be created by seeding noise into copies of the
control group data-set (see Section 3.5.2). The classification performance in
the treatment groups will then be compared to that in the control group (see
Section 3.5.3). In addition, the distribution of data points in the control group
is expected to strongly influence the outcome of the experiment. To control
for that we aim to create optimal conditions for the algorithm. ML algorithms
can most effectively fit decision boundary hyper-planes when the data entries
are similar and linearly separable [87]. Therefore, we decided to start from our
industrial code changes data-set (See Section 3.4.1) and extract a subset of
the data, by detecting similar vectors in the ”Bag of Words” sparse matrix.
In this study, we decided to identify similarity between vectors based on their
relative orientation to each other. What follows is a detailed description of
the algorithm used for constructing the control group. The algorithm starts
by loading the feature vectors from our industrial code changes data-set and
their corresponding label values (passed or failed) into a data frame object. To
establish similarity between two vectors we use the cosine similarity function
provided in the scikit learn library [75] working with a threshold of 95%. For
each of the two classes (passed or failed), one sample feature vector is randomly
picked and used as a baseline vector to compare its orientation against the
remaining vectors within its class. The selection criterion of the two baseline
vectors is that they are not similar. This is important to guarantee that the
derived control group has no contradictory entries (noise ratio = 0). Each of the
two baseline vectors is then compared with the remaining vectors (non-baseline)
for similarity. The only condition for selecting the vectors is based on their

3.5. EXPERIMENT OPERATIONS 55

similarity ratio. If the baseline and the non-baseline vectors are similar more
than the predefined ratio of 95%, then the non-baseline vector is added to
a data frame object. Table 3.1 shows the two baseline entries before being
converted into line vectors. Due to non-disclosure agreement with our industrial
partner, words that are not language specific such as variable and class names
are replaced with other random names.

Table 3.1: The Two Baseline Entries Before Coversion

Line of Code Class
measureThreshold(DEFAULT _MEASURE) 1
if (!Session.isAvailable()) 0

The script for generating the datasets is found at the link in the footnote?.
The similarity ratio of 95% was chosen by running the above algorithm a
multiple times using five ratios of the predefined similarity ratio. The criterion
for selecting the optimal threshold was based on the evaluation measures of
a random forest model, trained and tested on the derived control data-set.
That is, if the model’s Precision and Recall reached 100%, i.e. made neither
false positive nor false negative predictions, then we know that control group
has reached sufficient similarity for the ML algorithm to work as efficient as
possible. The following threshold values of similarity were experimented using
the above algorithm: 75%, 80%, 85%, 90%, and 95%. Experimenting on these
ratios with a random forest model showed that a ratio of 95% cosine similarity
between the baseline vector and the rest yield a 100% of Precision, Recall,
Fl-score, and MCC. As a result, we used a ratio of 95% to generate the control
group. The resulting group contained 9,330 line vectors with zero contradictory
entries between the two classes. The distribution of these entries per class was
as follow:

e Entries that have at least one duplicate within the same class: 3,679
entries labeled as failed and 4,280 entries as pass.

e Entries with no duplicates in the data-set: 1 entry labeled as failed and
1,370 entries as passed.

3.5.2 Class Noise Generation

To generate class noise into the experimental subjects, we followed the definition
of noise introduced in section 3.2 by carrying out the following two-steps
procedure:

[a] Given a noise ratio Nr, we randomly pick a portion of Nr from the
population of duplicate vectors within each class in the training and
validation subjects.

[b] We re-label half of the label values of duplicate entries selected in step
1 to the opposite class to generate Nr noise ratio. In situations where
the number of duplicate entries in Nr are uneven, we re-label half of the
selected Nr portion minus one entry.

2https://github.com/khaledwalidsabbagh /noise_free_set.git

56 CHAPTER 3. PAPER B

4500
3993 3993 3993 3993 3993 3993 3994 3994 3994 3994 3994

w
©
©
w
w
©
©
w
w
©
©
w
w
©
©
w

w4000

£ 3500 229 || 3436 | 3394 [3344 [| 3466 [} 3509 H 3388 || 3353 | 3369 [3380 || 3500 [} 3468 | 3363 |{ 3389 || 3448

P-4

w

<3000

< 2500

o

w. 2000

(o]

oc 1500

&5

gmoo o Py
< << Mo W< < < < < < bl fal el on oy [l on

S so0 sy B3 e B2 IS IS A B S WS Ne B BF NS B2 02 NS B fE B sl B B 1S B i 1Sl i
hd .

= o B2 Wm B N Ww N W B 0= Ew B e B e e A e CN =8 R =1 O0 'R "R °f O P8O0
Tt 3 5T T 3T T T T 8 T " T D T DT T T T T T T DT DT T BT T
g 22 2 ¢ 2 2 9 @ 9 g 9 @ 2 Y LY OQ 2@ @)@ T Q@ T I g I
§EEEFEEFEFEFEFEFEFEFEEEFEFEFEFE
Trial1 Trial2 Trial3 | Trial4 Trial5 Trial6 Trial7 Trial 8 Trial 9 | Trial 10 Trial 11 Trial 12 Trial 13 Trial 14 Trial 15

TRIALS

W training @ validation

Figure 3.2: The Distribution of The Binary Classes After Generating Noise at
10% Ratio.

In this experiment, a design choice was made to seed each treatment level (10%,
20%, 30%, 40%, 50%, and 60%) into both the training and validation subjects.
This is because we wanted to reflect a real-world scenario where the data in
both the training and test sets comes with class noise. The above procedure
was repeated 15 times for each level, making a total of 90 trials.

A common issue in supervised ML is that the arithmetic classification
accuracy becomes biased toward the majority class in the training data-set,
which might lead to the extraction of poor conclusions. This effect might be
magnified if noise was added without checking the balance of classes after
generating noise. In this experiment, due to the large computational cost
required to check the distribution of classes across 90 trials, we only checked
the distribution under 10% noise ratio. Figure 3.2 shows how the classes in the
training and validation subjects were distributed across 15 trials for a 10% noise
ratio. The x-axis corresponds to the binary classes and the y-axis represents
the number of entries in the training and validation sets. The Figure shows a
fairly balanced distribution in the training subjects with an average of 3,421
entries in the passed class and 3,993 entries in the failed class.

3.5.3 Performance Evaluation Using Random Forest

We evaluate the effect of each noise level on learning by training a random
forest model. The choice of using a random forest model was due to its low
computational cost compared to deep learning models. The hyper-parameters
of the model were kept to their default state as found in the scikit-learn
library (version 0.20.4). The only configuration was made on the n_estimator
parameters (changed from 10 to 100), which corresponds to the number of trees
in the forest. We tuned this parameter to minimize chances of over-fitting the

model.

3.6 Results

This section discusses the results of the statistical tests conducted to evaluate
hypotheses HOp, HOr, HOf, and HOmcc and to answer the research question.

3.6. RESULTS 57

3.6.1 Descriptive Statistics

The descriptive statistics are presented in Tables 4.4, 4.5, 3.4, and 3.5 indi-
vidually for each dependent variable. The values for Precision (Table 4.4),
Recall (Table 4.5), Fl-score (Table 3.4), and MCC (Table 3.5) are shown for
each of the noise ratio (0%, 10%, 20%, 30%, 40%, 50%, and 60%). A first
evident observation from the tables is that there is a statistically significant
relationship between the mean values of the four dependent variables and the
noise ratio, where a lower value of a given dependent variable indicates higher
noise ratio. Three general observations can be made by examining the data
shown in the four tables:

e There is an inverse trend between noise ratio and learning precision,
F1l-score, and MCC. That is, when the noise level increases, the classifier
trained on noisy instances suffers a small decrease in the four evaluation
measures. Figure 3.3 shows this relationship where the x-axis indicates
the noise ratio and the y-axis represents the evaluation measures.

e There exists a higher dispersion in the evaluation scores when the noise
level increases (i.e. higher standard deviation [SD]).

e The mean difference between the recall values under each noise ratio is
relatively smaller than those with the other three dependent variables.

Table 3.2: Descriptive Stats For Precision.

Noise | N | Mean | SD SE 95% Conf
0% 15 0.997 0.000 | 0.000 0.997
10% 15 0.966 0.009 | 0.002 0.961
20% 15 0.933 0.019 | 0.005 0.923
30% 15 0.900 0.029 | 0.007 0.884
40% 15 0.867 0.039 | 0.010 0.846
50% 15 0.834 0.048 | 0.012 0.808
60% 15 0.801 0.059 | 0.015 0.770

Table 3.3: Descriptive Stats For Recall.

Noise | N | Mean | SD SE 95% Conf.
0% 15 1.000 0.000 | 0.000 1.000
10% 15 0.984 0.032 | 0.008 0.967
20% 15 0.970 0.061 | 0.015 0.937
30% 15 0.955 0.086 | 0.022 0.910
40% 15 0.940 0.109 | 0.028 0.883
50% 15 0.931 0.134 | 0.034 0.860
60% 15 0.897 0.144 | 0.037 0.821

3.6.2 Hypotheses Testing

We begin the evaluation of the hypotheses by checking whether the distribution
of the dependent variables deviates from a normal distribution. The Shapiro-

58 CHAPTER 3. PAPER B

Table 3.4: Descriptive Stats For Fl-score.

Noise | N | Mean SD SE 95% Conf
0% 15 0.998 0.000 | 0.000 0.998
10% 15 0.974 0.013 | 0.003 0.967

20% 15 | 0.949 | 0.025 | 0.006 0.936
30% 15 | 0.923 | 0.034 | 0.008 0.905
40% 15 | 0.897 | 0.044 | 0.011 0.873
50% 15 | 0.871 | 0.055 | 0.014 0.842
60% 15 | 0.836 | 0.059 | 0.015 0.805

Table 3.5: Descriptive Stats For MCC.

Noise | N | Mean | SD SE | 95% Conf.
0% 15 0.996 0.000 | 0.000 0.996
10% 15 0.946 0.030 | 0.007 0.930
20% 15 0.894 0.060 | 0.015 0.863
30% 15 0.841 0.088 | 0.022 0.795
40% 15 0.790 0.119 | 0.030 0.727
50% 15 0.742 0.156 | 0.040 0.660
60% 15 0.674 0.181 | 0.046 0.579
1,000
0,900 | -
0,800 o L
£ 0,700
% 0,600
éo,soo g § § X S I B =|3]
5 0,400 |8 N = l=le 2ls|IS gg g1}
20,300 -
0,200
0,100
0,000
0% 10% 20% 30% 40% 50% 60%
Noise ratio
m Precision m Recall m F-score McCcC

Figure 3.3: Mean Distribution of the Evaluation Measures.

Wilk test results were statistically significant for all the evaluation measures
in the majority of the noise ratios. Table 3.6 shows the statistical results of
normality for the dependent variables on all noise ratios. These results indicate
that the assumption of normality in the majority of the samples can be rejected,
as indicated by the p-value (p <0.05) in Table 3.6. Since we have issues with
normality in the majority of samples, we decided to run a non-parametric test
for comparing the difference between the performance scores under the six
noise ratios.

To examine the impact of class noise on the four dependent variables,
the Kruskal-Wallis test was conducted. Table 3.7 summarizes the statistical
comparison results, indicating a significant difference in Precision, F1-score,
and MCC. Specifically, the results of the comparison for precision showed a test
statistics of 56.8 and a p-value below 0.001. Likewise, a significant difference
in the comparisons between the evaluation measures of Fl-score and MCC

3.6. RESULTS 59

(Fl-score Results: Test Statistics = 54.172, p-value <0.005, MCC Results:
Test Statistics = 53.398, p-value <0.005) groups was found. In contrast, no
significant difference between the Recall measures was identified.

Table 3.6: Statistical Results For Normality.

0% 10% 20% 30% 10% 50% 60%

Proc | 5=059 | S=0.82 | S=087 | S=0.91 | S=0.91 | S=0.88 | S=0.92

p<0.005 | p=0.02 | p=0.11 | p=0.28 | p=0.32 | p=0.13 | p=0.40
Recall| S=1.00 [5=0.36 | S=0.50 | S=0.50 | S=0.51 | S=0.56 | S=0.53

p=1.00 | p<0.005 | p<0.005 | p<0.005 | p<0.005 | p<0.005 | p<0.005
Pl S=0.59 | S=0.78 | S=0.67 | S=0.74 | S=0.83 | S=0.69 | S=0.8
ccore | P<0:005 | p=0.009 | p<0.005 | p=0.003 | p=0.037 | p=0.001 | p=0.02
NCC | S=0.68 [S=077 | S=0.65 | S=0.69 | S=0.77 | S=0.63 | S=0.69

p=0.001 | p=0.01 | p<0.005 | p=0.001 | p=0.01 | p<0.005 | p=0.001

Table 3.7: Statistical Comparison Between the Evaluation Measures at All
Noise Levels.

p-value statistics
precision | p<0.005 | Statistics=56.858
recall p=0.164 | Statistics=9.180
F1-score | p<0.005 | Statistics=54.172
mcc p<0.005 | Statistics=53.398

The Mann—Whitney U test with Precision, Fl-score, and MCC as the
dependent variables and noise ratio as the independent variable revealed a
significant difference (p-value below 0.005) under each of the six levels when
compared with the same measures in the no-treatment sample. However,
the statistical results for recall only showed a significant difference when the
noise level exceeded 30%. Table 3.8 summarizes the statistical results from
the Mann—Whitney test under the six treatment levels. The analysis results
from this experiment indicate that there is a statistical significant difference
in predictive performance for a test case selection model in the presence and
absence of class noise. The results from the Kruskal-Wallis test were in line
with the expectations for hypotheses HOp, HOf, HOmcc, which confirm that
we can reject the null hypotheses for HOp, HOf, HOmcc, whereas no similar
conclusion can be drawn for hypothesis HOr. While no significant difference
between the recall values was drawn from the Kruskal-Wallis test, the Mann-
Whitney test indicates that there is a significant inverse causality between class
noise and recall when noise exceeds 30%. In the domain of TCS, the practical
implications can be summarized as follow:

e Higher class noise slightly increases the predictor’s bias toward the pass
class (lower precision rate), and therefore leads to missing out tests that
should be included in the test suite.

e A class noise level above 30% has a significant effect on the learner’s
Recall. Therefore, the rate of false alarms (failed tests) in TCS increases
significantly above 30% noise ratio.

60

CHAPTER 3. PAPER B

Table 3.8: The Comparison Results From Mann-Whitney Test

10% 20% 30% 40% 50% 60%
Prec Stat=7.5, | S=0.000, S5=0.000, S5=0.000, S5=0.000, | S=0.000,
p<0.005 p<0.005 p<0.005 p<0.005 p<0.005 p<0.005

Recall Stat=45, | S=40.000, | S=40.000, | S=35.000, | S=30.000, S=25,
p=0.184 p=0.084 p=0.084 p<0.005 p=0.017 p=0.007
Fl S=17.5, S5=0.000, S5=0.000, S5=0.000, S5=0.000, | S=0.000,
score p<0.005 p<0.005 p<0.005 p<0.005 p<0.005 p<0.005
MCC S=17.5, S5=0.000, S5=0.000, S5=0.000, S5=0.000, | S=0.000,
p<0.005 p<0.005 p<0.005 p<0.005 p<0.005 p<0.005

3.7 Threats to Validity

When analyzing the validity of our study, we used the framework recommended
by Wohlin et al. [55]. We discuss the threats to validity in four categories:
external, internal, construct, and conclusion.

External Validity: External validity refers to the degree to which the results
can be generalized to applied software engineering practice.

Test cases. Since our experimental subjects belong to twelve test cases
only, it is difficult to decide whether the sample is representative. However,
to increase the likelihood of drawing a representative sample and to control
as many confounding factors, we randomly selected a small sample of 12 test
cases. Also, the random selection of tests has the potential of increasing the
probability of drawing a representative sample.

Control group. The study employed a similarity based mechanism to derive
the control group, which resulted in eliminating many entries from the original
sample. This might affect the representativeness of the sample. However, our
control group contained points that belong to an industrial program, which is
arguably more representative than studying points that we construct ourselves.
This was a trade-off decision between external and internal validity, since we
wanted to study the impact of class noise on TCS in an industrial setting and
therefore maximize the external validity.

Nature of test failure. There is a probability of mis-labelling code changes
if test failures were due to factors external to defects in the source code (e.g.,
machinery malfunctions or environment upgrades). To minimize this threat,
we collected data for multiple test executions that belong to several test cases,
thus minimizing the probability of identifying tests that are not representative.

Internal Validity Internal validity refers to the degree to which conclusions
can be drawn about the causal effect of independent on dependent variables.

Instrumentation. A potential internal threat is the presence of undetected
defects in the tool used for vector transformation, data-collection, and noise
injection. This threat was controlled by carrying out a careful inspection of
the scripts and testing them on different subsets of data of varying sizes.

Use of a single ML model. This study employed a random forest model to
examine the effect of class noise on classification performances. However, the
analysis results might differ when other learning models are used. This was a

3.8. CONCLUSION AND FUTURE WORK 61

design choice since we wanted to study the effect of a single treatment and to
control as many confounding factors as possible.

Construct Validity Construct validity refers to the degree to which experi-
mental variables accurately measure the concepts they purport to measure.

Noise ratio algorithm. Our noise injection algorithm modifies label values
without tracking which entries that are being modified. This might lead
to relabeling the same duplicate line multiple times during noise generation.
Consequently, the injected noise level might be below the desired level. Thus,
our study likely underestimates the effects of noise. However, the results
still allowed us to identify a significant statistical difference in the predictive
performance of TCS model, thereby to answer the research question.

Magjority class problem. Due to the large computational cost required to
check the balance of the binary classes under the six treatment levels, we only
checked for the class distributions for one noise level - 10%. Hence, there is
a chance that the remaining unchecked trials are imbalanced. Nevertheless,
the downward trend in the predictive performances as noise ratio increases
indicates that the predictor was not biased toward a majority class.

Conclusion Validity Conclusion validity focuses on how sure we can be
that the treatment we use really is related to the actual outcome we observe.

Differences among subjects. The descriptive statistics indicated that we
have a few outliers in the sample. Therefore, we ran the analysis twice (with
and without outliers) to examine if they had any impact on the results. Based
on the analysis, we found that dropping the outliers had no effect on the results,
thus we decided to keep them in the analysis.

3.8 Conclusion and Future Work

This research study examined the effect of different levels of class noise on
the predictive performance of a model for TCS using an industrial data-
set. A formula for measuring the level of class noise was provided to assist
testers gain actionable insights into the impact of class noise on the quality
of recommendations of test cases. Further, quantifying the level of noise
in training data enables testers make informed decisions about which noise
handling strategy to use to improve continuous TCS if necessary. The results
from our research provide empirical evidence for a causal relationship between
six levels of class noise and Precision, F-score, and MCC, whereas a similar
causality between class noise and recall was found at a noise ratio above 30%. In
the domain of the investigated problem, this means that higher class noise yields
to an increased bias towards predicting test case passes and therefore including
more of those tests in the suite. This is penalized with an increased hardware
cost for executing the passing tests. Similarly, as class noise exceeds 30%, the
prediction of false alarms with the negative class (failed tests) increases.
There are still several questions that need to be answered before concluding
that class noise handling strategies can be used in an industrial setting. A first
question is about finding the best method to handle class noise with respect to
efficiency and effectiveness. Future research that study the impact of attribute
noise on the learning of a classifier and how that compares with the impact of

62 CHAPTER 3. PAPER B

class noise are needed. Other directions for future research include evaluating
the level of class noise at which ML can be deemed useful by companies in
predicting test case failures, evaluate the relative drop of performance from a
random sample of industrial code changes and compare the performance of the
learner with the observations drawn from this experiment, study and compare
the effect of different code formatting on capturing noisy instances in the data
and the performance of a classifier for TCS. Finally, we aim at comparatively
exploring the sensitivity of other learning models to class and attribute noise.

Chapter 4

Paper C

Improving Test Case Selection By Handling Class and At-
tribute Noise

Al-Sabbagh, K.W., Staron, M. and Hebig, R.

Accepted for publication in Journal of Systems and Software.

63

Abstract

Big data and machine learning models have been increasingly used to support
software engineering processes and practices. One example is the use of ma-
chine learning models to improve test case selection in continuous integration.
However, one of the challenges in building such models is the large volume of
noise that comes in data, which impedes their predictive performance. In this
paper, we address this issue by studying the effect of two types of noise, called
class and attribute, on the predictive performance of a test selection model.
For this purpose, we analyze the effect of class noise by using an approach that
relies on domain knowledge for relabeling contradictory entries. Thereafter, an
existing approach from the literature is used to experimentally study the effect
of attribute noise removal on learning. The analysis results show that the best
learning is achieved when training a model on class-noise cleaned data only
— irrespective of attribute noise. Specifically, the learning performance of the
model reported 81% precision, 87% recall, and 84% F1-score compared with
44% precision, 17% recall, and 25% F1-score for a model built on uncleaned
data. Finally, no causality relationship between attribute noise removal and
the learning of a model for test case selection was drawn.

64 CHAPTER 4. PAPER C

4.1 Introduction

Machine Learning (ML) models have been increasingly used for automating
software engineering activities [79,88-90]. One example for the use of ML
models is optimizing software regression testing in continuous integration (CI),
where ML is used to recommend which test cases should be included in test
suites to reduce the cost overhead for testing resources. Since regression testing
is performed frequently (after every commit), they result in large quantities of
data that include test execution results. This poses an opportunity to utilize
ML when such large data is available for analyses.

Figure 4.1 illustrates a CI pipeline that includes a number of accrued test
suites of different sizes - the every-build, daily, and weekend. These suites
are organized to regressively verify that no new faults in the system arise as
a consequence of new code check-ins, with the goal of reducing the cost of
regression testing. The CI system tries to identify and select a small subset of
test cases from the pool of available tests to perform regression testing. These
test cases are added to the every-build suite and get executed as soon as new
code check-ins are submitted to the code repository. Failure to detect faults in
this early phase of testing will prolong their discovery until larger suites (the
daily or weekend suites) are executed.

Orchestrating test cases in this way allows for an increased development
speed and a reduced cost of regression testing, since faults are being continuously
discovered and fixed as soon as they are introduced into the code base. Figure
4.1 exemplifies a scenario where the CI system misses adding test case 2 (T¢2)
to the build suite. This gets penalized by an increased time of testing and
faults fixing, since (Tc2) will get executed in the daily or the weekend suite.
Therefore, it is important to find an effective approach for test case selection
to maximize the probability of detecting faults as early as new code check-ins
are made.

Several approaches in the literature sought to address the problem of
defects prediction and test case selection in CI. Examples include static code
analysis [91], [92], static code metrics [73], [58], natural language processing
(NLP) [77], [93]. These approaches use data-sets with historical defects for

\. Main branch

“ " Tel:

Pass’ “Eailn “Pass”
P Te3:

Pass' “Eail” “Pass”
“Pass” ,,T CZ.:,, = “Fail”

Limited Fail ¥ Errors e
“Pass” test scope (every build) ~ Undetected test ors “Eail
in the every-build Limited
suite test scope (daily)

Full
test scope (weekend)

b
0
,
0
I
?

Full
test scope (weekend)

Figure 4.1: CI Pipeline with Test Case Selection.

training machine learning (ML) models to classify code as either non-defective

4.1. INTRODUCTION 65

or defective (i.e. in need for testing) or to predict whether test cases will fail. In
our previous work [77], we studied an industrial case of the use of ML classifiers
and textual analysis to predict test case execution results. The method was
evaluated on a data-set whose size was 1.4m lines of code (LOC).

However, one of the challenges in building a learner for predicting test
case execution results lies in the amount of noise that comes in the data. This
challenge is particularly important in the domain of testing, since frequent
automated executions of test cases can introduce noise in an uncontrolled
way. A complete taxonomy of noise types is still an open research issue [38].
However, two categories of noise types are most commonly addressed in the
literature - class and attribute noise [17,37,84,94]. Class noise (also known as
label or annotation noise) occurs as a result of either contradictory entries or
mislabeling training entries [84], whereas attribute noise occurs due to either
selecting attributes that are irrelevant for characterizing the training instances
and their relationship with the target class, or using redundant or empty
attribute values [84], [95].

In the domain of TCS, the class noise can be observed when, for example,
a code line in the data appears more than once with different class labels
(test outcomes) for the same test. These duplicate appearances for the same
line become class noise for predictors and would consequently hamper their
classification accuracy. Similarly, one example of attribute noise in the same
domain (TCS) occurs when similar code lines are written in different coding
styles. Code lines written in the less frequently used style will be characterized
with attributes whose frequency deviates from similar code lines written in
the majority styles. These deviations can make code lines written in the less
frequently used coding styles become outliers in the data at hand and thereby
can negatively affect the learning performance.

A number of research studies proposed several techniques for handling class
and attribute noise [17], [18], [19], [20]. Those can be classified into three broad
categories: tolerance, elimination/filtering, and correction/polishing. In the
tolerance category, imperfections in the data are dealt with by leaving the noise
in place and designing ML algorithms that can tolerate a certain amount of
noise. Approaches in the elimination category seek to identify noisy entries and
remove them from the data set. Entries that are suspected to be spurious (e.g.,
mislabelled or redundant) are discarded and removed from the training data.
In the last category, instead of removing the corrupted entries, those entries
get repaired by replacing their values with more appropriate ones. There are
a number of advantages and disadvantages associated with each one of these
approaches. In the tolerance category, no time needs to be invested on cleaning
the data, but a learner built from uncleaned data might be less effective. By
filtering noisy instances, we compromise information loss in the interest of
retaining cleaner instances of the data. By carrying out correction of noisy
instances, we introduce risks of presenting undesirable attributes but preserve
maximal information in the data.

In a previous work [93], we introduced an approach for addressing the
problem of annotation noise by relabeling contradictory entries and removing
duplicate ones in one of the classes. The empirical evaluation of applying the
technique was measured with respect to precision, recall, and F1-score using
an industrial data. In this study, we extend that work by examining the effect

66 CHAPTER 4. PAPER C

of applying an attribute noise elimination approach, called Pairwise Attribute
Noise Detection Algorithm (PANDA) [25], on the performance of a TCS learner
using the class-noise cleaned data reported in [93]. The purpose is to provide
testers with insights into choosing the right noise handling strategies and to
counteract exhaustive efforts on noise cleaning for more effective TCS. For this,
we design and implement a controlled experiment on the same industrial data-
set used in our previous study [93] and examine the effect of removing training
observations that come with high attribute noise on learning. Specifically, we
address the following research question:

RQ: How can we improve the predictive performance of a learner
for test selection by handling class and attribute noise?

In this study, we focus on examining the effect of handling both class and
attribute noise on the performance of an ML classifier for selecting regression
tests on both functional and integration testing levels. The sample data-set
used belongs to a large telecommunication program written in the C language
and consists of 82 test execution results for twelve test cases. We validate the
findings by comparing the performance results of three learners with respect to
precision, recall, and F1-score. These learners are trained on: original (uncleaned
data), class-noise cleaned data, and class and attribute noise cleaned data.

Hereafter, Section 2 will correspond to the related work highlighting studies
made on class and attribute noise handling. Then, Section 3 presents background
information, providing core concept, a description of the TCS method used in
the paper, and examples and definitions on class and attribute noise in code
changes data. Section 4 describes the two approaches used in this study for
handling class and attribute noise. Section 5 describes the research methodology.
Then, Section 6 presents the evaluation results of the effect of class and
attribute noise. Thereafter, Section 7 answers the research question and presents
recommendations to testers. Section 8 addresses the threats to validity of this
study. Finally, Section 9 concludes the findings and highlights future work.

4.2 Related Work

Many research efforts have been made to handle class and attribute noise for
improving the predictive quality of learners. However, studies that investigate
the impact of class and attribute noise handling in the domain of software
engineering is lacking [15]. In this section, we begin by highlighting work that
leverage the use of ML models for early prediction of defects and test case
verdicts for test selection. Thereafter, we highlight related work that examine
the effect of class and attribute noise on learning performances.

4.2.1 Text Mining For Defect Prediction and Test Case
Selection

A multitude of early approaches have used text mining techniques for lever-
aging early prediction of defects and test case verdicts using various learning
algorithms and statistical approaches. However, these studies omit to discuss
the effect of class noise on the quality of the learning predictors. As a result, in

4.2. RELATED WORK 67

Table 4.1: Results Summary For Defects Prediction and Test case Selection
Research

Study | Type Systems Predictors Results
BIRT, ECLP, ..
(78] Esz(;ziion MODE, TPTP, Spam Filter E{Z‘Z‘;ﬁlggé()%’
and WTP
Precision 72%,
[85] Defe(.:ts. ArgoUML Spam Filter fecall TO%
Prediction | and BIRT Precision 75%,
Recall 72%
K-NN:
Regression, Precision 59%,
180] Defects JHotDraw ADABoosting, | Recall 69%
Prediction | and DNS C4.5, SVM,
K-NN Precision 59%,
Recall 23%
Apache 1.3,
Bugrzilla,
Columba,
Gaim, GForge,
B R e s e
Eclipse JDT, Plone,
PostgreSQL,
Scarab,
and Subversion
[77] TCS Industrial Software | RF Ezec(;lsllzg%?)%’

this paper, we mention some of these previous work, as summarized in Table
4.1

A previous work on test case selection [77] utilized text mining from source
code changes for training various learning classifiers on predicting test case
verdicts. The method uses test execution results for labelling code lines in
the relevant tested commits. The maximum precision and recall achieved was
73 and 48 percent using a tree-based ensemble. Hata et al. [78] used text
mining and spam filtering algorithms to classify software modules into either
fault-prone or non-fault-prone. To identify faulty modules, the authors used bug
reports in bug tracking systems. Using the ’id’ of each bug in a given report,
the authors tracked files that were reported as defective, and consequently
performed a ‘diff’ command on the same files between a fixed revision and a
preceding revision. The evaluation of the model on a set of five open source
projects reported a maximum precision and recall values of 40 and 80 percent
respectively.

Similarly, in an earlier work, Mizuno el al. [85] mined text from the ArgoUML
and Eclipse BIRT open source systems, and trained spam filtering algorithms
for fault-prone detection using an open source spam filtering software. The

68 CHAPTER 4. PAPER C

results reported a precision of 72-75 percent and a recall of 70-72.

Aversano et al. [80] extracted a sequence of source code snapshots from two
version control systems and trained five learning algorithm to predict whether
new code changes are defective or not. The K-Nearest Neighbor predictor
performed better than the other algorithms with a good trade-off between
precision and recall, yielding precision and recall values of 59-69 percent and
59-23 percent respectively.

Kim et al. [79] collected source code changes, change metadata, complexity
metrics, and log metrics to train an SVM model on predicting defects on
file-level software changes. The identification of buggy commits was performed
by mining specific keywords such as ‘Fixed’ or ‘Bug’ in change log messages.
Once a keyword is found, the assumption that changes in the associated commit
comprise a bug fix is made, and hence used for labelling code instances in the
relevant commit. The predictor’s quality on 12 open source projects reported
an average accuracy of 78 and 60 percents respectively.

4.2.2 Class Noise Handling Research

Brodley et al. [18] uses an ensemble of classifiers, named Consensus Filter
(CF), to identify and remove mislabeled instances. Using a majority voting
mechanism with the support of several supervised learning algorithms, noisy
instances are identified and removed from the training set. If the majority of
the learning algorithms fail to correctly classify an instance, a tag is given to
label the misclassified instance as noisy and later tossed out from analysis. The
evaluation results show that when the class noise level is below 40%, filtering
results in better predictive accuracy than not filtering. On the basis of their
experiments, the authors suggest that using any types of filtering strategies
would improve the classification accuracy more than not filtering.

Al-Sabbagh et al. [96] conducted a controlled experiment to examine the
effect of class noise at six levels on the learning performance for a test selection
model. The analysis was done on an industrial data for a software program
written in the C++ language. The results revealed a statistically significant
relationship between class noise and the precision, Fl-score, and Mathew
Correlation Coeflicient under all the six noise levels. Conversely, no similar
relationship was found between recall and class noise under 30% noise level.
The conclusion drawn suggested that higher class noise ratio leads to missing
out more tests in the predicted subset of test suite. Moreover, it increases the
rate of false alarms when the class noise ratio exceeds 30%.

Guan et al. [17] introduced CFAUD, a variant of the approach proposed
by Brodley et al. [18], which involves a semi-supervised classification step in
the original approach to predict unlabeled instances. The approach was tested
for an effect on learning for three ML algorithms (1-NN, Naive Bayes, and
Decision Tree) using benchmark data-sets. The empirical results indicate that
both majority voting and CFAUD have a positive effect on the learning of
the three ML algorithms under four noise levels (10%, 20%, 30%, and 40%).
However, averaged on the four noise levels, the improvement that CFAUD
provides over CF is around 12% for each of the three classifiers.

Muhlenbach et al. [37] introduced an outlier detection approach that uses
neighbourhood graphs and cut edge weight algorithms to identify mislabeled

4.2. RELATED WORK 69

entries. Instances identified as noisy are either removed or relabeled to the
correct class value. Relabeling is done for instances whom neighbours are cor-
rectly labeled, whereas entries whom neighbouring classes are heterogeneously
distributed get eliminated. Evaluated on ten domains from a machine learning
repository, three 1-NN models were built using the following training Trials:
1) without filtering, 2) by eliminating suspicious instances, 3) by relabeling or
else eliminating suspicious instances. The general observation drawn from the
analysis showed that starting from 4% noise removal level and onward, using
the filtering approach yielded better performance in 9 out of 10 of the domains
data-sets.

4.2.3 Attribute Noise Handling Research

Khoshgoftaar et al. [38] presented a rule-based approach that detects noisy
observations using Boolean rules. Observations that are detected as noisy
are removed from the data before training. The approach was compared for
efficiency and effectiveness against the C4.5 consensus filter algorithm presented
n [18]. The results drawn from the case study suggests that when seeding
noise in 1 to 11 attributes at two noise levels, the consensus filter outperforms
the rule-based approach. Conversely, the rule-based approach outperforms the
other approach with respect to efficiency.

Khoshgoftaar et al. [19] proposed an approach that computes noise ranks
of observations relative to a user defined attribute of interest. A case study for
evaluating the approach was conducted on data derived from a software project
written in C and consists of 10,883 modules. In their study, the attribute
of interest was chosen to be the class attribute. A comparison between the
efficiency and effectiveness of the method in detecting noise and a popular
classification filter algorithm [18] was made. The results reported different
effectiveness scores ranging from 24% to 100% effectiveness.

Khoshgoftaar et al. [97] extended their work in [25] and proposed an
approach that identifies noisy attributes in the data. Upon identifying attributes
that are least correlated with the target class, those attributes get eliminated
from the analysis. The approach is based on the Kendall’s Tau rank correlation
to identify weakly correlated attributes with the target attribute. In terms of
evaluation, the effectiveness of the technique was studied using two data-sets
belonging to assurance software projects, where an inspection of a software
engineering expert was done to judge the performance of the approach. The
overall results suggest a strong match between the output of the approach and
the observations drawn from an expert in the field.

Teng [98] studied the effectiveness of three noise handling approaches,
namely robustness, filtering, and correction using decision trees built by C4.5.
Twelve machine learning data sets were used for the evaluation. The classifica-
tion accuracy of the learners suggest that elimination and correction are viable
mechanisms for minimizing the negative impact of noise. In particular, using
an elimination approach before building a classifier reported an accuracy score
that ranged from 77% to 100%.

Quinlan [99] demonstrated that as the noise level in the data increases,
removing attribute noise information from the data decreases the predictive
performance of inductive learners if the same attribute noise is present in

70 CHAPTER 4. PAPER C

other attributes in the data to be classified. Similarly, Zhu and Wu concluded,
following a number of experiments, that attribute noise is not as harmful as
class noise on the predictive performance of ML models [84].

While the majority of these work emphasize on the importance of handling
both class and attribute noise in data for improving the predictive performance,
the results from our study provide counter-evidence that opposes these findings
when it comes to attribute noise. More precisely, the analysis results demonstrate
that removing training observations that come with high attribute noise has
no effect on the predictive performance of an ML classifier. These results are
in line with the findings drawn by Quinlan, Brodley and Friedl, and Zhu and
Wu [99], [100], [84].

4.3 Background, Definitions, and Examples

This section presents the core concepts needed to facilitate the reading of the
paper. It also describes the TCS method used for the evaluation of the study,
and provides definitions and examples on class and attribute noise in code
churns data.

4.3.1 Core Concepts

In our approach, we use the definition of a software program P to be a collection
of functions F <Fy, ..., F, >. Each function in P consists of a sequence of
statements S <Sj,...,5,>. P’ denotes a modified reversion of P, and includes
one or more combinations of added, removed, modified statements distant from
P. In the work here, we use the term ‘old revision’ to refer to P and ‘new
revision’ to refer to P’. The amount of code changes between P and P’ is
denoted as code churn and consists of a one or more statements S <S7,...,5,>.
A test case, denoted by tc, is a specification of the inputs and expected results
that defines a single test to verify that P’ complies with a specific requirement.
The result of executing a single test case tc is referred to as ‘test case verdict’
(passed or failed) and is denoted with tcv. The value of ¢tcv changes depending
on the code against which tc was executed. The execution of tc is denoted
with tce.

In this study, we use the tcv value of one tce to label each S, in the analyzed
code churn. A set of test cases T = <tcy, tcg, ...> is the test suite for testing
P’. Regression test selection refers to the strategy of testing P’ using a subset
of available tc in T. A duplicate entry, denoted as de, is the appearance of two
or more combinations of syntactically identical S in one or more code churns.
A set of de has contradictory entry if one or more combinations of de in the
set are labeled with different test verdicts. Pairs of contradictory entries are
treated as class noise.

4.3.2 Method Using Bag of Words For Test Case Selec-
tion (MeBoTS)

MeBoTS is a machine learning based method that functions as a predictor of
test case verdicts [77]. The method employs a predictive model that learns

4.3. BACKGROUND, DEFINITIONS, AND EXAMPLES 71

from historical code churns and their relevant test case verdicts for predicting
lines that would trigger test case failures. The method is described in 3 steps.

Code Changes Extractor (Step 1) The first step involves collecting code
churns from designated source code repositories. To automate the collection
process, we implemented a program that takes a time ordered list of historical
test case execution results queried from a database. Each element in the list
represents a metadata state of a previously executed test case, containing a
hash reference that points at a specific location in Git’s history. The program
then performs a file comparison utility (diff) between pairs of consecutive hash
references to extract a corpora of code churns between different revisions. All
empty lines that exist in the extracted code churns are filtered out from the
data before they are passed to the second step of the processing pipeline in
MeBoTs.

Textual Analysis and Features Extraction (Step 2) The second step
in the method involves transforming the collected code changes into feature
vectors. For this purpose we used an open source tool [43] that utilizes the Bag
of Words (BoW) approach for modelling textual input. The tool uses each line
from the extracted code churns in step 1 and:

e creates a vocabulary for all LOC (using the bag of words technique, with
a cut-off parameter of how many words should be included?)

e creates a token for words that fall outside of the frequency defined by the
cut-off parameter of the bag of words

e finds a set of predefined keywords in each line

e checks each word in the line to decide if it should be tokenized or if it is
a predefined feature

Therefore, MeBoTs treats code tokens as features and represents a code line
with respect to its tokens’ frequencies. To our knowledge, this way of extracting
feature vectors from the source code is new in our approach, compared with
other popular approaches for defects and test prediction. In particular, MeBoTS
can directly recognize what is written in the code without the need to compile
the code and access its abstract syntax tree for generating feature vectors. Table
4.2 lists and describes some of the most popular approaches for defects and
test prediction using source code analysis. It also highlights a few advantages
and disadvantages of these approaches and contrasts them with MeBoTs.

Training and Applying the Classifier Algorithm (Step 3) We exploit
the set of extracted features provided by the textual analyzer in step 2 and the
verdict of the executed test cases for training a predictive model on classifying
LOC into either triggering to test case failure or not.

1BoW is essentially a sequence of words/tokens, which are descendingly ordered according
to frequency. This cut-off parameters controls how many of the most frequently used words
are included as features — e.g. 10 means that the 10 most frequently used words become
features and the rest are ignored.

72

CHAPTER 4. PAPER C

Table 4.2: Comparing Popular Defect and Test Prediction Approaches with

MeBoTs.
Method Description Pros and Cons MeBoTs
Pros:
- Strong empirical - language agnostic
Uses code static evidence that supports suage ag
. and can be
metrics, such as code | the use of some code anplied on an
complexity, size, churn metrics for defects PP Ay
. . L programming
metrics to train prediction for Java
Code . . language.
. machine learning programs.
metrics o - The features from
models on classifying
. MeBoTS are not
defective code. Cons: decided & priori
Examples: [101], - Static metrics need prott,
. . and are not
[102] to be decided a priori, dependent on size
and they depend on P
the size.
Pros:
- Characterize defects - Generates
using abstract syntax feature vectors
Uses machine learning 8 o from the actual
tree information from .
models to learn the code program using
Static semantic features ' textual analysis
Code derived from abstract -Does not require
. Cons:
Analysis syntax trees. the code to be
- Code needs to be .
Examples: [91], [92], : compiled.
compiled. .
[103] - Uses statistics
- Does not scale well .
to generate its
when the number of
. feature vectors.
tree nodes increases.
Pros:
-Allows for analysis
This category relies onj of the program
. executing the program without having access - Analyzes the code
Dynamic and comparing its to the code. o
. . before compiling
Analysis actual with expected the Drogram
behavior. Cons: prog ’
Examples: [104], [105] | - If the code does
not run, no analysis
is done

4.3. BACKGROUND, DEFINITIONS, AND EXAMPLES 73

4.3.3 Noise Definitions and Examples

Noisy observations are commonly determined by two factors: 1) the correctness
of the class values, and 2) by how well the selected attributes describe learning
instances in the training data. This section provides a definition and an example
for each type of noise (class and attribute) found when analyzing input data
that corresponds to code churns (attributes) and tcv (class).

4.3.3.1 Example of the dependency between code churns and test
case verdict

In this subsection, we present an example that illustrates the dependency
between code churns and test case verdicts. The example shows how a unit
test case will react to a code change in P’ of P. Figure 4.2 shows two revisions
of an example program P written in the C++ language. The modified revision
P’ in the Figure includes the same code fragments in P except for the two
framed statements SI1 and S2. S1 is a declaration of an array of type intx,
whereas 52 is an assignment of value 0 to the array element pointers[2] in
Fl:getpointersArray. In the C++ language, pointers that are assigned the
value of 0 are called null pointers because a memory location of address 0 does
not exist and therefore a run-time exception will be thrown when executing
the program. To avoid such assignments in the code base, a unit test case
tcl:testTaskArrayDeclarations is created to assert that all elements in the
pointers’ array are not set to null (assigned 0), as shown in Figure 4.2. By
executing tcl against P’, we observe from the that the code churn S1 and S2
triggered the tcv of tcl to change from a Pass to a Failing state. The reaction
of tcl to the churned P showcases the dependency between code churns and
test case verdict. Therefore, the underlying theory that test cases would react
to code churns is worth exploring for predicting test case verdicts for test case
selection.

4.3.3.2 Definition and Example of Class Noise in Code Churns
Data

In this study, class noise is defined as the ratio of contradictory entries de
to the overall number of entries in the analyzed data. Since a contradictory
entry can only occur among two (or more) de, the number of all duplicate
entries for which an entry is assigned a different class label is identified as a
contradictory entry. More formally, the formula for calculating this noise ratio
can be expressed as follow:

Number of Contradictory Entries
Total Number of Entries

For example, a data-set containing six de with five de labeled as true and
one labeled as false has six contradictory entries. Finding a rule to identify
which class should be used to correct a mislabelled entry is not trivial, since
we do not know the context in which these entries occurred nor the sources of
noise that triggered the differential class labels.

As an illustration of the class noise problem in a data-set consisting of code
churns, Figure 4.3 shows a sample C++ program transformed into feature

Class Noise ratio =

74 CHAPTER 4. PAPER C

Original Revision Modified Revision CPPUit Test
Code Changes
using namespace std; using namespace std;
Fclass (BasicProgran Fclass (BasicProgran
{ { public:
i ublic:
public: P int onst size =

int nums[2];

int 2] (BasicProgram() & nums{ 12, 12 } {}

(BasicProgram() : nuns{ 12, 12 } {} 2 woid setly)

A) Basichrogran();
int *pointers[2]; t-)getpointersheray();
int *getpointersArray() }
int *getpointersArray() { = vold testTaskirraDeclarations()
{ pointers[] = &nuns[0]; {
pointers[0] = &nuns[o]; pointers[1] = &nums[1]; B for(intd= 0 ¢sizg i)
inters(1] = foums[1 ’ pointers[2] = 0; {
pointers[1] = &nums[1]; 7 COPNIT_ASSERT(t-spointers[1] 1= nullptr);
return *pointers;— }
return *pointers; } pointer set tonull }
} } }

}

Figure 4.2: Example On the Relationship Between Code Churns and Test Case
Verdicts

vectors using the BoW approach. Each line of code in the sample program is
transformed into a line vector which gets assigned a class value based on a tce
result for the committed code. These transformed lines and their relevant tce
get fed as input into an ML model for training. The model is used to predict
which lines in the program will trigger a test case failure or success.

The feature vectors in Figure 4.3 characterize code lines in the sample
program. All shaded lines in the sparse matrix (lines 8, 9, 10, 13, 14, and 15)
are contradictory entries since each of the pairs (8 and 13), (9 and 14), and (10
and 15) have the same vectors but different class values (pass and fail). The
formula for calculating the class noise ratio in this example is:

Class Noise ratio = % =0.375

4.3.4 Definition and Example of Attribute Noise in Code
Churns Data

The definition of attribute noise in this paper follows the one proposed by Van
Hulse et al. [25], which suggests that a noisy observation appears when one or
more of its attributes deviates from the general distribution of other attributes.
The larger the deviation is for one or more observations, the more evidence
there is that they are noisy. In the context of the given problem (i.e., TCS),

4.4. NOISE HANDLING AND REMOVAL APPROACHES 75

Class, result of

test executions

over time
Feature vector, result of BoW

Line | literal int main include char bracket quote cin class
1 #include <iostream> 110 0 0 1 0 0 0 0 pass
2 2 0 0 0 0 0 0 0 0 pass
3 |@int main() 3 0 1 1 0 0 2 0 0 pass
{ 40 0 0 0 0 1 0 0 pass
5 char strInput[20]; 501 0 0 01 2 0 0 pass
6 6 0 0 0 0 0 0 0 0 pass
7 // Lines 8-10 are added in the first commit 702 0 0 0 0 0 0 0 pass
std::cout << "Please enter a string: "; 8§81 0 0 0 0 0 2 0 pass
9 std::cin »> strInput; 90 0 0 0 0 0 0 1 pass
10 std::cout << "You entered: " << strInput << std 00 0 0 0 0 0 2 0 pass
1 n|o 0 0 0 0 0 0 0 fail
12 // Lines 13-15 are added in the second commit)]0 0 0 0 0 0 0 0 fail
13 std::cout << "Please enter another string: "; Bjo 0 0 0 0 0 2 0 fai
14 std::cin > str‘Input;l “ulo o0 o 0 0 0 0 1 fa‘\l
15 std::cout << "You entered: " << strlnput << std:: Lo 0 0 v v v 2 v il
16 } 6] 0 0 0 0 0 1 0 0 pass

|
} Two identical code fragments were introduced in two different

! commits,

|

|

/n the first commit, the test case passed - class is set to "pass” for
I'lines 1-10, and 16.

|
|
|
{In the second commit, the test case failed = class is set to "fail” for
| lines 11-15.

Figure 4.3: Class Noise Example in Code Base.

a deviation between attributes can occur when the general distribution of S
follows a standard coding style, whereas a smaller fraction of S deviates from
the standard.

As an illustration of those deviations in code churns, Figure 4.4 exemplifies
two coding styles used for expressing case blocks in a C4++ program. By
examining the case blocks in the run_checkl, run_check2, and run_check3
functions, we notice that the first and most reoccurring style uses a line space
to separate statements in a case block, as shown in the run_checkl and
run_check3 methods. Conversely, the other coding style used in run_check2
aligns all set of S in a case block on one line. The attributes in this example
are feature vectors that correspond to tokens in the code fragment. Note how
521 and S22 are characterized by additional attribute that deviate from the
majority of attributes in the remaining case blocks at 59, S12, 528, and S30.
Those deviations in S21 and S22 from the rest case statements are considered
suspicious and therefore irrelevant.

4.4 Noise Handling and Removal Approaches
The problem of achieving a good learning performance in the presence of

noisy environments has been widely highlighted in the ML literature. Several
approaches have been built to enhance the learning performance of ML classifiers

76 CHAPTER 4. PAPER C

=bool run_check1(int value)
{

bool correct;

suitch (value) { Converted Feature Vectors, reults of BoW
Input
0 correct = true;
11 break;
: .
correct = false; Line case literal : std cout << break
14 break;
}
return coreect; 1 110 00 0
} 1
=void run_check2(bool correct)
(1 110 00 0
2 switch (correct) {
21 Case 1:std::CoUt << "correcti\n ;break; 21
22 case @:std::cout << "incorrect!\n";break; 1 2 3 1 1 1 1
} 2
b Irrelevant attributes with _ 1 23 1 11 1
=void run_check3(bool found)
{ respect to the general %
switch (found) { distribution 1 11 0 0 0 0
std::cout << "found again\n"; break; 30
1 t1 0 00 0

3 std::cout << "not found!\n"; break;
2 }
}

34 |=int main()

int int_value = 1;
bool found = run_check1(int_value);
run_check2(true);
run_check3(found);

}

Figure 4.4: Attribute Noise Example in Code Base.

[83], [84], [37]. Nevertheless, the presence of class and attribute noise have
been reported to still have a negative influence on the learning, and thus needs
to be handled before training. In this section, we describe an approach that
we introduced in the baseline study [93] to handle the problem of class noise.
Thereafter, an existing elimination based approach from the literature for
handling attribute noise is described.

4.4.1 Class Noise Approach

Our approach for handling annotation noise relies on relabeling repeated code
lines that come with different class values. These repeated lines can potentially
occur in code churns due to several scenarios, such as 1) copying of code [106],
and 2) merge transactions [94]. The first scenario manifests itself in the event
of ’copy-paste’ reuse of code check-ins that had previously passed the testing
and integration phases. In such scenario, the developers explicitly duplicate
source code fragments to adapt the duplicates for a new purpose in a quick
fashion [106]. The second scenario appears when developers in one or more
teams work on dedicated branches for features development and use similar
code phrases as to those committed and merged from different branches [94]
e.g.,x = x + 1;. When extracting such code check-ins with duplicate code
phrases for TCS, inconsistent observations with different class values might
occur.

4.4. NOISE HANDLING AND REMOVAL APPROACHES 7

To address the problem of contradictory code lines in code churns data, we
present an approach that relies on domain knowledge for identifying instances
(code lines) that require relabeling. We use the phrase class-noise cleaned to
refer to a data-set on which the class noise handling approach was applied. A
step-by-step description of the approach is as follow:

e sequentially assign a unique 8-digit hash value for each line of code in
the original data set

e create an empty dictionary for storing unfiltered lines of code.

e iterate through the set of hashed lines in the original data set and save
non-repeated (syntactically unique) lines of code in the dictionary.

e compare the annotation values of each pair of duplicate lines in the
original and dictionary sets. If the annotation value of the repeated
instance in the original set is annotated with 1 (passed) and the annotation
value of the same instance in the dictionary is annotated with 0 (failed),
then relabel the annotation value for the instance in the dictionary from
0 to 1. If the annotation values of both duplicate lines are annotated
with ’1’ then skip adding the entry from the original set into the dictionary.

This way of handling annotation noise can be seen as both corrective and
eliminating, since it 1) corrects the label of duplicate entries that first appears
as failing and then pass the test execution, and 2) removes duplicate lines that
are labeled as passing.

Defective lines often occupy a small proportion of the overall fragment of
code changes. Thus, a random line from a fragment, which was overall labeled
as failing is more likely not to be the cause of the failure. Therefore, our design
decision is to relabel lines as 'passed’, if they have already been seen as part of
non-failing fragments before. Thus, we select a more conservative approach
when it comes to labeling lines as failing, in order to minimize the likelihood of

mislabeling training entries?.

4.4.2 Selected Attribute Noise Handling Approach

As mentioned earlier, attribute noise can occur due to selecting attributes that
are irrelevant for characterizing the training instances. In the domain of TCS,
those attributes can materialize when, for example, the analyzed code consists
of fragments that are written using different coding styles or when a small
number of statements/conditions/function declarations etc deviate in syntax
from the majority of similar lines in the code.

To address the problem of attribute noise in training data, we decided to
use an existing elimination based approach called PANDA [25] that identifies
training instances with large deviations from normal. The PANDA algorithm
identifies such instances by comparing pairs of attributes in the space of feature
vectors. The output is an ordered list of noise scores for each code line - the
higher the noise score for a code line, the higher it deviates from normal. Upon
ranking noisy instances, the generated list can be used to toss out instances
(code lines) that come with the highest rank with respect to attribute noise.

2https://github.com/khaledwalidsabbagh/Annotation_Noise

78 CHAPTER 4. PAPER C

The algorithm starts by iterating through all attributes in the input feature
vectors. In each iteration, a single attribute ; gets partitioned into a number of
bins, based on a predefined bin value that is set by the user. Each bin will have
the same amount of instances, given that the number of input observations
is divisible by the number of partitions. In the absence of tied values, the
algorithm includes all boundary instances that fall outside the range of the
bin size in the last bin. After the partitioning is complete, the mean and
standard deviation for instances in each bin are calculated and used to derive a
standardized value for each instance in attribute z;. The standardized value is
then calculated by subtracting the ratio of mean to standard deviation in the
bin relative to z; from each instance value in xj. This approach is repeated
for all attributes in the input space of vectors. Finally the MAX or the SUM
value of each observation is calculated. Large sum or max values indicate an
observation that has a high attribute noise value.

Figure 4.5 exemplifies the output produced by the PANDA algorithm
when applied on the code fragment presented in Section 4.3.4. Note that in
this example, only lines that start with the keyword ’case’ were input to the
algorithm, whereas in our experiment, all code lines in the sample data-set
were input. The bins’ size in the example program was set to 1 and the output
produced is a list of observations ordered from the most noisy to the least noisy
using the MAX function. Note that the highest noise scores in the sample data
were identified for lines 21 and 22 as their attribute values deviate from the
remaining majority of the 'case’ statements in lines 9, 12, 28, and 30.

4.5 Research Methodology

The goal of this paper is to examine the effect of handling class and attribute
noise in code change data-sets for improving test case selection. This section
describes the design and operations carried out for analyzing the impact of
class and attribute noise handling on the predictive performance of a learner
for test selection.

4.5.1 Original Data Set

In the baseline paper [93], we worked with a data set of code churns that belong
to a legacy system written in the C language. A total of 82 test case execution
results (35 passed tests and 47 failed tests) for 12 test cases and their relevant
set of code changes (1.4 million LOC) were collected. The system from which
the sample data was extracted belongs to a large Swedish telecommunication
company and has the size of several million lines of code. The feature vectors
generated from the data-set in [93] using a bi-gram BoW model comprised a
total of 2251 features/attributes. The distribution of the binary classes in the
collected data was fairly balanced, with 44% of the code lines belonging to the
"passed’ class and 56% to the ’failed’ class 3.

3Due to non-disclosure agreements with our industrial partner, our data-set can not be
made public for replication.

4.5. RESEARCH METHODOLOGY 79

=bool run_check1(int value)

{ line case literal : std cout << break
7 bool correct; converted
8 |E switch (value) { 9 9 11 0 0 0 0
Input
h‘ correct = true; 12 1 11 0 0 0 0
11 break;
13 correct = false; a 1 23 1 1 1 1
14 break;
o) 2 1 23 1 1 1 1
16 return correct;
vy 2 1 11 0 0 0 0
18 |Evoid run_check2(bool correct
19 }1”‘(: 30 1 110 00 0
2 g switch (correct) { Feature Vectors
21 case 1:std:icout << "correctT\n";break;
22 case @:std::cout << "incorrect!\n";break;
PE!) Output
2% }
25 | Evoid run_check3(bool found) . .,
% 1[{ Line Noise Score
27 E switch (found) {
28 20 28010128 11 07 071 07t 029 029 029 071 071 071 300
29 std::cout << "found again\n"; break;
3 200311102811 07 07 07 08 08 08 071 07 01 30
31 std::cout << "not found!\n"; break;
E?) } 22 1100001100 07107 07102 029 029 071 071 071 288
33 }
34 |=int main() 30 1100001100 . 07007 071 029 029 029 071 071 011 8
35 {
36 int int_value = 1; 9 1100001100. 02902902 02 120 229 029 09 08 228
7 bool found = run_check1(int_value);

run_check2(true); 121100001100 . 02 029 02902 129 229 029 009 089 2%

39 run_check3(found); X i X
o |} Ordered List of Noisy Observations

Figure 4.5: An Excerpt of PANDA’s Output

4.5.2 Random Forest For Evaluation

In this study, the MeBoTS method described in Section 4.3 was used as an
example of a TCS approach. The selected learning model for the evaluation was
random forest (RF), mainly due to its low computational cost and white-box
nature compared with deep learning models. In the context of MeBoTS, using
a white-box model, such as RF, is important since it can showcase the feature
importance charts. These charts can provide practitioners with insights into
the tokens that led to the prediction of failing test cases.

The hyper-parameters of the model were kept in their default state as found
in the scikit-learn library (version 0.20.4). The only configuration made was in
the n_estimator (the number of trees) parameter, where we changed it from 10
to 100. We did not experimentally seek to tune the n_estimater value in the RF
model, since the goal of this study is not to optimize the predictive performance
of the model, but rather to examine the effect of attribute and class noise on
TCS. However, we experimented the use of another variation of the n_estimater
in the RF model (n_estimater=300) in order to get an understanding of whether
this would affect the model’s predictive performance. The performance results
produced by the model with 300 trees can be found in Appendix A.

80 CHAPTER 4. PAPER C

4.5.3 Class Noise

The evaluation of the presented class noise approach was done by comparing
the learning performance of the ML model in MeBoT'S under two training trials
1) using the original (uncleaned) data, and 2) using a class-noise cleaned data.
For each training trial, we measured the performance in terms of precision,
recall, and F1-score, for an ML model.

Applying the class noise handling approach (described in Section 4.4.1)
on the original (uncleaned) data-set resulted in a reduced set, comprising of
140,130 LOC. We use the adjective ‘class-noise cleaned’ to refer to this reduced
set. The number of lines labelled as passing in the cleaned set were 46%,
whereas the remaining 54% of the lines were labelled as failing. A random split
of the class-noise cleaned data was performed to generate s training and testing
sets. The size of the training set comprised of 112,104 line vectors, whereas
the remaining 28,026 line vectors were used for evaluating the learning of the
model.

4.5.4 Attribute Noise

The extension provided in the study focuses on examining the effect of elim-
inating instances with attribute noise on the learning performance for TCS.
To identify possible causality between attribute noise and learning perfor-
mance, a controlled experiment was carried out. This subsection describes the
experimental design and operations conducted to examine the causality.

4.5.4.1 Adopted Data-Set

In this study we wanted to get an initial understanding of the effect of attribute
noise on the learning performance of an ML model for TCS. Therefore, we
experimented the effect of attribute noise removal on a subset of observations
and attributes from the class-noise cleaned data. The selected subset was
created by randomly selecting 19,815 instances and 800 attributes. This data-
set will act as the control group and will be used as a baseline for class-noise
cleaned data.

According to Ganganwar and Vaishali [107], a data-set is called imbalanced
when it contains many more samples under one class than from the rest of the
classes. Accordingly, we inspected the distribution of the samples in the control
group with respect to the binary classes (defective and non-defective) in order
to determine the balance of classes. Figure 4.6 shows that the distribution
of instances in the non-defective class contains many more samples than the
defective class (14,400 to 5,415 samples). Based on this distribution and given
that we only have two classes (binomial distribution), we consider the control
group to be imbalanced. To overcome this problem, we chose to upsample
instances in the minority class using the 'resample’ module provided in the
Scikit-learn library [75]. The idea of oversampling is to randomly generate
samples from the minority class instances until the number of minority class is
the same as the number of majority class.

4.5. RESEARCH METHODOLOGY 81

25000

20000

15000
 Non-Defective Lines

M Defective Lines
10000

5000

0

Figure 4.6: The Distribution of Classes In The Adopted Data-Set

4.5.4.2 Independent Variable and Experimental Subjects

In this study, attribute noise removal was the only independent variable (treat-
ment) examined for an effect on classification performance. Ten variations of
the treatment were selected. Namely, 5%, 10%, 15%, 20%, 25%, 30%, 35%,
40%, 45%, 50%. Each treatment level corresponds to a fraction size of observa-
tions that gets eliminated before training the ML model in MeBoTS. We used
25-fold stratified cross validation on the control group to derive 25 experimental
subjects on which the treatment is applied. Each subject is treated as a hold
out group for validating an RF model which gets trained on the remaining 24
training subjects. A total of 275 trials derived from the 25-folds were conducted
- each 25 trials for evaluating the performances of a learner under one treatment
level.

4.5.4.3 Dependent Variables

The dependent variables are three evaluation measures used for the performance
of an ML classifier — Precision, Recall, and F1l-score. The three evaluation
measures are defined as follows:

e Precision is the fraction of passing-classified tests that are actually passing.
e Recall is the fraction of really passing tests that are classified as passing.
e The Fl-score is a harmonic mean between precision and recall.

When the precision of a classifier is high, less test cases that do not detect
faults in the system under test are executed, whereas when the recall is high
less false alarms about detected faults are produced. Therefore, the higher the
precision and recall a classifier gets, the better the test selection process.

4.5.4.4 Experimental Hypotheses

Three hypotheses are defined according to the goals of this study and tested
for statistical significance in Section4.5.4.5. The hypotheses were based on

82 CHAPTER 4. PAPER C

the assumption that data-sets with more attribute noise have a significantly
negative impact on the classification performance of an ML model for TCS
compared to data with no attribute noise. The hypotheses are as follow:

e HOp: The mean Precision is the same for a model with and without
attribute noise

plp = p2p (4.1)

e HOr: The mean Recall is the same for a model with and without attribute
noise
plr = p2r (4.2)

o HOf: The mean F1-score is the same for a model with and without attribute
noise

i f = p2f (4.3)

For example, the first hypothesis can be interpreted as: a data-set with a higher
attribute noise ratio will result in significantly lower Precision rate, as indicated
by the mean Precision score across the experimental subjects. After evaluating
the hypotheses, we compare the evaluation measures under each treatment
level with those at 0% attribute noise removal level.

4.5.4.5 Data Analysis Methods

The experimental data were analyzed using the scikit learn library [75]. To
decide whether to use a parametric or non-parametric test for the analysis, a
normality test was carried out. First, we plotted the frequency distribution
graphs for the three dependent variables under each treatment level to see
if they deviate from a normal distribution. To further validate the visual
inspection, a Shapiro-Wilk test was carried out. The results showed that 3
dependent variables are not normally distributed (see Section 4.6.2 for details).
Based on the normality test results, we decided to use two non-parametric
tests, namely: Kruskal-Wallis and Mann-Whitney. To evaluate the hypotheses,
the Kruskal-Wallis was selected for comparing the median scores between the
three evaluation measures under the 11 treatment levels. The Mann—Whitney
U test was selected to perform a pairwise comparison between the evaluation
measures under each treatment level and the same measures with no treatment
(0% noise removal).

4.5.4.6 Attribute Noise Removal

As mentioned earlier, the adopted data-set acts as the control group in this
experiment. This control group is used to examine the effect of the treatment
on the learning performance of the ML model in MeBoTS (RF). Moreover, we
use this group as a baseline for comparing the effect of class noise handling
and the attribute noise removal approaches on learning.

4.6. EVALUATION RESULTS 83

To apply the treatment, we began by running the PANDA algorithm on the
control group. The output is an ordered list of observations that are ranked with
respect to the amount of noise identified in their attributes. Table 4.3 shows
an excerpt of the three top ranked observations generated in the ordered list.
Note that due to the non-disclosure agreement with our industrial partner, all
original keywords in the ‘Code Line’ column, such as variable and class names,
are replaced with artificial variable names. The indexes in the first column of
the list are used to retrieve and eliminate a fraction of observations from the
training subjects. The size of the fraction depends on the desired treatment
level. For instance, a treatment of 5% implies retrieving 5% of observations
that are top ranked in the PANDA’s list (5% of 19,815 LOC) and from the
training subjects and removing them. In this experiment, ten variations of the
treatment was applied (5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, and
50%). For each treatment, a fraction of observations that is equivalent in ratio
to the treatment level is fetched and removed from the training subjects. As
soon as those observations are removed, the training subjects are fed into an
ML model for training and the precision, recall, and F1-score are recorded for
the model.

In this experiment, a bin size of five was used in the PANDA. This means
that each attribute in the analyzed data is split into five bins and the com-
parison between each pair of attributes is done relative to those bins. The
implementation of the PANDA algorithm used in this study can be found at
the link in the footnote?.

Table 4.3: An Excerpt Of the Output Generated From PANDA

Index Code Line Noise Score
1181 _class__ ((constructor)) 518
1056 | if (lisNotEmpty() && sharedPool) 518
1051 // addPoolConfig return value 518

4.6 Evaluation Results

In this section, we present and compare the results of learning obtained from
training on 1) the original and class-noise cleaned data, and 2) the class-noise
cleaned data and the class and attribute noise cleaned data-sets. We report
the learning in terms of precision, recall, and F1-score.

4.6.1 Original vs. Class Noise Cleaned Data

The performance measurements of the RF classifier built on the class-noise
cleaned data is plotted using a confusion matrix, as shown in Figure 4.7. The
Figure shows a non-normalized matrix for the predicted and actual values of
test case verdicts for all lines in the test set. The first cell on the upper left
hand side corresponds to the number of lines (6,543) that are predicted to
trigger test case failures and are actually true. On the same diagonal, the last

4https://github.com/khaledwalidsabbagh/Handling_Attribute_Noise_. PANDA

84 CHAPTER 4. PAPER C

cell to the bottom right of the matrix indicates the number of lines (15,688)
that are predicted to be non-defective and are actually true, and require no
testing. The remaining entries in the test set correspond to the number of
misclassified lines.

14000

i J 6543 3510
Failed 12000

o 10000
3
@
3
= 8000
+ 6000
Passed 2286 0
4000
&
@ e
qb\\ Q’D‘;’

Predicted label

Figure 4.7: Confusion Matrix For a Classifier Trained on Class Noise cleaned
Data

The bar chart in Figure 4.8 illustrates the performance measures of the
classifier built on the original and class-noise cleaned data. The results reveal
that handling class noise in the uncleaned data improves the learning per-
formance by 70% recall, 37% precision, and 59% F1-score compared to the
learning achieved on the original data.

4.6.2 Class Noise Cleaned vs. Class and Attribute Noise
Cleaned Data

This subsection discusses the results of the descriptive statistics and statistical
tests conducted to evaluate hypotheses HOp, HOr, and HOf presented in Section
4.5.4.4. The results reported in this section are used for drawing a comparison
between the effectiveness of handling class noise and attribute noise on the
learning performance. Figures 4.9, 4.10, and 4.11 show three box-plot graphs,
which were plotted to visually inspect the effect of removing observations with
attribute noise at each treatment level on the dependent variables. A first
observation from the graphs suggests a lack of causality between the treatment
and the three dependent variables. This observation was further supported
by examining the mean scores of each dependent variable in the descriptive
statistics, as shown in Tables 4.4, 4.5, and 4.6. Note that the precision, recall,
and Fl-score reported in the three tables under 0% treatment level are different

4.6. EVALUATION RESULTS 85

100
90 87 84
81
80
70
60
0 44
40
30 25
20 17
) .
0
Precision Recall F-score

W Original m Class Noise Curated

Figure 4.8: Learning Performance On the Original and the Class Noise cleaned
Data Sets

than those obtained from training on the class-noise cleaned data. This is
because the control group was used as a baseline for the class-noise cleaned
data from which the ML model was built.

1.0

0.8

S S

+

o
o

precision
o
s

*

0.2 ‘ *

0.0 *
0 5 10 15 20 25 30 35 40 45 50

removed_noise

Figure 4.9: The Distribution of Precision Values Under the Treatment Levels

To begin the evaluation of the hypotheses, we start by checking the normality
in the distribution of the three dependent variables. The frequency distribution
of the variables were plotted for the 275 trials (25 trials for each treatment level)
to visually inspect normality, as shown in Figures 4.12, 4.13, and 4.14. Then,

86 CHAPTER 4. PAPER C

! L |
*
+ +
+
+
+

+

0.2 ' +

*

1.0

0.8

0.6

recall

04

+

0.0 y -
0 5 10 15 20 25 30 35 40 45 50

removed_noise

Figure 4.10: The Distribution of Recall Values Under the Treatment Levels

1.0

R e

2 H
° L]
Q U . +
(0]
04 ' :
X N . , 0 +
+ +
L]
0.2 . .
+
0.0 ! “
0 5 10 15 20 25 30 35 40 45 50

removed_noise

Figure 4.11: The Distribution of Fl-score Values Under the Treatment Levels

the Shapiro-Wilk test was carried out to further support the observations drawn
from the graphs. As can be seen from the graphs, the distributions appear to
be negatively skewed (asymmetric), and thereby the assumption of normality
in the distribution of the three variables do not hold. The Shapiro-Wilk test
results supported the observation drawn from the graphs and revealed that the
null hypotheses of normality for the three dependent variables can be rejected
(p-value <0.05), as shown in Tables 4.74.8. Since we have issues with normality
in the samples, we decided to run a non-parametric test for comparing the
difference between the performance measures under the 10 treatment levels.
To examine the effect of removing observations with top rank attribute
noise on the learning, the Kruskal-Wallis test was conducted. Table 4.9 sum-
marizes the statistical comparison results, indicating no significant difference
in Precision, Recall, and F1-score. Specifically, the results of the comparison

4.6. EVALUATION RESULTS 87

120

100

g
o
£
E,' &
w
40
20
o
oo 01 0z 03 04 05 06 o7
Precision
Figure 4.12: Frequency Plot For the Precision Scores
80
60
5
g
g
40
20
" —
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure 4.13: Frequency Plot For the Recall Scores

88 CHAPTER 4. PAPER C

Table 4.4: Descriptive Statistics For Precision.

Treatment | N | Mean | SD | SE | 95% Conf. | Interval
0% 25 0.53 0.05 | 0.01 0.51 0.55
5% 25 0.53 0.03 | 0.01 0.51 0.54
10% 25 0.51 0.1 | 0.02 0.47 0.55
15% 25 0.51 0.12 | 0.02 0.46 0.56
20% 25 0.5 0.09 | 0.02 0.47 0.54
25% 25 0.52 0.02 | 0.0 0.51 0.53
30% 25 0.5 0.08 | 0.02 0.47 0.53
35% 25 0.51 0.07 | 0.01 0.48 0.54
40% 25 0.53 0.05 | 0.01 0.51 0.55
45% 25 0.53 0.04 | 0.01 0.51 0.54
50% 25 0.53 0.05 | 0.01 0.51 0.55

Table 4.5: Descriptive Statistics For Recall.

Treatment | N | Mean | SD | SE | 95% Conf. | Interval
0% 25 0.88 0.13 | 0.03 0.83 0.93
5% 25 0.83 0.17 | 0.03 0.76 0.9
10% 25 0.8 0.25 | 0.05 0.7 0.9
15% 25 0.78 0.27 | 0.05 0.67 0.89
20% 25 0.8 0.25 | 0.05 0.7 0.9
25% 25 0.88 0.17 | 0.03 0.81 0.95
30% 25 0.84 0.23 | 0.05 0.75 0.93
35% 25 0.85 0.22 | 0.04 0.76 0.94
40% 25 0.77 0.23 | 0.05 0.67 0.86
45% 25 0.82 0.21 | 0.04 0.74 0.9
50% 25 0.8 0.22 | 0.04 0.72 0.89

for precision showed a test statistics of 7.96 and a p-value of 0.63. Likewise, a
significant difference in the comparisons between the evaluation measures of
Recall and Fl-score (Recall Results: Test Statistics = 8.62, p-value = 0.56 ,
F1-score Results: Test Statistics = 8.56, p-value = 0.57) values were not found.
Therefore, no statistical evidence could be found to support the rejection of
the null hypotheses HOp, HOr, HOf.

4.7 Discussion

To answer the research question of how to improve test case selection by handling
class and attribute noise?, we compare the results reported in Sections 4.6.1
and 4.6.2, and draw a comparison between the effectiveness of handling class
noise and attribute noise. The comparison results are achieved by examining
the precision, recall, and F1-score in Tables 4.4, 4.5, and 4.6, and Figure 4.8.
Recall from Section 4.5.4.1 that the performance measures obtained at 0%
treatment level (control group) are treated as the baseline measures. The
remaining treatment levels are used to examine the effectiveness of handling

4.7. DISCUSSION

89

Table 4.6: Descriptive Statistics For F1l-score.

Treatment | N | Mean | SD | SE | 95% Conf. | Interval
0% 25 0.66 0.04 | 0.01 0.64 0.67
5% 25 0.64 0.06 | 0.01 0.61 0.66
10% 25 0.61 0.14 | 0.03 0.55 0.66
15% 25 0.6 0.16 | 0.03 0.53 0.66
20% 25 0.61 0.14 | 0.03 0.55 0.66
25% 25 0.65 0.06 | 0.01 0.62 0.67
30% 25 0.62 0.13 | 0.03 0.57 0.67
35% 25 0.63 0.12 | 0.02 0.58 0.68
40% 25 0.61 0.1 | 0.02 0.57 0.65
45% 25 0.63 0.1 | 0.02 0.59 0.67
50% 25 0.62 0.1 | 0.02 0.58 0.66

100

Frequency
z

Figure 4.14: Frequency Plot For the Fl-score Scores

04

F_score

Table 4.7: The Shapiro-Wilk Results For Normality From 5% to 25% Treatment

Levels.
5% 10% 15% 20% 25%
Precision Stat=0.91, | Stat=0.51, | Stat=0.61, | Stat=0.57, | Stat=0.85,
p=0.03 p<0.05 p<0.05 p<0.05 p <0.05
Recall Stat=0.87, | Stat=0.78, | Stat=0.79, | Stat=0.72, | Stat=0.69,
p<0.05 p<0.05 p<0.05 p<0.05 p<0.05
Flscore Stat=0.75, | Stat=0.55, | Stat=0.65, | Stat=0.59, | Stat=0.76,
p<0.05 p<0.05 p<0.05 p<0.05 p<0.05

attribute noise at different levels on the performance of the ML model used in

MeBoTS.

By examining the performance measures in the Tables and Figure, the

90 CHAPTER 4. PAPER C

Table 4.8: The Shapiro-Wilk Results For Normality From 30% to 50% Treat-
ment Levels.

30% 35% 40% 45% 50%
Precision Stat=0.48, | Stat=0.57, | Stat=0.89, | Stat=0.78, | Stat=0.85,
p<0.05 p<0.05 p=0.01 p<0.05 p<0.05
Recall Stat=0.69, | Stat=0.67, | Stat=0.87, | Stat=0.76, | Stat=0.82,
p<0.05 p<0.05 p<0.05 p<0.05 p<0.05
Flscore Stat=0.55, | Stat=0.6, | Stat=0.89, | Stat=0.74, | Stat=0.78,
p<0.05 p<0.05 p=0.01 p<0.05} p<0.05

Table 4.9: Statistical Results For the Comparison Between the Evaluation
Measures Under All Treatment Levels.

p-value | statistics
Precision | p=0.63 | Stat=7.96

Recall p=0.56 | Stat==8.62
Fl-score | p=0.57 | Stat=8.56

following observations are drawn from the comparison:

e compared with the other two trials of training, using an uncleaned data-set
for training provides the lowest learning performance.

e training a learner on a class-noise cleaned data would improve the per-
formance of the learner by 70% recall, 37% precision, and 59% F1l-score,
compared to a learner built on uncleaned data.

e training a learner on a class and attribute noise cleaned data results in
almost no change in the prediction of passing test cases that are really
passing (recall drop of 4%).

These observations imply that training a classifier on a class-noise cleaned data
will yield to a better performance with respect to precision and recall than the
other two Trials of training. Particularly, the results suggest that building a
learner on class-noise cleaned data will allow testers to correctly exclude 8 out
of 10 actually passing test cases from execution (81% precision). In addition,
the results reveal that training a learner on a PANDA cleaned data would result
in building a learner that is biased towards the positive class. The implication
that these results bring in the domain of TCS are that tester would falsely
exclude 5 out of every 10 actually passing test cases from execution. These
results are in line with the conclusions drawn by Brodley and Friedl, and Zhu
and Wu [100] [84], which suggest that attribute noise is less harmful than class
noise on the inductive performance.

Based on the results and discussion points, the following recommendations
are suggested to testers:

e To avoid randomness in the prediction of test case verdicts, uncleaned
data should not be used for building a learner for TCS.

4.8. THREATS TO VALIDITY 91

e Testers should consider measuring the ratio of class noise in the data
at hand before building a model for TCS. This would direct the testing
effort by choosing an appropriate noise handling strategy. For example,
if the ratio of class noise is small, then testers can rely on the robustness
of ML algorithms without correcting or eliminating training instances.
If the noise ratio is large, then testers would decide on a correction or
elimination based strategy for cleaning noise.

e Testers should focus on cleaning class noise from the training data, but
not necessarily the attribute noise.

4.8 Threats to Validity

When analyzing the threats to validity of our study, we followed the framework
recommended by Wohlin et al. [55] and discuss the validity in terms of: external,
internal, construct, and conclusion.

External Validity: External validity refers to the degree to which the results
can be generalized to applied software engineering practices.

Test Cases Sample. Since our original uncleaned data are related to twelve
test cases only, it is difficult to decide whether the studied sample of code
churns is representative to the overall population. However, the selection of the
studied sample was done randomly. This increases the likelihood of drawing a
representative sample.

Control group. The control group used in this study consisted of a relatively
small number of observations and attributes (19,815 observations and 800
attributes). This may pose a risk on the representativeness of the sample with
respect to the overall population. However, the derivation of the control group
was done by randomly selecting attributes and observations from the class-noise
cleaned data. This increases the likelihood of drawing a representative sample
in the control group.

Source code. In this study, we only used a single industrial program to
examine the effect of class and attribute noise on the learning performance of a
classifier. Therefore, we acknowledge that the generalization of the findings is
difficult. However, since the goal of this paper is to gain an initial understanding
of the effect of attribute and class noise, we accept this threat.

Nature of test failure. There is a probability of mis-labelling code changes
in the original data if test failures were due to factors external to defects in
the source code (e.g., machinery malfunctions or environment upgrades). To
minimize this threat, we collected data for multiple test executions that belong
to several test cases, thus minimizing the probability of identifying tests that
are not representative.

Internal Validity Internal validity refers to the degree to which conclusions
can be drawn about the causality between independent and dependent variables.

Configuration. In this study, the ranking of noisy observations produced
by PANDA was determined using a bin size of five. Since the binning size in
PANDA may affect the ranking of noisy observations [25], there is a likelihood
that we chose a bin size that does not identify the highest noisy observations in

92 CHAPTER 4. PAPER C

the sample data. As a result, the applied treatment may not have eliminated
all observations that come with the highest attribute noise. This may have an
effect on the learning. However, our results showed that the standard deviations
in the learning scores were not largely despaired across the 25 subjects, which
means that the effect of the chosen bin size had a similar effect on learning
across all experimental subjects.

Instrumentation. A potential internal threat is the presence of undetected is-
sues in the scripts used for vector transformation, data-collection, and PANDA'’s
implementation. This threat was controlled by carrying out a careful inspection
of the scripts and testing them on small subsets.

Machine Learning Model. The evaluation of learning was done using Random
Forest only - the results were drawn from a single type of ML model. Hence,
the tolerance of RF to noise and its performance will differ when using other
types of learning algorithms. However, in this study, we focus on improving
the learning performance by handling class and attribute noise irrespective of
which model is most suited for noise tolerance.

Construct Validity Construct validity refers to the degree to which experi-
mental variables accurately measure the concepts they purport to measure.

The Binning Algorithm. The binning algorithm used in the original work of
PANDA was not explicitly stated in the original publication [25]. As a result,
we used the sort_values function in the PANDA module of the scikit learn
library to discretize attribute values into bins of predefined sizes. Thus, our
implementation of the algorithm may differ than the one used in the original
work. However, the authors of the original publication state that any binning
algorithm can be used without affecting the performance.

The Calculation of Noise Score. The description for calculating the standard-
ized noise score in the original publication of PANDA [25] created a confusion
with respect to whether the mean and standard deviation should be calculated
for each partition in z; or x3. On the one hand, the description states that
the standardized noise score for attribute value x;i is calculated relative to the
partitioned attribute value for instance i,Z;;. On the other hand, the description
states that ‘the mean and standard deviation of the non-partitioned attributes
Tr,k; relative to each bin £—q, . 1+ is calculated’. In our implementation, we
interpreted the relativeness between an attribute value z;, with the partitioned
attribute value for instance i, Z;k by subtracting the attribute value z;; from
the mean to standard deviation ratio of the bin in x; relative to x;;. The
alternative interpretation would be to subtract z;; from the mean to standard
deviation ratio of the elements in xj, relative to the bin in x;. Nevertheless,
our implementation was manually inspected on a small set of line vectors (as
shown in Section 4.3.4) and the ranking of noisy observations were in line with
the definition of attribute noise provided in the original publication [25].

Majority class problem. Upon applying the treatment on the experimental
subjects under the 10 levels, there is a chance that the prediction was biased
towards one of the classes due to an imbalance in the distribution of classes.
Due to the computational cost required to check the balance across 25 subjects
for 10 treatment levels (250 trials), we could not validate that the post treat-
ment subjects are balanced. Nevertheless, the results drawn from the learner’s
precision and recall (mean precision= 52, mean recall= 81) indicate that the

4.9. CONCLUSION AND FUTURE WORK 93

learner was not biased towards a particular class.

Conclusion Validity Conclusion validity focuses on how sure we can be
that the treatment we use really is related to the actual outcome we observe.

Differences among subjects. The descriptive statistics indicated that we
have a few outliers in the sample. Therefore, we ran the analysis twice (with
and without outliers) to examine if they had any impact on the results. Based
on the analysis, we found that dropping the outliers had no effect on the results,
thus we decided to keep them in the analysis.

4.9 Conclusion and Future Work

In this paper, we set off to study the effect of class and attribute noise in
data on the learning performance of an ML model for test case selection. We
chose to study the effect of handling the two noise types (class and attribute)
using a correction and an elimination based approaches. The results drawn
suggest that handling class noise yields to a substantial improvement in the
prediction of test case verdicts, whereas no similar conclusion could be drawn
with respect to attribute noise. Our study provides an empirical evidence which
suggests that handling attribute noise is not necessarily important for building
an effective learner for test case selection. This finding is counter-intuitive when
considering the majority of related literature on attribute noise, which suggest
that handling attribute noise improves the learning performance. This calls for
more studies that need to examine the effect of handling attribute noise on
learning in software engineering contexts.

There are still several questions that need to be addressed before concluding
that handling class noise is more important than attribute noise. A first
question is about finding whether other elimination approaches for identifying
and handling attribute noise can have a different effect on learning than PANDA.
A second question is whether similar results about the effect of class and
attribute noise handling can be generalized when using other data-sets. Future
research about the impact of class and attribute noise should experimentally
explore the effect of both noise types by seeding class and attribute noise into
a clean data-set and evaluating the learning effect. Other research directions
include testing different approaches for handling class and attribute noise such
as tolerance of different ML algorithms.

4.10 Appendix A

94

CHAPTER 4. PAPER C

Attribute Noise Performance | Random Forest Ran@om Forest
metrics n_estimater=100 | n_estimater=300
Acc 0.54 0.53
Prec 0.53 0.50
0% Rec 0.88 0.82
F-score 0.66 0.62
MCC 0.13 0.10
Acc 0.54 0.53
Prec 0.53 0.52
5% Rec 0.83 0.84
F-score 0.64 0.64
MCC 0.1 0.10
Acc 0.53 0.52
Prec 0.51 0.51
10% Rec 0.80 0.87
F-score 0.61 0.64
MCC 0.09 0.09
Acc 0.53 0.52
Prec 0.51 0.51
15% Rec 0.78 0.93
F-score 0.60 0.66
MCC 0.08 0.10
Acc 0.52 0.52
Prec 0.50 0.51
20% Rec 0.80 0.95
F-score 0.61 0.66
MCC 0.07 0.1

4.10. APPENDIX A

95

Attribute Noise Performance Ranc-iom Forest Ranc.iom Forest
metrics n_estimater=100 | n_estimater=300
Acc 0.53 0.52
Prec 0.52 0.51
25% Rec 0.88 0.95
F-score 0.65 0.66
MCC 0.10 0.07
Acc 0.52 0.52
Prec 0.50 0.51
30% Rec 0.84 0.94
F-score 0.62 0.66
MCC 0.06 0.074
Acc 0.53 0.53
Prec 0.51 0.51
35% Rec 0.85 0.91
F-score 0.63 0.65
MCC 0.1 0.11
Acc 0.53 0.53
Prec 0.53 0.51
40% Rec 0.77 0.78
F-score 0.61 0.61
MCC 0.09 0.08
Acc 0.54 0.53
Prec 0.53 0.52
45% Rec 0.82 0.85
F-score 0.63 0.63
MCC 0.13 0.10
Acc 0.54 0.54
Prec 0.53 0.52
50% Rec 0.80 0.83
F-score 0.62 0.64
MCC 0.11 0.11

96

CHAPTER 4. PAPER C

Chapter 5

Paper D

A Classification of Code Changes and Test Types Depen-
dencies for Improving Machine Learning Based Test Selec-

tion
Al-Sabbagh, K., Staron, M., Hebig, R. and Gomes, F.

In Proceedings of the 17th International Conference on Predictive
Models and Data Analytics in Software Engineering, pp. 40-49.
2021.

97

Abstract

Machine learning has been increasingly used to solve various software engi-
neering tasks. One example of their usage is in regression testing, where a
classifier is built using historical code commits to predict which test cases
require execution. In this paper, we address the problem of how to link specific
code commits to test types to improve the predictive performance of learning
models in improving regression testing. We design a dependency taxonomy
of the content of committed code and the type of a test case. The taxonomy
focuses on two types of code commits: changing memory management and
algorithm complexity. We reviewed the literature, surveyed experienced testers
from three Swedish-based software companies, and conducted a workshop to
develop the taxonomy. The derived taxonomy shows that memory management
code should be tested with tests related to performance, load, soak, stress,
volume, and capacity; the complexity changes should be tested with the same
dedicated tests and maintainability tests. We conclude that this taxonomy can
improve the effectiveness of building learning models for regression testing.

98 CHAPTER 5. PAPER D

5.1 Introduction

Software testing has evolved to successfully accommodate for the growing
demand of higher product quality and faster delivery of releases [108]. Neverthe-
less, testing has been notoriously costly for its massive resource consumption -
accounting for more than 50% of the development life cycle. Therefore, opti-
mizing testing processes becomes pivotal for companies of all sizes to reduce
the cost overhead and increase the velocity of software development.

An essential yet costly activity in any testing process is to perform regression
testing, which ensures that no new faults in the system arise due to making new
changes to the code base. However, performing regression testing demands a
large amount of resources and a long execution time, which makes it infeasible
to run all impacted test cases on each committed code change.

To address this problem of regression testing, a number of test case selection
approaches have been proposed in the literature [3], [77], and [109]. These
approaches seek to improve the effectiveness of test case selection by inferring
statistical models that can potentially predict affected test cases given changes
in the code base. However, a mutual drawback among these approaches is
that they omit to take into account the dependencies between specific types
of code changes (e.g., memory and algorithmic changes) and test case types
(e.g., performance and security tests) when training predictive models. For
example, Al-Sabbagh et al. [77] proposed building a machine learning (ML)
model for test selection by mapping history executions of test cases and their
relevant code changes without considering what types of test cases are sensitive
to the changes in the source code. Similarly, Knauss et al. [3] proposed an
automatic recommender that analyzes the frequency in which test cases fail
on a particular day given code changes made to software modules irrespective
of the types of changes made in the code and their dependencies with specific
test case types.

Therefore, in this paper, we set off to fill this gap by developing a facet-based
taxonomy of dependencies between code changes and test cases of specific types.
We define a dependency as a relation where a change in the source code of a
given type that triggers a failure in one or more test cases of different types.
The contribution of this work is two-fold. First, it gears the testing efforts at
software companies by allowing the execution of test cases that are in relation
with the submitted code changes to the development repositories - thereby
potentially reduce the time for testing. Second, it lays down the foundation for
researchers to investigate, expand, and refine the identified dependencies. The
addressed research question is:

RQ: To which degree do software testers perceive content of a code commit
and test case types as dependent?

To address this research question, we constructed a taxonomy, linking the
test case types and the categories of source code that can trigger these test
cases. First, we began the taxonomy building by identifying and extracting data
from the literature to find the test types and categories of code changes and
to identify potential synergies between them. Then, we surveyed testers from
software companies to construct and design the faceted taxonomy [110] Finally,
for two categories, where the survey results were inconclusive, we conducted a
workshop with the testers to find the strength of these dependencies.

5.2. RELATED WORK 99

5.2 Related Work

Our work is related to studies on defect and testing taxonomies.

5.2.1 Defect Taxonomies

A widely applicable taxonomy in the software testing literature is Orthogonal
Defect Classification (ODC), which was designed by Chillarege et al [111].
The ODC taxonomy defines attributes for the classification of failures. Its
main purpose was to identify the root cause of defects and to provide quick
feedback to developers about defects’ cause in the software process. The ODC
can also be used for early detection of faults in static analysis. Several defect
taxonomies have been built on the ODC as a starting point to develop different
domain-specific taxonomies. For example, Li et al. [112] presented an extended
taxonomy of ODC and named it Orthogonal Defect taxonomy for Black-box
Defects (ODC-BD). The taxonomy was designed by the motive of increasing
testing efficiency and improving the analysis of black-box defects. Evaluated
on the analysis of 1860 black-box defects that belong to 40 software projects,
the results showed that using ODC-BD reduced the testing effort by 15% in
one month compared to the testing efficiency when not using the ODC-BD.
Another work conducted by Li et al. [113] adopted ODC to classify web errors
for an improved reliability. Their taxonomy classified web errors according to
their response code, file type, referrer type, agent type, and observation time.

The primary focus of all related work described above is to improve the
quality of the code base by identifying the root cause of defects and to gain
insights into the types of commits that developers commit. However, our work
alms to improve the testing process by providing a taxonomy of code changes
and test cases that can be used to build classifiers for test case selection.

5.2.2 Taxonomies in Software Testing

Software testing has often been confronted with the challenge of unveiling
software defects under sever time pressure and limited hardware resources. Due
to its importance and practical relevance, several software testing taxonomies
have been proposed in the literature. In a systematic literature review study
[114], Britto identified a number of studies that present taxonomies in the area
of software testing. The majority of these taxonomies, however, provides a
classification of the suitability of testing techniques in different contexts. For
example, Novak et al. [115] developed a tree-based classification of features
that are attributed to existing static code analysis tools. The taxonomy offers
a classification of existing static analyzers based on the technology, availability
of rules, and the programming languages that each tool supports. Similarly,
Vegas et al. [116] classified a set of unit testing techniques and mapped their
characteristics with project characteristics to aid the selection of suitable testing
approaches based on the project’s characteristics. The presented taxonomy
comprised a number of criteria such as when to use the testing approach,
who to use it, and where it can be used. Felderer et al. [117] presented a
classification for supporting the categorization of risk-based testing approaches
and tailoring their usages depending on the context and purpose. The taxonomy
classifies different risk drivers, risk assessments, risk-based test processes. All of

100 CHAPTER 5. PAPER D

these taxonomies provide a generic classification of the applicability of testing
techniques in different software engineering projects. However, no taxonomy
discusses the dimension of dependencies between code commits and test case
types. Classifying these dependencies can potentially aid in the identification
and execution of tests that are relevant to the committed code and hence
counteract exhaustive testing efforts. The taxonomy presented in this study
aims at filling this gap by identifying facets of dependency connections from
the viewpoints of software testers.

5.3 Research Method

In this study, we follow the method proposed by Usman et al. [54] to guide
the construction of the taxonomy. The method comprises of four phases: i)
planning, ii) identification and extraction, iii) design and construction, and iv)
validation.

5.3.1 Planning

The first phase in the adopted method involves six activities for planning the
context of the taxonomy and defining its initial settings. Table 5.1 illustrates
the outcome of each planning activity. Since the ultimate goal of this study
is to gear the testing efforts by improving the selection of test cases, then the
the knowledge area associated to the taxonomy is in the domain of software
testing (A1). The second activity (A2) defines the objective of the taxonomy,
which in our case is to identify the degree at which testers perceive dependency
patterns between code changes and test case types. The subject matters (units
of classifications) are categories of code changes and test case types (A3).
A faceted-based approach is devised for creating the taxonomy (A4). The
procedure for classifying the subject matters are qualitative and quantitative -
literature review, survey, and discussions with testers in a workshop setting
(A5). Finally, the basis of the taxonomy consists of categories of code changes
and test case types drawn from the literature (A6).

5.3.2 Identification and Extraction

The identification and extraction phase involves identifying the main categories
and terms used in the taxonomy. We begin the implementation of this phase by
reviewing the literature in search for knowledge about the subject matters. For
this purpose, we account for two inclusion criteria in our literature search. First,
we wanted to include papers that discuss the impact of specific changes in the
code on the quality of the system. Second, we were only interested in papers
that were written in English and accessible. The challenge in this phase was
to extract terms that are consistent and not interchangeably used in different
research studies. Therefore, to overcome this challenge we based our literature
search on the set of recognized test case types defined in the international
standard ISO/IEC/IEEE CD 2911901:2020(E) document [29] (presented in
Section 5.4.1). That is, for each test case type in the ISO document, we searched
for relevant papers that empirically investigate or theoretically discuss types
of code changes that trigger a reaction among the test cases. The outcome of

5.3. RESEARCH METHOD 101

Table 5.1: Planning Activities

Id Planning Activity

Al The software engineering knowledge associated to the designed taxon-
omy is software testing.

A2 The main objective of the proposed taxonomy is to identify dependency
patterns between code changes and test case types from the perspective
of testers.

A3 The subject matters of the designed taxonomy are categories of code
changes and test case types.

A4 The taxonomy was designed using a facet-based structure.

A5 The procedure used for classifying the subject matters was qualitative
and quantitative.

A6 The basis of the taxonomy consists of code change categories and test
case types drawn from the literature.

this phase was a list of six categories of code changes and 18 test case types.
Further, and based on our literature search, we identified synergy links between
the six code categories and the 18 test types (as depicted in Fig 5.2).

5.3.3 Design and Construction

This phase presents the relationships between the identified categories and
describes how they were connected. Since the goal of the taxonomy is to
answer the question of To which degree do software testers perceive content of
a code commit and a test case types as dependent?, we decided to open up for
the community of testers to seek their opinions about potential dependency
patterns between the categories of code changes and test case types and to
identify the strengths of the identified dependencies.

5.3.3.1 Survey

We began this phase by creating a survey and distributing an invitation email
to software development companies that are affiliated to a Swedish consortium
called ’Software Center’. The consortium comprises a total of fifteen companies
and five universities that collaborate together to advance knowledge in seven
different software engineering themes.

To mitigate the risk of receiving responses from different domain perspectives
(e.g., web development), we decided to focus on surveying testers that specialize
in the same domain area. Therefore, we sent the invitation email to five
companies that are active in the development of embedded systems. The survey
comprised two column lists. The first list included definitions of the test case
types (see Section 5.4.1), whereas the second list included the categories of
code changes (see Section 5.4.2). As a first task, all invitees were asked to
provide a mapping between each test case type and category of code changes,
where a mapping corresponds to a dependency between a single test case type

102 CHAPTER 5. PAPER D

and a category of code change.

The second task was for testers to propose and map additional test case
types with categories of code changes that were not provided in the survey.
The purpose was to mitigate the risk of missing out dependency patterns that
testers perceive as important.

Finally, to achieve a better understanding of our target group of testers,
all invitees were asked to mark the test case types that they exercise in their
workplaces. Overall, we received a total of nine responses from nine testers
working at the three software development companies. A general overview of
the number of experienced testers for each test case type is provided in Fig 5.1.

9
8
7
6
5
a
3
2
1
o

o > >
& o P
& & S

NUMBER OF TESTERS

Dﬂﬂﬂﬂ .

{\o‘ < <& &e o
& (9“‘ 2 po

Figure 5.1: Number of Experienced Testers Per Each Test Type.

5.3.3.2 Workshop with Testers

The data from the survey provided us with the understanding of the dependen-
cies. However, these dependencies could be of different strength and therefore
we organized a workshop with the respondents to assess the strengths of depen-
dencies for each test type to code changes. Three out of the nine respondents,
who participated in the survey, and three other testers from another software
company attended the workshop. Our analysis of the survey responses showed
that the strongest dependencies were concentrated around the memory man-
agement and complexity categories of code changes. Therefore, we decided to
focus on assessing the dependency strengths between these two categories of
code changes and test case types in the workshop.

During the workshop, the entire group of testers discussed how sensitive
each test type to the change of source code that affects 1) memory management
or 2) complexity. The goal of the discussion was to gain an understanding of
the dependency strengths from the viewpoint of testers, in the following scale:

[a] Not sensitive at all. This level was used when the testers judged that
such a change would not trigger the test case to fail.

[b] Not very sensitive. This level was used when the testers judged that
triggering a failure would be coincidental.

[c] Somewhat sensitive. This level was used when the testers judged that
triggering would be under specific conditions.

5.4. RESULTS 103

[d] Sensitive. This level was used by the testers to indicate that a change
under most conditions triggers a test case failure.

[e] Very sensitive. This level was used when the change should trigger the
failure of the test case.

After discussing the sensitivity strengths, using the above scale, we asked
the testers to justify their views about the sensitivity of each dependency by
providing explanations for their ranking.

5.3.4 Validation

This phase ensures that the selected subject matters are clear and thoroughly
classified [54]. This can be achieved using three distinct methods: Orthogo-
nality demonstration, benchmarking and utility demonstration. Most of the
taxonomies proposed in Software Engineering are evaluated via an utility
demonstration, i.e., authors apply their taxonomy to an example [54]. In turn,
benchmarking is used to compare the classification capabilities of different
taxonomies. In both cases, the taxonomy needs to be applied in actual software
artefacts. For this study, we cannot perform those types of validation because
we do not have access to test cases or code changes from our industry partners.
Therefore, we validate our taxonomy using an orthogonality demonstration.
That is, we demonstrate and discuss the orthogonality between strongly de-
pendent categories from the viewpoints of testers. The goal is to illustrate the
unique classifications offered by our taxonomy. Based on this demonstration,
we aim to highlight which types of tests map to unique types of code changes,
as well as those dependencies that cover multiple types of tests.

5.4 Results

This section presents the findings for the research question To which degree
do software testers perceive content of a code commit and a test case types as
dependent?

5.4.1 Test Case Types

In this paper, we decided to base our literature search for extracting code
change categories on the list of test case types defined in this ISO/IEC/IEEE
CD 2911901:2020(E) document [29]. This was done to overcome the challenge of
encountering different terms of test case types that are used interchangeably in
published articles. For example, the terms ‘back to back’and ‘differential’testing
can be found and used interchangeably in the literature. Table 5.2 lists the
definitions of all test case types that we used in our literature search. We used
each test case type in the Table to search for relevant papers that empirically
investigate or theoretically discuss the dependency between the relevant test
case type and code changes.

104

CHAPTER 5. PAPER D

Table 5.2: Definitions of Test Case Types

Test Type Definition

Smoke Initial testing of the main functionality of a test item to
determine whether subsequent testing is worthwhile.

Soak Testing performed over extended periods to check the effect
on the test item of operating for such long periods.

Stress Testing performed to evaluate a test item’s behaviour under
conditions of loading above anticipated requirements.

Volume Testing performed to evaluate the capability of the test item
to process specified volumes of data in terms of capacity.

Load Testing performed to evaluate the behaviour of a test item
under anticipated conditions of varying loads.

Statement Test design technique in which test cases are constructed
to force execution of individual statements in a test item.

Maintainability Evaluate the degree of effectiveness and efficiency with
which a test item may be modified.

Security Evaluate the degree to which a test item, and associated
data, are protected against unauthorized access.

Performance Evaluate the degree to which a test item accomplishes its
designated functions within given time.

Capacity Evaluate the level at which increasing load affects a test
item’s ability to sustain required performance.

Portability Evaluate the ease with which a test item can be transferred
from one environment to another.

Installability Testing conducted to evaluate whether a set of test items
can be installed as required in all specified environments.

Compatibility Measure the degree to which a test item can function along-
side other independent products.

Reliability Evaluate the ability of a test item to perform its required
functions under stated conditions for a period of time.

Accessibility Determine the ease by which users with disabilities can use

a test item.

Back-to-back

An alternative version of the system is used as an oracle
to generate expected results for comparison from the same
inputs.

Backup and recov-
ery

Measures the degree to which a system state can be restored
from backup within specified time in the event of failure.

Procedure

Evaluate whether procedural instructions for interacting
with a test item to meet user requirements.

5.4. RESULTS 105

5.4.2 Code Change Categories and Dependencies with
Test Case Types

Our literature search returned a set of 16 relevant papers from which we
could extract six different categories of code changes. These categories were: 1)
Memory Management, 2) Complexity, 3) Design, 4) Dependency, 5) Conditional,
6) Data. Based on the literature search, we identified 21 dependency links
between the six drawn categories of code and eight out of the 18 test case
types defined in the ISO document, as shown in Fig 5.2. Each dependency
corresponds to a relation where a change in one of the code category results in
a failure of a test case of specific type.

theveret el
Memory Affects Performance test

Management i

» Load test

Design

2

— Complexity
Test types

Code changes

[Dependency . Security test

Reliability test

Maintainability

Figure 5.2: Extracted Categories of Code Changes and Their Dependency with
Test Case Types.

= Conditional

— Data

We now define the identified categories of code changes and illustrate the
effect of each on test case types by means of code examples written in the C++
language.

Memory management: This category of change involves groups that are con-
cerned with the management of memory occupied by the system during run-time.
Such changes include introducing/fixing memory leaks, buffer overflow, dan-
gling pointers, and resource interference with multi-threading. The following
test types would react to this category of change: performance [118], load [119],
security [120] [121], soak [122], stress [123], reliability [124] tests. A common
memory leak scenario occurs when a developer allocates memory space using
the new or malloc keywords, and misses freeing memory space after they were
used. As the program grows in size, less memory becomes available and thereby
a performance degradation is encountered. The code example in Fig 5.3 shows
how the memory space allocated for pointer pListElementNext was unfreed
from the memory after being used in revision 2.

Complezity: This category represents changes that add/reduce the time com-
plexity of the program. It includes changes such as adding or removing
loops, conditional statements, nesting blocks and/or recursions. The following
test types have been identified to react to this category of change: perfor-

106

CHAPTER 5. PAPER D

return 9;

Revision 1 Revision 2
int main() int main()
{ {
int* pListElementNext = new int(); int* pListElementNext = new int();
*pListElementNext = 100; *pListElementNext = 100@;
std::cout << pListElementNext << endl; std::cout << pListElementNext << endl;
|[delete pListElementNext; l— deleted return 9;

Figure 5.3: Code Example For Memory Management Change.

mance [125], [126], maintainability [127], [128] tests. Fig 5.4 shows a code
example for finding the maximum integer element in an array. The function in
the first revision takes a one dimensional array as input, whereas the second
revision is modified to accept two-dimensional arrays. The nested loop added
to the function in revision 2 would result in an increased time complexity order.
Similar changes can potentially trigger performance degradation and thereby
performance test failures.

Revision 1

Revision 2

int

{

int

GetElementMax(int arr[], int size)
int max = ©;
for (int i = @; i < size; i++)

if (arr[i] > max){
max = arr[i];
}
}

return max;

main()

int arriD[5] = { 42, 44, 7, 12, 66 };
std::cout << GetElementMax(arrilD, 2) << endl;

int GetElementMax(int arr[][1], int sizeofrows)
{ modified
int max = ©;
[for (Gnt i = ©; i < sizeofrows; i++)|
{
pdded —+[for (int j = @; j < 2; j++)
1 modified

if (arr[i103] > max) |
max = arr[i]1[3];

¥
¥

return max;

main()

int arr2D[1][1];

arr2D[@][©]

23;

added

arr2D[1][@] = 12;
std::cout << GetElementMax(arr2D, 2) <<endl;|
} return ©;

return ©;

Figure 5.4: Code Example For Complexity Change.

Design: This category involves changes that include code refactoring, adding or
removing methods, classes, interfaces, and enumerators, and code smells. The
following test types have been identified to react to this category of change:
maintainability [127], performance [127], security [129], and reliability [130].
The code example in in Fig 5.5 illustrates a design change in a program that
computes the sum of an array elements. The function ’CalculateRank’ was
added in the modified revision to handle the task of summing up the array
elements. Such design decisions reduce the amount of code lines in the program
and thus improves its maintainability.

Dependency: This category describes a code change that involves adding/
removing/ modifying a dependency to another module/ library. It can be
importing/ removing/ modifying a new library, a new namespace, or a new
class. Changes in the dependencies between software artefacts can trigger
the following tests: maintainability [131], security [120], procedure [132], and
performance [126].

5.4. RESULTS 107

Revision 1 Revision 2
int main() added. .void CalculateRank(int ranks[3])
{ {
int myArr[3] = {4, 5, 7}; int sum = ©;
int sum = ©: for (int 1 = ©; i < 3; i++)
{
sum += myArr[0]; deleted } sum += ranks[i];
sum += myArr[1]; std::cout << sum << endl;
sum += myArr[2]; }
int main()
cout << sum << endl; {
return ©; int myArr[3] = { 4, 5, 7 };
b3 added "lCalculateRank(myAr‘r);|
return ©;
}

Figure 5.5: A Code Example For Design Change.

Conditional: This category of change occurs when a logical operator or a
comparative value in a condition is modified. A misuse in the logical expressions
might result in generating the wrong outputs. Performance and procedure
tests [126] [132] were identified as dependent to this category of change.

Data change: This category involves 1) changing functions’ parameters, 2)
passing parameters of incompatible types to modules/ functions, and 3) adding/
fixing assignments of incompatible types to variables, casting statements, and
array size allocations, and 4) modifying variable declarations. The following
tests would react to such code changes: security [133], performance [126], and
procedure [132].

5.4.3 Dependency Patterns and Strengths
5.4.3.1 Survey.

Based on the types of tests and code changes extracted in the previous step,
we created the survey. We sent our survey to 15 industry practitioners and
received responses from nine participating testers (i.e., 60% response rate).
Our analysis focuses on 1) examining whether testers had proposed additional
types of test cases or categories of code change, and 2) examining the level of
agreement and disagreement between the testers’ perceived connections of types
of tests and code changes. For instance, whether testers expect a connection
between design changes and maintainability tests, as reported in literature. Fig
5.6 is a contingency table that depicts the testers’ opinions about potential
dependencies. Our analysis of the responses revealed the following observations:

e The strongest dependency patterns were mostly concentrated around the
memory management and complexity categories of code changes.

e There was a general consensus between the testers about the mappings
between performance, soak, load, stress, capacity, and volume tests and
the six types of code change categories.

e Most of the discrepancies in the responses were in the classification of
the design, dependency, and data categories.

108 CHAPTER 5. PAPER D

Code Change Categories |
Memory
|Smoke Test 8 6
Performance Test 2 2 2
Soak Test 2 1 3
Load Test 1 0 2
Statement Test 2 4 4
[Volume Test 6 5 1 0 1 2
« |Back-to-back Test “ 1 g 4 3 3
8 [stress Test 6 4 1 0 1 2
S ity Test 1 1 4 3 3 2 14
g ity Test 3 3 2 3 2 1 14
g Security Test 3 1 3 2 2 2 13
E Capacity Test | s | 4 1 0 1 0 12
Backup and recovery Test 1 & 3 3 2 2 12
C ibility Test 0 0 2 3 1 1 7
ility Test 0 1 1 2 1 1 6
Portability Test 0 0 1 2 2 1 6
Procedure testing 1 1 1 1 1 1 6
ility Test 0 0 2 1 1 1 5
Functional tests 0 0 i 1 1 0 3
ion tests 0 0 1 1 1 0 3

Figure 5.6: Testers’ classifications of code changes and test case types. Each
cell indicates the number of testers that perceive a relationship between the
corresponding type of code changes and tests. Darker cells indicate stronger
level of agreement between testers.

e Two additional test types, i.e., not found in our literature extraction,
were proposed by the testers: Regression and functional tests. The
ISO/IEC/IEEE CD 2911901:2020(E) considers these two types of tests
as testing activities, since these can be applied at any point in time
irrespective of the testing level (unit, integration, system, and user accep-
tance) [29].

Due to the agreement between most testers about the connection between
the complexity and memory management categories of code changes, we decided
to focus the workshop on exploring the deeper connections between these two
types of code changes and all types of tests. Focusing on only those two
categories allowed us to capture the details of practitioners’ perception about
the connections between code changes and many types of tests such as process
or human factors related to identifying those changes, or code constructs used
in industry to classify those changes.

5.4.3.2 Workshop

We now present the results of the dependency scores given by the testers during
the workshop. Figs 5.7 and 5.8 are diverging plots that show the sensitivity
strengths of each test type to the memory management and complexity cate-
gories. By examining the sensitivity strength scores, of each test case type in
Fig 5.7, we observe that the majority of the testers perceived six tests types to
be mostly sensitive to memory management changes. Namely, performance,
load, soak, stress, volume and capacity tests. Similarly, Fig 5.8 shows that
performance, soak, load, statement, stress, volume, and maintainability tests
were perceived as mostly sensitive to complexity related changes. In the re-
mainder of this subsection, we present the main results of the discussions with
the testers that explain their perspective on those connections.

5.4. RESULTS 109

Performance Test 0% 100%
Soak Test] 0% 100%
Capacity Testq 17% 83%
Stress Test 0% 83%
Load Test 0% 83%
Volume Testq 0% 7%
Security Testd 50% 33%
Regression Testdl &7% 17%
Reliability Testq 50% 17%
Maintainability Testq 67% 17%
Functional Testq 83% 0%
Acoessibility Testd 100% 0% 0%
Procedure Testd 83% 0%
Portability Testq4 83% 0%
Installability Testq 40% 0%
Compatibility Test 4 100% 0% 0%
Backup and recovery Testy &3% 0%
Back-to-back Testq 83% 0%
Statement Testq 80% 0%
Smoke Test 100% 0% 0%
100 50 O 50 100
Percentage
Not at all sensitive Not very sensitive . Somewhat sensitive
Response:
. Sensitive . Very sensitive

Figure 5.7: Diverging plot showing the strength of perceived connections
between each test type and memory management changes. The percentages to
the right indicate the proportion of testers that see a stronger relationship, in
contrast to those that see a weaker relationship. Testers with a neutral view
are shown as the percentage in the middle.

5.4.3.3 Memory Management

Smoke, back-to-back, and statement tests: The respondents justified the low
sensitivity strengths of these three test types to the fact that they focus on the
functionality of the software system, rather than its qualities. One respondent
linked the sensitivity of smoke tests to memory management changes to two
specific scenarios: 1) when changing from one programming language to another,
or 2) when doing major code refactoring.

“It’s mot that often that the smoke tests will break due to memory management
changes but one possible scenario for this to happen is when we switch from C
to C++ first we changed the compiler, then we started modernizing the code

110 CHAPTER 5. PAPER D

Performance Testq 17% 83%
Soak Testq 17% 83%
Capacity Testd 0% 87%
Stress Testy 33% 87%
Load Testy 17% 67%
Volume Testy 0% 67%
Security Testdl 20% 80%
Regression Testd 17% 50%
Reliability Test 0% 33%
Maintainability Testy 33% 33%
Functional Testy 233% 17%
Acocessibility Testy 100% 0% 0%
Procedure Testqd s0% - 0%
Portability Testy 100% 0% 0%
Installability Testq 100% ms 0%
Compatibility Testq 100% mb 0%
Backup and recovery Testq 100% 0'15 0%
Back-to—back Testy 80% - 0%
Statement Test§ 100% 0% 0%
Smoke Testy 100% 0% 0%
100 50 0 50 100

Percentage

) Not at all sensitive ~ Not very sensitive [l Somewnat sensitive
variable
. Sensitive . Very sensitive

Figure 5.8: Diverging plot showing the strength of perceived connections
between each test type and complexity changes. The percentages to the right
indicate the proportion of testers that see a stronger relationship, in contrast
to those that see a weaker relationship. Testers with a neutral view are shown
as the percentage in the middle.

5.4. RESULTS 111

to use smart pointers. Another scenario is when we do major refactoring to
optimize the code base.” — Participant 1

Compatibility and portability tests: All testers agreed that these two types
of tests are not sensitive at all to memory changes. The testers explained
that these tests may only be triggered in the event of hardware failure in
the environment. One opposing viewpoint considered memory management
changes to have an effect on the stability of APIs used for information exchange
in a shared environment, and thereby can trigger a failure in the two tests.

“Failure in these two types of tests can be explained by a device failure or in
the way the APIs in the shared environments are handling concurrent requests,
which often requires memory management changes.” — Participant 1

Load, stress, soak, capacity, and volume tests: The majority of testers
considered these test types to be very similar to performance tests. As a result,
most of the justifications given about the sensitivity strengths of the five tests
are somewhat similar. The testers explained that, in general, failure in one of
the five test types can be triggered by memory related changes when expanding
the functionality of existing classes.

“if you allocate more memory to expand an existing class then failure among
performance tests might be triggered.” — Participant 2

In addition, one tester emphasized that failure in any of these tests depends
on the amount of changes made between releases and the information specified
in the test oracle. That is, failures can only be captured when the amount of
code changes made between releases is large.

“Failure in these tests depends on the oracle. If you just use the performance
test to compare performance from the latest release then there might be no
issues because the changes are too small, but if you do big changes then you
maght spot memory problems.” — Participant 2

Installability tests: The sensitivity of this test type was perceived as mod-
erate (somewhat sensitive) by 50% of the testers. These testers argued that
installability testing is sensitive to memory management changes in situations
where the development team decides to change from one operating system to
another.

“When porting from a Windows environment to a Linux environment, we
should make some memory changes, which trigger installability tests to fail.”
— Participant 3

Security tests: There was a disparity in the views of testers regarding the
sensitivity of this test type. 33% of the testers perceived this test to be sensitive
to memory changes, 17% perceived it to be somewhat sensitive, whereas 50%
of testers perceive a low sensitivity to this type of test. Testers who considered
this test type to be sensitive argued that memory changes lead to memory leaks
which, if not properly managed, might expose the system to security breaches.

“I think that memory management changes could lead to things being exposed
that should not be. For example exposing kernels space memory to be violated.”
— Participant 1

112 CHAPTER 5. PAPER D

Disagreeing participants argued that resource leaks result in performance
issues rather than security breeches. Further, they linked the sensitivity of
security tests to the program domain.

“In specific domains, memory management is mostly handled on the cloud side

providing the service. Internally, memory is not something that will trigger
security tests to fail.” — Participant 4

5.4.3.4 Complexity code changes

Performance, soak, load, volume, and stress tests: The majority of the testers
ranked these types of tests to be either sensitive or very sensitive to complexity
changes. As an argument for their ranking, the testers discussed that adding
complexity changes such as nested loops will increase the cyclomatic complexity
size in the system, which would in turn affects the system’s response time.

“As the cyclomatic complexity increases, the response time of the system will
also get impacted.” — Participant 2

The remaining minority of the testers argued that developers are aware
of the impact of adding complexity changes on performance. As such, it is
highly unlikely that developers will commit complexity code changes without
optimizing their code before testing.

“If developers are adding complexity consciously then there will be performance
issues, but often the times, developers will address these complexity before even
pushing their code for testing.” — Participant 3

Maintainability test: All of the participants perceived this test type to be
either sensitive or very sensitive to complexity changes in the code. One of
the participants argued that adding more control paths in the system, such as
loops and case blocks, leads to the development of larger and poorly structured
software, which makes it more difficult and less efficient to maintain.

“Adding things like loops or method calls into the program increases its size
and makes the task of debugging more difficult as the program evolves over
time.” — Participant 5

Security test: 50% of the participants indicated that security tests are
somewhat sensitive to complexity changes. This was explained by the fact
that adding recursion calls and loops to the code can potentially increase
the size and modularity of the system under test, thus it will increase risk of
missing security vulnerabilities. Conversely, around 30% of the participants
believed that security tests are not sensitive at all to complexity changes.
This contrasting view indicates that the links between security threats and
increasing/decreasing code complexity are not clear for testers.

“I think it’s not really a good thing to add complexity for security aware
purposes. It is very important to understand what’s going on in the code to be
able to deal with things like security.” — Participant 2

“adding loops will in no way expose the system to external threats and therefore
no security tests will break if more loops are added - adding loops will not cause
any vulnerabilities in the system.” — Participant 6

The remaining 20% of the participants considered security tests to be
sensitive to complexity changes, but did not provide any justification for this
rank.

5.5. TAXONOMY VALIDATION 113

5.4.4 Resulting Taxonomy

The constructed taxonomy is based on the analysis of the overall agreement
between testers who participated in the workshop and their justifications about
each dependency. A test case type whose overall sensitivity to a code change
was ranked as either sensitive or very sensitive by the majority of the testers
was added to the taxonomy - provided that a justification for the dependency
was made by one or more of the agreeing testers. Our analysis results of the
workshop discussions show that testers have an aligned viewpoint with the
classifications drawn from the literature in six of the dependency connections.
Namely between: 1) memory management code and performance, load, soak,
and stress tests, 2) complexity code and performance and maintainability tests.
Beside these aligned dependencies, testers perceive six other dependencies to
be in a strong causality relationship with the two categories of code. Those
dependencies were between 1) memory management code changes and volume
and capacity tests, 2) complexity code changes and load, soak, stress, and
volume tests. Fig 5.9 shows the constructed taxonomy. We identify the strong
and weak relationships mentioned by practitioners. Overall, the results show
that the memory management code should be tested with tests related to perfor-
mance, load, soak, stress, volume and capacity; the complexity changes should
be tested with the same and additionally with the dedicated maintainability
tests.

Performance

Y
Management

Maintainability | Test types

Code
Changes |

Back to Back
" Installability

Figure 5.9: The final taxonomy of code changes and test case types. The solid
connectors represent strong dependencies perceived by practitioners, whereas
the dashed connectors correspond to those dependencies perceived as weak.

5.5 Taxonomy Validation

We evaluate our taxonomy by discussing the orthogonality of its classification.
In other words, we illustrate how the chosen facets can support the prediction of
connections between types of tests and code changes. Particularly, we emphasize
the unique combinations found in our facets for supporting testers to classify
the tests in connection with the code changes made. We frame the applicability

114 CHAPTER 5. PAPER D

of our taxonomy in relation to automated prediction of relationships between
code and tests to support effective test orchestration.

5.5.1 Orthogonality of the Taxonomy’s Facets

The majority of relationships are connected to the memory management code
changes (11/18). That is not surprising as most of the types of tests found in
literature cover system qualities. In fact, during workshops, practitioners rarely
mention updates in functionalities (e.g., system requirements), except when
discussing complexity changes. Memory management is exclusively connected
with 5 test types, such that only 1 of those connections is strong (capacity tests).
Consequently, those weak connections can be used to avoid overhead in test
executions when focusing the verification of changes in memory management
of software systems. Changes in complexity have fewer connections and most
of them are actually shared with memory management (6/7), hence indicating
a confounding factor between verifying changes in complexity to their impact
on verifying memory management. Maintainability is only associated with
complexity which is not surprising, since the complexity of a source code has
impact on core aspects of maintainability such as testability and debugging [134].
The results shows one weak connection shared between both types of code
changes, which is related to security testing. Still, practitioners did not seem
to have a consensus on how to handle security tests. Note that on Figs 5.3
and 5.4, security is ranked in the middle between the more explicit agreement
and disagreements for both code categories. These contrasting views from
practitioners on the purpose of security tests align with the findings drawn by
Morrison et al. [135], where the authors highlighted a number of factors that
impede the construction of effective vulnerability ML models.

5.5.2 Instrumenting Prediction of Dependencies

Table 5.3 breaks down memory management and complexity changes into
specific types and their connection to specific code constructs. We choose
C++ constructs because our study encompasses the domain of embedded
systems. Future work aims at expanding the constructs to other programming
languages such as Java or Python. Associating these code changes to specific
code constructs enables automatic extraction and identification of code changes
by using information from control version systems, such as git. The process
of identifying and classifying code lines into their relevant categories can be
instrumented using, for example, a tokenizer and a lexicon of vocabulary
that contains a mapping between code tokens (constructs) and their relevant
categories of code. For example, a code line that appears with a combination
of the tokens ’“delete, free, new, and malloc’ can be used to classify a code line
as memory management related, since these tokens are used during objects’
creation/destruction (Table 5.3). In contrast, automatically identifying and
extracting types of tests is more challenging because those tests are used
across different levels (e.g., unit or system) such that keyword extraction is
inaccurate, particularly for higher levels of testing where tests are written in
natural language (e.g., acceptance tests). Therefore, for this study, we assume
that practitioners have access to the types of their tests, as part of their test
process.

5.5. TAXONOMY VALIDATION 115

Table 5.3: Types and Constructs Related to Memory Management and Com-
plexity Code Changes.

Memory Management

Subcategory Description Code Constructs
Dangling/ occurs when deleting an object &variable, *vari-
Wild point- from memory without altering able, NULL, free
ers the pointer that points to the

object’s location.
Memory occur when memory space is al- delete, free, new,
leaks located but not freed. If such malloc

incidents occur, leaks will hap-

pen and could eventually cause

the program to run out of mem-

ory resulting in a program halt.
Buffer over- occurs when the data gets writ- malloc, strcpy, gets,
flow ten past the boundaries of the strcmp

buffer allocated in memory.

Complexity

Subcategory Description Code Constructs

Loops and repeating a sequence of instruc- for, while, do, if,
conditions tions for n times until one or switch, case, break
more conditions are satisfied.
The repetition can occur in the
form of multiple nested loops.
recursion Occurs when a function calls it-
self until an exit condition is
satisfied.

RQ. To which degree do software testers perceive content of a
code commit and test case types as dependent?

The measured degree of perception among software testers suggests a strong
dependency between performance, load, soak, stress, and volume tests and
memory management related code changes. On the other hand, testers believe
that soak, statement, back to back, security and installability tests are in
weak dependencies with memory management code. Similarly, the majority of
testers perceive the same set of strongly dependent test types with memory
management changes to be dependent on complexity changes; in addition to
maintainability tests and excluding capacity tests.

Based on these findings, test orchestrators that are keen on using ML
models for test selection are encouraged to build their ML models on data that
reflects the dependency patterns depicted in the presented taxonomy (Fig 5.9).
Particularly, by mapping memory management and algorithmic complexity
related code changes to the verdict of the strongly dependent test case types.

116 CHAPTER 5. PAPER D

5.6 Threats to validity

In this section, we briefly discuss the limitations of our paper using the frame-
work recommended by Wohlin et al. [55].

Conclusion Validity: Since this paper does not aim to provide a systemic
survey, we did not use a formal protocol for conducting the literature review.
Therefore, we cannot ensure that the selection of the code categories and test
case types was unbiased. However, we minimize this risk by inviting testers
to propose other types of code changes and test cases that are not provided
in the survey invitation email. Moreover, there is a likelihood that we missed
adding valid dependencies in the taxonomy as a result of 1) not discussing the
sensitivity of all test types with testers, and 2) lack of experience among testers
in some test case types. However, since the goal of this work is to study the
dependency between code changes and test types, we accept this risk.

External Validity: The sample size of testers who participated in the survey
and the workshop was small. Therefore, we acknowledge that the generalization
of our findings might be delimited. However, the survey data and the workshop
discussion provided some valuable insights into understanding the dependencies
and sensitivity strengths of different test case types and code changes.

Internal Validity: The time span between the distribution of the survey and
the the workshop was almost two months. This poses a threat with respect to
the testers’ comprehension of the terms and definitions that were used during
the workshop (e.g., test case types). We mitigated this threat by providing
definitions for all the terms used in the workshop. Another internal threat to
validity is the likelihood that testers were influenced by the opinions of each
other. However, since we construct our taxonomy based on a triangulated
approach, we minimize the likelihood of this risk.

Construct Validity: This study builds on the assumption that there exists
a dependency between code changes and test types. Nevertheless, there is a
chance that such a dependency does not exist and that what we found was
coincidental. We minimize this risk by constructing the taxonomy from the
viewpoints of practitioners.

5.7 Conclusion and Future Work

The taxonomy presented in this paper aims at classifying dependencies between
categories of code changes and test case types. Exploring these dependencies
can potentially contribute to the improvement of ML based test case selection
approaches that use code analysis and test execution results. In this paper, we
have observed strong dependencies between two categories of code changes and
seven test case types. This knowledge can gear the test orchestration efforts
by pinpointing and executing test cases that are in relation with the relevant
changes in the source code. The strongest dependencies were captured between
performance, load, stress, soak, volume and the two categories of code changes:
memory management and complexity. On the opposite end of the spectrum, the
weakest dependencies were found between smoke, back-to-back, installability,
accessibility, portability, compatibility, and backup and recovery tests, and the
two categories of code changes. Those test cases can be excluded from the suite
when the tested code contains memory management and complexity changes

5.7. CONCLUSION AND FUTURE WORK 117

only. As a future work, we plan to continue working on refining the presented
taxonomy by investigating additional dependency patterns between other test
case types and categories of code changes. Another important future work is
to investigate potential dependency links between test script constructs and
test execution outcomes of different types. Finally, we aim at evaluating the
taxonomy presented in this study by using utility demonstrations on different
software projects and programming languages.

118 CHAPTER 5. PAPER D

Bibliography

[1]

A. Brand, L. Allen, M. Altman, M. Hlava, and J. Scott, “Beyond au-
thorship: attribution, contribution, collaboration, and credit,” Learned
Publishing, vol. 28, no. 2, pp. 151-155, 2015.

P. M. Duvall, S. Matyas, and A. Glover, Continuous integration: improv-
ing software quality and reducing risk. Pearson Education, 2007.

E. Knauss, M. Staron, W. Meding, O. Soder, A. Nilsson, and M. Castell,
“Supporting continuous integration by code-churn based test selection,” in
Proceedings of the Second International Workshop on Rapid Continuous
Software Engineering. IEEE Press, 2015, pp. 19-25.

S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, pp. 67-120, 2012.

G. Rothermel and M. J. Harrold, “A safe, efficient algorithm for regression
test selection,” in 1993 Conference on Software Maintenance. IEEE,
1993, pp. 358-367.

J. A. Lee and X. He, “A methodology for test selection,” Journal of
Systems and Software, vol. 13, no. 3, pp. 177-185, 1990.

H. Agrawal, J. R. Horgan, E. W. Krauser, and S. A. London, “Incremental
regression testing,” in 1993 Conference on Software Maintenance. ITEEE
1993, pp. 348-357.

R. Gupta, M. J. Harrold, and M. L. Soffa, “An approach to regression
testing using slicing,” in Proceedings Conference on Software Maintenance
1992. 1EEE, 1992, pp. 299-308.

V. Antinyan, J. Derehag, A. Sandberg, and M. Staron, “Mythical unit
test coverage,” IEEFE Software, vol. 35, no. 3, pp. 73-79, 2018.

F. Wedyan, D. Alrmuny, and J. M. Bieman, “The effectiveness of auto-
mated static analysis tools for fault detection and refactoring prediction,”
in 2009 International Conference on Software Testing Verification and
Validation. TEEE, 2009, pp. 141-150.

C. Bolduc, “Lessons learned: Using a static analysis tool within a con-
tinuous integration system,” in 2016 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW). 1EEE, 2016,
pp. 37-40.

119

120

BIBLIOGRAPHY

[12]

[14]

[15]

[16]

[17]

[19]

[20]

C. Couto, J. E. Montandon, C. Silva, and M. T. Valente, “Static corre-
spondence and correlation between field defects and warnings reported by
a bug finding tool,” Software Quality Journal, vol. 21, no. 2, pp. 241-257,
2013.

S. Kim and M. D. Ernst, “Which warnings should i fix first?” in Proceed-
ings of the the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of
software engineering. ACM, 2007, pp. 45-54.

S. Yoo, R. Nilsson, and M. Harman, “Faster fault finding at google using
multi objective regression test optimisation,” in 8th Furopean Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE’11), Szeged, Hungary,
2011.

G. A. Liebchen, “Data cleaning techniques for software engineering
data sets,” Ph.D. dissertation, Brunel University, School of Information
Systems, Computing and Mathematics, 2010.

D. F. Nettleton, A. Orriols-Puig, and A. Fornells, “A study of the effect of
different types of noise on the precision of supervised learning techniques,”
Artificial intelligence review, vol. 33, no. 4, pp. 275-306, 2010.

D. Guan, W. Yuan, Y.-K. Lee, and S. Lee, “Identifying mislabeled training
data with the aid of unlabeled data,” Applied Intelligence, vol. 35, no. 3,
pp. 345-358, 2011.

C. E. Brodley, M. A. Friedl et al., “Identifying and eliminating mislabeled
training instances,” in Proceedings of the National Conference on Artificial
Intelligence, 1996, pp. 799-805.

T. M. Khoshgoftaar and J. Van Hulse, “Identifying noise in an attribute
of interest,” in Fourth International Conference on Machine Learning
and Applications (ICMLA’05). 1EEE, 2005, pp. 6-pp.

K.-A. Yoon and D.-H. Bae, “A pattern-based outlier detection method
identifying abnormal attributes in software project data,” Information
and Software Technology, vol. 52, no. 2, pp. 137 — 151, 2010.

E. N. Narciso, M. E. Delamaro, and F. D. L. D. S. Nunes, “Test case
selection: A systematic literature review,” International Journal of
Software Engineering and Knowledge Engineering, vol. 24, no. 04, pp.
653-676, 2014.

R. D. De Veaux and D. J. Hand, “How to lie with bad data,” Statistical
Science, vol. 20, no. 3, pp. 231-238, 2005.

J. Zhang and Y. Yang, “Robustness of regularized linear classification
methods in text categorization,” in Proceedings of the 26th annual in-
ternational ACM SIGIR conference on Research and development in
informaion retrieval, 2003, pp. 190-197.

BIBLIOGRAPHY 121

[24]

[25]

[26]

[27]

[28]

29

[30]

[31]

[32]

[35]

J. Abellan and A. R. Masegosa, “Bagging decision trees on data sets
with classification noise,” in International Symposium on Foundations of
Information and Knowledge Systems. Springer, 2010, pp. 248-265.

J. D. Van Hulse, T. M. Khoshgoftaar, and H. Huang, “The pairwise
attribute noise detection algorithm,” Knowledge and Information Systems,
vol. 11, no. 2, pp. 171-190, 2007.

D. Gamberger, N. Lavrac, and S. Dzeroski, “Noise detection and elimina-
tion in data preprocessing: experiments in medical domains,” Applied
artificial intelligence, vol. 14, no. 2, pp. 205-223, 2000.

D. Gamberger and N. Lavrac¢, “Conditions for occam’s razor applicability
and noise elimination,” in Furopean Conference on Machine Learning.
Springer, 1997, pp. 108-123.

C.-M. Teng, “Correcting noisy data.” in ICML. Citeseer, 1999, pp.
239-248.

“Iso/iec/ieee international standard - software and systems engineering
—software testing—part 1: Concepts and definitions,” Tech. Rep., 2020.

O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An
extensive study of static regression test selection in modern software
evolution,” in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2016, pp. 583-594.

A. Shi, M. Hadzi-Tanovic, L. Zhang, D. Marinov, and O. Legunsen,
“Reflection-aware static regression test selection,” Proceedings of the ACM
on Programming Languages, vol. 3, no. OOPSLA, pp. 1-29, 2019.

L. Zhang, “Hybrid regression test selection,” in 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). IEEE, 2018,
pp- 199-209.

S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioriti-
zation: A family of empirical studies,” IEFE transactions on software
engineering, vol. 28, no. 2, pp. 159-182, 2002.

A. Srivastava and J. Thiagarajan, “Effectively prioritizing tests in de-
velopment environment,” in Proceedings of the 2002 ACM SIGSOFT
international symposium on Software testing and analysis, 2002, pp.
97-106.

F. G. de Oliveira Neto, A. Ahmad, O. Leifler, K. Sandahl, and E. Enoiu,
“Improving continuous integration with similarity-based test case selection,”
in Proceedings of the 13th International Workshop on Automation of
Software Test, 2018, pp. 39-45.

H. Hemmati, A. Arcuri, and L. Briand, “Achieving scalable model-based
testing through test case diversity,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 22, no. 1, pp. 1-42, 2013.

122

BIBLIOGRAPHY

[37]

[39]

[40]

F. Muhlenbach, S. Lallich, and D. A. Zighed, “Identifying and
handling mislabelled instances,” Journal of Intelligent Information
Systems, vol. 22, no. 1, pp. 89-109, Jan 2004. [Online]. Available:
https://doi.org/10.1023/A:1025832930864

T. M. Khoshgoftaar, N. Seliya, and K. Gao, “Rule-based noise detection
for software measurement data,” in Proceedings of the 2004 IEEE Inter-
national Conference on Information Reuse and Integration, 2004. IRI
2004. IEEE, 2004, pp. 302-307.

P. Runeson, E. Engstrom, and M.-A. Storey, “The design science paradigm
as a frame for empirical software engineering,” in Contemporary empirical
methods in software engineering. Springer, 2020, pp. 127-147.

T. Y. Chen and M. F. Lau, “Dividing strategies for the optimization of a
test suite,” Information Processing Letters, vol. 60, no. 3, pp. 135141,
1996.

G. Rothermel and M. J. Harrold, “A framework for evaluating regression
test selection techniques,” in Proceedings of 16th International Conference
on Software Engineering. IEEE, 1994, pp. 201-210.

M. J. Harrold, “Testing evolving software,” Journal of Systems and
Software, vol. 47, no. 2-3, pp. 173-181, 1999.

M. Ochodek, M. Staron, D. Bargowski, W. Meding, and R. Hebig, “Using
machine learning to design a flexible loc counter,” in 2017 IEEE Work-
shop on Machine Learning Techniques for Software Quality Evaluation
(MaLTeSQuE). IEEE, 2017, pp. 14-20.

M. Pechenizkiy, A. Tsymbal, S. Puuronen, and O. Pechenizkiy, “Class
noise and supervised learning in medical domains: The effect of feature
extraction,” in 19th IEEE symposium on computer-based medical systems
(CBMS’06). IEEE, 2006, pp. 708-713.

N. Juristo and A. M. Moreno, Basics of software engineering experimen-
tation. Springer Science & Business Media, 2013.

J. Yao and M. Shepperd, “Assessing software defection prediction per-
formance: Why using the matthews correlation coefficient matters,” in
Proceedings of the Evaluation and Assessment in Software Engineering,
2020, pp. 120-129.

“Dealing with outliers in machine learning,” Sep 2021. [Online]. Available:
https://expressanalytics.com/blog/outliers-machine-learning/

H. J. Escalante, “A comparison of outlier detection algorithms for machine
learning,” in Proceedings of the International Conference on Communi-
cations in Computing, 2005, pp. 228-237.

R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui, “A com-
parative evaluation of outlier detection algorithms: Experiments and
analyses,” Pattern Recognition, vol. 74, pp. 406—421, 2018.

BIBLIOGRAPHY 123

[50]

[51]

[52]

[57]

M. Petrovskiy, “Outlier detection algorithms in data mining systems,”
Programming and Computer Software, vol. 29, no. 4, pp. 228-237, 2003.

L. H. Chiang, R. J. Pell, and M. B. Seasholtz, “Exploring process data
with the use of robust outlier detection algorithms,” Journal of Process
Control, vol. 13, no. 5, pp. 437-449, 2003.

D. Guan, W. Yuan, and L. Shen, “Class noise detection by multiple
voting,” in 2013 Ninth International Conference on Natural Computation
(ICNC). 1EEE, 2013, pp. 906-911.

B. Sluban and N. Lavra¢, “Relating ensemble diversity and performance:
A study in class noise detection,” Neurocomputing, vol. 160, pp. 120-131,
2015.

M. Usman, R. Britto, J. Borstler, and E. Mendes, “Taxonomies in soft-
ware engineering: A systematic mapping study and a revised taxonomy

development method,” Information and Software Technology, vol. 85, pp.
43-59, 2017.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslén, FExperimentation in software engineering. Springer Sci-
ence & Business Media, 2012.

D. Stahl and J. Bosch, “Experienced benefits of continuous integration
in industry software product development: A case study,” in The 12th
IASTED International Conference on Software Engineering, (Innsbruck,
Austria, 2018), 2013, pp. 736-743.

G. Qalikli, M. Staron, and W. Meding, “Measure early and decide fast:
transforming quality management and measurement to continuous deploy-
ment,” in Proceedings of the 2018 International Conference on Software
and System Process. ACM, 2018, pp. 51-60.

N. Nagappan and T. Ball, “Use of relative code churn measures to predict
system defect density,” in Proceedings of the 27th international conference
on Software engineering. ACM, 2005, pp. 284-292.

F. Chollet, Deep Learning with Python. Manning, 2017.

A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow.
Oreilly, 2015.

R. Saxena, “Introduction to decision tree algorithm,”
2017. [Online]. Available: https://dataaspirant.com/2017/01/30/
how-decision-tree-algorithm-works/

M. Awad and R. Khanna, Efficient learning machines: theories, concepts,
and applications for engineers and system designers. Apress, 2017.

I. Gondra, “Applying machine learning to software fault-proneness pre-
diction,” Journal of Systems and Software, vol. 81, no. 2, pp. 186-195,
2008.

124

BIBLIOGRAPHY

[64]

[70]

[73]

[74]

Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” IEEE Transactions on Software Engineering,

vol. 37, no. 6, pp. 772-787, Nov 2011.

T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting fault
incidence using software change history,” IEEE Transactions on Software
Engineering, vol. 26, no. 7, pp. 6563—661, July 2000.

J. Beningo, “Using the static keyword in c¢,” https://community.
arm.com/developer /ip-products/system/b/embedded-blog/posts/
using-the-static-keyword-in-c, 2014.

V. H. Durelli, R. S. Durelli, S. S. Borges, A. T. Endo, M. M. Eler, D. R.
Dias, and M. P. Guimaraes, “Machine learning applied to software testing:
A systematic mapping study,” IEEE Transactions on Reliability, 2019.

B. Busjaeger and T. Xie, “Learning for test prioritization: an industrial
case study,” in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2016, pp.
975-980.

J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, and B. Xie, “Learning to
prioritize test programs for compiler testing,” in Proceedings of the 39th
International Conference on Software Engineering. IEEE Press, 2017,
pp. 700-711.

H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, “Reinforcement
learning for automatic test case prioritization and selection in continuous
integration,” in Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis. ACM, 2017, pp. 12-22.

M. Azizi and H. Do, “A collaborative filtering recommender system
for test case prioritization in web applications,” in Proceedings of the
83rd Annual ACM Symposium on Applied Computing, ser. SAC ’18.
New York, NY, USA: ACM, 2018, pp. 1560-1567. [Online]. Available:
http://doi.acm.org/10.1145/3167132.3167299

F. Palma, T. Abdou, A. Bener, J. Maidens, and S. Liu, “An improvement
to test case failure prediction in the context of test case prioritization,”
in Proceedings of the 14th International Conference on Predictive
Models and Data Analytics in Software Engineering, ser. PROMISE’18.
New York, NY, USA: ACM, 2018, pp. 80-89. [Online]. Available:
http://doi.acm.org/10.1145/3273934.3273944

T. B. Noor and H. Hemmati, “Studying test case failure prediction for test
case prioritization,” in Proceedings of the 13th International Conference
on Predictive Models and Data Analytics in Software Engineering. ACM,
2017, pp. 2-11.

——, “A similarity-based approach for test case prioritization using
historical failure data,” in 2015 IEEFE 26th International Symposium on
Software Reliability Engineering (ISSRE). 1EEE, 2015, pp. 58-68.

BIBLIOGRAPHY 125

[75]

(78]

[79]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825-2830, 2011.

F. Chollet et al., “Keras,” https://keras.io, 2015.

K. W. Al-Sabbagh, M. Staron, R. Hebig, and W. Meding, “Predicting
test case verdicts using textual analysis of committed code churns,” in
Joint Proceedings of the International Workshop on Software Measure-

mentand the International Conference on Software Process and Product
Measurement (IWSM Mensura 2019), vol. 2476, 2019, pp. 138-153.

H. Hata, O. Mizuno, and T. Kikuno, “Fault-prone module detection using
large-scale text features based on spam filtering,” Empirical Software
Engineering, vol. 15, no. 2, pp. 147-165, 2010.

S. Kim, E. J. Whitehead Jr, and Y. Zhang, “Classifying software changes:
Clean or buggy?”’ IEEE Transactions on Software Engineering, vol. 34,
no. 2, pp. 181-196, 2008.

L. Aversano, L. Cerulo, and C. Del Grosso, “Learning from bug-
introducing changes to prevent fault prone code,” in Ninth international
workshop on Principles of software evolution: in conjunction with the 6th
ESEC/FSE joint meeting. ACM, 2007, pp. 19-26.

)

G. H. John, “Robust decision trees: Removing outliers from databases.’
in KDD, vol. 95, 1995, pp. 174-179.

Q. Zhao and T. Nishida, “Using qualitative hypotheses to identify in-
accurate data,” Journal of Artificial Intelligence Research, vol. 3, pp.
119-145, 1995.

J. A. Sdez, J. Luengo, and F. Herrera, “Evaluating the classifier behavior
with noisy data considering performance and robustness: The equalized
loss of accuracy measure,” Neurocomputing, vol. 176, pp. 26-35, 2016.

b2

X. Zhu and X. Wu, “Class noise vs. attribute noise: A quantitative study,
Artificial intelligence review, vol. 22, no. 3, pp. 177-210, 2004.

O. Mizuno, S. Tkami, S. Nakaichi, and T. Kikuno, “Spam filter based
approach for finding fault-prone software modules,” in Proceedings of the
Fourth International Workshop on Mining Software Repositories. ITEEE
Computer Society, 2007, p. 4.

S. Boughorbel, F. Jarray, and M. El-Anbari, “Optimal classifier for
imbalanced data using matthews correlation coefficient metric,” PloS
one, vol. 12, no. 6, 2017.

B. Frénay and M. Verleysen, “Classification in the presence of label noise:
a survey,” IEEFE transactions on neural networks and learning systems,
vol. 25, no. 5, pp. 845-869, 2013.

126

BIBLIOGRAPHY

[88]

[99]

[100]

E. Knauss, S. Houmb, K. Schneider, S. Islam, and J. Jiirjens, “Supporting
requirements engineers in recognising security issues,” in International
Working Conference on Requirements Engineering: Foundation for Soft-
ware Quality. Springer, 2011, pp. 4-18.

M. Ochodek, R. Hebig, W. Meding, G. Frost, and M. Staron, “Recognizing
lines of code violating company-specific coding guidelines using machine
learning,” Empirical Software Engineering, vol. 25, no. 1, pp. 220-265,
2020.

H. Sajnani, “Automatic software architecture recovery: A machine learn-
ing approach,” in 2012 20th IEEE International Conference on Program
Comprehension (ICPC). TEEE, 2012, pp. 265-268.

S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features
for defect prediction,” in 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE). IEEE, 2016, pp. 297-308.

Z. Cai, L. Lu, and S. Qiu, “An abstract syntax tree encoding method for
cross-project defect prediction,” IEEE Access, vol. 7, pp. 170 844-170 853,
2019.

K. W. Al-Sabbagh, M. Staron, R. Hebig, and W. Meding, “Improving
data quality for regression test selection by reducing annotation noise,” in
2020 46th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). TEEE, 2020, pp. 191-194.

T. Zimmermann and P. Weifigerber, “Preprocessing cvs data for fine-
grained analysis.” in MSR, vol. 4, 2004, pp. 2—6.

C. M. Teng, “Combining noise correction with feature selection,” in
International Conference on Data Warehousing and Knowledge Discovery.
Springer, 2003, pp. 340-349.

K. W. Al-Sabbagh, R. Hebig, and M. Staron, “The effect of class noise
on continuous test case selection: A controlled experiment on industrial
data,” in International Conference on Product-Focused Software Process
Improvement. Springer, 2020, pp. 287-303.

T. M. Khoshgoftaar and J. Van Hulse, “Empirical case studies in attribute
noise detection,” IEEFE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), vol. 39, no. 4, pp. 379-388, 2009.

C.-M. Teng, “A comparison of noise handling techniques.” in FLAIRS
Conference, 2001, pp. 269-273.

J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1,
no. 1, pp. 81-106, 1986.

C. E. Brodley and M. A. Friedl, “Identifying mislabeled training data,”
Journal of artificial intelligence research, vol. 11, pp. 131-167, 1999.

BIBLIOGRAPHY 127

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]
[109]

[110]

[111]

[112]

[113]

R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the
efficiency of change metrics and static code attributes for defect predic-
tion,” in Proceedings of the 30th international conference on Software
engineering, 2008, pp. 181-190.

S. Amasaki, Y. Takagi, O. Mizuno, and T. Kikuno, “A bayesian belief
network for assessing the likelihood of fault content,” in 14th Interna-
tional Symposium on Software Reliability Engineering, 2003. ISSRE 2003.
IEEE, 2003, pp. 215-226.

J. Deng, L. Lu, S. Qiu, and Y. Ou, “A suitable ast node granularity
and multi-kernel transfer convolutional neural network for cross-project
defect prediction,” IEEE Access, vol. 8, pp. 66 647—66 661, 2020.

T. B. C. Arias, P. Avgeriou, and P. America, “Analyzing the actual exe-
cution of a large software-intensive system for determining dependencies,”
in 2008 15th Working Conference on Reverse Engineering. IEEE, 2008,
pp- 49-58.

A. Hamou-Lhadj and T. C. Lethbridge, “A survey of trace exploration
tools and techniques,” in Proceedings of the 2004 conference of the Centre
for Advanced Studies on Collaborative research, 2004, pp. 42-55.

M. Balint, R. Marinescu, and T. Girba, “How developers copy,” in 14th
IEEF International Conference on Program Comprehension (ICPC’06).
IEEE, 2006, pp. 56-68.

V. Ganganwar, “An overview of classification algorithms for imbalanced
datasets,” International Journal of Emerging Technology and Advanced
Engineering, vol. 2, no. 4, pp. 42-47, 2012.

A. Axelrod, Complete Guide to Test Automation. Springer, 2018.

K. Wang, C. Zhu, A. Celik, J. Kim, D. Batory, and M. Gligoric, “Towards
refactoring-aware regression test selection,” in 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). TEEE, 2018,
pp. 233-244.

B. H. Kwasnik, “The role of classification in knowledge representation
and discovery,” 1999.

R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moe-
bus, B. K. Ray, and M.-Y. Wong, “Orthogonal defect classification-a
concept for in-process measurements,” IEEE Transactions on software
Engineering, vol. 18, no. 11, pp. 943-956, 1992.

N. Li, Z. Li, and X. Sun, “Classification of software defect detected by
black-box testing: An empirical study,” in 2010 Second World Congress
on Software Engineering, vol. 2. IEEE, 2010, pp. 234-240.

L. Ma and J. Tian, “Web error classification and analysis for reliability
improvement,” Journal of Systems and Software, vol. 80, no. 6, pp.
795-804, 2007.

128

BIBLIOGRAPHY

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

R. Britto, “Knowledge classification for supporting effort estimation
in global software engineering projects,” Ph.D. dissertation, Blekinge
Tekniska Hogskola, 2015.

J. Novak, A. Krajnc et al., “Taxonomy of static code analysis tools,” in
The 33rd International Convention MIPRO. IEEE, 2010, pp. 418-422.

S. Vegas, N. Juristo, and V. R. Basili, “Maturing software engineering
knowledge through classifications: A case study on unit testing tech-
niques,” IEEE Transactions on Software Engineering, vol. 35, no. 4, pp.
551-565, 2009.

)

M. Felderer and I. Schieferdecker, “A taxonomy of risk-based testing,’
arXiw preprint arXiw:1912.11519, 2019.

Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and detecting per-
formance bugs for smartphone applications,” in Proceedings of the 36th
international conference on software engineering, 2014, pp. 1013-1024.

Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Automatic
identification of load testing problems,” in 2008 IEEE International
Conference on Software Maintenance. IEEE, 2008, pp. 307-316.

F. Cohen, “Information system attacks: A preliminary classification
scheme,” Computers & Security, vol. 16, no. 1, pp. 29-46, 1997.

R. C. Seacord and A. D. Householder, “A structured approach to clas-
sifying security vulnerabilities,” CARNEGIE-MELLON UNIV PITTS-
BURGH PA SOFTWARE ENGINEERING INST, Tech. Rep., 2005.

T. Karttunen, “Implementing soak testing for an access network solution,”
Ph.D. dissertation, HELSINKI UNIVERSITY OF TECHNOLOGY, 20009.

J. Zhang, S.-C. Cheung, and S. T. Chanson, “Stress testing of distributed
multimedia software systems,” in Formal Methods for Protocol Engineer-
ing and Distributed Systems. Springer, 1999, pp. 119-133.

D. Cotroneo, R. Pietrantuono, L. Mariani, and F. Pastore, “Investigation
of failure causes in workload-driven reliability testing,” in Fourth inter-
national workshop on Software quality assurance: in conjunction with the
6th ESEC/FSE joint meeting, 2007, pp. 78-85.

A. Nistor, P.-C. Chang, C. Radoi, and S. Lu, “Caramel: Detecting
and fixing performance problems that have non-intrusive fixes,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing, vol. 1. IEEE, 2015, pp. 902-912.

J. P. Sandoval Alcocer, A. Bergel, and M. T. Valente, “Learning from
source code history to identify performance failures,” in Proceedings
of the Tth ACM/SPEC on International Conference on Performance
Engineering, 2016, pp. 37-48.

BIBLIOGRAPHY 129

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

L. Jiang, Z. Su, and E. Chiu, “Context-based detection of clone-related
bugs,” in Proceedings of the the 6th joint meeting of the Furopean soft-
ware engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, 2007, pp. 55—64.

R. D. Banker, S. M. Datar, and D. Zweig, “Software complexity and
maintainability,” Age, vol. 11, no. 5.6, p. 3, 1989.

T. Aslam, “A taxonomy of security faults in the unix operating system,”
Master’s thesis, Purdue University, vol. 199, no. 5, 1995.

Y. Levendel, “Defects and reliability analysis of large software systems:
field experience,” in 1989 The Nineteenth International Symposium on
Fault-Tolerant Computing. Digest of Papers. IEEE Computer Society,
1989, pp. 238-239.

E. Razina and D. S. Janzen, “Effects of dependency injection on main-
tainability,” in Proceedings of the 11th IASTED International Conference
on Software Engineering and Applications: Cambridge, MA, 2007, p. 7.

A. Sawant, P. H. Bari, and P. Chawan, “Software testing techniques and
strategies,” 2012.

Z. Yan, D. Guowei, G. Tao, and Y. Jianyu, “Taxonomy of source code
security defects based on three-dimension-tree,” in International Confer-
ence on Computer and Computing Technologies in Agriculture. Springer,
2013, pp. 232-241.

M. Felderer, B. Marculescu, F. G. de Oliveira Neto, R. Feldt, and
R. Torkar, “A testability analysis framework for non-functional properties,”
in 2018 IEEFE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). IEEE, 2018, pp. 54-58.

P. Morrison, K. Herzig, B. Murphy, and L. Williams, “Challenges with
applying vulnerability prediction models,” in Proceedings of the 2015
Symposium and Bootcamp on the Science of Security, 2015, pp. 1-9.

130 BIBLIOGRAPHY

