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Abstract We propose a formalism to model and reason about reconfigurable
multi-agent systems. In our formalism, agents interact and communicate in
different modes so that they can pursue joint tasks; agents may dynamically
synchronize, exchange data, adapt their behaviour, and reconfigure their com-
munication interfaces. Inspired by existing multi-robot systems, we represent a
system as a set of agents (each with local state), executing independently and
only influence each other by means of message exchange. Agents are able to
sense their local states and partially their surroundings. We extend ltl to be
able to reason explicitly about the intentions of agents in the interaction and
their communication protocols. We also study the complexity of satisfiability
and model-checking of this extension.

1 Introduction

In recent years formal modelling of multi-agent systems (MAS) and their
analysis through model checking has received much attention [61,42]. Sev-
eral mathematical formalisms have been suggested to represent the behaviour
of such systems and to reason about the strategies that agents exhibit [42,8].
For instance, modelling languages, such as RM [7,33] and ISPL [42], are used
to enable efficient analysis by representing these systems through the usage

This work is funded by the ERC consolidator grant D-SynMA (No. 772459) and the Swedish
research council grants: SynTM (No. 2020-03401) and VR project (No. 2020-04963). The
authors would like to thank Giuseppe Perelli who was a co-author on an earlier version of
this article.

Y. Abd Alrahman
University of Gothenburg
E-mail: yehia.abd.alrahman@gu.se

N. Piterman
University of Gothenburg
E-mail: nir.piterman@gu.se



2 Y. Abd Alrahman, N. Piterman

of BDDs. Temporal logics have been also extended and adapted (e.g., with
knowledge and epistemic operators [28,31]) specifically to support multi-agent
modelling [32]. Similarly, logics that support reasoning about the intentions
and strategic abilities of such agents have been used and extended [22,52].

These works are heavily influenced by the formalisms used for verification
(e.g., Reactive Modules [7,6], concurrent game structures [8], and interpreted
systems [42]). They rely on shared memory to implicitly model interactions.
It is generally agreed that explicit message passing is more appropriate to
model interactions among distributed agents because of its scalability [37,12].
However, the mentioned formalisms trade the advantages of message passing
for abstraction, and abstract message exchange by controlling the visibility of
state variables of the different agents.

Furthermore, the compositionality of shared memory approaches is limited
and the supported interaction interfaces are in general not very flexible [13].
Alternatively, message passing formalisms [50] are very compositional and sup-
port flexible interaction interfaces. However, unlike shared memory formalisms,
they do not accurately support awareness capabilities, where an agent may in-
stantaneously inspect its local state and adapt its behaviour while interacting.
The reason is that they model agents as mathematical expressions over inter-
action operators. Thus the state of an agent is implicit in the structure of the
expression.

Based on an early result, where a translation from shared memory to mes-
sage passing was provided [10], it was believed that a shared memory model
is a higher level abstraction of distributed systems. However, this result holds
only in specific cases and under assumptions that practically proved to be un-
realistic. As discussed in [3], the translation was not provided in a standard
way where every feature of one formalism is efficiently translated to a cor-
responding one in the other formalism, but rather based on emulation. That
is, it computationally shows if a problem has a solution in one formalism it
also has one in the other formalism. However, this is not surprising as most
computational formalisms are Turing powerful. A good translation (See [1])
should also preserve the observable behaviour of the translated process and
its divergence tendencies. This is important in distributed settings because
the observable behaviour of a process defines its communication capabilities,
which can be influenced in open world settings. Thus the above mentioned
translation only works under closed world assumption and does not capture
divergence. Namely, a timely process in one formalism may diverge indefinitely
while awaiting for other processes. Furthermore, the translation cannot deal
with failure or anonymous interaction, and thus requires that there is a major-
ity of correct processes and a pre-defined knowledge of each other’s identities
and the number of processes in the systems. Thus, there is no way to model
the birth/death of processes in the system.

To combine the benefits of both approaches recent developments [59,3]
suggest adopting hybrids, that accurately represent actual distributed sys-
tems, e.g., [4,46]. We propose a hybrid formalism to model and reason about
distributed multi-agent systems. A system is represented as a set of agents
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(each with local state), executing concurrently and only interacting by mes-
sage exchange. Inspired by multi-robot systems, e.g., Kilobot [54] and Swar-
manoid [24], agents are additionally able to sense their local states and par-
tially their surroundings. Interaction is driven by message passing following
the interleaving semantics of [50]; in that only one agent may send a message
at a time while other agents may react to it. To support meaningful inter-
action among agents [60], messages are not mere synchronisations, but carry
data that might be used to influence the behaviour of receivers.

Our message exchange is adaptable and reconfigurable. Thus, agents de-
termine how to communicate and with whom. Agents interact on links that
change their utility based on the needs of interaction at a given stage. Un-
like existing message-passing mechanisms, which use static notions of network
connectivity to establish interactions, our mechanisms allow agents to spec-
ify receivers using logical formulas. These formulas are interpreted over the
evolving local states of the different agents and thus provide a natural way
to establish reconfigurable interaction interfaces (for example, limited range
communication [46], messages destined for particular agents [1], etc.).

The advantages of our formalism are threefold. We provide more realis-
tic models that are close to their distributed implementations, and how actual
distributed MAS are developed, e.g., [36]. We provide a modelling convenience
for high level interaction features of MAS (e.g., coalition formation, collabo-
ration, self-organisation, etc), that otherwise have to be hard-coded tediously
in existing formalisms. Furthermore, we decouple the individual behaviour of
agents from their interaction protocols to facilitate reasoning about either one
separately.

In addition, we extend ltl to characterise messages and their targets. This
way we allow reasoning about the intentions of agents in communication. Our
logic can refer directly to the interaction protocols. Thus the interpretation of a
formula incorporates information about the causes of assignments to variables
and the flow of the interaction protocol. We also study the complexity of
satisfiability and Model-checking for our logic.

This article is an extended and revised version of the conference paper pre-
sented in [2]. The major extensions in this article consist of: (i) a compositional
and enumerative semantic definition of the proposed formalism, that coincides
with the early symbolic one. The new definition facilitates reasoning about
the individual behaviour of agents and their compositions with others. For
this purpose, we defined a parallel composition operator with reconfigurable
broadcast and multicast semantics. Thus, the definition is not only intuitive,
but can also be used to reason about models under open-world assumption;
(ii) a major improvement on our early results [2] regarding satisfiability and
model checking, that were computed in an expspace upper bound. Here, we
provide a novel automata construction that permits pspace analysis, matching
the lower bound. Thus, this part is majorly rewritten and improved. Moreover,
we enhance the presentation of the different parts of the article and provide
the proofs of all results.
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The structure of this article is as follows: In Sect. 2, we informally present
our formalism and motivate our design choices. In Sect. 3, we give the necessary
background and in Sect. 4 we present the compositional semantic definition. In
Sect. 5 we introduce the formalism both in terms of enumerative and symbolic
semantics, and we prove that they coincide. In Sect. 6, we present a non-
trivial case study to show the distinctive features of our formalism. In Sect. 7
we discuss our extension to LTL and provide efficient decision procedures to
check both satisfiability and model checking in polynomial space. Finally, in
Sect. 8 we report closely related works and in Sect. 9 we discuss our concluding
remarks.

2 An informal overview

We use a collaborative-robot scenario to informally illustrate the distinctive
features of our formalism and we later formalise it in Section 6. The scenario
is based on Reconfigurable Manufacturing Systems (RMS) [38,44], where as-
sembly product lines coordinate autonomously with different types of robots
to produce products.

In our formalism, each agent has a local state consisting of a set of variables
whose values may change due to either contextual conditions or side-effects of
interaction. The external behaviour of an agent is only represented by the mes-
sages it exposes to other agents while the local one is represented by changes
to its state variables. These variables are initialised by initial conditions and
updated by send- and receive- transition relations. In our example, a product-
line agent initiates different production procedures based on the assignment
to its product variable “prd”, which is set by the operator, while it controls
the progress of its status variable “st” based on interactions with other robots.
Furthermore, a product-line agent is characterised: (1) externally only by the
recruitment and assembly messages it sends to other robots and (2) internally
by a sequence of assignments to its local variables.

Before we explain the send- and receive- transition relations and show the
dynamic reconfiguration of communication interfaces we need to introduce a
few additional features. We assume that there is an agreed set of channels/links
ch that includes a unique broadcast channel ?. Broadcasts have non-blocking
send and blocking receive while multicasts have blocking send and receive. In
a broadcast, receivers (if exist) may anonymously receive a message when they
are interested in its values and when they satisfy the send guard. Otherwise,
the agent does not participate in the interaction either because they cannot
(do not satisfy the guard) or because they are not interested (make an idle
transition). In multicast, all agents connected to the multicast channel must
participate to enable the interaction. For instance, recruitment messages are
broadcast because a line agent assumes that there exist enough robots to join
the team while assembly messages are multicast because they require that the
whole connected team is ready to assemble the product.
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Agents dynamically decide (based on local state) whether they can use (i.e.,
connect-to) multicast channels while the broadcast channel is always available.
Thus, initially, agents may not be connected to any channel, except for the
broadcast one ?. These channels may be learned using broadcast messages and
thus a structured communication interface can be built at run-time, starting
from a (possibly) flat one.

Agents use messages to send selected data and specify how and to whom.
Namely, the values in a message specify what is exposed to the others; the
channel specifies how to coordinate with others; and a send guard specifies
the target. Accordingly, each message carries an assignment to a set of agreed
data variables d, i.e., the exposed data; a channel ch; and a send guard gs. In
order to write meaningful send guards, we assume a set of common variable
names cv (common variables, for short). Each agent has local variables that
are identified by these names. Agents assign their own individual information
to these local variables (e.g., the type of agent, its location, its readiness,
etc.). Send guards are expressed in terms of conditions on these names and
are evaluated per agent based on their assigned local values. Send guards are
parametric to the local state of the sender and specify what assignments to
the common variables a potential receiver must have. For example, an agent
may send a dedicated link name to a selected set of agents by assigning a data
variable in the communicated message and this way a coalition can be built
incrementally at run-time. In our RMS, the send guard of the recruitment
message specifies the types of the targeted robots while the data values expose
the number of required robots per type and a dedicated multicast link to be
used to coordinate the production.

Targeted agents may use incoming messages to update their states, recon-
figure their interfaces, and/or adapt their behaviour. In order to do so, how-
ever, agents are equipped with receive guards gr; that might be parametrised
to local variables and channels, and thus dynamically determine if an agent is
connected to a given channel. The interaction among different agents is then
derived based on send- and receive- transition relations. These relations are
used to decide when to send/receive a message and what are the side-effects
of interaction. Technically, every agent has a send and a receive transition
relation. Both relations are parameterised by the state variables of the agent,
the data variables transmitted on the message, and by the channel name. A
sent message is interpreted as a joint transition between the send transition
relation of the sender and the receive transition relations of all the receivers.
For instance, a robot’s receive guard specifies that other than the broadcast
link it is also connected to a multicast link that matches the current value
of its local variable “lnk”. The robot then uses its receive transition relation
to react to a recruitment message, for instance, by assigning to its “lnk” the
link’s data value from the message.

Furthermore, in order to send a message the following has to happen.
The send transition relation of the sender must hold on: a given state of the
sender, a channel name, and an assignment to data variables. If the message
is broadcast, all agents whose assignments to common variables satisfy the
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send guard jointly receive the message, the others discard it. If the message
is multicast, all connected agents must satisfy the send guard to enable the
transmission (as otherwise they block the message). In both cases, sender and
receivers execute their send- and receive-transition relations jointly. The local
side-effect of the message takes into account the origin local state, the channel,
and the data. In our example, a (broadcast) recruitment message is received
by all robots that are not assigned to other teams (assigned ones discard it)
and as a side effect they connect to a multicast channel that is specified in
the message. A (multicast) assembly message can only be sent when the whole
recruited team is ready to receive (otherwise the message is blocked) and as a
side effect the team proceeds to the next production stage.

Clearly, the dynamicity of our formalism stems from the fact that we base
interactions directly over the evolving states of the different agents rather than
over static notions of network connectivity as of existing approaches.

3 Transition Systems and Finite Automata

We unify notations and give the necessary background. We introduce doubly-
labeled transition systems and discrete systems and show how to translate the
former to the latter. We further introduce nondeterministic and alternating
Büchi word automata.

3.1 Transition Systems and Discrete Systems

A Doubly-Labeled Transition System (TS) is T = 〈Σ,Υ, S, S0, R, L〉, where Σ
is a state alphabet, Υ is a transition alphabet, S is a set of states, S0 ⊆ S is a
set of initial states, R ⊆ S × Υ × S is a transition relation, and L : S → Σ is
a labeling function.

A path of a transition system T is a maximal sequence of states and
transition labels σ = s0, a0, s1, a1, . . . such that s0 ∈ S0 and for every j ≥ 0
we have (si, ai, si+1) ∈ R. We assume that for every state s ∈ S there are
a ∈ Υ and s′ ∈ S such that (s, a, s′) ∈ R. Thus, a sequence σ is maximal if it
is infinite. If |Υ | = 1 then T is a state-labeled transition system and if |Σ| = 1
then T is a transition-labeled transition system.

We introduce Discrete Systems (DS) that represent state-labeled systems
symbolically. A DS is D = 〈V , θ, ρ〉, where the components of D are as follows:

• V = {v1, ..., vn}: A finite set of typed variables. Variables range over discrete
domains, e.g., Boolean or Integer. A state s is an interpretation of V , i.e.,
if Dv is the domain of v, then s is in

∏
vi∈V Dvi .

We assume some underlying first-order language over V that includes (i)
expressions constructed from the variables in V , (ii) atomic formulas that
are either Boolean variables or the application of different predicates to ex-
pressions, and (iii) assertions that are first-order formulas constructed from
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atomic formulas using Boolean connectives or quantification of variables. As-
sertions, also sometimes called state formulas, characterize states through
restriction of possible variable values in them.

• θ : This is an assertion over V characterising all the initial states of the DS.
A state is called initial if it satisfies θ.

• ρ : A transition relation. This is an assertion ρ(V ∪V ′), where V ′ is a primed
copy of variables in V . The transition relation ρ relates a state s ∈ Σ to
its D-successors s′ ∈ Σ, i.e., (s, s′) |= ρ, where s is an interpretation to
variables in V and s′ is for variables in V ′.
The DS D gives rise to a state transition system TD = 〈Σ, {1}, T, T0, R〉,

where Σ and T are the set of states of TD , T0 is the set of initial states, and
R is the set of triplets (s, 1, s′) such that (s, s′) |= ρ. Clearly, the paths of TD

are exactly the paths of D , but the size of TD is exponentially larger than the
description of D .

A common way to translate a DLTS into a DS, which we adapt and ex-
tend below, would be to include additional variables that encode the transition
alphabet. Given such a set of variables VΥ , an assertion ρ(V ∪ VΥ ∪ V ′) char-
acterises the triplets (s, υ, s′) such that (s, υ, s′) |= ρ, where s supplies the
interpretation to V , υ to VΥ and s′ to V ′.

3.2 Finite Automata on Infinite Words

We use the automata-theoretic approach to linear temporal logic [58]. Thus,
we translate temporal logic formulas to automata. We give here the necessary
background.

For an alphabet Σ, the set Σω is the set of infinite sequences of elements
from Σ. Given an alphabet Σ and a set D of directions, a Σ-labeled D-tree is
a pair (T, τ), where T ⊆ D∗ is a tree over D and τ : T → Σ maps each node
of T to a letter in Σ. A path π of a tree T is a set π ⊆ T such that ε ∈ π and
for every x ∈ π either x is a leaf in T or there exists a unique γ ∈ D such that
x · γ ∈ π. For π = γ1 · γ2 · · · , we write τ(π) for τ(ε) · τ(γ1) · τ(γ1γ2) · · · .

For a finite set X, let B+(X) be the set of positive Boolean formulas over
X (i.e., Boolean formulas built from elements in X using ∧ and ∨), where
we also allow the formulas true and false. For a set Y ⊆ X and a formula
θ ∈ B+(X), we say that Y satisfies θ iff assigning true to elements in Y and
assigning false to elements in X \ Y makes θ true.

Definition 1 (Alternating Büchi Word Automata (ABW)) An alter-
nating Büchi word automaton is of the form A = 〈Σ, Q, qin, δ, F 〉, where
Σ is the input alphabet, Q is a finite set of states, δ : Q × Σ → B+(Q) is a
transition function, qin ∈ Q is an initial state, and F ⊆ Q specifies a Büchi
acceptance condition.

A run of an ABW A on w = σ0σ1 · · · is a Q-labeled D-tree, (T, τ), where
τ(ε) = qin and, for every x ∈ T , we have {τ(x·γ1), . . . , τ(x·γk)} |= δ(τ(x), σ|x|)
where {x · γ1, . . . , x · γk} is the set of children of x. A run of A is accepting
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if all its infinite paths satisfy the acceptance condition. For a path π, let
inf(π) = {q | q appears infinitely often in τ(π)}. A path π is accepting if
inf(π) ∩ F 6= ∅. Thus, every infinite path in the run tree must visit the
acceptance set F infinitely often. The ABW A accepts w if there exists an
accepting run on w. We denote by Lω(A) the set of words accepted by A.

Definition 2 (Nondeterministic Büchi Word Automata (NBW)) A
NBW is N = 〈Σ, Q, Qin, δ, F 〉, where Σ is an input alphabet, Q is a finite set
of states, δ : Q × Σ → 2Q is a transition function, Qin ⊆ Q is a set of initial
state, and F ⊆ Q specifies a Büchi acceptance condition.

A run of a NBW N on w = σ0σ1 · · · ∈ Σω is a sequence r = q0q1 · · · ∈ Qω
such that q0 ∈ Qin, and for all i ≥ 0 we have qi+1 ∈ δ(qi, σi+1). A run is
accepting if inf(r)∩F 6= ∅. The NBW N accepts w if there exists an accepting
run of N on w. We denote by Lω(N) the set of words accepted by N .

We state the following well known results about Linear Temporal Logic
(LTL), NBW, and ABW (omitting the definition of LTL).

Theorem 1 ([58,57]) For every LTL formula ϕ of length n there exist an
ABW Aϕ with O(n) states such that L(Aϕ) = L(ϕ).

Theorem 2 ([51]) For every ABW A with n states there is an NBW N such
that Lω(N) = Lω(A). The number of states of N is in 2O(n).

4 Channelled Transition Systems

In this section, we propose Channelled Transition System (CTS) to facilitate
compositional modelling of interactive systems. Namely, we extend the format
of transition labels of Doubly-Labelled Transition Systems to also specify the
role of the transition (i.e., send- or receive- message) and the used communi-
cation channels. We define a parallel composition operator that considers both
broadcast and multicast semantics and we study its properties. The techniques
to prove these results are rather standard. However, we are not familiar with
a setup that conveniently allows the existence of transitions to depend on
subscription to channels as we suggest below.

4.1 Channelled Transition Systems (CTS)

A Channelled Transition System (CTS) is T = 〈C,Σ, Υ, S, S0, R, L, ls〉, where
C is a set of channels, including the broadcast channel (?),Σ is a state alphabet,
Υ is a transition alphabet, S is a set of states, S0 ⊆ S is a set of initial states,
R ⊆ S × Υ × S is a transition relation, L : S → Σ is a labelling function, and
ls : S → 2C is a channel-listening function such that for every s ∈ S we have
? ∈ ls(s). We assume that Υ = Υ+ × {!, ?} × C, for some set Υ+. That is,
every transition labelled with some υ ∈ Υ+ is either a message send (!) or a
message receive (?) on some channel c ∈ C.
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A path of a CTS T is a maximal sequence of states and transition la-
bels σ = s0, a0, s1, a1, . . . such that s0 ∈ S0 and for every i ≥ 0 we have
(si, ai, si+1) ∈ R. As before, we assume that for every state s ∈ S there exist
a ∈ Υ and s′ ∈ S such that (s, a, s′) ∈ R. Thus, a sequence σ is maximal if it
is infinite.

Remark 1 Note that the transition labels ai of a CTS’s path σ = s0, a0, s1,
a1, . . . range over both send (!) and receive (?) transitions. Depending on the
underlying semantics of the CTS, send transitions may happen independently
regardless of the existence of receivers, e.g., in case of broadcast semantics.
However, receive transitions may only happen jointly with some send transi-
tion. By allowing CTS’s paths to also range over receive transitions, we can
model every system as a collection of (open) systems that interact through
message exchange. That is, a receive transition in a system is a hole that is
closed/filled when composed with a send transition from another system. A
complete system (i.e., with filled holes) is called a closed system.

The analysis in this article considers closed systems where a system path
ranges over send transitions only. In other words, we only consider the messages
exchanged within the system under consideration.

The parallel composition of systems is defined below.

Definition 3 (Parallel Composition) Given two CTS Ti = 〈Ci, Σi, Υi, Si,
Si0, Ri, Li, ls

i〉, where i ∈ {1, 2} their composition T1 ‖ T2 is the following
CTS T = 〈C,Σ, Υ, S, S0, R, L, ls〉, where the components of T are:

– C = C1 ∪ C2

– Σ = Σ1 ×Σ2

– Υ = Υ 1 ∪ Υ 2

– S = S1 × S2

– S0 = S1
0 × S2

0
– R =

((s1, s2), (υ, !, c), (s′1, s
′
2))

∣∣∣∣∣∣∣∣∣∣∣∣

(s1, (υ, !, c), s′1) ∈ R1, c ∈ ls2(s2) and (s2, (υ, ?, c), s′2) ∈ R2 or

(s1, (υ, ?, c), s′1) ∈ R1, c ∈ ls1(s1), and (s2, (υ, !, c), s′2) ∈ R2 or

(s1, (υ, !, c), s′1) ∈ R1, c /∈ ls2(s2), and s2 = s′2 or

c /∈ ls1(s1), s1 = s′1, and (s2, (υ, !, c), s′2) ∈ R2


∪

((s1, s2), (υ, ?, c), (s′1, s
′
2))

∣∣∣∣∣∣∣∣∣∣

c ∈ ls1(s1), (s1, (υ, ?, c), s′1) ∈ R1, c ∈ ls2(s2)
and (s2, (υ, ?, c), s′2) ∈ R2 or

(s1, (υ, ?, c), s′1) ∈ R1, c /∈ ls2(s2), and s2 = s′2 or

c /∈ ls1(s1), s1 = s′1, and (s2, (υ, ?, c), s′2) ∈ R2

 ∪

((s1, s2), (υ, γ, ?), (s′1, s
′
2))

∣∣∣∣∣∣∣
γ ∈ {!, ?}, (s1, (υ, γ, ?), s′1) ∈ R1, s2 = s′2 and
∀s′′2 . (s2, (υ, ?, ?), s′′2 ) /∈ R2 or

γ ∈ {!, ?}, s1 = s′1, ∀s′′1 . (s1, (υ, ?, ?), s′′1 ) /∈ R1 and
(s2, (υ, γ, ?), s′2) ∈ R2,


– L(s1, s2) = (L1(s1), L2(s2))
– ls(s1, s2) = ls1(s1) ∪ ls2(s2)
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The transition relation R of the composition defines two modes of interac-
tions, namely multicast and broadcast. In both interaction modes, the compo-
sition T sends a message (υ, !, c) on channel c (i.e., ((s1, s2), (υ, !, c), (s′1, s

′
2)) ∈

R) if either T1 or T2 is able to generate this message, i.e, (s1, (υ, !, c), s
′
1) ∈ R1

or (s2, (υ, !, c), s
′
2) ∈ R2.

Consider the case of a multicast channel. A multicast is blocking. Thus, a
multicast message is sent if either it is received or the channel it is sent on is not
listened to. Suppose that a message originates from T1, i.e., (s1, (υ, !, c), s

′
1) ∈

R1. Then, T2 must be able to either receive the message or, in the case that T2

does not listen to the channel, discard it. CTS T2 receives if (s2, (υ, ?, c), s
′
2) ∈

R2. It discards if c /∈ ls2(s2) and s2 = s′2. The case of T2 sending is dual.
Note that T2 might be a composition of other CTS(s), say T2 = T3‖T4. In
this case, T2 listens to channel c if at least one of T3 or T4 is listening. That
is, it could be that either c ∈ (ls(s3) ∩ ls(s4)), c ∈ (ls(s2)\ls(s3)), or c ∈
(ls(s2)\ls(s4)). In the first case, both must receive the message. In the latter
cases, the listener receives and the non-listener discards. Accordingly, when a
message is sent by one system, it is propagated to all other connected systems
in a joint transition. A multicast is indeed blocking because a connected system
cannot discard an incoming message on a channel it is listening to. More
precisely, a joint transition ((s1, s2), (υ, !, c), (s′1, s

′
2)) where c ∈ ls(s2) requires

that (s2, (υ, ?, c), s
′
2) is supplied. In other words, message sending is blocked

until all connected receivers are ready to participate in the interaction.

Consider now a broadcast. A broadcast is non-blocking. Thus, a broadcast
message is either received or discarded. Suppose that a message originates from
T1, i.e., (s1, (υ, !, ?), s

′
1) ∈ R1. If T2 is receiving, i.e., (s2, (υ, ?, ?), s

′
2) ∈ R2

the message is sent. However, by definition, we have that ? ∈ ls(s) for ev-
ery s in a CTS. Namely, a system may not disconnect the broadcast channel
?. For this reason, the last part of the transition relation R defines a spe-
cial case for handling (non-blocking) broadcast. Accordingly, a joint transition
((s1, s2), (υ, γ, ?), (s′1, s

′
2)) ∈ R where γ ∈ {!, ?} is always possible and may not

be blocked by any receiver. In fact, if (γ = !) and (s1, (υ, !, ?), s
′
1) ∈ R1 then

the joint transition is possible whether (s2, (υ, ?, ?), s
′
2) ∈ R2 or not. In other

words, a broadcast can happen even if there are no receivers. Furthermore,
if (γ = ?) and (s1, (υ, ?, ?), s

′
1) ∈ R1 then also the joint transition is possible

regardless of the other participants. In other words, a broadcast is received
only by interested participants.

4.2 Properties of Parallel Composition

Our parallel composition is commutative and associative. Furthermore, it sup-
ports non-blocking broadcast and blocking multicast semantics as stated in the
following lemmas:

Lemma 1 (Commutativity and Associativity) Given two CTS T1 and
T2 we have that:
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– ‖ is commutative: T1‖T2 = T2‖T1;
– ‖ is associative: (T1‖T2)‖T3 = T1‖(T2‖T3).

Note that Lemma 1 is crucial to ensure that our parallel compostion oper-
ator is a commutative monoid, as otherwise it would not represent the right
behaviour of interacting programs.

Lemma 2 (Non-blocking Broadcast) Given a CTS T1 and for every
other CTS T , we have that for every reachable state (s1, s) of T1‖T the
following holds.

(s1, (υ, !, ?), s
′
1) ∈ R1 implies ((s1, s), (υ, !, ?), (s

′
1, s
′)) ∈ RT1‖T

Lemma 3 (Blocking Multicast) Given a CTS T1 and a multicast channel
c ∈ C\{?} such that (s1, (υ, !, c), s

′
1) ∈ R1, then for every other CTS T we

have that in every reachable state (s1, s) of T1‖T the following holds.

((s1, s), (υ, !, c), (s
′
1, s
′)) ∈ RT1‖T iff(

c ∈ ls(s) and (s, (υ, ?, c), s′) ∈ R
or c /∈ ls(s)

)
The proofs of these lemmas are omitted here and included in the appendix.

5 ReCiPe: Reconfigurable Communicating Programs

We formally present the ReCiPe communication formalism and its main in-
gredients. We start by specifying agents (or programs) and their local be-
haviours. We give semantics to individual agents in terms of channelled tran-
sition systems (CTS). Therefore, we use the parallel composition operator in
Def. 3 to compose the individual behaviour of the different agents to generate
a global (or a system) one.

While the CTS semantics makes it clear what are the capabilities of indi-
vidual agents and their interaction, it may not be the most convenient in order
to mechanically analyse large systems comprised of multiple agents. Thus, we
provide a symbolic semantics at system level using discrete systems. This sec-
ond semantics enables efficient analysis by representing closed systems through
the usage of BDDs or representing computations through Boolean formulas.
We show that the two semantics (when restricted to closed systems) coincide.
The efficient analysis of open ReCiPe systems is left as future work.

We assume that a set of K agents agree on a set of common variables cv,
a set of data variables d, and a set of channels ch containing the broadcast
channel ?. As explained, common variables are variables that are owned (sepa-
rately) by all agents. The values of these variables may be different in different
agents. The common variables are used in order to have a common language to
express properties that are interpretable on all agents (as either true or false).

Definition 4 (Agent) An agent is Ai = 〈Vi, fi, gsi , gri , T si , T ri , θi〉, where:
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• Vi is a finite set of typed local variables, each ranging over a finite domain.
A state si is an interpretation of Vi, i.e., if Dom(v) is the domain of v, then
si is an element in

∏
v∈Vi

Dom(v). We use V ′ to denote the primed copy of
V and Idi to denote the assertion

∧
v∈Vi

v = v′.
• fi : cv → Vi is a renaming function, associating common variables to local

variables. We freely use the notation fi for the assertion
∧
cv∈cv cv = fi(cv).

• gsi (Vi,ch,d,cv) is a send guard specifying a condition on receivers. That is,
the predicate, obtained from gsi after assigning si, ch, and d (an assignment
to d) , which is checked against every receiver j after applying fj .

• gri (Vi,ch) is a receive guard describing the connection of an agent to channel
ch. We let gri (Vi, ?) = true, i.e., every agent is always connected to the
broadcast channel. We note, however, that receiving a broadcast message
could have no effect on an agent.

• T si (Vi, V
′
i ,d,ch) is an assertion describing the send transition relation.

• T ri (Vi, V
′
i ,d,ch) is an assertion describing the receive transition relation.

We assume that agents are broadcast input-enabled, i.e., ∀v,d ∃v′ s.t.
T ri (v, v′,d, ?).
In examples, we use keep(X) to denote that the variables X are not changed
by a transition (either send or receive). More precisely, keep(X) is equiva-
lent to the following assertion

∧
x∈X x = x′.

• θi is an assertion on Vi describing the initial states, i.e., a state is initial if
it satisfies θi.

Agents exchange messages. A message (that we shall call an observation)
is defined by the channel it is sent on (ch), the data it carries (d), the sender
identity (i), and the assertion describing the possible local assignments to
common variables of receivers (π). Formally:

Definition 5 (Observation) An observation is a tuple m = (ch,d, i, π),
where ch is a channel, d is an assignment to d, i is an identity, and π is a
predicate over cv.

In Def. 5 we interpret π as a set of possible assignments to common vari-
ables cv. In practice, π is obtained from gsi (s

i, ch,d,cv) for an agent i, where
si ∈

∏
v∈Vi

Dom(v) and ch and d are the channel and assignment in the
observation. We freely use π to denote either a predicate over cv or its inter-
pretation, i.e., the set of variable assignments c such that c |= π. We also use
π(f−1i (si)) to denote the assignment of v ∈ cv by si(fi(v)) in π.

The semantics of an agent Ai is the CTS T (Ai) defined as follows.

Definition 6 (Agent Semantics) Given an agent Ai we define T (Ai) =
〈C,Σ, Υ, S, S0, R, L, ls〉, where the components of T (Ai) are as follows.

– C = ch
– Σ =

∏
v∈Vi

Dom(v), i.e., the set of states of Ai

– Υ = Υ+ × {!, ?} × ch and Υ+ = 2d ×K × 22
cv

, where the set K ranges
over the identities of the senders.
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– S = Σ
– S0 = {s ∈ S | θi(s)}
– R =

{(s, (d, i, π, !, c), s′) | T si (s, s′,d, c) and π = gsi (s, c,d)} ∪
{(s, (d, i′, π, ?, c), s′) | T ri (s, s′,d, c), i′ 6= i, c ∈ ls(s), and π(f−1i (si))}

– L(s) = s
– ls(s) = {c ∈ C | gri (s, c)}

Generally, the semantics of an agent is defined as an open CTS T (Ai). The
transition alphabet Υ of T (Ai) is the set of observations (as in Def. 5) that are
additionally labelled with either send (!) or receive (?) symbols, corresponding
to send and receive transitions. Furthermore, in every state s, an agent is
listening to the set of channels in ls(s). Namely, all channels that satisfy the
agent’s receive guard gri in state s. We give further intuition for the definition
of the transition relation R.

A triplet (s, υ, s′) ∈ R, where υ = (d, i, π, γ, ch), if the following holds:

• Case (γ =!): Agent i is a sender and we have that π = gsi (si, ch,d), i.e., π is
obtained from gsi by assigning the state of i, the data variables assignment
d and the channel ch, and T si (si, s

′
i,d, ch) evaluates to true.

• Case (γ =?): Agent i is a receiver (potentially) accepting a message from
another agent i′ on channel c and data d with a send guard π such that
c ∈ ls(s), π(f−1i (si)), and T ri (si, s

′
i,d, ch). Note that the condition i′ 6= i

is required to ensure that the message is sent by another agent.

Intuitively, if the agent i is the sender, it determines the predicate π (by
assigning si, d, and ch in gsi ) and i’s send transition T si is satisfied by assigning
si, s

′
i, d, and ch to it. That is, upon sending the message with d on channel

ch the sender changes the state from si to s′i. If the agent i is the receiver, it
must satisfy the condition on receivers π (when translated to its local copies
of the common variables), it must be connected to ch (according to gri ), and
it must have a valid receive transition T ri when reading the data sent in d on
channel ch.

Note that the semantics of an individual agent is totally decoupled from
the semantics of how agents interact. Thus, different interaction modes (or
parallel composition operators) can be adopted without affecting the semantics
of individual agents. In our case, we have chosen to implement broadcast as
a non-blocking send and non-blocking receive and a multicast as a blocking
send and receive. However, if one chooses to do so, other composition operators
could be defined. For example, a point-to-point composition would allow only
two agents to communicate over a channel and would not allow send without
receive.

A set of agents agreeing on the common variables cv, data variables d,
and channels ch define a system. We define a CTS capturing the interaction
and then give a DS-like symbolic representation of the same system.
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Let Si=Πv∈ViDom(v) be the set of states of agent i and S = ΠiSi be the
set of states of the whole system. Given an assignment s ∈ S we denote by si
the projection of s on Si.

Definition 7 (ReCiPe System as a CTS) Given a set {Ai}i of agents, a
system is defined as the parallel composition of the CTS representations of all
Ai, i.e., a system is a CTS of the form T = ‖i∈IT (Ai).

A triplet (s, υ, s′), where υ = (d, i, π, !, c) is in the transition relation of the
composed system T (according to Def. 3), if the following conditions hold:

• There exists a sender i such that (si, (d, i, π, !, c), s
′
i) ∈ Ri. By Def. 6, we

know that (si, (d, i, π, !, c), s
′
i) ∈ Ri iff π = gsi (si, ch,d), i.e., π is obtained

from gsi by assigning the state of i, the data variables assignment d and the
channel ch, and T si (si, s

′
i,d, ch) evaluates to true.

• For every other agent i′ we have that either:
1. c ∈ lsi

′
(si′) and (si′ , (d, i, π, ?, c), s

′
i′) ∈ Ri′ . By Def. 6, we know that

c ∈ lsi
′
(si′) and (si′ , (d, i, π, ?, c), s

′
i′) ∈ Ri′ iff gri′(si′ , c), π(f−1i′ (si′)),

and T ri′ (si′ , s
′
i′ ,d, ch), all evaluate to true;

2. c /∈ lsi
′
(si′) and si′ = s′i′ . By Def. 6 this is equivalent to ¬gri′(si′ , ch); or

3. ch = ? and si′ = s′i′ . By Def. 6 this is equivalent to ¬π(f−1i′ (si′)).

Intuitively, a message (d, i, π, !, c) labels a transition from s to s′ if the
sender i determines the predicate (by assigning si, d, and ch in gsi ) and the
send transition of i is satisfied by assigning si, s

′
i, d, and ch to it, i.e., the sender

changes the state from si to s′i and sets the data variables in the observation
to d. All the other agents either (a) satisfy this condition on receivers (when
translated to their local copies of the common variables), are connected to ch
(according to gri′), and perform a valid transition when reading the data sent
in d on ch, (b) are not connected to ch (according to gri′) and all their variables
do not change, or (c) the channel is a broadcast channel, the agent does not
satisfy the condition on receivers, and all their variables do not change.

In order to facilitate symbolic analysis, we now define a symbolic version
of ‖k∈KT (Ak), under closed world assumption. That is, we only focus on
messages that originate from the system under consideration. In fact, from
an external observer point of view, only message sending is observable while
reception cannot be observed. This notion of observability is the norm in ex-
isting theories on group communication [53,27]. Thus, we consider the paths
of ‖k∈KT (Ak) that are of the form σ = s0, a0, s1, a1, . . . such that aj is of the
form (d, i, π, !, c), s0 ∈ S0 and for every j ≥ 0 we have (sj , aj , sj+1) ∈ R. Note
that (d, i, π, !, c) coincides with our definition of an observation m.

Thus, let Υ be the set of possible observations in ‖k∈KT (Ak). That is, let
ch be the set of channels, D the product of the domains of variables in d,
K the set of agent identities, and Π(cv) the set of predicates over cv then
Υ ⊆ ch× D ×K ×Π(cv). In practice, we restrict attention to predicates in
Π(cv) that are obtained from gsi (Vi,ch,d,cv) by assigning Vi (a state of the
agent with identity i), ch, and d.
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Furthermore, we extend the format of the allowed transitions in the clas-
sical definition of a discrete system from assertions over an extended set of
variables to assertions that allow quantification.

Definition 8 (Discrete System) Given a set {Ai}i of agents, a system is
defined as follows: S = 〈V , ρ, θ〉, where V =

⊎
i

Vi, a state of the system is in∏
i

∏
v∈Vi

Dom(v) and the initial assertion θ =
∧
i

θi. The transition relation of

the system is characterised as follows:

ρ : ∃ch ∃d
∨
k

T sk (Vk, V
′
k,d, ch)∧

∧
j 6=k

∃cv.fj ∧
 grj (Vj , ch) ∧ T rj (Vj , V

′
j ,d, ch) ∧ gsk(Vk, ch,d,cv)

∨ ¬grj (Vj , ch) ∧ Idj

∨ ch = ? ∧ ¬gsk(Vk, ch,d,cv) ∧ Idj




The transition relation ρ relates a system state s to its successors s′ given
an observation m = (ch,d, k, π). Namely, there exists an agent k that sends
a message with data d (an assignment to d) with assertion π (an assignment
to gsk) on channel ch and all other agents are either (a) connected, satisfy the
send predicate, and participate in the interaction, (b) not connected and idle,
or (c) do not satisfy the send predicate of a broadcast and idle. That is, the
agents satisfying π (translated to their local state by the conjunct ∃cv.fj)
and connected to channel ch (i.e., grj (s

j , ch)) get the message and perform a
receive transition. As a result of interaction, the state variables of the sender
and these receivers might be updated. The agents that are not connected to the
channel (i.e., ¬grj (sj , ch)) do not participate in the interaction and stay still.
In case of broadcast, namely when sending on ?, agents are always connected
and the set of receivers not satisfying π (translated again as above) stay still.
Thus, a blocking multicast arises when a sender is blocked until all connected
agents satisfy π ∧ fj . The relation ensures that, when sending on a channel
that is different from the broadcast channel ?, the set of receivers is the full
set of connected agents. On the broadcast channel agents who do not satisfy
the send predicate do not block the sender.

The translation above to a transition system leads to a natural definition of
a trace, where the information about channels, data, senders, and predicates
is lost. We extend this definition to include this information as follows:

Definition 9 (System trace) A system trace is an infinite sequence ρ =
s0m0, s1m1, . . . of system states and observations such that ∀t ≥ 0: mt =
(cht,dt, k, πt), πt = gsk(skt ,dt, cht), and:

(st, st+1) |= T sk (skt , s
k
t+1,dt, cht)∧

∧
j 6=k

∃cv.fj ∧

grj (s

j
t , cht) ∧ T rj (sjt , s

j
t+1,dt, cht) ∧ πt

∨ ¬grj (s
j
t , cht) ∧ s

j
t = sjt+1

∨ cht = ? ∧ ¬πt ∧ sjt = sjt+1



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That is, we use the information in the observation to localize the sender k
and to specify the channel, data values, and the send predicate.

The following theorem states a full abstraction property [49], namely that
the CTS semantics of systems and their discrete counterpart define the same
transition relation, under closed world assumption. That is, by considering
the messages originating from the system under consideration as the only
observations.

Theorem 3 (Full abstraction) Given a set of ReCiPe agents {Ai}i, their
discrete system representation, defined as S = 〈V , ρ, θ〉, is semantically
equivalent to the parallel composition of their CTS representation, defined as
T = ‖iT (Ai), under closed world assumption. More precisely,

– for every assignment s to system variables V , it follows that: θ(s) iff s ∈ S0;
– for all assignments s and s′ to variables in V and respectively in V ′ it

follows that: ρ(s, s′) iff there exist assignment to data variables d, a com-
munication channel ch, and an agent i such that (s, (d, i, π, !, ch), s′) ∈ RT .

Proof We prove each statement separately.

– For k agents in the symbolic representation, θ characterises the set of sys-
tem states S′ ⊆ ΠiSi that satisfy the initial conditions of all agents, i.e.,

{s | s = (s0, s1, . . . , sk) and s |=
∧
i

θi}. Note that (s0, s1, . . . , sk) |=
∧
i

θi iff

s0 |= θ0 ∧ s1 |= θ1 ∧ · · · ∧ sk |= θk. By Def. 3 and Def. 6 this is exactly the
set of initial states S0 in T = ‖iT (Ai);

– By Def. 8, we have that ρ(s, s′) evaluates to true if there exists a valuation
d to d and a channel ch in ch such that both of the following hold:
• There exists an agent i such that the send transition T si is satisfied by

assigning to current local state si, next local state s′i (i.e., the projec-
tion of the system states s and s′ on agent i), the valuation d, and the
communication channel ch. According to the enumerative semantics in
Def. 6, agent i has an individual send transition given the current local
state si, next local state s′i, valuation d to data variables, and channel ch.
Namely, agent i has a send transition (si, (d, i, π, !, ch), s′i) ∈ Ri such that
π = gsi (si, ch,d), i.e., π is obtained from gsi by assigning the state of i,
the data variables assignment d and the channel ch, and T si (si, s

′
i,d, ch)

evaluates to true.
• For every other agent i′ we have that either:

1. it is connected to channel ch (i.e., gri′(si′ , ch) holds), satisfies the send
predicate (i.e., π(f−1i′ (si′)) holds), and participates in the interaction
(i.e., T ri′ (si′ , s

′
i′ ,d, ch) holds). By Def. 6, we know that agent i′ has

an individual receive transition (si′ , (d, i, π, ?, ch), s′i′) ∈ Ri′ where

ch ∈ lsi
′
(si′);

2. it is not connected to channel ch (i.e., ¬gri′(si′ , ch) ) and si′ = s′i′ . By
Def. 6, agent i′ does not have a receive transition for this message.
In other words, since ch /∈ lsi

′
(si′) then agent i′ cannot observe this

transmission ;
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3. or the message is sent on a broadcast channel (ch = ?), where agent
i′ does not satisfy the sender predicate (i.e., ¬π(f−1i′ (si′))) and si′ =
s′i′ . By Def. 6 this is equivalent to ignoring this message by not
implementing a receive transition.

So far, we have shown that every individual (send/receive transition) in
the symbolic model has a corresponding one in the enumerative seman-
tics of individual agents. We need to show that the composition of these
individual transitions according to ρ in the symbolic model has exactly
the same semantics of the parallel composition in Def. 3. That is, ρ(s, s′)
iff for the identified d, i, ch and π we have (s, (d, i, π, !, ch), s′) ∈ RT ,
given the assignments s and s′ to variables in V and respectively in V ′.
The existential quantification on sender transitions in ρ (i.e.,∨
k

T sk (Vk, V
′
k,d, ch)) implies that the order of the composition is imma-

terial, namely any two systems states (s0, s1, . . . , sk) and (s1, s0, . . . , sk)
that only differ in the order of individual agent’ states are semantically
equivalent. By Lemma 1, we have that parallel composition is commuta-
tive, and thus the order is immaterial under the enumerative system se-
mantics as well. If ρ(s, s′) is due to a message exchange on the broadcast
channel ? then the non-blocking semantics of the broadcast is preserved
by the transition relation of the CTS composition as stated in Lemma 2.
Moreover, if ρ(s, s′) is due to a message exchange on a multicast channel
c then the blocking semantics of the multicast is preserved by the tran-
sition relation of the CTS composition as stated in Lemma 3. Lastly, the

universal quantification on all possible receivers in ρ (i.e.,
∧
j 6=k

) follows

by the CTS semantics of parallel composition in Def. 3, where a receive
transition can be received jointly by different agents, and by the commu-
tativity and associativity of parallel composition (Lemma 1), where the
scope of a send transition can be extended to cover all possible receivers.
The other direction of the proof follows in similar manners.

The following is a corollary of Theorem 3 to relate the traces arising from
Def. 9 to that of Def. 7.

Corollary 1 (Trace equivalence) The traces of a symbolic system com-
posed of a set of agents {Ai}i are the paths of the induced CTS.

6 Reconfigurable Manufacturing Scenario

We complete the details of the RMS example, informally described in Sec-
tion 2. Many aspects of the example are kept simple on purpose to aid the
presentation.

The system, in our scenario, consists of an assembly product line agent
(line) and several types of task-driven robots. We describe the behaviour of the
product line and only robots of type-1 (t1) as these are sufficient for exposing
all features of ReCiPe.
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A product line is responsible for assembling the main parts and delivering
the final product. Different types of robots are responsible for sub-tasks, e.g.,
retrieving and/or assembling individual parts. The product line is generic and
can be used to produce different products and thus it has to determine the set
of resources, to recruit a team of robots, to split tasks, and to coordinate the
final stage of production.

Every agent has copies of the common variables: @type indicating its type
(e.g., line, t1, t2, t3), @asgn indicating whether a robot is assigned, and @rdy

indicating what stage of production the robot is in. The set of channels includes
the broadcast channel ? and multicast channels {A, . . .}. For simplicity, we
only use the multicast channel A and fix it to the line agent. The set of data
variables includes msg,no, and lnk, indicating the type of the message, a
number (of robots per type), and a name of a channel respectively.

We note that when a data variable is not important for some message it is
omitted from the description of the message.

We start with the description of the line agent line. We give a high-level
overview of the protocol applied by the line agent using the state machine in
Fig. 1. The states capture a partial evaluation of the state variables of the
agent. In this case, the value of the state variable st. Transitions labels repre-
sent guarded commands. We use the format “〈Φ〉 d !/? ch[v′1 = a1; . . . v

′
n = an]”

to denote a guarded command cmd. Namely, the predicate Φ is a condition on
the current assignment to local variables of an agent (and for receive transi-
tions also on data variables that appear in the message). We freely use d to
refer to an assignment to data variables. Usually, we write directly only the
value of the msg variable to avoid cluttering. Sometimes, we add the values
of additional data variables. Each guarded command is labelled with a role (!
for send and ? for receive transitions); also with a channel name ch and a new
assignment to local variables [v′1 = a1; . . . v

′
n = an] to represent the side effects

of the interaction. For the line agent, the protocol consists of starting from
the pending state and sending a team formation broadcast. This is followed
by sending of an assembly multicast on the channel stored in local variable lnk
and updating the stage to 2. Finally, an additional assembly multicast on the
same channel resets the process. We include below the full description with the
guards and predicates. Each transition in the state machine corresponds to a
disjunct in either the send or the receive transition predicate below. Variables
that are not assigned in a transition are kept unchanged in the predicate. The
send and receive guards of the agent are only partially captured in the state
machine.

We now turn to the formal description of the line agent, starting with
its set of variables. In addition to copies of common variables (e.g., fl(@type)
= ltype), the line agent has the following state variables: st is a state ranging
over {pnd, strt} (pending and start), lnk is the link of the product line, prd is
the id of the active product, and stage is used to range over the different stages
of production.

The initial condition θl of a line agent is defined as follows:
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Fig. 1: Product Line Agent

θl : st = pnd ∧ stage = 0 ∧ lnk = A ∧ (prd = 1 ∨ prd = 2)

Thus, starting from the pending state, the line agent has a task of assem-
bling one of two products, and uses a multicast channel A to coordinate the
assembly team. If there are multiple product lines, then each is initialised with
a dedicated channel.

The send guard of the Line agent is of the following form:

gsl : ch= ? ∧¬@asgn ∧ (prd=1→(@type=t1 ∨ @type=t2))∧
(prd=2→(@type=t1 ∨ @type=t3)) ∨ ch=lnk ∧ @rdy = stage

Namely, broadcasts are sent to robots whose @asgn is false (i.e., free to join
a team). If the identity of the product to be assembled is 1, then the required
agents are of types t1 and t2 and if the identity of the product is 2, then the
required agents are of types t1 and t3. Messages on channel A (the value of lnk)
are sent to connected agents when they reach a matching stage of production,
i.e., @rdy = stage. The receive guard of Line is ch = ?, i.e., it is only connected
to channel ?.

We may now proceed by explaining ReCiPe’s send and receive transition
relations of the line agent in light of the state machine in Fig.1. The send
transition relation of Line is of the following form:

T sl : keep(lnk, prd, ltype, lasgn, lrdy)∧

st = pnd ∧ d(msg 7→ team;no 7→ 2; lnk 7→ lnk)
∧ stage′ = 1 ∧ st′ = strt ∧ ch = ?

∨ st = strt ∧ d(msg 7→ asmbl) ∧ stage = 1∧
∧ st′ = strt ∧ stage′ = 2 ∧ ch = lnk

∨ st = strt ∧ d(msg 7→ asmbl) ∧ st′ = pnd

∧ stage = 2 ∧ stage′ = 0 ∧ ch = lnk


The Line agent starts in the pending state (see θl). It broadcasts a request
(d(msg 7→ team)) for two robots (d(no 7→ 2)) per required type asking them
to join the team on the multicast channel stored in its lnk variable (d(lnk 7→
lnk)). According to the send guard, described before, if the identity of the
product to assemble is 1 (prd = 1) the broadcast goes to type 1 and type
2 robots and if the identity is 2 then it goes to type 1 and type 3 robots.
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Thanks to channel mobility (i.e., d(lnk) = lnk) a team on a dedicated link
can be formed incrementally at run-time. As a side effects of broadcasting the
team message, the line agent moves to the start state (st′ = strt) where the
first stage of production begins (stage′ = 1). In the start state, the line agent
attempts an assemble (blocking) multicast on A. The multicast can be sent
only when the entire team completed the work on the production stage (when
their common variable @rdy agrees with stage as specified in the send guard).
One multicast increases the value of stage and keeps Line in the start state.
A second multicast finalises the production and Line becomes free again.

We set T rl : keep(all) as Line’s receive transition relation. That is, Line is
not influenced by incoming messages.

We now specify the behaviour of t1-robots and show how an autonomous
and incremental one-by-one team formation is done anonymously at run-time.
As before, we give a high-level overview of the protocol using the state machine
in Fig. 2. The team formation starts when unassigned robots are in pending
states (pnd). From this state they may only receive a team message from a
line agent. The message contains the number of required robots d(no) and a
team link d(lnk). The robots copy these values to their local variables (i.e.,
lnk′ = d(lnk) etc.) and move to the start state (strt). From the start state
there are three possible transitions:
• Join - move to state end - a robot joins the team by broadcasting a form mes-

sage to t1-robots forwarding the number of still required robots (d(no) =
(no − 1)) and the team link (d(lnk) = lnk). This message is sent only if
no ≥ 1, i.e, at least one robot is needed. From state (end) the robot starts its
mission.

• Wait - stay in state strt - a robot receives a form message from a robot,
updating the number of still required robots (i.e., if d(no) > 0).

• Step back - return to state pnd - a robot receives a form message from a robot,
informing that no more robots are needed, i.e., d(no) = 0. The robot dis-
connects from the team link, i.e., lnk′ = ⊥. Thus it may not block interaction
on the team link.

After joining the team, a robot in state end (i.e., with step = 1) starts its
mission independently until it finishes (step′ = n ∧ brdy′ = 1). We have used
(. . . ) to abstract the individual behaviour of the robot in state (end). In fact,
each local step corresponds to a broadcast message (local) that is hidden from
other agents. This will be clarified later in the send guard of the robot which
evaluates to false when (local) is enabled.

When all team robots finish their individual tasks (i.e., circled in the self-
loop on state end while brdy = 1 until step = n), they become ready to receive
an asmbl message on A, to start the next stage of production (i.e, brdy′ = 2)
while still staying in end state.

From this final stage (i.e., brdy = 2) the robots are ready to receive the
final asmbl message to finalise the product and subsequently they reset to their
initial conditions.

As before, each transition corresponds to a disjunct in the send and receive
transition relations, which are fully specified later in this section.
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Fig. 2: The Agent of t1-Robot

We now turn to the formal description of the robot, starting with its set
of variables. In addition to copies of common variables a t1-robot has the
following variables: st ranges over {pnd, strt, end}, step is used to control the
progress of individual behaviour, no (resp. lnk) is a placeholder to a number
(resp. link) learned at run-time, and fb relabels common variables as follows:
fb(@type) = btype, fb(@asgn) = basgn and fb(@rdy) = brdy.

Initially, a robot is in the pending state and is available for recruitment:

θb : (st = pnd) ∧ (btype = t1) ∧ ¬basgn ∧ (lnk = ⊥)∧
(step = brdy = no = 0)

The send guard of the robot is of the following form:

gsb : (ch = ?) ∧ d(msg 6= local) ∧ (@type = btype) ∧ ¬@asgn ∨
(ch = ?) ∧ d(msg = local) ∧ (@asgn ∧ ¬@asgn)

Interestingly, the send guard delimits the scope of the broadcast, depending
on the assignment to data variables. Namely, it specifies that a robot either
broadcasts to unassigned robots of the same type if the message is not a local
one (d(msg 6= local) or otherwise hides the message from all other agents by
broadcasting on a false predicate (i.e., the predicate @asgn∧¬@asgn). Note that
such message cannot be received by any agent, and it can be regarded as a
local computation. Thus, it becomes very easy to distinguish the individual
behaviour of an agent from its interactions with the rest of the system.
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The receive guard specifies that a t1-robot is connected either to a broad-
cast ? or to a channel matching the value of its link variable:

grb : ch = ? ∨ ch = lnk.

Finally, we report the send T sb and receive T rb transition predicates below.

T sb : keep(lnk, btype)∧

st = strt ∧ d(msg 7→ form; lnk 7→ lnk;no 7→ no− 1)

∧ (no ≥ 1) ∧ step = 0 ∧ step′ = 1 ∧ st′ = end

∧keep(brdy) ∧ basgn′ ∧ (no′ = 0) ∧ ch = ?

∨ st = st′ = end ∧ d(msg 7→ local) ∧ ch = ?∧
step = 1 ∧ step′ = 2 ∧ keep(basgn, no, brdy)

... [individual behavior]

∨ st = st′ = end ∧ d(msg 7→ local) ∧ ch = ? ∧ step = n-1

∧step′ = n ∧ brdy′ = 1 ∧ keep(basgn, no)



T rb : keep(btype)∧

st = pnd ∧ d(msg 7→ team) ∧ st′ = strt ∧ ch = ?∧
∧ lnk′ = d(lnk) ∧ no′ = d(no) ∧ keep(basgn, brdy, step)

∨ st = st′ = strt ∧ d(msg 7→ form) ∧ d(no) > 0 ∧ ch = ?∧
keep(basgn, brdy, step) ∧ lnk′ = d(lnk) ∧ no′ = d(no)

∨ st = strt ∧ d(msg 7→ form;no 7→ 0) ∧ ch = ? ∧ st′ = pnd∧
∧keep(basgn, brdy, step) ∧ lnk′ = ⊥ ∧ no′ = 0

∨ st = end ∧ d(msg 7→ asmbl) ∧ brdy = 1 ∧ ch = lnk ∧ step = n∧
∧ keep(basgn, lnk) ∧ st′ = end ∧ brdy′ = 2 ∧ step′ = 0

∨ st = end ∧ d(msg 7→ asmbl) ∧ brdy = 2 ∧ ch = lnk
∧ st′ = pnd ∧ brdy′ = 0 ∧ lnk′ = ⊥ ∧ ¬basgn′



7 LTOL: An extension of LTL

We introduce ltol, an extension of ltl with the ability to refer and therefore
reason about agents interactions. We replace the next operator of ltl with the
observation descriptors: possible 〈O〉 and necessary [O], to refer to messages
and the intended set of receivers. The syntax of formulas ϕ and observation
descriptors O is as follows:

ϕ ::= v | ¬v | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ U ϕ | ϕRϕ | 〈O〉ϕ | [O]ϕ

O ::= cv | ¬cv | ch | ¬ch | k | ¬k | d | ¬d | •∃O | •∀O | O ∨O | O ∧O
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We use the classic abbreviations→,↔ and the usual definitions for true and
false. We also introduce the temporal abbreviations Fϕ ≡ trueUϕ (eventually),
Gϕ ≡ ¬F¬ϕ (globally) and ϕW ψ ≡ ψ R (ψ ∨ ϕ) (weak until). Furthermore
we assume that all variables are Boolean because every finite domain can be
encoded by multiple Boolean variables. For convenience we will, however, use
non-Boolean variables when relating to our RMS example.

The syntax of ltol is presented in positive normal form to facilitate trans-
lation into alternating Büchi automata (ABW) as shown later. That is, we
push the negation down to atomic propositions. We, therefore, use Θ to de-
note the dual of formula Θ where Θ ranges over either ϕ or O. Intuitively, Θ is
obtained from Θ by switching ∨ and ∧ and by applying dual to sub formulas,
e.g., ϕ1 U ϕ2 = ϕ1 Rϕ2, ϕ1 ∧ ϕ2 = ϕ1 ∨ ϕ2, cv = ¬cv, and •∃O = •∀O.

Observation descriptors are built from referring to the different parts of the
observations and their Boolean combinations. Thus, they refer to the channel
in ch, the data variables in d, the sender k, and the predicate over common
variables in cv. These predicates are interpreted as sets of possible assignments
to common variables, and therefore we include existential •∃O and universal
•∀O quantifiers over these assignments.

The semantics of an observation descriptor O is defined for an observation
m = (ch, d, k, π) as follows:

m |= ch′ iff ch = ch′ m |= ¬ch′ iff ch 6= ch′

m |= d′ iff d(d′) m |= ¬d′ iff ¬d(d′)
m |= k′ iff k = k′ m |= ¬k′ iff k 6= k′

m |= cv iff for every assignment c |= π we have c |= cv
m |= ¬cv iff there is an assignment c |= π such that c 6|= cv
m |= •∃O iff there is an assignment c |= π such that (ch, d, k, {c}) |= O
m |= •∀O iff for every assignment c |= π it holds that (ch, d, k, {c}) |= O
m |= O1 ∨O2 iff either m |= O1 or m |= O2

m |= O1 ∧O2 iff m |= O1 and m |= O2

We only comment on the semantics of the descriptors •∃O and •∀O as
the rest are standard propositional formulas. The descriptor •∃O requires that
at least one assignment c to the common variables in the sender predicate
π satisfies O. Dually •∀O requires that all assignments in π satisfy O. Using
the former, we express properties where we require that the sender predi-
cate has a possibility to satisfy O while using the latter we express properties
where the sender predicate can only satisfy O. For instance, both observations
(ch,d, k, cv1 ∨ ¬cv2) and (ch,d, k, cv1) satisfy •∃cv1 while only the latter sat-
isfies •∀cv1. Furthermore, the observation descriptor •∀false∧ ch = ? says that
a message is sent on the broadcast channel with a false predicate. That is, the
message cannot be received by other agents. In our RMS example in Section 6,
the descriptor •∃(@type = t1)∧ •∀(@type = t1) says that the message is intended
exactly for robots of type-1.
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Note that the semantics of •∃O and •∀O (when nested) ensures that the
outermost cancels the inner ones, e.g., •∃(O1 ∨ (•∀(•∃O2))) is equivalent to
•∃(O1 ∨O2). Furthermore, when cv and respectively ¬cv appear outside the
scope of a quantifier (•∀ or •∃), they are semantically equivalent to the de-
scriptors •∀cv and respectively •∃¬cv. Thus, we assume that they are written
in the latter normal form.

We interpret ltol formulas over system computations:

Definition 10 (System computation) A system computation ρ is a func-
tion from natural numbers N to 2V ×M where V is the set of state variable

propositions and M = ch× 2d×K × 22
cv

is the set of possible observations.
That is, ρ includes values for the variables in 2V and an observation in M at
each time instant.

We denote by si the system state at the i-th time point of the system
computation. Moreover, we denote the suffix of ρ starting with the i-th state
by ρ≥i and we use mi to denote the observation (ch,d, k, π) in ρ at time point
i.

The semantics of an ltol formula ϕ is defined for a computation ρ at a
time point i as follows:

ρ≥i |= v iff si |= v and ρ≥i |= ¬v iff si 6|= v;
ρ≥i |= ϕ2 ∨ ϕ2 iff ρ≥i |= ϕ1 or ρ≥i |= ϕ2;
ρ≥i |= ϕ2 ∧ ϕ2 iff ρ≥i |= ϕ1 and ρ≥i |= ϕ2;
ρ≥i |= ϕ1 U ϕ2 iff there exists j ≥ i s.t. ρ≥j |= ϕ2 and,

for every i ≤ k < j, ρ≥k |= ϕ1;
ρ≥i |= ϕ1 Rϕ2 iff for every j ≥ i either ρ≥j |= ϕ2 or,

there exists i ≤ k < j, ρ≥k |= ϕ1;
ρ≥i |= 〈O〉ϕ iff mi |= O and ρ≥i+1 |= ϕ;
ρ≥i |= [O]ϕ iff mi |= O implies ρ≥i+1 |= ϕ.

Intuitively, the temporal formula 〈O〉ϕ is satisfied on the computation ρ
at point i if the observation mi satisfies O and ϕ is satisfied on the suffix
computation ρ≥i+1. On the other hand, the formula [O]ϕ is satisfied on the
computation ρ at point i if mi satisfying O implies that ϕ is satisfied on the
suffix computation ρ≥i+1. Other formulas are interpreted exactly as in ltl.

With observation descriptors we can refer to the intention of agents in the
interaction. For example, the following descriptor

O := •∃(@type = t1) ∧ •∃(@type = t2) ∧ •∀(@type = t1 ∨ @type = t2)

specifies that the target of the message is “exactly and only” type-1 and type-
2 robots. This descriptor can be used later to specify that whenever the line
agent “l” recruits for a product with identity 1, it notifies both type-1 and
type-2 robots as follows:

G((prd = 1 ∧ st = pnd ∧ 〈l ∧ ch = ?〉true)→ 〈O〉true)
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Namely, whenever the line agent is in the pending state and tasked with prod-
uct 1 it notifies both type-1 and type-2 robots by a broadcast.

The pattern “After q have exactly two p until r” [45,25] can be easily
expressed in ltl and can be used to check the formation protocol. Consider
the following formulas:

ϕ1 := 〈msg = team ∧ no = 2 ∧ •∃(@type = t1)〉true

specifying that a team message is sent to type-1 robots and requires two robots,

ϕ2 := 〈msg = form ∧ •∃(@type = t1)〉true

specifying that a formation message is sent to type-1 robots, and

ϕ3 := 〈ch = A〉true

specifying that a message is sent on channel A.
Now, the template “After ϕ1 have exactly two ϕ2 until ϕ3” specifies that

whenever a team message is sent to robots of type-1 requiring two robots,
then two form messages destined for type-1 robots will follow before using the
multicast channel. That is, two type-1 robots join the team before a (blocking)
multicast on channel A may become possible.

We can also reason at a local rather than a global level. For instance, we
can specify that robots follow a “correct” utilisation of channel A. Formally,

O1(t) := msg=team ∧ •∃(@type=t)

specifies that a team message is sent to robots of type t;

O2(k, t) := msg=form ∧ ¬k ∧ no=0 ∧ •∃(¬@asgn ∧ @type=t)

specifies that a robot different from k sends a form message specifying that no
more robots are needed and this message is sent to unassigned type t robots;

O3(t) := msg=asmbl ∧ ch = A ∧ @rdy=2 ∧ •∃(@type=t)

specifies that an assembly message is sent on channel A to robots of type t who
reached stage 2 of the production. Thus, for robot k of type t, the formulas

(i) ϕ1(t) := (lnk6=A)W 〈O1(t)〉true
(ii) ϕ2(k, t) := G([O2(k, t) ∨O3(t)]ϕ1(t))

(1)

state that: (i) robots are not connected to channel A until they get a
team message, inviting them to join a team; (ii) if either they are not se-
lected (O2(k, t)) or they finished production after selection (O3(t)) then they
disconnect again until the next team message. This reduces to checking the
“correct” utilisation of channel A to individual level, by verifying these prop-
erties on all types of robots independently. By allowing the logic to relate to
the set of targeted robots, verifying all targeted robots separately entails the
correct “group usage” of channel A.
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7.1 The Satisfiability and the Model Checking problems of ltol

In this section, we improve our early results on satisfiability and model check-
ing of ltol, presented in the aamas version [2] of this article. In that version,
we computed an expspace upper bound for both problems with respect to
the set of common variables cv that appear in the observation descriptors
and pspace upper bound with respect to the rest of the input. This result
was not surprising as the semantics of observations requires quantification on
the assignments to common variables cv appearing in O. Indeed, the number
of assignments to cv is doubly exponential in the size of cv, i.e, the number

of assignments is 22
|cv|

. Both problems require translation to Nondetermin-
istic Büchi Automata (NBW), and a direct translation would incur a double
exponential blowup in the size of the automaton with respect to |cv|. Thus,
a membership in expspace with respect to |cv| follows from the membership
in nlogspace of the nonemptiness problem for NBW.

In this article, we improved the latter results to pspace, matching the
lower bound. This is achieved by a novel automaton construction. Namely, we
introduce a further dependency between the formula and the alphabet that is
read by the automaton. Thus, the automaton does not read concrete messages
but it rather partitions messages into sets, according to their effects on the
truth values of subformulas of the formula.

Before we proceed with the automaton construction, we fix the sets of
system variables V , the communication channels ch, the data variables d, the
identities of agents K, and the common variables cv.

Our direct construction in [2] considers a state-alphabet Σ = 2V and a

message-alphabet M = ch × d ×K × 22
cv

. Clearly, the message-alphabet is
doubly-exponential in cv and implies that the decision procedures based on
M would be in expspace (with respect to cv). However, M is “too large” for
the automaton (c.f., [62]). Thus, we consider a smaller alphabet that is derived
from the observation descriptors appearing in the formula. This alphabet is
at most exponential in the size of the formula (allowing for pspace analy-
sis). To achieve pspace analysis, we have to extend the decision procedures
to further consider observation-alphabet satisfiability and observation-alphabet
model-checking, as we will see below.

Recall the alphabets Σ and M above and fix an ltol formula ϕ. Let obs(ϕ)
be the set of observations appearing “top-level” in the operators 〈·〉 and [·] in
ϕ. More precisely, obs(ϕ) is closed under the subformula relation of ϕ, but is
not closed under the subformula relation of O. Consider ϕ2(k, t) in Equation 1:

obs(ϕ2(k, t)) = {O2(k, t) ∨O3(t), O1(t)}

We denote by |obs(ϕ)| the size of the set obs(ϕ). We denote by |O| the length
of the observation O and by |obs(ϕ)| the sum of lengths of observations in ϕ.
Note that |obs(ϕ)| is bounded by the size of ϕ. Thus, we may now define an
observation-alphabet O = 2obs(ϕ), that is at most exponential in the size of ϕ.
We will use this alphabet to enable pspace analysis.
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In our construction, the automaton reads words from the alphabet (Σ×O)ω

while system computations are derived from the alphabet (Σ ×M)ω.
Intuitively, an automaton word w ∈ (Σ ×O)ω and a system computation

ρ ∈ (Σ×M)ω agree on the state-alphabet Σ and only differ in their treatment
to messages. Formally, given a word w = (σ0, O0), (σ1, O1), . . . , and a system
computation ρ = (σ′0,m0), (σ′1,m1), . . . . We say that ρ satisfies w if for every
i ≥ 0 we have that σ′i = σi and for every O ∈ obs(ϕ) we have mi |= O iff
O ∈ Oi. Note that mi |= O follows the semantics of observation descriptors.
Thus, a word w defines a language over system computations.

More precisely, for a word w ∈ (Σ × O)ω we denote by Lω(w) the set of
system computations satisfying w. We say that w is non empty if there is some
system computation satisfying it, i.e., if Lω(w) 6= ∅. Furthermore, for a letter
O ∈ O, we denote by M (O) = {m ∈ M | ∀O ∈ obs(ϕ) . O ∈ O ⇐⇒ m |= O}
the set of models of O. That is, all the messages that satisfy all the observations
in O and do not satisfy all the observations that are not in O. We say that O is
non empty if M (O) 6= ∅.

Clearly, a word w = (σ0, O0), (σ1, O1), . . . is non empty if and only if for
every i ≥ 0 we have that Oi is non empty.

We show that satisfiability of ltol can be reduced to finding a word w
such that the set of system computations satisfying w is not empty. Similarly,
model checking is reduced to building an automaton for ¬ϕ and identifying
a word w satisfying ¬ϕ and a computation ρ of the system under study such
that ρ satisfies w.

The following theorem states that the set of computations satisfying a
given formula are exactly the ones satisfying words accepted by some finite
automaton on infinite words.

Theorem 4 For every ltol formula ϕ, there is an Alternating Büchi Au-
tomaton (ABW) Aϕ = 〈Q,Σ,O, δϕ, q0, F ⊆ Q〉 such that

⋃
w∈Lω(Aϕ) Lω(w)

is exactly the set of computations satisfying the formula ϕ.

Notice that for a given word w, either all the computations that satisfy w
satisfy ϕ or all the computations that satisfy w do not satisfy ϕ (i.e., satisfy
ϕ). In the first case w is accepted by Aϕ and in the second it is not accepted
by Aϕ. Thus, the definition of O is such that words partition the computations
to equivalence sets that are uniform with respect to the satisfaction of ϕ.

Proof The set of states Q is the set of all sub formulas of ϕ with ϕ being the
initial state q0. The automaton has two alphabets, namely the state-alphabet
Σ = 2V and the observation alphabet O = 2obs(ϕ). The set F of accepting
states consists of all sub formulas of the form ϕ1Rϕ2. The transition relation
δϕ : Q × Σ × O → B+(Q) is defined inductively on the structure of ϕ, as
follows:

• δϕ(v, σ, O) = true if v ∈ σ and false otherwise;
• δϕ(¬v, σ, O) = true if v 6∈ σ and false otherwise;
• δϕ(ϕ1 ∨ ϕ2, σ, O) = δϕ(ϕ1, σ, O) ∨ δϕ(ϕ2, σ, O);
• δϕ(ϕ1 ∧ ϕ2, σ, O) = δϕ(ϕ1, σ, O) ∧ δϕ(ϕ2, σ, O);
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• δϕ(ϕ1 U ϕ2, σ, O) = δϕ(ϕ1, σ, O) ∧ ϕ1 U ϕ2 ∨ δϕ(ϕ2, σ, O);
• δϕ(ϕ1 Rϕ2, σ, O) = (δϕ(ϕ1, σ, O) ∨ ϕ1 Rϕ2) ∧ δϕ(ϕ2, σ, O);

• δϕ(〈O〉ϕ1, σ, O) =

{
ϕ1 O ∈ O

false O /∈ O
;

• δϕ([O]ϕ1, σ, O) =

{
ϕ1 O ∈ O

true O /∈ O
.

The proof of correctness of this construction proceeds by induction on the
structure of ϕ.

We prove that when Aϕ is in state ϕ1, it accepts exactly all computations
that satisfy ϕ1. The base cases (i.e., state variable propositions) follow from
the definition of δϕ while other cases follow from the semantics of ϕ and the
induction hypothesis. The construction ensures that a computation can only
satisfy ϕ1Uϕ2, if it has a suffix satisfying ϕ2; otherwise Aϕ will have an infinite
path stuck in ϕ1 U ϕ2 which is not accepting.

Note that, from Theorem 4, the number of states in Aϕ is linear in the
size of ϕ, i.e., |Q| is in O(|ϕ|). The size of the transition relation |δϕ| is in
O(|Q|2.|Σ|.|O|), i.e., it is in |ϕ|2.2O(|ϕ|). Finally, the size of the alternating
automaton |Aϕ| is in O(|Q|.|δϕ|), i.e., |Aϕ| is in |ϕ|3.2O(|ϕ|).

By Theorem 4 and Proposition 2, we have that:

Corollary 2 For every formula ϕ there is an NBW Nϕ with a state-alphabet
Σ = 2V and an observation-alphabet O = 2obs(ϕ) where Nϕ = 〈Q,Σ,O, S0, δ, F 〉
and

⋃
w∈Lω(Nϕ) Lω(w) is exactly the set of computations satisfying ϕ such that:

• |Q| is in 2O(|ϕ|) and |δ| is in O(|Q|2.|Σ|.|O|), i.e., |δ| is in 2O(|ϕ|).
• The required space for building the automaton is nlog(|Q|.|δ|), i.e., it is in

O(|ϕ|)
• The size of the Büchi automaton is |Q|.|δ|, i.e., |N | is in 2O(|ϕ|).

Theorem 5 The satisfiability problem of ltol is pspace-complete with
respect to |ϕ|.

Proof By Corollary 2, given a formula ϕ, we can construct an NBW Nϕ of
size |Qn|.|δn| that accepts precisely the computations that satisfy ϕ. Thus, ϕ is
satisfiable iff Nϕ is nonempty. In order to prove that the formula is satisfiable
we have to show that Nϕ accepts a word w such that some computation ρ
satisfies w. However, a word w is non empty iff every letter O ∈ O appearing
in w is non empty. It follows that while testing the non emptiness of Nϕ we
have to follow only transitions using non empty letters in O. The nonemptiness
of an NBW is tested in nondeterministic logarithmic space. However, as Nϕ
is exponential in |ϕ| we get an algorithm working in space polynomial in |ϕ|.
The algorithm constructs Nϕ on-the-fly. We have to show that the emptiness
of letters in O can be tested in space polynomial in |ϕ|. This follows from
Proposition 1 below.

The hardness argument can be proved by a reduction from ltl satisfiabil-
ity [55].
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Theorem 6 The model-checking problem of ltol is pspace-complete with
respect to |Sys| and |ϕ|.

Note that the stated bounds in terms of |Sys| refer to the symbolic rep-
resentation of the system. The complexity is logspace in the size of the
corresponding CTS T (Sys), which is anyway exponentially larger.

Proof Given a finite state system Sys = 〈V , ρ, θ〉 and a set of assertions
on state variables V , on ch, d, K, and on cv1, . . . cvn. We assume ρ to
be total and then we can construct a CTS representation of Sys as follows:
T (Sys) = 〈ch, Σ,M, S, S0, R, L, ls〉, where the components of T (Sys) are
as follows. S = Σ (L is the identity function), and thus S is the set of pos-
sible interpretations of the variables in V , i.e., S = 2V . The set of initial
states S0 is the set of states s such that s |= θ, i.e., S0 = {s |= θ}, and

M = ch× 2d×K × 22
cv

. We have that R(s,m) = {s′ : (s,m, s′) |= ρ} and ∅
otherwise. Furthermore, we consider all states in T (Sys) to be accepting. The
number of states in the transition system T (Sys) may be exponentially larger
than the description of Sys. Notice that although M is doubly exponential in
cv the labels of transitions of T (Sys) are those obtained from T sk for some
k. Thus, the number of distinct labels appearing on transitions of T (Sys) is
bounded by |S| · |ch| · 2|d| · |K|.

The system Sys satisfies ϕ iff all the computations of Sys satisfy ϕ, thus
for every computation ρ ∈ Lω(T (Sys)) there exists a word w ∈ Lω(Nϕ)
such that ρ |= w. Dually, Sys does not satisfy ϕ iff for some computation
ρ ∈ Lω(T (Sys)) and for some word w ∈ Lω(N¬ϕ) we have ρ |= w. This is
equivalent to check Lω(T (Sys))∩

⋃
w∈Lω(N¬ϕ) Lω(w) = ∅. Since our formulas

are in positive normal form, ¬ϕ can be obtained from ϕ by ϕ. By Corollary 2,
we have that N¬ϕ has 2O(|ϕ|) states and |N¬ϕ| is in 2O(|ϕ|). Note, however,
that the words of N¬ϕ are in (Σ×O)ω while the computations of T (Sys) are
in (Σ×M)ω. The model-checking problem can be reduced to finding a word w
accepted by A¬ϕ and a computation ρ of T (Sys) such that ρ |= w. Recall that
ρ |= w if for every i ≥ 0 we have that σρi = σwi and for every O ∈ obs(ϕ) we
have mρ

i |= O iff O ∈ O
w
i . This amounts to check the nonemptiness problem of

a (modified) intersection of T (Sys) and N¬ϕ, where the transition (s,m, s′)
of T (Sys) can match transitions of N¬ϕ that read letters (s, O) for m |= O.
Note that for every m ∈ M there is a unique O ∈ O such that m |= O. Thus,
we check letter by letter that the word w accepted by N¬ϕ and the compu-
tation ρ produced by T (Sys) are such that ρ |= w. Thus, we only need to
show that checking m |= O can be tested in space polynomial in |ϕ|. Indeed,
This follows from Proposition 2. Since all states in T (Sys) are accepting, the
construction of NT (Sys),¬ϕ is the product of T (Sys) with N¬ϕ with transi-

tions composed as explained. We have that NT (Sys),¬ϕ has 2O(|Sys|+|ϕ|) states.

Hence, |NT (Sys),¬ϕ| is in 2O(|Sys|+|ϕ|) . We have that NT (Sys),¬ϕ can be con-
structed on-the-fly and a membership in pspace with respect to |Sys| and |ϕ|,
follows from the membership in nlogspace of the nonemptiness problem for
NBW. Checking that Sys |= ϕ is in O(|ϕ|+ |Sys|).
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The hardness follows from the same hardness results for discrete systems
and ltl [55].

The following proposition states that given a letter O ∈ O we can check
whether there exists a message m that satisfies O in np with respect to |obs(ϕ)|.
Notice that, in particular, |obs(ϕ)| should be larger than the number of vari-
ables in cv and d that appear in ϕ, the number of agents in K that are
mentioned in ϕ and the number of channels in ch appearing in ϕ. Those that
do not appear in ϕ can be removed from the message alphabet M .

Proposition 1 (Observation satisfiability) Consider a letter O ∈ O. Empti-
ness of O is np-complete in |obs(ϕ)|.

Proof Given a letter O ∈ O let O
⇑ be the set of observations in O and the

negations of the observations not appearing in O. That is, O
⇑ = O ∪ {O | O ∈

obs(ϕ) \ O}. Let O
⇑
∧ =

∧
O∈O⇑ O be the conjunction of all observations in O

⇑.
Clearly, the Emptiness of a letter O ∈ O is equivalent to the satisfiability of
O
⇑
∧. Thus, we can restrict our attention to the satisfaction of an observation.

Given an observation O let atom(O) denote the set of subformulas of O of the
form •∃O′ and ∀O′.

We show that satisfaction of O can be solved in NP as follows:

– select a subset S of atom(O);
– select an assignment to d, a channel ch and an agent k;
– for each •∃O′ ∈ S guess one assignment to cv.

Verify that the choice of S, the assignment to d, the channel ch and the agent k
satisfy O. Notice, that the elements of atom(O) are treated as Boolean values
in this check: O′′ ∈ S is evaluted as true and O′′ /∈ S is evaluated as false. For
each •∃O′ ∈ S check that the assignment to cv guessed for •∃O′ fulfills two
conditions:

– the assignment to cv together with the assignment to d, the channel ch
and the agent k satisfy O′.

– For every •∀O′′ ∈ S check that the assignment to cv together with the
assignment to d, the channel ch and the agent k satisfy O′′.

Notice that the sum of sizes of the guessed elements is polynomal in the
size of O and the verification can be completed in polynomial time.

Hardness in np follows from the hardness of Boolean satisfiability.

The following proposition states that checking if a message m ∈M satisfies
an observation letter O ∈ O can be tested in pnp in |obs(ϕ)|. We consider the
case that π is represented as a Boolean formula over cv. This is reasonable as
when considering a transition (s,m, s′), where m = (ch,d, i, π), then π can be
obtained as such a formula from gsi by using the values in s, ch, and d.

Proposition 2 (Observation model-checking) Consider a letter O ∈ O
and an observation m ∈M . Whether m |= O can be tested in pnp in |obs(ϕ)|.
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Proof As in the case of proposition 1 give a letter O ∈ O we consider O
⇑
∧. Thus,

we restrict our attention to the case of whether m satisfies an observation O.
Let m = (ch,d, i, π). We simplify O by converting every reference to ch, d

or i to the constants appearing in m. It follows that we are left with a Boolean
combination of •∃· and •∀· subformulas, where only variables from cv appear.

For a subformula •∃O′ we can check whether m |= •∃O′ by checking
whether π ∧ O′ is satisfiable. For a subformula •∀O′ we can check whether
m |= •∀O′ by checking whether π → O′ is valid. Both checks can be accom-
plished by an np oracle.

The problem is np-hard in |cv| as m |= •∃true holds iff π is satisfiable. The
problem is co-np-hard in |cv| as m |= •∀false iff π is unsatisfiable. We do not
know whether the problem is pnp-complete.

We note that in the case that m is represented as a set of assignments to
cv, we can modify the Boolean value problem [43] to show that m |= O can
be evaluated in logspace.

8 Related works

In this section, we present closely related works with respect to (i) traditional
formal modelling of Multi-Agent Systems; (ii) distributed and concurrent
computation models; (iii) knowledge and strategic formalisms; (iv) business
process modelling; and (v) logics for temporal reasoning.

Traditional formal modelling of MAS. As mentioned before, formal mod-
elling is highly influenced by traditional formalisms used for verification, see [7,
28]. These formalisms are, however, very abstract in that their models repre-
sentations are very close to their mathematical interpretations (i.e., the un-
derlying transition systems). Although this may make it easy to conduct some
logical analysis [8,22,52] on models, it does imply that most of the high-level
MAS features may only be hard-coded, and thus leading to very detailed mod-
els that may not be tractable or efficiently implementable. This concern has
been already recognised and thus more formalisms have been proposed, e.g.,
Interpreted Systems Programming Language (ISPL) [42] and MOCHA [9] are
proposed as implementation languages of Interpreted Systems (IS) [28] and Re-
active Modules (RM) [7] respectively. They are still either fully synchronous
or shared-memory based and thus do not support flexible coordination and/or
interaction interfaces. A recent attempt to add dynamicity in this sense has
been adopted by visibly CGS (vCGS) [13]: an extension of Concurrent-Game
Structures (CGS) [8] to enable agents to dynamically hide/reveal their inter-
nal states to selected agents. However, vCGS relies on an assumption of [10]
which requires that agents know the identities of each other. This, however,
only works for closed systems with a fixed number of agents.

Other attempts to add dynamicity and reconfiguration include dynamic
I/O automata [21], Dynamic reactive modules of Alur and Grosu [6], Dy-
namic reactive modules of Fisher et al. [30], and open MAS [39]. However,
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their main interest was in supporting dynamic creation of agents. Thus, the
reconfiguration of communication was not their main interest. While ReCiPe
may be easily extended to support dynamic creation of agents, none of these
formalisms may easily be used to control the targets of communication and
dissemination of information.

Distributed and concurrent computation models. There are a plenty
of formalisms that were specifically designed to model concurrent computa-
tions and distributed systems, (cf. π-calculus [50], Psi-calculus [17,20], AbC
calculus [1,5], Channel Systems [11], etc). These formalisms rely heavily on
message-passing and synchronisation, and except for AbC and the broadcast
version of Psi-calculus [20] they mostly rely on point-to-point communication
mechanisms to establish interaction. Clearly, point-to-point communication
is not appropriate to model interaction in MAS settings, and a group-based
communication is more appropriate (See [1,5] for a detailed comparison).

Furthermore, these formalisms also differ in their degree of support to re-
configuration. On one hand, Channel Systems cannot deal with reconfiguration
and only support fixed communication structures. On the other hand, while π
and Psi-calculi can support 1-by-1 expansion of the scope of interaction, AbC
supports a general group communication with sophisticated scoping mecha-
nisms. In ReCiPe, we extend these ideas to support awareness capabilities,
interaction beyond broadcast, and dynamic construction of groups and private
group coalitions. It is worth mentioning that although there is a separation
result [26] stating that point-to-point and broadcast communication are incom-
parable, we can still mimic point-to-point communication in ReCiPe under
closed world assumption. For instance, the team formation protocol in Sect. 6 is
such example where robots are recruited one-by-one with a non-deterministic
selection. This, of course, works because we assume a closed world settings
where no other agents may intervene and disturb such protocol. We conjec-
ture that if ReCiPe is extended with mechanisms to allow communicating
secret messages, we would be able to encode point-to-point in general.

Knowledge and Strategic formalisms. There is a rich literature on mod-
elling and reasoning about knowledge and strategic behaviour in multi-agent
systems. They employ techniques to study knowledge dissemination in dis-
tributed settings [56,47] and respectively analysing strategic behaviour [19,
15] to study concepts like Nash equilibria, Pareto optimality and evolutionary
strategies.

Reasoning in these settings is known to be hard, and restrictions on the
structure of the systems and their communication mechanisms are imposed to
mitigate such difficulty. For instance, hierarchical environments [47] , broadcast
environments [41], public actions [15], public announcements [56] or gossip
spread mechanisms [23]. Most of these approaches rely on an assumption of
perfect recall to guarantee the decidability of the verification problem, i.e., all
agents of the system are aware of all events that have happened so far. In fact,
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they keep a complete record of all events they have observed so far and they
base their judgement on such complete record.

This assumption can be appropriate in specific distributed applications
like Blockchains, supply chains where there is a powerful infrastructure that
mediates the interaction and makes global information available to everyone
easily. However, this is a strong assumption to be made in general distributed
settings. For instance, in applications where a group of robots with limited
resources communicate in ad-hoc wireless networks. Also, in applications where
security is of concern and only specific agents are allowed to have access to a
specific information.

To the best of our knowledge, all proposed broadcast settings in the context
of knowledge and strategic reasoning imply more than a broadcast in actual
communication. That is, in broadcast environments [41] and public actions
[15] the communication is totally deterministic and all agents have access to
all events that have happened so far and their respective order. This, of course,
simplifies the verification problem because it removes all possible sources of in-
formation forks (the source of undecidability for some verification tasks). That
is, an agent who is not targeted by the communication still knows the events
that have happened. In normal broadcast like in ReCiPe, non-targeted agents
are unaware of the communication and cannot have access to communications
that they did not participate in. In fact, using a perfect recall gives the power
to agents to even count how many communication steps have happened so far.
This is, clearly, unreasonable in distributed settings because one agent might
participate for a finite time in the communication protocol and stays idle most
of the time. Allowing agents to have access to that much of information does
not come without a cost, it requires memory and, although decidable, it is not
surprising that the complexity of verification in such settings is very high.

Other than the fact that all of the mentioned approaches rely on flat or
static communication structure, the main difference with respect to our way of
dissemination of information in ReCiPe is due to the fact that we are handling
a different problem, i.e., a coordination problem. In fact, a coordination prob-
lem is a subproblem of general knowledge dissemination. The classic examples
of the latter assume a very powerful communication infrastructure and usually
ask whether a group of uninformed agents can become totally informed about
the state of the whole system after a number of communication rounds. In that
settings, an event is made publicly accessible to all agents after being executed,
and thus each agent is able to keep track of the state of the system during
execution. Although that agent may not know the exact exchange of infor-
mation, it can still make deductions based on the history of communications.
The logic of gossiping [23] gives an excellent characterisation of the different
cases of communications in point-to-point settings. From our perspective, we
consider the asynchronous case to be the more representative case to coordi-
nation in distributed settings as agents only observe the communication they
participate in. In a coordination problem, the objective is different as agents
can be arbitrarily informed about the state of the system. Some agents might
be totally uninformed and stay so because they do not interact with the rest of
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the systems while other agents might need to know some more information at
some point during execution and then forget about it later. Thus, we believe
that in a dynamic and reconfigurable communication structure a perfect recall
is not required, given that communication can be introduced on need-basis to
resolve information forks.

Business process modelling. Some approaches from the realm of busniess
process modelling such as Artifact-centric systems [16] have some similarities
with respect to ReCiPe. An artifact system consists of two main components:
data which models the local state alongside the view of the agent on the envi-
ronment; and lifecycle which models the behaviour of agents working on the
data. Artifact-centric systems define agents’ local states as evolving database
instances and can be considered as a specialisation of interpreted systems were
local states are structured in form of databases. Agents interact among them-
selves and with an environment comprising all artifacts in the system. That
is, all local states of agents are considered as partial views of a holistic en-
vironment database. Thus, the environment can be represented as a special
agent holding the combined knowledge of all agents in the system. There are
two main differences with respect to ReCiPe: (1) there is no notion of recon-
figuration of interaction interfaces in artifact systems and all agents have to
participate in every interaction even to just stay idle; (2) considering the envi-
ronment as a special agent composed with the rest of the system restricts its
capabilities. That is, the environment can no longer be able to simultaneously
trigger multiple events with respect to different agents local views. In other
words, this restriction reduces the power of the environment and forces it to
interleave and alternate behaviour with respect to other agents. In ReCiPe,
the environment can be more powerful because some local variables of agents
may abstract incomparable local views of the environment. Changes in the
assignments to these variables cannot be restricted, and thus the environment
can change them simultaneously resulting in triggering multiple events for the
different agents which have to coordinate their executions.

Logics for temporal reasoning. As for logics we differ from traditional
languages like ltl and ctl in that our formula may refer to messages and
their constraints. This is, however, different from the atomic labels of pdl [48]
and modal µ-calculus [40] in that ltol mounts complex and structured ob-
servations on which designers may predicate on. Thus the interpretation of a
formula includes information about the causes of variable assignments and the
interaction protocols among agents. Such extra information may prove useful
in developing compositional verification techniques.

9 Concluding Remarks

We introduced a formalism that combines message-passing and shared-memory
to facilitate realistic modelling of distributed multi agent systems. A system
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is defined as a set of distributed agents that execute concurrently and only
interact by message-passing. Each agent controls its local behaviour as in Re-
active Modules [7,30] while interacting externally by message passing as in π-
calculus-like formalisms [50,1,5]. Thus, we decouple the individual behaviour
of an agent from its external interactions to facilitate reasoning about either
one separately. We also make it easy to model interaction features of MAS,
that may only be tediously hard-coded in existing formalisms.

We introduced an extension to ltl, named ltol, that characterises mes-
sages and their targets. This way we may not only be able to reason about
the intentions of agents in communication, but also we may explicitly specify
their interaction protocols. Finally, we provided a novel automata construc-
tion that permits satisfiability and model-checking in space polynomial with
respect to the size of the formula and the size of the system. This is a major
improvement on the early results in [2] that were in expspace with respect
to the number of common variables and pspace-complete with respect to the
rest of the input.

Future works. We plan to provide tool support for ReCiPe, but with a
more user-friendly syntax. We would like to provide a light-weight programming-
language-like syntax to further simplify modelling.

We want to exploit the interaction mechanisms in ReCiPe and the ex-
tra information in ltol formulas to conduct verification compositionally. As
mentioned, we believe that relating to sender intentions will facilitate that.

We intend to study the relation with respect to temporal epistemic logic
[35]. Although we do not provide explicit knowledge operators, the combina-
tion of data exchange, receivers selection, and enabling/disabling of synchro-
nisation based on the evolving states of the different agents, allow them to
dynamically deduce information about each other. Furthermore we want to
study ReCiPe under dynamic creation of agents while reconfiguring commu-
nication. Thanks to the new compositional semantics in terms of CTS, the
dynamic creation of agents can now be easily linked to the execution of some
blocking transitions. To give an intuition about a (possible) extension consider
the following semantic rule:

A1
(υ,?,c)−−−−→ A′1‖A1 (2)

Here, we use A
m−→ A′ to denote that in state s agent A may receive

a message m and evolves to A′ with state s′, i.e., (s,m, s′) ∈ RA. Clearly,
the semantic rule 2 indicates that the agent replicates itself once a multicast
message on c is received as a side-effect of interaction. Thus, if we compose

A1 with some other agent, say A2, such that A2
(υ,!,c)−−−−→ A′2, the following

transition is derivable by the semantics of parallel composition in Def. 3:

if A1
(υ,?,c)−−−−→ A′1‖A1 and A2

(υ,!,c)−−−−→ A′2

A1‖A2
(υ,!,c)−−−−→ A′1‖A1‖A2 (3)
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Namely, a new replica of A1 is dynamically created when agents exchanged
a specific message. Agent A1 can be thought of as a server that spawn a new
thread to handle concurrent requests from clients.

Finally, we want to target the distributed synthesis problem [29]. Several
fragments of the problem have been proven to be decidable, e.g., when the
information of agents is arranged hierarchically [18], the number of agents
is limited [34], or the actions are made public [14]. We conjecture that the
ability to disseminate information and reason about it might prove useful in
this setting.
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A Proofs for Section 4 (Channelled Transition Systems)

Lemma 1 (Commutativity and Associativity) Given two CTS T1 and T2 we have
that:

– ‖ is commutative: T1‖T2 = T2‖T1;
– ‖ is associative: (T1‖T2)‖T3 = T1‖(T2‖T3).

Proof We prove each statement separately. In both statement, the proof proceeds by case
analysis on the joint transition.

(‖ is commutative): we consider all possible joint transitions from T1‖T2 and we show
that they have corresponding transitions in T2‖T1 and vice versa. We only show one
direction and the other direction follows in a similar way.
– Case (υ, !, c): By Def. 3, we have that ((s1, s2), (υ, !, c) , (s′1, s

′
2)) ∈ R12 (R12 is the

transition relation of T1‖T2) in the following cases:
1. (s1, (υ, !, c) , s′1) ∈ R1 and (s2, (υ, ?, c) , s′2) ∈ R2: It follows that ((s2, s1), (υ, !, c) , (s′2, s

′
1)) ∈

R21 (R21 is the relation of T2‖T1) is derivable because (s2, (υ, ?, c) , s′2) ∈ R2

and (s1, (υ, !, c) , s′1) ∈ R1;
2. (s1, (υ, !, c) , s′1) ∈ R1 and c /∈ ls2(s2) and (s2 = s′2): It follows that ((s2, s1), (υ, !, c) , (s′2, s

′
1)) ∈

R21 is derivable because c /∈ ls2(s2) and (s2 = s′2) and (s1, (υ, !, c) , s′1) ∈ R1;
3. (s1, (υ, !, ?) , s′1) ∈ R1 and (s2 = s′2) and ∀s′′2 .(s2, (υ, ?, c) , s′′2 ) /∈ R2: It fol-

lows that ((s2, s1), (υ, !, ?) , (s′2, s
′
1)) ∈ R21 is derivable because (s2 = s′2) and

∀s′′2 .(s2, (υ, ?, c) , s′2) /∈ R2 and (s1, (υ, !, c) , s′1) ∈ R1;
4. (s2, (υ, !, c) , s′2) ∈ R2 and (s1, (υ, ?, c) , s′1) ∈ R1: This is the symmetric case of

case (1);
5. (s2, (υ, !, c) , s′2) ∈ R2 and c /∈ ls1(s1) and (s1 = s′1): This is the symmetric

case of case (2);
6. (s2, (υ, !, ?) , s′2) ∈ R2 and (s1 = s′1) and ∀s′′1 .(s1, (υ, ?, c) , s′′1 ) /∈ R1: This is the

symmetric case of case (3).
– Case (υ, ?, c): By Def. 3, we have that ((s1, s2), (υ, ?, c) , (s′1, s

′
2)) ∈ R12 in the

following cases:
1. (s1, (υ, ?, c) , s′1) ∈ R1 and (s2, (υ, ?, c) , s′2) ∈ R2: It follows that ((s2, s1), (υ, ?, c) , (s′2, s

′
1)) ∈

R21 is derivable for the same reason;
2. (s1, (υ, ?, c) , s′1) ∈ R1 and c /∈ ls2(s2) and (s2 = s′2): It follows that ((s2, s1), (υ, ?, c) , (s′2, s

′
1)) ∈

R21 is derivable because c /∈ ls2(s2) and (s2 = s′2) and (s1, (υ, ?, c) , s′1) ∈ R1;
3. (s2, (υ, ?, c) , s′2) ∈ R2 and c /∈ ls1(s1) and (s1 = s′1): This is the symmetric

case of case (2);
4. (s1, (υ, ?, ?) , s′1) ∈ R1 and (s2 = s′2) and ∀s′′2 .(s2, (υ, ?, c) , s′′2 ) /∈ R2: It fol-

lows that ((s2, s1), (υ, ?, ?) , (s′2, s
′
1)) ∈ R21 is derivable because (s2 = s′2) and

∀s′′2 .(s2, (υ, ?, c) , s′′2 ) /∈ R2 and (s1, (υ, ?, c) , s′1) ∈ R1;
5. (s2, (υ, ?, ?) , s′2) ∈ R2 and (s1 = s′1) and ∀s′′1 .(s1, (υ, ?, c) , s′′1 ) /∈ R1: This is

the symmetric case of case (3).
(‖ is associative): we consider all possible joint transitions from (T1‖T2)‖T3 and we show

that they have corresponding transitions in T1‖(T2‖T3) and vice versa. We only show
one direction and the other direction follows in a similar way.
– Case (υ, !, c): By Def. 3, we have (((s1, s2), s3), (υ, !, c) , ((s′1, s

′
2), s′3)) ∈ R(12)3 in

the following cases:
1. ((s1, s2), (υ, !, c) , (s′1, s

′
2)) ∈ R12 and (s3, (υ, ?, c) , s′3) ∈ R3: As before, there

are six cases for ((s1, s2), (υ, !, c) , (s′1, s
′
2)) ∈ R12, we only consider the case

((s1, (υ, !, c) , s′1) ∈ R1 and (s2, (υ, ?, c) , s′2) ∈ R2); and other cases follow
similarly. It follows that ((s1, (s2, s3)), (υ, !, c) , (s′1, (s

′
2, s

′
3)) ∈ R1(23) where

(s1, (υ, !, c) , s′1) ∈ R1 and
((s2, s3), (υ, ?, c) , (s′2, s

′
3)) ∈ R23 such that (s2, (υ, ?, c) , s′2) ∈ R2 and (s3, (υ, ?, c) , s′3) ∈

R3 as required;
2. ((s1, s2), (υ, !, c) , (s′1, s

′
2)) ∈ R12 and c /∈ ls3(s3) and (s3 = s′3): It follows

that ((s1, (s2, s3)), (υ, !, c) , (s′1, (s
′
2, s

′
3)) ∈ R1(23) where (s1, (υ, !, c) , s′1) ∈ R1

and ((s2, s3), (υ, ?, c) , (s′2, s
′
3)) ∈ R23 such that (s2, (υ, ?, c) , s′2) ∈ R2 and

c /∈ ls3(s3) and (s3 = s′3);
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3. ((s1, s2), (υ, !, ?) , (s′1, s
′
2)) ∈ R12 and (s3 = s′3) and ∀s′′3 .(s3, (υ, ?, ?) , s′3) /∈ R3:

It follows that ((s1, (s2, s3)), (υ, !, ?) , (s′1, (s
′
2, s

′
3)) ∈ R1(23) where (s1, (υ, !, ?) , s′1) ∈

R1 and ((s2, s3), (υ, ?, ?) , (s′2, s
′
3)) ∈ R23 such that (s2, (υ, ?, ?) , s′2) ∈ R2 and

(s3 = s′3) and ∀s′′3 .(s3, (υ, ?, ?) , s′3) /∈ R3;
4. ((s1, s2), (υ, ?, c) , (s′1, s

′
2)) ∈ R12 and (s3, (υ, !, c) , s′3) ∈ R3: This is the sym-

metric case of case (1);
5. (s3, (υ, !, c) , s′3) ∈ R3 and c /∈ ls12(s1, s2) and ((s1, s2) = (s′1, s

′
2)): This is the

symmetric case of case (2);
6. (s3, (υ, !, ?) , s′3) ∈ R3 and (s1, s2) = (s′1, s

′
2) and ∀(s′′1 , s

′′
2 ).

((s1, s2), (υ, ?, c) , (s′′1 , s
′′
2 )) /∈ R1: This is symmetric to case (3).

– Case (υ, ?, c): it follows similarly by case analysis on Def. 3.

Lemma 2 (Non-blocking Broadcast) Given a CTS T1 and for every other CTS T ,
we have that for every reachable state (s1, s) of T1‖T the following holds.

(s1, (υ, !, ?), s
′
1) ∈ R1 implies ((s1, s), (υ, !, ?), (s

′
1, s

′)) ∈ RT1‖T

Proof By Def. 3, we have only two cases to derive ((s1, s), (υ, !, ?), (s′1, s
′)) ∈ RT1‖T given

that (s1, (υ, !, ?), s′1) ∈ R1. Note that, by definition, the condition ? ∈ lsk(s) always holds
for any agent k and in any state s. We show that when the channel is a broadcast ?, the
receiver does not play any role in enabling the transmission on the channel. In other words,
it is only sufficient to have a sender to enable a broadcast at system level. More precisely, if
(s1, (υ, !, ?), s′1) ∈ R1 then we have the following:

– ((s1, s), (υ, !, ?), (s′1, s
′)) ∈ RT1‖T because (s, (υ, ?, ?), s′) ∈ R; or

– ((s1, s), (υ, !, ?), (s′1, s
′)) ∈ RT1‖T because (s = s′) and ∀s′′.(s, (υ, ?, ?) , s′) /∈ R3.

Namely, whether there exists a receiver or not, a broadcast can always happen (cannot be
blocked).

Lemma 3 (Blocking Multicast) Given a CTS T1 and a multicast channel c ∈ C\{?}
such that (s1, (υ, !, c), s′1) ∈ R1, then for every other CTS T we have that in every reachable
state (s1, s) of T1‖T the following holds.

((s1, s), (υ, !, c), (s′1, s
′)) ∈ RT1‖T iff(

c ∈ ls(s) and (s, (υ, ?, c), s′) ∈ R

or c /∈ ls(s)

)

Proof We show that it is not sufficient to only have a sender on a multicast channel c to
enable a send transition at system level. We require that all listening/connected agents to
that channel being able to jointly receive the transmitted message. This also implies that
if no one is listening then the transition can happen. By Def. 3, there exist only two cases
where ((s1, s), (υ, !, c), (s′1, s

′)) ∈ RT1‖T given that (s1, (υ, !, c), s′1) ∈ R1. More precisely, if
(s1, (υ, !, c), s′1) ∈ R1 then we have the following:

– ((s1, s), (υ, !, c), (s′1, s
′)) ∈ RT1‖T because (s, (υ, ?, c), s′) ∈ R. This implies that c ∈

ls(s); or
– ((s1, s), (υ, !, c), (s′1, s

′)) ∈ RT1‖T because (s = s′) and c /∈ ls(s).

Namely, either all receivers jointly participate or no one is listening, as otherwise the mul-
ticast on c is blocked. The other direction of the proof follows similarly.
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