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One sentence summary: Time-resolved serial crystallography at an X-ray free electron laser 

reveals structural changes in bacteriorhodopsin.  
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ABSTRACT 

 

Bacteriorhodopsin (bR) is a light-driven proton pump and a model membrane transport protein. 

Here we use time-resolved serial femtosecond crystallography at an X-ray free electron laser to 

visualize conformational changes in bR from nanoseconds to milliseconds following 

photoactivation. An initially twisted retinal chromophore displaces a conserved tryptophan 

residue of transmembrane helix F on the cytoplasmic side of the protein while dislodging a key 

water molecule on the extracellular side. The resulting cascade of structural changes throughout 

the protein show how motions are choreographed as bR transports protons uphill against a 

transmembrane concentration gradient.  
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Energy coupled membrane transport proteins are ubiquitous in biology. The basic framework 

underpinning unidirectional membrane transport is called the alternating access model and was 

proposed by Jardetzky half a century ago (1). This theory postulates that a high-affinity binding 

site which is initially accessible to one side of the membrane is converted through structural 

changes into a low-affinity binding site that is accessible to the other side of the membrane (fig. 

S1). The recent advent of time-resolved serial femtosecond crystallography (TR-SFX) at an X-

ray free electron laser (XFEL) (2-4) provides an opportunity to examine this framework.  

 

Bacteriorhodopsin (bR) harvests the energy content of light to drive conformational changes 

leading to unidirectional proton transport. Energy stored within a transmembrane proton 

concentration gradient is converted by ATP-synthase into ATP or is coupled to other transport 

processes. Considerable effort has been made to understand how structural changes in bR 

transport a proton uphill against a transmembrane potential (5-7). Crystallographic structures 

derived from data recorded at cryogenic temperature reveal both light and mutation-induced 

structural changes in bR (6, 7) but this work is controversial because the reported structures 

show considerable variation (7), structures trapped at cryogenic temperature or by mutation do 

not correlate directly with time-dependent structural changes in wild-type bR, and it is argued 

that X-ray induced radiation damage may mislead the interpretation of trapped intermediate 

structures (8-10). Here we circumvent these concerns by recording a 3D movie of structural 
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changes in bR at room-temperature at 2.1 Å resolution using TR-SFX (2-4). The principle of 

“diffraction before destruction” (11) ensures that crystallographic structures are effectively free 

from the influence of X-ray induced radiation damage (12) using 10 fs long XFEL pulses at the 

SPring-8 Angstrom Compact Free Electron Laser (SACLA).  

 

Structure of the bR resting conformation 

bR is a seven transmembrane α-helix protein containing a buried all-trans retinal chromophore 

that is covalently attached through a protonated Schiff base (SB) to Lys216 of helix G. Light 

photo-excites the chromophore which isomerizes with high quantum yield to a 13-cis 

configuration (Fig. 1A) and thereby initiates a sequence of spectral (fig. S2) and structural 

changes that facilitate spontaneous proton exchange between acidic and basic amino acid 

residues (Fig. 1B). Electron density for the resting state bR structure (Fig. 1C, table S1) shows 

how the protonated SB forms a H-bond interaction to Wat402 (13) which is critical for attaining 

the remarkably high SB proton affinity with a pKa of 13.3 (14). Asp85, the primary proton 

acceptor, also forms a H-bond interaction with Wat402 and additional H-bond interactions with 

Thr89 and Wat401 ensure its low resting state pKa of 2.2 (15). A difference of eleven orders of 

magnitude between the proton affinities of the primary donor and acceptor prevents the leakage 

of protons from the extracellular (EC) medium to the cytoplasm (CP) but raises the question of 

what brings these proton affinities close together in order to facilitate spontaneous proton 



7 

 

exchange? It is also puzzling why it takes microseconds for the primary proton transfer to occur 

when the SB and Asp85 are initially separated by only 4 Å and a water mediated proton 

exchange pathway between these two groups is seen in the resting state (13). Moreover, protons 

are pumped from the CP to the EC yet retinal isomerization redirects the SB proton away from 

the EC and towards the CP (Fig. 1A), which appears to contradict Jardetzky’s framework.  

 

Time-resolved spectroscopy studies of bR microcrystals 

Photoactivated bR progresses through a sequence of spectral intermediates labeled K, L, M1 

(early M), M2 (late M), N and O prior to returning to the bR resting state (fig. S2). A proton is 

transferred from the SB to Asp85 in the L to M transition and from Asp96 to the SB from M to 

N. Time-resolved difference absorption spectra from bR microcrystals suspended in a lipidic 

cubic phase (LCP) matrix (fig. S3A) show a photo-cycle turnover that is similar to that of wild-

type bR in the purple membrane. Spectral decomposition reveals that for ∆t ≤ 10 µs the 

photoactivated population in microcrystals is dominated by the L intermediate but with traces 

of K, whereas the M-intermediate population increases to 50 % at ∆t = 19 µs and falls to 50 % 

at ∆t = 9 ms (fig. S3B,C). Measurements from four independent crystal batches give the half-

rise for the M-state as 15 ± 7 µs and the half-decay as 8 ± 3 ms.  

 

Overview of structural rearrangements within the bR photocycle 
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In TR-SFX a continuous stream of microcrystals are injected across a focused XFEL beam and 

the delay between sample photoactivation and the arrival of an XFEL pulse is controlled 

electronically (2-4) (fig. S4). TR-SFX data were recorded to 2.1 Å resolution from light-adapted 

bR microcrystals following photoactivation by a ns laser pulse for the time-delays ∆t = 16 ns, 

40 ns, 110 ns, 290 ns, 760 ns, 2 µs, 5.25 µs, 13.8 µs, 36.2 µs, 95.2 µs, 250 µs, 657 µs and 1.725 

ms (table S1), which are evenly spaced on a logarithmic scale. A global overview of the 

evolution of difference electron density reveals how structural changes first emerge near the 

active site of the protein and become stronger around Lys216 of helix G and Trp182 of helix F 

prior to cascading towards the EC side of the protein along helix C (fig. S5; Movie S1).  

 

Early structural changes in the bR photocycle 

For ∆t = 16 ns, which corresponds to essentially pure K-intermediate, paired negative and 

positive difference electron density features adjacent to the C20 methyl group reveal that the 

retinal is initially tilted towards helix G in response to photo-isomerization (Fig. 2A). Combined 

quantum mechanics and molecular mechanics computations also favor a twisted retinal 

geometry (fig. S6) and indicate that approximately 17 kcal/mol of energy is initially stored 

within this distorted active site configuration, which equates to 32 % of the absorbed photon’s 

energy and is compatible with earlier estimates (16, 17). By ∆t = 290 ns the positive difference 

density feature associated with the C20 methyl is much weaker and moves into the plane of the 
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retinal whereas paired negative and positive difference electron density features associated with 

Trp182 grow stronger (Fig. 2B), showing how Trp182 is displaced towards the CP as the retinal 

straightens (Fig. 2C). Negative and positive difference electron density features also indicate a 

movement of the side-chain and backbone of Lys216 has begun at ∆t = 16 ns (Movies S2-3).  

 

A strong negative difference electron density peak visible at ∆t = 16 ns on Wat402 (Fig. 2A) 

shows that this water molecule is rapidly disordered by retinal isomerization. This feature 

doubles in strength as the photocycle evolves (Fig. 3A, Movies S2-3, table S2) from which we 

infer that the freedom of Wat402 to move is initially constrained by the limited size of the cavity 

in which it is buried, yet this water becomes increasingly mobile as the retinal is displaced 

towards the CP. Low-temperature trapping studies have suggested that Wat402 disorders upon 

retinal photo-isomerization (18) but this conclusion was challenged in light of similar 

observations due to X-ray induced radiation damage (8-10). Because no effects of radiation 

damage are visible when using XFEL pulses ≤ 10 fs in duration at an X-ray dose of 12 MGy 

(12, 19) these TR-SFX data bring closure to this debate. It is noteworthy that one trapped K-

intermediate showed Wat402 disordering (18) but did not visualize a twist of the retinal C20 

methyl towards helix G (Fig. 2A,C) whereas another captured this twist but kept Wat402 in the 

K-state model (8) and a third K-state structure showed neither change (20).  

 



10 

 

Conformational changes associated with proton transfer 

The key step in achieving unidirectional proton transport by bR is the primary transfer event 

from the SB to Asp85 (the L-to-M transition) because only the mutation of Asp85 (21) or the 

removal of retinal completely stops proton pumping. Our data reveal a smooth evolution of 

electron density changes on the CP side of helix F and G prior to proton transfer (Fig. 3B, 

Movies S1, S3). Paired positive and negative density features also show that the side-chain of 

Leu93 is displaced towards the CP and a weaker positive difference electron density peak arises 

between the retinal, Leu93 and Thr89 from ∆t = 40 ns until 13.8 µs (Fig. 4A) and is strongest 

at ∆t = 760 ns (Fig. 3C, table S2). We modeled this feature as a transient water molecule 

(Wat452, Fig. 4B) which shows weak H-bond interactions with the SB (3.35 Å) and the 

backbone carbonyl oxygen of Thr89 (3.35 Å). Its crystallographic distance to Oγ of Thr89 of 

3.95 Å may also be classified as a weak H-bond interaction (22). Structural refinement shows 

that for ∆t = 16 ns, Oγ of Thr89 is separated from the SB by 3.97 Å and the SB nitrogen is 

pointing towards helix G, whereas for ∆t = 760 ns the SB nitrogen rotates almost 180° towards 

helix C and reduces the SB-Oγ separation to 3.30 Å. Fluctuations about these crystallographic 

position could therefore create a transient proton-transport pathway linking the SB to Asp85 

through Wat452 and Thr89 (Fig. 4B).   

 

A water molecule was built at the Wat452 location in one cryo-trapped L-intermediate structure 
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(23) but was not observed in any other L-state study (24-26). FTIR spectroscopy observations 

have inferred that a transient H-bond interaction of the SB to a water molecule arises in the L-

state (27, 28) and Wat452 is the only plausible candidate for this interaction. Computer 

simulations also establish that a water molecule at this position can channel a proton to Asp85 

through Thr89 (29). Another transient water molecule (Wat453) which forms H-bond 

interactions with the carbonyl oxygen of Lys216 and the backbone nitrogen of Gly220 was also 

predicted from FTIR spectroscopy studies (30) and is observed in the difference electron density.  

 

On the EC side of the retinal, the disordering of Wat402 triggers a structural cascade visible 

from ∆t ≥ 13.8 µs as significant (≥ 4σ) difference electron density peaks that show the 

disordering of Wat400 and Wat401 and the ordering of a new water molecule, Wat451, between 

Asp85 and Asp212 (Fig. 5, table S2).Concomitant with these active-site water rearrangements 

is an increase in the strength of paired negative and positive difference density features along 

the EC portions of helix C (residues 82 to 89, Fig. 3A) which are modeled as a concerted 

inwards movement of helix C towards helix G (Fig. 5C). These observations are similar to 

electron density changes recorded in low-temperature trapping studies of the bR L-state (7, 24, 

25) but TR-SFX data show that this inwards flex of helix C approaches its maximum amplitude 

as the SB is deprotonated (ie. as the M-state population grows, Fig. 3A). Protons exchange 

between consecutive water molecules in the model channel gramicidin A on a sub-picosecond 
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time-scale (31) and the primary proton transfer should be very fast once a structure facilitating 

this exchange is attained. Consequently the time required for bR to evolve to a conformation 

with helix C bent towards helix G is the rate limiting step that controls the primary proton 

transfer and explains why it takes microseconds for the SB to be deprotonated.  

 

Breaking the EC connectivity after proton transfer 

A key conceptual issue underpinning membrane transport is the nature of the “switch”, or more 

specifically how the SB breaks access to the EC side of bR after the primary proton transfer to 

Asp85. This is central to the mechanism of proton pumping because structural changes must 

prevent Asp85 from reprotonating the SB or otherwise the photocycle would be futile. A switch 

may be achieved by breaking the pathway for the reverse proton transfer, or by perturbing the 

chemical environment of key groups to shift the equilibrium in favor of the forward proton 

transfer reaction. 

 

Difference electron density features associated with movements of the retinal, helix F (Trp182, 

Thr178 and Arg175) and helix G (Lys216, Ala215 and Ser214) all show a stepwise increase in 

strength from ∆t = 5.25 µs to 36.2 µs, which coincides with the primary proton transfer event 

(Fig. 3B). We therefore conclude that proton transfer from the SB to Asp85 affects a structural 

change within the retinal which we model as a displacement of the SB towards the CP by 0.15 
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Å, and of the C20 methyl by 0.21 Å, over the interval 760 ns ≤ ∆t ≤ 36.2 µs. These changes 

may be due to the retinal being subtly straighter when deprotonated (32) or due to proton 

transfer neutralizing the mutual electrostatic attraction between the SB and Asp85 (6). Both 

geometric and electrostatic effects increase the separation between the SB and Asp85 and would 

therefore increase the barrier for the reverse proton transfer. 

 

Protein structural changes also hinder the reverse proton transfer from Asp85 to the SB. Wat452, 

which may help mediate the primary proton transfer through Thr89 (Fig. 4B), is observed for 

40 ns ≤ ∆t ≤ 13.8 µs but is not visible after a proton is transferred to Asp85 (Fig. 3C, table S2). 

An H-bond interaction connecting Thr89 to Asp85 is also lost after the primary proton transfer 

event, with significant (≥ 4 σ) negative difference electron density becoming visible between 

Oγ of Thr89 and Oδ of Asp85 for ∆t ≥ 36.2 µs (Fig. 5D, Movie S2, table S2). These structural 

changes break the reverse proton transfer pathway from Asp85 to the SB through Thr89 and 

Wat452 while simultaneously increasing the pKa of Asp85. Thr89 moves closer to the retinal 

in the M-state with the H-bond from Oγ of Thr89 to the SB decreasing from 3.30 Å at 760 ns 

to 3.04 Å at 36.2 µs and to 2.86 Å at 1.725 ms. This tighter H-bond donor interaction to the 

deprotonated SB locks Thr89 in a conformation that allows the Asp85 side chain to rotate and 

break its connectivity to Thr89 while forming a new H-bond interaction with Wat451. In 

contrast with TR-SFX, FTIR spectroscopy studies at low temperature have predicted a tight 
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Thr89-Asp85 H-bond interaction in the M-state (33), but the complex dynamics of these 

residue’s H-bond interactions may preclude a unique interpretation of spectroscopic 

observations. 

 

Synchronous with the M-state spectral transition is a displacement of the positively charged 

head group of Arg82 towards the EC (Figs. 3A, 5C), which implies that this movement is 

triggered by the protonation of Asp85. This rearrangement displaces a positive charge away 

from Asp85 and consequently increases the pKa of the primary proton acceptor, hindering the 

reverse proton transfer reaction (34). These structural perturbations also trigger a rearrangement 

of Glu194 and Glu204 which were modeled from ∆t ≥ 250 µs. Similar structural changes have 

been observed for trapped M-intermediates and were argued to influence the release of a proton 

to the EC medium (34, 35). Overall, this sequence highlights structural changes that favor 

Asp85 being protonated and reveal how the SB accessibility to the EC side of the protein is 

broken after the SB is deprotonated, thereby functionally coupling the primary proton transfer 

event to the switch in the bR photocycle.   

 

Structural changes on the CP side of bR 

Correlated movements are observed on the CP side of helix F as paired negative and positive 

difference electron density stacking through Trp182, Thr178 and Arg175 (Fig. 6A,B; Movie 
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S3). As with electron density changes associated with the retinal and near the center of helix G, 

difference density features on CP portions of helix F arise rapidly but plateau once the SB is 

deprotonated (Fig. 3B). Structural refinement indicates that the retinal’s C20 methyl group is 

displaced by 1.12 Å towards the CP over the time-sequence sampled here, with a corresponding 

displacement of Trp182 of 0.96 Å. The largest Cα displacement is 1.13 Å and occurs for Lys216 

at ∆t = 1.725 ms. In helix F the Cα atoms of residues 174 to 178 are displaced by only 0.4 Å 

and therefore, as with cryo-trapped structures of M-intermediates (34-37), TR-SFX does not 

reveal the large movements of helices E and F that were predicted from bR triple-mutant 

structures (32, 38). This discrepancy may be reconciled by noting that motions of these helices 

are severely restricted in the P63 crystal form because residues 165 and 166 of the E-F loop 

participate in crystal contacts with residues 232 and 234 of the C-terminus (fig. S7). Although 

larger motions of the CP portions of helices E and F arise later in the bR photocycle (39, 40) 

these structural changes cannot be critical for the mechanism of proton pumping because they 

are suppressed in 3D crystals yet the photocycle is similar to that of bR in the purple membrane 

(fig. S3) and the D96G/F171C/F219L bR triple mutant is constitutively open to the CP yet is 

able to pump protons (41). 

 

Mechanistic overview 

Retinal isomerization reorients the SB proton into a hydrophobic cavity while breaking its H-
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bond to Wat402, both of which lower the proton affinity of the SB (14). An initially twisted 

retinal becomes planar within 290 ns, causing Trp182 and Leu93 to be displaced towards the 

cytoplasm and allowing a water molecule to order between Leu93, Thr89 and the SB in the L-

state. H-bond interactions from the protonated SB to Wat452 or Thr89 create a pathway for 

proton transfer to Asp85 (Fig. 4B) and explain how the SB makes contact with Asp85 despite 

been turned towards the CP by photo-isomerization. A steric clash between Cε of Lys216 and 

Wat402 dislodges this water molecule, triggering the collapse of the water mediated H-bond 

network on the EC side of bR. This allows helix C to bend towards helix G approximately 10 

µs after photoactivation and raises the pKa of Asp85 to the point where it may spontaneously 

accept a proton from the SB. Once a proton is transferred, the Asp85-Thr89 H-bond is lost (Fig. 

5D) which breaks the SB connectivity to the EC side of the protein. Consequently diffraction 

data spanning five orders of magnitude in time reveal how structural changes in bR achieve 

unidirectional membrane transport a half century after Jardetzky first proposed the alternating 

access framework obeyed by all membrane transporters (1). 
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CAPTIONS TO FIGURES: 

 

Figure 1: Structure and function of bR. (A) Schematic illustrating retinal covalently bound to 

Lys216 through a protonated Schiff base in an all-trans and 13-cis configuration. (B) Proton 

exchange steps (arrows) achieving proton pumping by bR. The primary proton transfer step is 

from the SB to Asp85 and corresponds to the spectroscopic L to M transition. (C) 2mFobs-DFcalc 

electron density for the bR active site in its resting conformation. Electron density (grey) is 

contoured at ± 1.5 σ (σ is the root mean square electron density of the map). 

 

Figure 2: Early structural changes in the bR photocycle. (A) View of the |Fobs|light–|Fobs|dark 

difference Fourier electron density map near the retinal for ∆t = 16 ns. Blue is positive 

difference electron density and yellow is negative difference electron density (contoured at ± 

3.5 σ; σ is the root mean square electron density of the map). The resting state bR model 

(purple) was used for phases when calculating this map. Paired negative and positive difference 

electron densities indicate a sideways movement of the retinal’s C20 methyl. (B) Identical 

representation but for the time-point ∆t = 290 ns. (C) Crystallographic models deriving from 

partial occupancy refinement for ∆t = 16 ns (blue) and ∆t = 290 ns (red) superimposed upon 

the resting bR structure (purple, partially transparent).   
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Figure 3: Relative changes of electron density amplitudes in bR with time. (A) Time-dependent 

root mean square difference electron density amplitudes associated with Wat402 (blue), helix 

C (green, backbone of Arg82, Ala84 and Asp85), Waters 400, 401 and 451 (red, EC waters) 

and the side chain of Arg82 (purple). (B) Time-dependent amplitudes associated with the retinal 

(blue), the side chain of Lys216 (green), helix G (red, backbone of Ser214, Ala215 and Lys216) 

and helix F (purple, side-chains of Trp178 and Trp182 and backbone of Arg175). (C) Time-

dependent amplitudes associated with Leu93 (blue), the side chain of Thr89 (green), Wat452 

(red) and the side chain of Asp85 (purple). Amplitudes were averaged over the last four time-

points and scaled to 1 (except Leu93, Wat452 (42)). Amplitudes for ∆t = 95.2 µs, 657 µs and 

1.725 ms are scaled by 2.0, 1.5 and 0.8 respectively (42). Linear decomposition of electron 

density amplitudes show how these motions are coordinated (fig. S8). The M-state population 

measured from microcrystalline slurries is indicated for comparison (dashed black line).  

 

Figure 4: Pathway for proton transfer from the SB to Asp85. (A) View of the |Fobs|light–|Fobs|dark 

difference Fourier electron density map (contoured at ± 3.0 σ) near the retinal for ∆t = 760 ns. 

A positive difference feature (arrow) suggests the ordering of a water molecule (Wat452). (B) 

Crystallographic model for the time-point ∆t = 760 ns (red) superimposed upon the resting state 

model (purple, partially transparent).  
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Figure 5: bR conformation controlling the primary proton transfer event. (A,B) View of the 

Difference Fourier electron density map immediately to the EC side of the retinal for (A) ∆t = 

2 µs and (B) ∆t = 36.2 µs. All maps are contoured at 3.5 σ. Difference Fourier electron density 

maps from this viewpoint are shown for all thirteen time-points in Movie S2. (C) 

Crystallographic structural models deriving from partial occupancy refinement are 

superimposed upon the resting bR structure (purple, partially transparent) for ∆t = 16 ns (blue), 

760 ns (red), 36.2 µs (orange) and 1.725 ms (yellow). (D) Close-up view of difference electron 

density across the Asp85-Thr89 H-bond for the time-points ∆t = 2 µs, 5.25 µs, 13.8 µs, 36.2 µs, 

95.2 µs and 250 µs.    

 

Figure 6: Conformational changes on the CP side of bR. (A-B) Close up view of the difference 

Fourier electron density map immediately to the CP side of the retinal for (A) ∆t = 760 ns and 

(B) ∆t = 1.725 ms. All maps are contoured at ± 3.5 σ. Difference Fourier electron density maps 

from this viewpoint are shown for all thirteen time-points in Movie S3. (C) Crystallographic 

structural models deriving from partial occupancy refinement are superimposed upon the 

resting bR structure (purple, partially transparent) for ∆t = 16 ns (blue), 760 ns (red), 36.2 µs 

(orange) and 1.725 ms (yellow).  
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