
Synthesis of Run-To-Completion Controllers for Discrete Event Systems

Yehia Abd Alrahman1, Victor Braberman2,3, Nicolás D’Ippolito2,3, Nir Piterman1,4 and Sebastian Uchitel2,3,5

Abstract— A controller for a Discrete Event System must
achieve its goals despite its environment being capable of
resolving race conditions between controlled and uncontrolled
events. Assuming that the controller loses all races is sometimes
unrealistic. In many cases, a realistic assumption is that the
controller sometimes wins races and is fast enough to perform
multiple actions without being interrupted. However, in order to
model this scenario using control of DES requires introducing
foreign assumptions about scheduling, that are hard to figure
out correctly. We propose a more balanced control problem,
named run-to-completion (RTC), to alleviate this issue. RTC
naturally supports an execution assumption in which both the
controller and the environment are guaranteed to initiate and
perform sequences of actions, without flooding or delaying each
other indefinitely. We consider control of DES in the context
where specifications are given in the form of linear temporal
logic. We formalize the RTC control problem and show how it
can be reduced to a standard control problem.

I. INTRODUCTION

The field of controller synthesis covers a spectrum of
control problems, including Reactive Synthesis [1] and Su-
pervisory Control [2]. It targets dynamical systems whose
state change is governed by the occurrence of discrete events.
In these settings, system goals and the environment (or
the uncontrolled plant) are specified as an accepted formal
language, and the automatic synthesis procedure generates a
correct-by-construction controller (or a supervisor).

The controller must achieve its goals by dynamically
disabling some of the controllable events based on the
events that it has observed so far. The controller must be
robust. That is, it must be able to achieve its goals no
matter what the environment does. However, the controller
has no means of forcing the environment to generate an
event. Thus, the environment not only identifies the possible
controllable events in a given environment state, but also gets
to choose the next scheduled event out of those selected by
the controller and all enabled uncontrollable events.

This asymmetric interaction between the environment and
the controller represents a worst-case scenario that asks for

1Department of Computer Science and Engineering, University of
Gothenburg, Sweden.

2Departamento de Computacón, Facultad de Ciencias Exactas y Natu-
rales, Universidad de Buenos Aires, Argentina.

3Instituto de Ciencias de la Computación, CONICET, Argentina.
4University of Leicester, Leicester, UK.
5Imperial College London, UK.
This work is supported by the following grants: the ERC Consolida-

tor grant D-SynMA (No. 772459), the Marie Skłodowska-Curie BeHAPI
(No. 778233), the grants ANPCYT PICT 2018-3835, ANPCYT PICT
2015-1718, CONICET PIP 2014/16 N°11220130100688CO, UBACYT
20020170100419 BA, and the Swedish research council grants (No. 2020-
04963) and SynTM (No. 2020-03401).

producing robust controllers, achieving their goals despite
the advantage offered to the environment.

In many application domains, this asymmetric interaction
is too adversarial and requires adding explicit foreign as-
sumptions that restrict the behaviour of the environment.
One such application domain is that of embedded systems
design in which reactive languages (e.g., [3], [4], [5]) adopt a
synchronous hypothesis where the system can react to an ex-
ternal stimulus with all the computation steps it needs [6]. To
handle such applications, the modeller is forced to introduce
assumptions about the scheduling of the environment and
the controller. These assumptions are not only hard to figure
out correctly, but are also far from the actual focus of the
control problem under consideration. In many cases, this may
lead to generating controllers that satisfy their goals trivially
by cornering the environment and disrupting its behaviour
dramatically. Furthermore, the written specifications become
harder to read and understand, and consequently trickier to be
incrementally developed due to their extensive dependencies.

In this paper, we introduce a novel control problem, named
run-to-completion (RTC), to mitigate the shortcomings of
classical control, for such applications. RTC is a more bal-
anced control problem that supports more natural modelling
of systems that can initiate and perform sequences of actions
in response to external stimuli. In essence, RTC provides a
natural execution assumption in which both the controller
and the environment may initiate and perform sequences of
computation steps, without flooding or delaying each other
indefinitely. Namely, the controller has the ability to block
environment actions for a finite time, this is akin to the
controller stating that it still has something to do. However,
when the controller yields control back to the environment,
it has to yield completely, i.e, the controller must allow
all uncontrollable actions enabled by the environment. Fur-
thermore, to support environment’s run-to-completion, the
controller must not interrupt the environment during its turn.

RTC is suitable to control componentized systems where a
response to a single external stimulus may require communi-
cation among subsystems. Due to flexible deadlines in RTC
control, we are no longer required to count (or hardcode)
the number of computation steps for the system before it is
ready again to react to the next stimulus.

We show how to reduce RTC control to a modified control
problem (i.e., with an asymmetric interaction). Furthermore,
we show that RTC Control when used with GR(1) [7] goals
can be reduced to Streett control of index 2 [8].

This paper is organised as follows: In Sect. II we present
the necessary background and in Sect. III we present a
motivating example about a UAV reconnaissance mission.

© 2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

In Sect. IV and Sect. V, we formally define RTC control
and use the example to show its novel features. In Sect. VI,
we solve RTC control by a reduction to standard control.
Finally, In Sect. VII, we conclude and discuss related work.

II. BACKGROUND

A. Doubly-Labelled Transition System (DLTS)

LTSs have been widely used for modelling and analysing
the behaviour of concurrent and distributed systems (e.g. [9].
An LTS is a transition system where transitions are labelled
with actions or events. Here, as a part of the reasoning, we
also label the states of the transition system with proposi-
tions, representing the set of events (or actions) that can be
enabled from a specific state. Therefore, we use a DLTS
instead. The use of DLTS is only a technicality and will not
impact on the type of the generated controllers. In fact, state
labels will be ignored in the generated controllers.

Definition 2.1: (DLTS) A DLTS is T = (S,P,A,∆,
L, s0), where S is a finite set of states, P is a set of
state propositions, A is a transition alphabet partitioned A =
AT ⊎AT to actions controlled by T and actions monitored
by T , ∆ ⊆ (S ×A × S) is a transition relation, L ∶ S → 2P

is a labeling function, and s0 ∈ S is the initial state.
We denote ∆`(s) = {s′ ∣ (s, `, s′) ∈ ∆}, ∆A′(s) =
⋃`∈A′ ∆`(s), and ∆(s) = ∆A(s). This notation is extended
to sets of states, e.g., ∆`(S′) = ⋃s∈S′ ∆`(s). We say ` is
enabled in state s if ∆`(s) ≠ ∅.

We say a DLTS is transition-deterministic if (s, `, s′)
and (s, `, s′′) are in ∆ implies s′ = s′′. An execution of
T is a maximal sequence of states and transition labels
π = s0, a0, s1, . . . where s0 is the initial state and for every
i ≥ 0 we have (si, ai, si+1) ∈ ∆.

Definition 2.2: (The Parallel Composition of DLTS(s))
Let M = (SM , PM ,AM ,∆M , LM , s0M) and E =
(SE , PE ,AE ,∆E , LE , s0E) be two DLTSs. The parallel
composition of M and E is defined by a symmetric and a
binary operator ∥ such that M∥E is also a DLTS T = (SM ×
SE , P,AM ∪ AE ,∆, L, (s0M , s0E)), where P = PM ⊎ PE ,
L(m,e) = LM(m) ⊎ LE(e), and ∆ is the smallest relation
that satisfies the rules below,

m
`Ð→m′

(m,e) `Ð→(m′,e)
` /∈ AE

e
`Ð→e′

(m,e) `Ð→(m,e′)
` /∈ AM

m
`Ð→m′, e

`Ð→e′

(m,e) `Ð→(m′,e′)
` ∈ AM ∩AE

Note that parallel composition only synchronise on ac-
tions, and thus preserves the proposition values of the two
separate parts.

B. Fluent Linear Temporal Logics

Linear temporal logics are widely used to describe and
analyse behaviour requirements [10], [11], [12], [13]. The
Fluent Linear Temporal logic (FLTL) [10] replaces state
propositions in traditional temporal logics with fluents. A
fluent is a predicate over a set of initiating and termi-
nating actions. Once triggered by an initiating action, a
fluent continues to hold as long as no terminating action
is enabled. Thus, FLTL provides a uniform framework for

specifying both instantaneous actions and also actions that
take time [10], [14]. To simplify notations we do not include
the next operator in FLTL. All our results can be easily
generalised to include the next operator.

FLTL was designed for LTS, here we adapt it for DLTS by
introducing fluents to also account for the propositions that
label states of a DLTS. We introduce two types of fluents:
transition fluents and proposition fluents. A transition fluent
f is defined by a pair of sets of actions and a Boolean
value: f = ⟨If , Tf , Initf ⟩, where If ⊆ Act is the set of
initiating actions, Tf ⊆ Act is the set of terminating actions
and If ∩ Tf = ∅. A transition fluent may be initially true or
false as indicated by Initf . Every action ` ∈ Act induces a
transition fluent, namely ` = ⟨`,Act∖{`}, false⟩. Every state
proposition p of a DLTS induces a proposition fluent p.

Let F be the set of all fluents over Act and P . An FLTL
formula is built up from the standard Boolean connectives
and the temporal operator U (strong until) as follows:

ϕ ∶∶= f ∣ ¬ϕ ∣ ϕ ∨ ψ ∣ ϕ U ψ,

where f ∈ F . As usual we introduce ∧, ◇ (eventually), ◻
(always), and W (weak until) as syntactic sugar. Let Π be
the set of infinite executions of a DLTS T over Act and P .
For an execution π = s0, `0, s1, `1, . . ., we say it satisfies a
transition fluent f at position i, denoted π, i ⊧ f, if and only
if one of the following conditions holds:

- Initf ∧ (∀j ∈ N ⋅ 0 ≤ j ≤ i→ `j ∉ Tf)
- ∃j ∈ N ⋅(j ≤ i∧`j ∈ If)∧(∀k ∈ N ⋅j < k ≤ i → `k ∉ Tf)

It satisfies a proposition-fluent p at position i, denoted π, i ⊧
p, if and only if p ∈ L(si).

Given an infinite execution π, the satisfaction of a formula
ϕ at position i, denoted π, i ⊧ ϕ, is defined as follows:

π, i ⊧ f ≜ π, i ⊧ f
π, i ⊧ ¬ϕ ≜ ¬(π, i ⊧ ϕ)
π, i ⊧ ϕ ∨ ψ ≜ (π, i ⊧ ϕ) ∨ (π, i ⊧ ψ)
π, i ⊧ ϕ U ≜ ∃j ≥ i ⋅ π, j ⊧ ψ ∧ ∀ i ≤ k < j ⋅ π, k ⊧ ϕ

We say that ϕ holds in π, denoted π ⊧ ϕ, if π,0 ⊧ ϕ. A
formula ϕ ∈ FLTL holds in an LTS T (denoted T ⊧ ϕ) if it
holds on every infinite execution produced by T .

We assume that user supplied specifications do not use
proposition fluents. However, proposition fluents are required
for various parts of our analysis.

C. Controller Synthesis

The standard control problem is as follows: Consider an
FLTL formula ϕ and a DLTS model E of the environment,
with the set of actions A partitioned into environment actions
AE and monitored controller actions AE . Construct a DLTS
M to control AE and to monitor AE such that when
composed with E (i.e. E∥M), the controller does not block
environment actions (i.e. actions in AE), E∥M is deadlock-
free, and every execution of E∥M satisfies ϕ. For simplicity
(and taking the controller’s point of view), we uniformly
denote by U (for uncontrollable) the set AE = AM and by
C (for controllable) the set AE = AM . That is, U is the set

of actions controlled by the environment and monitored by
the controller and C is the set of actions monitored by the
environment and controlled by the controller.

A legal controller does not block the actions in U and
enables only actions in C that are available. This notion
is based on that of legal environment for Interface Au-
tomata [15]. Formally legality is defined as follows.

Definition 2.3: (Legality) Consider a DLTS model of the
environment E = (SE , PE ,A,∆, LE , sE0) and a DLTS
model of the controller M = (SM , PM ,A,Γ, LM , sM0),
where A = U ⊎ C. We say that M is legal for E if for
every reachable state (m,e) of M∥E the following holds.

● For all ` ∈ U such that ∆`(e) ≠ ∅ we have Γ`(m) ≠ ∅.
● For all ` ∈ C such that ∆`(e) = ∅ we have Γ`(m) = ∅.
Definition 2.4: (Standard Control) Given a domain model

in the form of a DLTS E = (S,P,A,∆, L, s0), where
A = U ⊎ C, and an FLTL formula ϕ, a solution for the
DLTS control problem E = ⟨E,ϕ,C⟩ is a DLTS M =
(SM , PM ,A,∆M , LM , s0M) such that M is legal for E,
E∥M is deadlock free, and E∥M ⊧ ϕ.

The synthesis problem for FLTL is 2EXPTIME-
complete [16]. Nevertheless, restrictions on the form of the
goal and assumption specifications have been studied and
found to be solvable in polynomial time. For example, goal
specifications consisting uniquely of safety requirements can
be solved in linear time, and particular styles of liveness
properties such as GR(1) [17] can be solved in quadratic
time. An adaptation of GR(1) in the context of LTS has been
presented in [18] and is defined as follows:

Definition 2.5: (SGR(1) DLTS Control) A DLTS control
problem E = ⟨E,ϕ,AE⟩ is SGR(1) if E is deterministic,
and ϕ is of the form ϕ = ◻ρ∧ (⋀ni=1 ◻◇ ai → ⋀mj=1 ◻◇ gj),
where ρ, ai and gj are Boolean combinations of fluents. Note
that ◻ρ is a safety condition on both the environment and
the controller. Furthermore ai and gj are liveness assump-
tions and guarantees on the environment and the controller
respectively.

III. MOTIVATING EXAMPLE

Consider a reconnaissance mission for a UAV, surveying
a discretised area. The UAV controls the following actions:
takeoff,go[x][y], takePicture[x][y], econoMode, and land.
However, during surveillance, the UAV is required to monitor
environment actions: arrive[x][y], lowBat, and criticalBat.

The behaviour exhibited by the UAV when not controlled
is depicted on the left of Fig. 1, where after taking off it
may do an arbitrary action (except for takeoff and land) in
its alphabet A before it finally lands. The safety assumption
on the environment, as depicted on the right of Fig. 1, ensures
that arrive[x][y] may only happen as a result of a go[x][y]
action. For the sake of presentation, we only consider an
area, consisting of two locations: (1,1) and (1,2).

We want to synthesise a controller for the UAV, satisfying
the following safety goals:

1) Landing must only occur after taking a picture for
every locations or upon a critical battery alert.

◻(land→ ∀x, y ⋅ Sensed[x][y] ∨ CritBat)

Fig. 1. (left) Model of the UAV and (right) the Environment assumption

where fluent Sensed[x][y] is defined as
⟨{takePicture[x][y]},{takeoff}, false⟩ and fluent
CritBat as ⟨{criticalBat},{takeoff}, false⟩

2) Taking a picture for a particular location must only
happen at that location:

◻(∀x, y ⋅ takeP icture[x][y]→ At[x][y])

where fluent At[x][y] is defined as ⟨{arrive[x][y]},
{go[x′][y′], land}, false⟩

3) Low battery alerts must trigger economy flying mode
as soon as possible:

◻(lowBat→ ((¬⋁
`∈C∖{land,econoMode}

`)

W economode)

4) Critical battery alerts must trigger immediate landing:

◻(criticalBat→ ((¬⋁
`∈C∖{land}

`) W land))

Finally, the liveness goal for the UAV controller is always
eventually landing: ◻ ◇ land. We stress that the safety of
landing implies that this happens only after having com-
pleted the survey or in response to a critical battery alert.
Furthermore, when the UAV issues a go[x][y] command, we
require that the environment ensures always eventual arrival:
◻ ◇ ¬PendingArrival, where fluent PendingArrival is
defined as ⟨{go[x][y]},{arrive[x][y], land}, false⟩.

No solution for this control problem exists because the
environment can flood the controller by generating an infi-
nite number of lowBat and criticalBat events, impeding all
controlled actions and hence progress towards the liveness
goal. The non existence of such a solution stems from an
unrealistic assumption on the environment. Namely, that
the environment may impede the progress of the controller
merely by a continual notification of a drained battery.

A natural environment assumption that can be introduced
to avoid this is to cap the number of lowBat and criticalBat
events. In Fig. 2 we show one such constraint in which
a maximum of one lowBat and one criticalBat can occur
between go commands.

However, this assumption yields controllers that once they
have taken off they keep hovering until their batteries are
drained, and consequently they land. This way they meet all
of their safety goals while achieving their liveness goals by
cornering the environment and restricting its set of possible
actions to lowBat and criticalBat, i.e, they never issue go
commands. Note that if go commands are never issued,
arrive events cannot occur and thus the only environment

events that can and will eventually occur are lowBat and
criticalBat. Indeed, such controllers would never allow the
UAV to complete the surveying mission (i.e., landing always
occurs because of criticalBat and never because of having
achieved Sensed[x][y] for all x and y).

Fig. 2. Naive Environment Assumption to Avoid Flooding.

The assumption that does the trick while avoiding to
synthesise trivial controllers is achieved by restricting lowBat
and criticalBat to happen once and only after issuing a
go[x][y] command (i.e. when arrived events are also en-
abled). This assumption is depicted in Fig. 3.

Fig. 3. Assumption to Avoid Flooding.

The example clearly shows how simplifying assumptions
(e.g., Figures 2 and 3) can be tricky for the modeller to figure
out, while avoiding unrealistic situations for unrealizability
in control problems and also avoiding trivial solutions.

IV. PROBLEM STATEMENT

As exhibited in the previous section, the prevalent ap-
proach to control in Discrete Event Systems poses serious
modelling problems related to the continual triggering of en-
vironment events that have to be dealt with by the controller.
In many applications, the controller has to execute a sequence
of steps (or a finite protocol) in response to a single event.
However, this would not be possible if the environment keeps
triggering events, flooding the controller with uncontrollable
events, and thus impeding its progress towards completing
its designated tasks.

By definition, the environment has a double role. It iden-
tifies the possible controller actions in a given environment
state and it also represents the (adversarial) behaviours. The
first corresponds to physical/software restrictions (e.g., go
happens only after takeoff); the second corresponds to the
scheduling of the next event (e.g., criticalBat can always win
the race against land), because the controller cannot disable

environment events and the environment always picks the
next event out of those selected by the controller and all
enabled uncontrollable events in an environment state.

To mitigate this problem, the modeller has to carefully
consider how to restrict the environment. Essentially, the
modeller is forced to introduce assumptions about the
scheduling of the environment and the controller that are
an artifact resulting from the definition of (an asymmetric)
control problem. These assumptions are not only hard to
figure out correctly, but are also far from the actual focus
of the control problem under consideration. This makes
written specifications harder to read and understand, and
consequently trickier to be incrementally developed due
to their extensive dependencies. Here, we suggest a more
balanced control problem. We call this approach Run-to-
Completion (RTC) as both the environment and the controller
can perform sequences of actions. At the same time, neither
can flood the other or delay it indefinitely.

In RTC control the notion of legality is more subtle. The
controller has to be able to disable environment actions, this
is akin to the controller stating that it still has something to
do. However, when some uncontrollable action is enabled
by the controller, the controller must allow all of them.
Furthermore, to support environment’s run-to-completion,
the controller must not interrupt the environment when it
is the environment that is moving. This amounts to saying
that if the environment has moved, the controller must enable
all uncontrollable actions. This is formalized below.

Definition 4.1: (Legality under RTC semantics) Con-
sider the DLTSs E = (SE , PE ,A,∆, LE , sE0) and M =
(SM , PM ,A,Γ, LM , sM0), where A = U⊎C. We say that M
is run-to-completion (RTC) legal for E if for every reachable
state (e,m) of E∥M the following holds.

● When allowing the environment to move, allow all its
possible actions: If ΓU(m) ≠ ∅ then for every ` ∈ U
such that ∆`(e) ≠ ∅ we have that Γ`(m) ≠ ∅.

● After uncontrolled actions, let the environment progress
towards completion: If m ∈ ΓU(SM) then for every
` ∈ U such that ∆`(e) ≠ ∅ we have that Γ`(m) ≠ ∅.

● For every ` ∈ C such that ∆`(e) = ∅ we have that
Γ`(m) = ∅.

Additionally, we have to ensure that both the environment
and the controller are non-Zeno. That is, both do not take
an infinite sequence of actions without giving the other
opportunities for making progress. On the controller side,
we require that all computations are (controller) non-Zeno.
On the environment side, we consider only (environment)
non-Zeno computations for the satisfaction of the goal. The
latter is because it is valid for a controller to chose never to
take a controlled action if this ensures its goal.

To formalize the non-Zeno assumption we first introduce
four auxiliary formulas: c, u, passE , and passM . Given
an environment to be controlled E, a candidate controller
M , and their parallel composition E ∥ M , we assume that
in both E and M (separately) for every ` ∈ A there are
propositions `p

E
∈ PE and `p

M
∈ PM such that (s, `, s′) ∈ ∆E

iff `p
E
∈ L(s) and similarly for M . Let c = ⋁`∈C `, u = ⋁`∈U `,

passM = ⋀`∈C ¬`pM , and let passE = ⋀`∈U ¬`pE . That is, c
and u are formulas specifying the possibility of executing
some controllable and uncontrollable actions, respectively.
The formulas passE and passM characterize states where
the environment and, respectively, the controller do not
enable any uncontrollable and controllable action. That is,
in passE all uncontrollable actions are impossible in the
environment and in passM all controllable actions (if exist)
are not enabled by the controller. Note that by the definition
of legality the controller can only enable controllable actions
that are enabled in the environment.

We now define the formulas ψe and ψc denoting non-
Zeno-ness assumptions on the environment and the controller
respectively. Let ψe = ◻◇ (c ∨ passM). That is (if enabled
in the environment model), the environment allows infinitely
many controllable actions (by M) in the execution or there
are infinitely many states visited in which M does not enable
controllable actions. Let ψc = ◻ ◇ (u ∨ passE). That is,
the controller allows infinitely many uncontrollable actions
(by E) in the execution or there are infinitely many states
visited in which E does not enable uncontrollable actions.

Definition 4.2: (RTC Control) Given an environment
model E = (S,PE ,A,∆, LE , s0) and an FLTL formula ϕ,
where A = U ⊎ C is defined as before. A solution for the
RTC control problem E = ⟨E,ϕ,C⟩ is a DLTS M = (SM ,
PM , A, ∆M , LM , s0M) such that M is RTC legal for E,
E ∥ M is deadlock free, and every execution π of E∥M
satisfies π ⊧ ψc ∧ (ψe → ϕ).

We note that we cannot move the condition ϕc into the
implication. Indeed, this would imply that by not fulfilling
ϕc the controller is able to force the environment to violate
ϕe as well. Thus, the controller would trivially fulfil the goal
by blocking the environment forever.

V. EXAMPLE REVISITED

We revisit the example in Sect. III under RTC control. We
show how RTC control relieves the modeller from dealing
with intricate scheduling issues that are hard to figure out
correctly. In fact, the modeller is no longer required to come
up with foreign modelling artefacts (i.e., Fig. 2 and Fig. 3)
to avoid unrealistic situations for unrealizability or to ensure
run-to-completion. We also show how RTC control permits
writing loosely-coupled specifications, and thus facilitates
incremental development.

In Fig. 4, we show a snippet of the RTC controller for the
surveillance mission. Due to the change of control mode we
no longer need to cap the number of uncontrolled events to
avoid flooding. This is naturally captured in RTC control
as both the environment and the controller may perform
finite sequences of actions without flooding or delaying
each other indefinitely. Note the path via states 0, 1, 2,
3, 17, 16 where the UAV has arrived to location [1][1]
but both the criticalBat and the lowBat alarms have been
raised. In state 16, an arbitrary number of uncontrolled events
(i.e., arrive[1][1], criticalBat, lowBat) can occur; however if
fairness assumption ψe holds, then the controller will get

a chance to execute and at this point it can perform all
the controlled actions it needs to do in order to satisfy the
safety requirements (3) and (4) in Sect. III (i.e., land and
econoMode via state 13 to reach state 0).

The same path shows how the environment can also run
to completion, raising lowBat and criticalBat (states 3, 17
and 16) should it want to. Alternatively, it may forfeit its
turn and the controller may land from state 17.

Also note how in state 3, if given the chance, the controller
will both take the picture it needs and go to the next location
(states 6 and 7) even though there is no explicit requirement.
It does so, as it attempts to do as many actions as it can while
progressing towards its liveness goal (i.e., land).

Fig. 4. RTC Controller (Snippet)

Interestingly, the fairness assumptions ψe and ψc in RTC
control remove any possible clashes among subgoals in the
specifications, by maintaining fair executions and flexible
deadlines. Consider, for instance, the coupling between the
safety requirements (or subgoals) (3) and (4) in Sect. III to
hardcode the concept of as soon as possible.

In standard control, the next controllable actions after a
lowBat or a criticalBat in (3) and (4) cannot be specified
independently as otherwise they would contradict each other,
e.g., if the next controllable action after lowBat needs to
be econoMode instead of land, econoMode, then if lowBat
and criticalBat happen consequtively, the controller cannot
respond to either one. These subgoals require attention due
to the subtle interactions between them.

In RTC control, we write specifications on top of a fair
interaction model where both the controller and the envi-
ronment are given the chance to run to completion, without
counting or fixing deadlines. This suggests that we can write
cleaner specifications that remove the explicit dependencies
among subgoals, and thus enhancing the readability, and
consequently facilitating incremental development.

That said, we introduce convenient schemata to naturally
specify high-level concepts like as soon as possible and ur-
gent response under RTC control. We believe these schemata
are more intuitive and less error prone. The schemata relate
two Boolean combinations of fluents φ and ψ:

ASAP(ψ) = ((⋀`∈C ¬`) W ((⋁`∈C `) Wψ))
URGRSP(φ,ψ) = ◻[φ→ ASAP(ψ)]

Now, we may replace subgoals (3) and (4) in Sect. III with
more natural enunciations. Namely, that econoMode and land

are urgent response requirements to lowBat and criticalBat
respectively:

URGRSP(lowBat, econoMode)∧URGRSP(criticalBat, land)

Clearly, these schemata removed the coupling in (3) and
(4), while maintaining correctness under RTC control.

VI. ANALYSIS

We show how to solve the RTC control problem by a
reduction to a standard control problem. Recall that the
environment in standard control always gets to choose the
next event out of those selected by the controller and all
enabled uncontrollable events in a given environment state.
Therefore, we need to model the “act” of yielding control
explicitly in the modified control problem. Thus, the analysis
may refer directly to when each side is yielding control.

Consider an RTC control problem ε = ⟨E,ϕ,C⟩. We
now define a DLTS that captures the transference of control
between the environment and the controller:

Definition 6.1: (Yield DLTS) Let U and C be the
set of actions controlled by the environment and the
controller, respectively. The yield DLTS is defined as
Y = ({c, e},∅,{γC , γE} ∪ C ∪ U,∆, L, e). Where ∆ =
{(c, γC , e), (e, γE , c)}∪{e `Ð→ e ∣ ` ∈ U}∪{c `Ð→ c ∣ ` ∈ C}.

Now, we define a (standard) control problem over E ∥
Y . Let U+ be U ∪ {γE} and C+ be C ∪ {γC}. We use
the fluents ene and enm, which indicate whether Y is
in state e or c. Formally, ene = ⟨{γC},{γE}, true⟩ and
enm = ⟨{γE},{γC}, false⟩. Intuitively, this corresponds to
RTC legality as when the environment E∥Y is in a state
of the form (s, e) all uncontrollable actions are enabled.
Furthermore, uncontrollable actions remain in states of this
form (and thus cannot be interrupted). As for controllable
actions, they lead to states of the form (s, c), where only
controllable actions are enabled, allowing the controller to
take a sequence of actions.

The composition E ∥ Y turns all deadlocks in E, which
the controller should avoid, to livelocks, where the two sides
cooperate to stop time. That is, E ∥ Y gets trapped in
an infinite sequence of yield transitions (or Livelock cycle)
s0, γE , s1, γC , s2, γE , . . . , namely when both ∆C(si) and
∆U(si) are empty.

The Livelock Removal Operator, defined below, removes
livelock cycles in a DLTS by removing yield transitions
by the controller (resp. environment) to states in which the
environment (resp. controller) can only yield back.

Definition 6.2: (Livelock Removal Operator) Let N =
(S,P,A,∆, L, s0) be a DLTS obtained by parallel compo-
sition with Y . The livelock removal operator live(N) is a
DLTS (S,P,A,∆′, L, s0) where

∆′ = {(s, `, s′) ∈ ∆ ∣ ` ∈ {γC , γE}→
∃`′ ∉ {γC , γE} ⋅ ∆`′(s′) ≠ ∅}

That is, the transitions with actions γC or γE are retained
only if the environment/controller can do something other

than yielding back control immediately. Following the re-
moval of livelocks, we can reduce the RTC control to the
following control problem.

Theorem 6.1: (Analysis Control) Consider an environment
model E = (S,P,A,∆, L, s0), where A = U ⊎ C the set of
actions controlled and monitored by E respectively, and an
FLTL formula ϕ. A solution for the RTC control problem ε =
⟨E,ϕ,C⟩ exists if and only if the standard control problem
ε+ = ⟨live(E∥Y), ϕ+,C+⟩ is controllable, and ϕ+ is defined
below. For simplicity, we use A to denote ⋁`∈A `.

ϕ+ = ◻◇ (ene ∨ (⋀`∈U ¬`pE)) ∧
(◻◇ (enm ∨ (⋀`∈C ¬`pE))→ [◻◇A→ ϕ])

Note that ϕ+ mimics formula ψc ∧ (ψe → ϕ) of the RTC
control formulation with ψc = ◻◇(u ∨ passE) and ψe = ◻◇
(c ∨ passM). There are two differences. First, ϕ+ replaces
passM by ⋀`∈C ¬`pE . Second, ϕ+ disregards traces in ε+ in
which the environment and the controller collaborate to stop
time. This is done by evaluating ϕ only on traces satisfying
◻◇A. The second is not a problem when extracting an RTC
controller as the environment of the RTC controller cannot
stop time.

The proof of Theorem 6.1 (reported in the full version
on [19] due to space limitations) shows that given a solution
M+ of ε+ we can construct an RTC solution M of ε. The
size of M is at most twice the size of M+.

Corollary 6.1: Given an DLTS solution M+ for the mod-
ified control problem ε+, we can construct a solution M to
ε such that the number of states of M is at most twice the
number of states of M+. Furthermore, if M+ is deterministic
then M is also deterministic.

Proof: We only report the construction of M as its
correctness is immediate from the proof of Theorem 6.1.
Let M+ = (T,P,A+,Γ+, L+, t+0). The components of M are
defined as follows:

● TM = {e, c} × T is the set of states;
● The alphabet AM = A+ / {γC , γE};
● The initial state t′0 = (e, t+0);
● The transition relation Γ is defined below:

{((e, t), `, (e, t′)) ∣ ` ∈ U and ∃t1, t2 s.t. (t, γE , t1) ∈ Γ+,
(t1, γC , t2) ∈ Γ+ and (t2, `, t′) ∈ Γ+

} ⋃

{((e, t), `, (e, t′)) ∣ ` ∈ U, (t, `, t′) ∈ Γ+ and
∀t1.(t, γE , t1) ∈ Γ+ → Γ+γC

(c, t1) = ∅ } ⋃

⎧⎪⎪⎨⎪⎪⎩
((e, t), `, (c, t′))

RRRRRRRRRRR

(t, γE , t′′) ∈ Γ+ and

(t′′, `, t′) ∈ Γ+ and ` ∈ C

⎫⎪⎪⎬⎪⎪⎭
⋃

{((c, t), `, (c, t′)) ∣ ` ∈ C and (t, `, t′) ∈ Γ+} ⋃
⎧⎪⎪⎨⎪⎪⎩
((c, t), `, (e, t′))

RRRRRRRRRRR

(t, γC , t′′) ∈ Γ+ and

(t′′, `, t′) ∈ Γ+ and ` ∈ U

⎫⎪⎪⎬⎪⎪⎭

Note that the states of M retain as an extra memory the
information of whether a state is on the “environment side”
or the “controller side”. Intuitively, for a state t of M+ the
controller M adds the memory of whether t was reached by
a controllable or uncontrollable transition. If t is reached by a
controllable transition, M implements all transitions possible

from t and all transitions possible from the γC successor
of t (if exists). Dually, if t is reached by an uncontrollable
transition, M implements all transitions possible from t and
all transitions possible from the γE successor of t (if exists).
Furthermore, whenever possible add a detour that includes
both a γE and a γC before an uncontrollable action.

Theorem 6.2: (Analysis SGR(1) Control) Let E be a
DLTS E = (S,P,A,∆, L, s0), where A = U ⊎C is the set of
actions controlled and monitored by E, respectively, and let
ϕ = ◻ρ ∧ (⋀ni=1 ◻◇ ai → ⋀mj=1 ◻◇ gj) be an FLTL formula
with ρ, ai and gj Boolean combinations of fluents.

A solution for the RTC control problem ε exists if and only
if the standard control problem ⟨live(E∥Y), ϕ′,C ∪ {γC}⟩
is controllable, where ϕ′ is as follows.

◻ρ ∧ ◻◇ (ene ∨ (⋀`∈U ¬`pE))∧
([◻◇ (enm ∨ (⋀`∈C ¬`pE)) ∧⋀ni=1 ◻◇ ai ∧ ◻◇A]

→ ⋀mj=1 ◻◇ gj)
Proof: The only difference is in the location of the

safety. Every computation of M∥live(E∥Y) is a computa-
tion of M∥E interspersed with yield actions. It follows that
◻ρ holds.

Corollary 6.2: The complexity of RTC control with
GR(1) goals is in O(n ×m × ∣S∣3), where ∣S∣ is the number
of states of the environment.

Proof: The goal in the modified control problem ε+ is of
the form ◻ρ∧◻◇b∧(⋀ni=1 ◻◇ai → ⋀mj=1 ◻◇gj). By adding
counters that range over the number of assumptions and the
number of guarantees, this kind of goal can be converted to
a Streett condition of index 2 [8]. Control problems where
the goal is a Streett condition of index 2 can be solved in
time cubic in the number of states [20].

VII. CONCLUDING REMARKS AND FUTURE DIRECTIONS

We introduced a novel control problem, named run-to-
completion (RTC), to deal with the asymmetric interaction
between the controller and the environment commonly found
in DES control. We showed that RTC control can be ex-
ploited to synthesise controllers for systems that can initiate
and perform sequences of actions while responding correctly
to external stimuli. This makes RTC suitable to control
componentized systems with complex structures, and where
a response to a single external stimulus may require several
rounds of propagations among subsystems. Thanks to the
flexible deadlines in RTC control, we are no longer required
to count (or hardcode) the number of computation steps
for the system before it is ready again to react to the next
stimulus. Furthermore, we avoid generating trivial controllers
and we simplify the specifications by removing the explicit
dependencies among subgoals, and thus facilitating incre-
mental development.

We showed that every instance of the RTC control problem
can be reduced to a standard control problem, and finally we
showed that when SGR(1) goals are used, RTC control can
be reduced to Streett control of index 2 [8].

The notion of non-Zeno we have used is strongly related
to fairness of the environment and the controller. One could

consider extensions in two different directions. Our notion
of non-Zeno allows the controller to force the environment
to take some action. That is, in some cases where both
controllable and uncontrollable actions are possible, we
allow the controller to force the environment to move. One
could consider a weaker notion of non-Zenoness where the
environment is not forced to take actions if it does not wish
to do so. Dually, we consider the controller non-Zeno if it
often enough gives the environment the option to act (even if
the environment cannot act). This corresponds to the notion
of weak fairness. One could consider stronger restrictions
on controllers in which they would have to be strongly-fair
towards the environment. That is, if the environment can act
infinitely often it should act infinitely often. Interestingly,
one could consider even stronger notions, where strongly-
fair controllers in addition completely block the environment
only in cases where it is impossible to fulfil the goals when
the environment acts infinitely often.

In many cases, studies of control of discrete event systems
consider goals that are combinations of safety and non-
blocking, while we have considered linear temporal goals.
In general, the techniques required to solve the two types of
problems are very similar [21]. The techniques developed
in this paper can be adapted also to handle the case of
non-blocking. In the case of linear temporal goals it is well
known that maximally permissive controllers do not exist. It
is an interesting question whether RTC-control with safety
and non-blocking goals allow for maximally permissive
controllers.

A. Related works

In the prominent approach to synthesis (such as Reactive
Synthesis [1] and Supervisory Control [2]) the uncontrolled
plant has an advantage over the controller with respect to
scheduling. Although, this may seem a natural understanding
of the synthesis problem, where the controller is supposed to
react to every possible behaviour of the plant, it is not always
an appropriate assumption. In many cases, the uncontrolled
plant is not completely adversarial (see [22]), and many
undesired behaviours are practically infeasible and should be
ruled out by definition, i.e., due to physical and/or software
restrictions. For instance, a robot moving in an arena is
restricted by its fixed structure [23], and thus it does not make
sense to consider all possible paths between two points.

These restrictions are usually dealt with by introducing
domain specific assumptions over the plant (see [24], [7]).
However, these assumptions are not usually obvious and in
many cases lead to spurious solutions (see [18]).

A classic domain in which the uncontrolled plant is not
completely adversarial is that of embedded systems where
reactive languages (e.g., [3], [4], [5]) adopt a synchronous
hypothesis where the system can react to an external stimulus
with all the computation steps it needs [6]. To the best of our
knowledge, RTC control is the first to automatically handle
such assumptions.

There have been many studies that focus on relating
supervisory control and reactive synthesis, see [25], [21].

However, some aspects are still not considered and that
become more apparent with the approach presented herein.
RTC control introduces a turn-based interaction between the
controller and the plant that is similar to that of Reactive
Synthesis [1] for state-based models (i.e., no transition labels,
only state propositions). Furthermore, in Reactive Synthesis
both the controller and its adversary may perform in their
own turn multiple actions concurrently. Yet in Reactive Syn-
thesis the upper bound on actions per turn is determined by
the number of state propositions, which is defined manually
by the specifier before synthesis and it is not obvious how
to reason about the order of concurrent events in state-based
modelling. This becomes very important when dealing with
systems that are required to do several rounds of data or
control propagations among their subparts in response to ex-
ternal stimuli. Indeed, we may not know a-priory how many
rounds of propagations are required or the order of events
happening during the propagation. Furthermore, restricting
the order (or the interleaving) of concurrent events manually
might largely impact on the performance of the system
under consideration. This is because hardcoded-orderings
may easily sequentialise concurrent events that can safely
be executed in parallel. Clearly, the last scenario poses a
problem for both state-based models and event-based ones.
Namely, once the events that can be executed simultaneously
are explicitly identified, the flooding of adversarial events
from the environment becomes as problematic as the one of
uncontrollable events in discrete event systems.

REFERENCES

[1] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,”
in Proceedings of the 16th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, ser. POPL ’89. New
York, NY, USA: ACM, 1989, pp. 179–190. [Online]. Available:
http://doi.acm.org/10.1145/75277.75293

[2] P. Ramadge and W. Wonham, “The control of discrete event systems,”
Proceedings of the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[3] N. Halbwachs, Synchronous Programming of Reactive Systems.
Berlin, Heidelberg: Springer-Verlag, 2010.

[4] G. Berry, “Real time programming: Special purpose or general purpose
languages,” in Information Processing 89, Proceedings of the IFIP
11th World Computer Congress, San Francisco, USA, Aug. 28 - Sep.
1, 1989, G. Ritter, Ed. North-Holland/IFIP, 1989, pp. 11–17.

[5] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic,
and R. de Simone, “The synchronous languages 12 years later,”
Proceedings of the IEEE, vol. 91, no. 1, pp. 64–83, 2003.

[6] R. de Simone, J. Talpin, and D. Potop-Butucaru, “The synchronous
hypothesis and synchronous languages,” in Embedded Systems
Handbook, R. Zurawski, Ed. CRC Press, 2005. [Online]. Available:
https://doi.org/10.1201/9781420038163.ch8

[7] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive (1)
designs,” Lecture notes in computer science, vol. 3855, pp. 364–380,
2006.

[8] R. S. Streett, “Propositional dynamic logic of looping and converse is
elementarily decidable,” Inf. Control., vol. 54, no. 1/2, pp. 121–141,
1982.

[9] J. Magee and J. Kramer, Concurrency: state models & Java programs.
Wiley New York, 2006.

[10] D. Giannakopoulou and J. Magee, “Fluent model checking for event-
based systems,” in Proceedings of the 9th European software engineer-
ing and 11th ACM SIGSOFT international symposium on Foundations
of software engineering. ACM, 2003, pp. 257–266.

[11] A. van Lamsweerde and E. Letier, “Handling obstacles in goal-
oriented requirements engineering,” IEEE Transactions on Software
Engineering, vol. 26, pp. 978–1005, October 2000. [Online].
Available: http://portal.acm.org/citation.cfm?id=357525.357521

[12] R. Kazhamiakin, M. Pistore, and M. Roveri, “Formal verification
of requirements using spin: A case study on web services,” in
Proceedings of the Software Engineering and Formal Methods,
Second International Conference, ser. SEFM ’04. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 406–415. [Online].
Available: http://dx.doi.org/10.1109/SEFM.2004.19

[13] S. Uchitel, R. Chatley, J. Kramer, and J. Magee, “Fluent-based
animation: exploiting the relation between goals and scenarios for
requirements validation,” in Proceedings. 12th IEEE International
Requirements Engineering Conference, 2004., 2004, pp. 208–217.

[14] E. Letier, J. Kramer, J. Magee, and S. Uchitel, “Fluent temporal
logic for discrete-time event-based models,” SIGSOFT Softw. Eng.
Notes, vol. 30, no. 5, p. 70–79, Sept. 2005. [Online]. Available:
https://doi.org/10.1145/1095430.1081719

[15] L. de Alfaro and T. A. Henzinger, “Interface automata,” in
Proceedings of the 8th European software engineering conference
held jointly with 9th ACM SIGSOFT international symposium
on Foundations of software engineering, ser. ESEC/FSE-9. New
York, NY, USA: ACM, 2001, pp. 109–120. [Online]. Available:
http://doi.acm.org/10.1145/503209.503226

[16] N. D’Ippolito, “Synthesis of event-based controllers for software en-
gineering,” Ph.D. dissertation, Imperial College London, The address
of the publisher, 3 2013, http://cor.to/8UmX.

[17] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar,
“Synthesis of reactive(1) designs,” J. Comput. Syst. Sci., vol. 78, no. 3,
pp. 911–938, 2012.

[18] N. D’Ippolito, V. Braberman, N. Piterman, and S. Uchitel, “Synthesis-
ing non-anomalous event-based controllers for liveness goals,” ACM
Tran. Softw. Eng. Methodol., vol. 22, 2013.

[19] Y. Abd Alrahman, V. Braberman, N. D’Ippolito, N. Piterman, and
S. Uchitel, “Synthesis of run-to-completion controllers for discrete
event systems.” [Online]. Available: https://arxiv.org/abs/2009.05554

[20] N. Piterman and A. Pnueli, “Faster solutions of Rabin and Streett
games,” in Logic in Computer Science, 2006 21st Annual IEEE
Symposium on. IEEE, 2006, pp. 275–284.

[21] R. Ehlers, S. Lafortune, S. Tripakis, and M. Y. Vardi, “Supervisory
control and reactive synthesis: a comparative introduction,” Discret.
Event Dyn. Syst., vol. 27, no. 2, pp. 209–260, 2017. [Online].
Available: https://doi.org/10.1007/s10626-015-0223-0

[22] R. Ehlers, R. Könighofer, and R. Bloem, “Synthesizing cooperative
reactive mission plans,” in 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2015, Hamburg, Germany,
September 28 - October 2, 2015, 2015, pp. 3478–3485. [Online].
Available: https://doi.org/10.1109/IROS.2015.7353862

[23] K. W. Wong and H. Kress-Gazit, “Let’s talk: Autonomous
conflict resolution for robots carrying out individual high-level
tasks in a shared workspace,” in IEEE International Conference
on Robotics and Automation, ICRA 2015, Seattle, WA, USA,
26-30 May, 2015, 2015, pp. 339–345. [Online]. Available: https:
//doi.org/10.1109/ICRA.2015.7139021

[24] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-
logic-based reactive mission and motion planning,” IEEE Trans.
Robotics, vol. 25, no. 6, pp. 1370–1381, 2009. [Online]. Available:
https://doi.org/10.1109/TRO.2009.2030225

[25] A. Schmuck, T. Moor, and R. Majumdar, “On the relation
between reactive synthesis and supervisory control of non-terminating
processes,” Discret. Event Dyn. Syst., vol. 30, no. 1, pp. 81–124, 2020.
[Online]. Available: https://doi.org/10.1007/s10626-019-00299-5

