
Noname manuscript No.
(will be inserted by the editor)

A Distributed API for Coordinating AbC Programs

Yehia Abd Alrahman · Giulio Garbi

Received: date / Accepted: date

Abstract Collective-adaptive systems exhibit a par-

ticular notion of interaction where environmental condi-

tions largely influence interactions. Previously, we pro-

posed a calculus, named AbC , to model and reason

about CAS. The calculus proved to be effective by nat-

urally modelling essential CAS features. However, the

question on the tradeoff between its expressiveness and

its efficiency, when implemented to program CAS ap-

plications, is to be answered. In this article, we propose

an efficient and distributed coordination infrastructure

for AbC . We prove its correctness and we evaluate its

performance. The main novelty of our approach is that

AbC components are infrastructure agnostic. Thus the

code of a component does not specify how messages are

routed in the infrastructure but rather what properties

a target component must satisfy. We also developed a
Go API, named GoAt, and an Eclipse plugin to pro-

gram in a high-level syntax which can be automatically

used to generate matching Go code. We showcase our

development through a non-trivial case study.

Keywords Attribute-based Interaction · Semantics ·
Process Calculi · Programming API

1 Introduction

Collective Adaptive Systems (CAS) [20] consists of a

large number of components that interact anonymously,

Yehia Abd Alrahman is funded by the ERC consolidator
grant D-SynMA under the European Union’s Horizon 2020
research and innovation programme (grant No 772459).

Yehia Abd Alrahman
University of Gothenburg, Sweden. E-mail:
yehia.abd.alrahman@gu.se

Giulio Garbi
IMT School for Advanced Studies Lucca, Lucca, Italy

based on their properties and on contextual data, and

combine their behaviours to achieve global goals. The

boundaries of CAS are fluid and components may enter

or leave the system at any time. Components may also

adapt to their environmental conditions.

Most of the current communication models cannot

naturally model highly adaptive and loosely-coupled

systems with fluid boundaries like CAS. They actu-

ally suffer from limitations due to: lack of knowledge

representation, e.g., π-calculus [28] or rigid communi-

cation interfaces, e.g., CBS [31]. To mitigate the short-

comings of the current communication paradigms when

dealing with CAS, We have proposed a kernel calculus,

named AbC [3, 9], to program CAS interactions. The

idea is to permit the construction of formally verifiable

CAS systems by relying on a minimal set of interaction

primitives. Such primitives provide a language-based

approach to programming and thus can be used to im-

plement different features and mechanisms. Clearly, this

is more desirable when compared to self-organising al-

gorithms [12,15] that are developed for specific features.

AbC ’s primitives are attribute-based [1, 4] and ab-

stract from the underlying coordination infrastructure

(i.e., they are infrastructure-agnostic). They rely on

anonymous multicast communication where components

interact based on mutual interests. Message transmis-

sion is non-blocking while reception is not. Each com-

ponent has a set of attributes to represent its run-time

status. Communication actions (both send and receive)

are decorated with predicates over attributes that part-

ners have to satisfy to make the interaction possible.

The interaction predicates are also parametrised with

local attribute values and when values change, the in-

teraction groups do implicitly change, introducing op-

portunistic interactions.

2 Yehia Abd Alrahman, Giulio Garbi

Basing the interaction on run-time attribute values

is indeed a nice idea, but it needs to be supported by

a middleware that provides efficient ways for distribut-

ing messages, checking attribute values, and updating

them. A typical approach is to rely on a centralised bro-

ker that keeps track of all components, intercepts every

message and forwards it to registered components. It

is then the responsibility of each component to decide

whether to receive or discard the message. This is the

approach used in the Java-based implementation [2] of

AbC . Clearly, any centralised solution may not scale

with CAS dynamics and thus becomes a bottleneck

for performance. A distributed approach is definitely

preferable for large systems. However, distributed co-

ordination infrastructures for managing the interaction

are still scarce and/or inefficient [34]. Also the correct-

ness of their overall behaviour is often not obvious.

One solution is to rely on existing protocols for total-

order broadcast to handle message exchange. However,

these protocols are mostly centralised [18] or rely on

consensus [34]. Centralised solutions have scalability

and efficiency issues, while consensus-based ones are not

only inefficient but also impossible in asynchronous sys-

tems where components might fail [21]. Consensus al-

gorithms also assume that components know each other

and can agree on a specific ordering. However, this con-

tradicts the main design principles of the AbC calculus

where anonymity and openendedness are crucial fac-

tors. Since AbC components are agnostic to the infras-

tructure, they cannot participate in establishing a total

ordering. Thus, we need an infrastructure that guaran-

tees total ordering seamlessly.

In this article, we present a theoretical foundation
of a distributed coordination infrastructure for message

exchange and prove its correctness with respect to the

original semantics of AbC [9]. We also provide an ac-

tual implementation of this infrastructure and evaluate

its performance by means of stochastic simulation. The

infrastructure is implemented in Google Go because we

believe that Go is more appropriate to deal with CAS

due to its clean concurrency model. In essence, we pro-

vide an Attribute-based API for Go, named GoAt, with

the goal of using the AbC primitives to program the

interaction of CAS applications directly in Go. The ac-

tual implementation of GoAt fully relies on the formal

semantics of AbC and is parametric with respect to the

infrastructure that mediates interactions. We provide a

one-to-one correspondence between the AbC primitives

and the programming constructs of GoAt. We also pro-

vide an Eclipse plugin for GoAt to permit programming

in a high-level syntax which can be analysed via for-

mal methods by relying on the operational semantics

of AbC . This article is an extended and a more refined

version of the works presented in [6,7]. Here we enhance

the presentation, fix imprecisions, and provide the proof

details of the correctness of the proposed infrastructure.

The rest of this article is structured as follows: In

Section 2, we briefly review the AbC calculus. In Sec-

tion 3, we give a full formal account of a distributed co-

ordination infrastructure for AbC and its correctness.

In Sect. 4, we present the GoAt API and show how

to program a distributed graph colouring algorithm in

GoAt and we briefly comment on the Eclipse plugin. In

Section 5, we provide a detailed performance evalua-

tion. Finally, in Section 6 and Section 7 we conclude

the article and survey related works.

2 The AbC Calculus

In this section we briefly introduce the AbC calculus by

means of a running example. We give an intuition of

how to model a distributed variant of the well known

Graph Colouring Problem [24] using AbC constructs.

We render the problem as a typical CAS scenario where

a collective of agents, executing the same code, collab-

orate to achieve a system-level goal without any cen-

tralised control. The presentation is intended to be in-

tuitive and full details of the syntax and the semantics

of AbC can be found in [3,9]. The example will be pre-

sented thoroughly in Section 4.3.

The problem consists of assigning a colour (an inte-

ger) to each vertex in a graph while avoiding that two

neighbours get the same colour. The algorithm consists

of a sequence of rounds for colour selection. At the end

of each round at least one vertex is assigned a colour.

A vertex, with identity id, uses messages of the form

(“try”, c, r) to inform its neighbours that at round r

it wants to select colour c and messages of the form

(“done”, c, r) to communicate that it has chosen colour

c at the end of round r. At the beginning of a round,

each vertex selects a colour and sends a try-message

to all of its neighbours N. A vertex also collects try-

messages from its neighbours. The selected colour is

assigned to a vertex only if it has the greatest id among

those that have selected the same colour in that round.

After the assignment, a done-message (associated with

the current round) is sent to neighbours.

AbC Syntax. A component, Γ :I P , is a process P

associated with an attribute environment Γ , and an in-

terface I. An attribute environment Γ : A 7→ V is a

partial map from attribute a ∈ A to values v ∈ V
where A ∩ V = ∅. A value could be a number, a name

(string), a tuple, etc. An interface I ⊆ A consists of

a set of attributes that are exposed by a component to

control the interactions with other components. We will

A Distributed API for Coordinating AbC Programs 3

refer to the attributes in I as public attributes, and to

those in dom(Γ) − I as private attributes. During in-

teraction, a component exposes the environment Γ ↓ I
which represents the portion of the Γ that can be per-

ceived by the context. It can be obtained from the local

Γ by limiting its domain to the attributes in the inter-

face I as defined below:

(Γ ↓ I)(a) =

{
Γ (a) a ∈ I
⊥ otherwise

Components are composed with parallel operator C1‖C2.

C ::= Γ :I P | C1‖C2

Example (step 1/7): Each vertex is modelled in AbC

as a component of the form Ci = Γi :{id,N} PC . Public

attributes id and N are used to represent the vertex id

and the set of neighbours N , respectively. The overall

system is defined as the parallel composition of existing

components (i.e., C1‖C2‖, . . . , ‖Cn).

The attribute environment of a vertex Γi relies on

the following attributes to control the behaviour of a

vertex: The attribute “round” stores the current round

while “used” is a set, registering the colours used by

neighbours. The attribute “counter” counts the number

of messages collected by a component while “send” is

used to enable/disable forwarding of messages to neigh-

bours. Attribute “assigned” indicates if a vertex is as-

signed a colour while “colour” is a colour proposal.

These attributes initially have the following values:

round = 0, used = ∅, send = tt, and assigned = ff.

Note that no global knowledge is required and new

values for these attributes can only be learnt by means

of message exchange among vertices. Also the fact that

a vertex knows its neighbours is example-dependent.

Thanks to predicates, fully anonymous interactions can

be modelled in AbC . ut

The behavior of an AbC process can be generated

by the following grammar:

P ::= 0 | α.U | 〈Π〉P | P1 + P2 | P1|P2 | K

U ::= [a := E]U | P

The process 0 denotes the inactive process; α.U de-

notes a process that executes action α and (possibly)

the attribute updates in U and continues as P . Note

that the attribute updates [a := E]U are applied in-

stantaneously with the action preceding them. The at-

tribute environment is thus updated by setting the value

of attribute a to the evaluation of the expression E. The

term 〈Π〉P is an awareness process, it blocks the exe-

cution of process P until the predicate Π evaluates to

true; the processes P1 +P2, P1|P2, and K are standard

for nondeterminism, parallel composition, and process

definition respectively. The parallel operator “|” does

not allow communication between P1 and P2, they can

only interleave while the parallel operator “‖” at the

component level allows communication between com-

ponents. The expression this.b denotes the value of

attribute b in the current component.

Example (step 2/7): Process PC , specifying the be-

haviour of a vertex is now defined as the parallel com-

position of these four processes: PC , F | T | D | A.

Process F forwards try-messages to neighbours, T

handles try-messages, D handles done-messages, and A

is used for assigning a final colour. ut
The AbC communication actions ranged by α can

be either (Ẽ)@Π or Π(x̃). The construct (Ẽ)@Π de-

notes an output action, it evaluates the sequence of

expressions Ẽ under the local attribute environment

and then sends the result to the components whose at-

tributes satisfy the predicate Π. Furthermore, Π(x̃) de-

notes an input action, it binds to sequence x̃ the corre-

sponding received values from components whose com-

municated attributes or values satisfy Π.

Example (step 3/7): We further specify process F

and a part of process T .

F , 〈send ∧ ¬assigned〉
(“try”,min{i 6∈ this.used},this.round)@

(this.id ∈ N).[send := ff,
colour := min{i 6∈ this.used}]F

T , ((x = “try”) ∧ (this.id > id) ∧ (this.round = z))

(x, y, z).[counter := counter + 1]T + . . .

In process F , when the value of attribute send be-

comes true, a new colour is selected, send is turned

off, and a message containing this colour and the cur-

rent round is sent to all the vertices having this.id
as neighbour. The new colour is the smallest colour

that has not yet been selected by neighbours, that is

min{i 6∈ this.used}. Remember that attribute used
is local and initially is empty and thus all colours are

available for a vertex initially. Furthermore, a vertex

may only update the value of used at run-time when

it receives messages informing that a specific colour is

selected. The guard ¬assigned is used to make sure that

vertices with assigned colours do not take part in the

colour selection anymore.

Process T receives messages of the form (“try”, c, r).

If r = this.round then the received message was orig-

inated by a vertex performing the same round of the

algorithm. The condition this.id > id means that the

sender has an id smaller than the id of the receiver. In

this case, the message is ignored (there is no conflict),

simply the counter of collected messages (this.counter)

4 Yehia Abd Alrahman, Giulio Garbi

is incremented. Other cases, not reported here, e.g.,

this.id < id, the received colour is recorded to check

the presence of conflicts. Note that since the id of the

sender is an interface attribute (i.e., id ∈ I), it is au-

tomatically added to the message being communicated

and this is the reason why the receiver can predicate on

the identity of the sender. ut

AbC Semantics. The main semantics rules of AbC

are reported in Table 1. Rule Comp states that a com-

ponent evolves with (send Γ .Π(ṽ) or receive Γ .Π(ṽ),

denoted by λ) if its internal behaviour, denoted by the

relation 7→, allows it. Rule fComp states that a compo-

nent can discard a message Γ . Π(ṽ) if its internal be-

haviour does not allow the reception of this message by

generating the discarding label ˜Γ . Π(ṽ). Rule ComL

states that if C1 evolves to C ′1 by sending a message

Γ . Π(ṽ) then this message should be delivered to C2

which evolves to C ′2 as a result. Rule ComR is the sym-

metric rule of ComL. Note that C2 can be also a parallel

composition of different components. Thus, rule Sync

states that multiple components can be delivered the

same message in a single transition.

The semantics of the parallel composition opera-

tor, in rules ComL, ComR, and Sync in Table 1, ab-

stracts from the underlying coordination infrastructure

that mediates the interactions between components and

thus the semantics assumes atomic message exchange.

This implies that no component can evolve before the

sent message is delivered to all components executing

in parallel. Individual components are in charge of us-

ing or discarding incoming messages. Message transmis-

sion is non-blocking, but reception is not. For instance,
a component can still send a message even if there is

no receiver (i.e., all the target components discard the

message); a receive operation can, instead, only take

place through synchronisation with an available mes-

sage. However, if we want to use the attribute-based

paradigm to program the interactions of distributed ap-

plications, atomicity and synchrony are neither efficient

nor applicable.

The focus of this article is on providing an efficient

distributed coordination infrastructure that behaves in

agreement with the parallel composition operator of

AbC . Thus in Table 1, we only formalise the external

behaviour of a component, i.e., its ability to send and

receive. We show in the example below how interactions

are derived based on internal behaviour.

Example (step 4/7): Consider the vertices C1, C2,

and C3 where Γ2(N) = {3}, Γ3(N) = {1, 4}, and Γ3(id) =

3. Now C1 sent a try message:

Γ1 :{1,{3}}PC
{(id,1),(N,{3})}.(1∈N)(“try”,3,5)−−−−−−−−−−−−−−−−−−−−−→

C′
1︷ ︸︸ ︷

Γ1[colour← [3, send← [ff] :{1,{3}} P
′
C

We have that C2 discards this message because it

is not a neighbour Γ2 ↓ I 6|= (1 ∈ N), i.e., 1 6∈ Γ2(N)

because Γ2(N) = {3}. Furthermore C3 accepts the mes-

sage because 1 ∈ Γ3(N). The system evolves with rule

ComL as follows:

C1‖C2‖C3
{(id,1),(N,{3})}.(1∈N)(“try”,3,5)−−−−−−−−−−−−−−−−−−−−−→ C ′1‖C2‖C ′3 ut

3 A Distributed Coordination Infrastructure

In this section, we consider a tree-based coordination

infrastructure that we have also implemented in Google

Go. This infrastructure is introduced to behave in agree-

ment with the parallel composition operator of AbC

while allowing components to execute asynchronously.

Our approach consists of labelling each message with an

id that is uniquely identified at the infrastructure level.

Components execute asynchronously while the seman-

tics of the parallel composition operator is preserved by

relying on the unique identities of exchanged messages.

In essence, if a component wants to send a message, it

sends a request to the infrastructure for a fresh id. The

infrastructure replies back with a fresh id and then the

component sends a data (the actual) message with the

received id. A component receives a data message only

when the difference between the incoming data message

id and the id of the last received data message equals 1.

Otherwise the data message is added to the component

waiting queue until the condition is satisfied.

In this article, we give a full formal account of the

tree infrastructure and also investigate its correctness

with respect to the semantics of the parallel composi-

tion operator of AbC . Further details regarding other

alternatives can be found in [7]. For the sake of com-

pleteness we will briefly describe these infrastructures.

The reason of our focus on the tree infrastructure is

because that the tree is more efficient and theoretically

more challenging.

3.1 Cluster-based Infrastructure

An example of a cluster infrastructure is reported in

Fig 1 (a). It is composed of a set of server nodes S,

sharing a counter ctr for sequencing messages and one

input FIFO queue I to store messages sent by any com-

ponent C. Cluster nodes can have exclusive locks on

both the cluster’s counter and the queue. Components

register directly to the cluster (i.e., their addresses are

registered in D) and send messages to be added to the

A Distributed API for Coordinating AbC Programs 5

Γ :I P
λ7−→Γ ′ :I P ′

Γ :I P
λ−→ Γ ′ :I P ′

Comp
Γ :I P

˜Γ ′.Π′(ṽ)7−−−−−−−→Γ :I P

Γ :I P
Γ ′.Π′(ṽ)−−−−−−−→ Γ :I P

FComp

C1
Γ.Π(ṽ)−−−−−→ C′1 C2

Γ.Π(ṽ)−−−−−→ C′2

C1 ‖ C2
Γ.Π(ṽ)−−−−−→ C′1 ‖ C′2

Sync

C1
Γ.Π(ṽ)−−−−−→ C′1 C2

Γ.Π(ṽ)−−−−−→ C′2

C1 ‖ C2
Γ.Π(ṽ)−−−−−→ C′1 ‖ C′2

ComL
C1

Γ.Π(ṽ)−−−−−→ C′1 C2
Γ.Π(ṽ)−−−−−→ C′2

C1 ‖ C2
Γ.Π(ṽ)−−−−−→ C′1 ‖ C′2

ComR

Table 1: AbC Communication Rules

S3S2S1

I D ctr

C1 C2 C3

ctr

S1

W1

0

I1

C1

S2

W2

0

I2

C2

S3

W3

0

I3

(a) A cluster infrastructure (b) A ring infrastructure

S2

W2I2

ctr

ctrctr

S1

W1I1

C1

S3

W3I3

C2

(c) A tree infrastructure

Fig. 1: Communication infrastructures

input FIFO queue. When a server node retrieves a re-

quest from the cluster queue, it replies to the requester

with the value of the cluster counter. By doing so, the

cluster counter is incremented. If a server retrieves a

data message, it forwards the message to all compo-

nents in the cluster except for the sender.

3.2 Ring-based Infrastructure

An example of a ring infrastructure is reported in Fig 1

(c). It is composed of a set of server nodes S, organised

in a logical ring and sharing a counter ctr for sequencing

messages coming from components. Each node manages

a group of components (i.e., unlike cluster nodes, each

ring node has a dedicated registration queue D) and

can have exclusive locks to the ring counter. When a

request message arrives to a node from one of its com-

ponents, the node acquires a lock on the ring counter,

copies it current value, releases it after incrementing it

6 Yehia Abd Alrahman, Giulio Garbi

by 1, and finally sends a reply, carrying a fresh id, to

the requester. Data messages are directly added to the

node’s waiting queue; and will be only forwarded to the

node’s components and to the neighbour node when all

previous messages (i.e., with a smaller id) are received.

3.3 A Tree-based Infrastructure

An example of a tree infrastructure is reported in Fig 1

(c). It is composed of a set of servers S, organised in a

logical tree. A component C can be connected to one

server (its parent) in the tree and can interact with

others in any part of the tree by only dealing with its

parent. When a component wants to send a message, it

asks for a fresh id from its parent. If the parent is the

root of the tree, it replies with a fresh id, otherwise it

forwards the message to its own parent in the tree. Only

the root of the tree can sequence messages. As the case

with the ring, each tree node has a registration queue

D and is responsible for only a group of components.

We would like to mention that our results in this

article do not consider reliability of the communication

infrastructures. We only focus on the efficiency and the

correctness of coordination and we leave the reliability

issue open for future work. We strongly believe that

standard approaches that consider replication of server

nodes can be used to guarantee the overall reliability

of the considered infrastructures. However, an interest-

ing direction would be to consider infrastructures that

adapt to failure and reconfigure themselves to maintain

their reliability, see [8, 11].

In the following we provide a full formal account of

the tree infrastructure.

3.4 Preliminary Notations and Definitions

We report the required set of notations and definitions

we use to formalise the semantics of the tree infrastruc-

ture. Furthermore we define a general definition of an

infrastructure component. The idea is to keep the in-

frastructure component totally decoupled from the type

of the infrastructure it is connected to. This way the

behaviour of a component will be totally independent

from the one of the infrastructure.

We use the following definition of a Configuration to

provide a compact semantics. For clarity, we postfix the

configuration of a component, an infrastructure, and a

server with the letter a, n, and s respectively.

Definition 1 (Configuration) A configuration C, is

a set of the form C = 〈c1, . . . , cn〉. The symbol ‘. . . ’ is

formally regarded as a meta-variable ranging over un-

mentioned elements of the configuration. The explicit

‘. . . ’ is obligatory, and ensures that unmentioned ele-

ments of a configuration are never excluded, but they

do not play any role in the current context. Different

occurrences of ‘. . . ’ in the same context stand for the

same set of unmentioned elements. This definition is

borrowed from Peter Mosses’ style of defining labels in

modular structure operational semantics [29].

We use the reduction relation ∼∼B ⊆ Cfig×Lab×
Cfig to define the semantics of a configuration where

Cfig denotes the set of configurations, Lab denotes

the set of reduction labels which can be a message m, a

silent transition τ , or an empty label, and ∼∼B∗ denotes

the transitive closure of ∼∼B. Moreover, we will use the

following notations:

– We have two kinds of messages, an AbC message

‘msg’ (i.e., Γ . Π(ṽ)) and an infrastructure message

‘m’; the latter can be of three different templates: (i)

request {‘Q’, route, dest}, (ii) reply {‘R’, id, route, dest},

and (iii) data {‘D’, id, src, dest, msg}. The route field

in a request or a reply message is a linked list con-

taining the addresses of the nodes that the message

traversed.

– The notation
?
= denotes a template matching.

– The notation T [f] denotes the value of the element

f in T .

– The notation m ::W denotes a queue with message

m on top of it.

We also use these operations: L.get() returns the el-

ement at the front of a list/queue, while L← [m returns

the list/queue resulting from adding m to the back of

L, and L\x removes x from L and returns the rest.

3.5 Infrastructure Component

We formally define a general infrastructure component

and its external behaviour. In the following sections,

we proceed by formally defining the tree infrastructure

and its behaviour.

Definition 2 (Infrastructure component) An in-

frastructure component, a, is defined by the configu-

ration: a = 〈addr, nid, mid, on,W,X , G〉 where addr

refers to its address, nid (initially 0) refers to the id of

the next data message to be received, mid (initially -1)

refers to the id of the most recent reply, on (initially 0)

indicates whether a request message can be sent. W is

a priority waiting queue where the top ofW is the data

message with the least id, and X refers to the address

of the parent server. Furthermore, G ranges over Γ :I P

A Distributed API for Coordinating AbC Programs 7

Γ :I P
Γ ′.Π(ṽ)−−−−−−→ Γ ′′ :I P ′

〈on, Γ :I P, . . .〉a
τ
∼∼B 〈1, [Γ :I P], . . .〉a

Out
Γ :I P

Γ ′.Π(ṽ)−−−−−−→ Γ ′′ :I P ′

[Γ :I P]
Γ ′.Π(ṽ)−−−−−−→ [Γ ′′ :I P ′]

Med

on == 1

〈addr, on,X , . . .〉a
{‘Q’, {addr}, X}

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼B 〈addr, 0,X , . . .〉a

Req

〈addr,mid, . . .〉a
{‘R’, id, {}, addr}
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼B 〈addr, id, . . .〉a RcvR

nid == mid Γ :I P
Γ ′.Π(ṽ)−−−−−−→ Γ ′′ :I P ′

〈addr, nid,mid, [Γ :I P],X , . . .〉a
{‘D’,mid,addr,X ,Γ ′.Π(ṽ)}
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼B 〈addr, nid+ 1,−1, Γ ′′ :I P ′,X , . . .〉a

Snd

m
?
= {‘D’, id, X , addr, msg} id ≥ nid

〈addr, nid,W,X , . . .〉a
m

∼∼∼∼B 〈addr, nid,W ← [m,X , . . .〉a
RcvD

m[id] == nid G
m[msg]−−−−−→ G′

〈nid,G, m ::W ′, . . .〉a
τ

∼∼∼∼B 〈nid+ 1, G′, W ′, . . .〉a
Hnd

Table 2: The semantics of a component

and [Γ :I P] where [Γ :I P] indicates an AbC component

in an intermediate state.

The intermediate state, in Definition 2, is impor-

tant to allow co-located processes (running in the same

component) to interleave their behaviours without com-

promising the semantics, i.e, [Γ :I P1|P2] where P1 is

waiting an id to send and P2 is willing to receive. Here

P2 can only receive a message if it was able to do so

before the intermediate state as we will explain later.

The semantics of an infrastructure component is re-

ported in Table 2. Rule Out states that if the AbC

component Γ :I P encapsulated inside an infrastructure

component is able to send a message Γ :I P
Γ ′.Π(ṽ)−−−−−→

Γ ′′ :I P
′, the flag on is set to 1 and Γ :I P goes into an

intermediate state [Γ :I P]. Rule Med states that an in-

termediate state component can only receive a message

Γ .Π(ṽ) if it was able to receive it before the interme-

diate state. Rule Req states that a component sends a

request, to the parent server, only if on == 1. In this

case, it adds its address to the route of the message

and resets on to 0. Rule RcvR states that a compo-

nent receives a reply if the destination field of the reply

matches its address; after that mid gets the value of the

id received in the reply. Rule Snd states that a compo-

nent Γ :I P can send a message Γ ′ . Π(ṽ) and evolves

to Γ ′′ :I P
′ only if nid == mid; this implies that a

fresh id is received (mid 6= −1) and all messages with

m[id] < mid have been already received. By doing so,

an infrastructure data message, with msg field equals to

Γ .Π(ṽ), is sent, nid is incremented, and mid is reset.

Rule RcvD states that a component receives a data

message from the infrastructure if m[id] ≥ nid; this is

important to avoid duplicate messages. The message is

then added to the priority queue,W. Finally, rule Hnd

states that when the id of the message on top of W
matches nid, component G is allowed to receive that

message; as a result, nid is incremented by 1 and thus

m is removed.

Example (step 5/7): As the semantics suggests

an infrastructure component is an encapsulation of an

AbC component and thus these details are hidden from

the programmer. In other words, the programmer can

create an infrastructure component (Definition 2) for

our example in Section 2 by only specifying the address

X of the parent server, substituting a vertex component

Γi :{id,N} PC in place of G and set other parts to their

initial values as follows:

a = 〈addr, nid = 0,mid = −1, on = 0,W = {},X =

“some address”, Γi :{id,N}PC〉

Note that in a real application a DHCP server auto-

matically assigns a unique address addr to a component

when executed. We will discuss these implementation

details in Section 4.

3.6 A Formal definition of the Tree Infrastructure

In this section we formally define the structure of the

tree and its semantics. Furthermore we provide a proof

of correctness of its behaviour with respect to the se-

mantics of the parallel composition operator of AbC .

8 Yehia Abd Alrahman, Giulio Garbi

Definition 3 (Tree server) A tree server s is a con-

figuration: s = 〈addr, ctr, nid, D, M, I, W, X〉
where ctr is a counter to generate fresh ids, D is a set

containing the addresses of the server’s children which

include connected components and servers,M is a mul-

ticast set (initially M = D), and I is a FIFO input

queue. The rest are defined as before.

Definition 4 (Tree infrastructure) A tree infras-

tructure N is defined by the configuration: N = 〈S,A〉
where S denotes the set of servers and A denotes the

set of connected components such that:
– ∀s1, s2 ∈ S, we say that s1 is a direct child of s2,

written s1 ≺ s2, if and only if s1[X] = s2[addr]; ≺+

denotes the transitive closure of ≺.

– ∀s ∈ S, we have that s 6≺+ s.

– The root: ∃s ∈ S such that for any s′ ∈ (S\{s}), s′ ≺+

s and we have that:

– s′[nid] ≤ s[ctr].
– For any messagem ∈ s′[W] we have thatm[id] ≤
s[ctr].

– A root is unique: if s, s′ ∈ S and s[X] = s′[X] = ⊥
then we have that s = s′.

– ∀s ∈ S and for each message m ∈ s[W], we have

that m[id] ≥ s[nid].

The semantics rules of a tree infrastructure are re-

ported in Table 3. The rules (s↔s) and (s↔a) state

that a tree evolves when a message m is exchanged ei-

ther between two of its servers (s1 and s2) or between a

server and a component respectively. Furthermore, the

rules (s) and (a) state that a tree evolves when one of

its servers or one of its connected components evolves

independently.

The semantics rules of a tree server are defined by

the rules in Table 4. Rule In states that a server re-

ceives a message m and adds it to the back of its input

queue (I ← [m) if the destination field of m matches

its own address addr. Rule Reply states that if a root

server gets a request from the front of its input queue

m :: I ′, it sends a reply to the requester by getting its

address from the route of the message x = route.get().

The id of the reply is assigned the value of the root’s

counter ctr. By doing so, the counter is incremented.

On the other hand, a non-root server adds its address

to the message’s route and forwards it to its parent as

stated by rule qFwd. Rule rFwd instead is used for

forwarding reply messages. Rule wIn states that if a

server gets a data message from its input queue I and

it is the root or its parent is the source of the mes-

sage (i.e., X == addr′ ∨ X == ⊥), the server evolves

silently and the message is added to its waiting queue.

If the condition (X == addr′ ∨ X == ⊥) does not

hold, the message is also forwarded to the parent as

stated by rule wNxt. Furthermore, rule dFwd states

that when the id of the message on top of W matches

nid (i.e., m[id] == nid), the server starts forwarding m

to its children one by one except for the sender. Note

that this rule can be applied many times as long as the

multicast set M contains more than one element, i.e.,

|M| > 1. Once M has only one element, rule eFwd

is applied to forward the message to the last address

in M. As a result, nid is incremented, m is removed

from W, and the multicast set M is reset to its initial

value. Note that rule nFwd handles the case when M
has only the address of the sender. Thus the message is

discarded as the sender cannot receive its own message.

Correctness. Since there is a single sequencer in the

tree, i.e., the root, two messages can never have the

same id. We only need the following results to ensure

that the tree behaves in agreement with the AbC par-

allel composition operator. In essence, Proposition 2,

ensures that if any component in the tree sends a re-

quest for a fresh id, it will get it. Proposition 4, ensures

that any two components in the tree with different nid

will converge to the same one. However, to prove Propo-

sition 4, we need to prove Lemma 1 and Proposition 3

which guarantee the same results among tree’ servers.

This implies that messages are delivered to all compo-

nents. Proposition 5 instead ensures that no message

stays in the waiting queue indefinitely.

Proposition 1 For each pair of nodes s1, s2 ∈ N [S],

if s1 sends a request to s2 then eventually s2 will send

a reply to s1.

Proof The proof proceeds by induction on the level of

s2 in the tree, L(s2).

– Base case: L(s2) = 0, this implies that node s2 is the

root of the tree (i.e., s1[X] = s2[addr]). By Table 4,

rule qFwd, when s1 gets a request from its input

queue, it adds its address to the route of the mes-

sage and forwards it to its next node, in this case

and by Table 4, rule In, s2 adds the request to its

input queue. The overall infrastructure evolves by

applying rule s↔ s, Table 3. The tree N evolves by

multiple applications of the rules in Table 3 until

s2 gets the request from its input queue. It labels

it with a fresh id and sends a reply back to the re-

quester by applying rule Reply and s1 receives the

reply by applying rule In, Table 4. So we have that

N ∼∼B∗N ′ we have that s2 will eventually send a

reply back to s1.

– Inductive hypothesis: L(s2) ≤ k, if s1 sends a re-

quest to s2, then s2 will eventually reply to s1.

– Inductive step: Now it is sufficient to prove the claim

for s2, where L(s2) = k+1. By Table 4, rule qFwd,

A Distributed API for Coordinating AbC Programs 9

s1
m
∼∼B s′1 s2

m
∼∼B s′2

〈{s1, s2} ∪ S′,A〉n ∼∼B 〈{s′1, s′2} ∪ S′,A〉n
s↔s

s
τ
∼∼B s′

〈{s} ∪ S′,A〉n ∼∼B 〈{s′} ∪ S′,A〉n
s

s
m
∼∼B s′ a

m
∼∼B a′

〈{s} ∪ S′, {a} ∪ A′〉n ∼∼B 〈{s′} ∪ S′, {a′} ∪ A′〉n
s↔a

a
τ
∼∼B a′

〈S, {a} ∪ A′〉n ∼∼B 〈S, {a′} ∪ A′〉n
a

Table 3: Tree infrastructure semantics

m[dest] == addr

〈addr, I, . . .〉s
m
∼∼B 〈addr, I ← [m, . . .〉s

In

m
?
= {‘Q’, route, addr} X == ⊥ x = route.get()

〈addr, ctr,X , m :: I′, . . .〉s
{‘R’,ctr,route\x,x}
∼∼∼∼∼∼∼∼∼∼∼B 〈addr, ctr + 1,X , I′, . . .〉s

Reply

m
?
= {‘Q’, route, addr} X 6= ⊥ route′ = route.add(addr)

〈addr,X , m :: I′, . . .〉s
{‘Q’,route′,X}
∼∼∼∼∼∼∼∼∼∼∼∼B 〈addr,X , I′, . . .〉s

qFwd

m
?
= {‘R’, id, route, addr} x = route.get()

〈addr, m :: I′, . . .〉s
{‘R’,id,route\x,x}
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼B 〈addr, I′, . . .〉s

rFwd

m
?
= {‘D’, id, addr′, addr,msg} (X == addr′ ∨ X == ⊥)

〈addr,X ,W, m :: I′, . . .〉s
τ
∼∼B 〈addr,X ,W ← [m, I′, . . .〉s

wIn

m
?
= {‘D’, id, addr′, addr,msg} (X 6= addr′ ∧ X 6= ⊥)

〈addr,X ,W, m :: I′, . . .〉s
{‘D’,id,addr,X ,msg}
∼∼∼∼∼∼∼∼∼∼∼∼∼∼B 〈addr,X ,W ← [m, I′, . . .〉s

wNxt

|M| > 1
m[id] == nid

m
?
= {‘D’, id, addr′, addr,msg}

M′ =M\addr′ x =M′.get()

〈addr, nid,D,M, m ::W ′, . . .〉s
{‘D’,id,addr,x,msg}
∼∼∼∼∼∼∼∼∼∼∼∼B 〈addr, nid,D,M′\x, m ::W ′, . . .〉s

dFwd

|M| = 1 M.get() 6= addr′ m[id] == nid m
?
= {‘D’, id, addr′, addr,msg} x =M.get()

〈addr, nid,D,M, m ::W ′, . . .〉s
{‘D’,id,addr,x,msg}
∼∼∼∼∼∼∼∼∼∼∼∼B 〈addr, nid+ 1,D,D,W ′, . . .〉s

eFwd

|M| = 1 M.get() = addr′ m[id] == nid m
?
= {‘D’, id, addr′, addr,msg}

〈addr, nid,D,M, m ::W ′, . . .〉s
τ
∼∼B 〈addr, nid+ 1,D,D,W ′, . . .〉s

nFwd

Table 4: Tree server semantics

when s1 gets a request from its input queue, it adds

its address to the route of the message and forwards

it to s2. We have that according to Table 3 N ∼∼B∗N ′
and s2 can also forward the request to its next node,

say s′ where L(s′) = k, by Table 4, rule qFwd.

By the induction hypothesis we have that s′ will

eventually send a reply to s2 since the claim holds

for level k. When the reply arrives to s2, it will send

it to s1 by applying rule rFwd as required. ut

Proposition 2 For any component, with address addr

and a parent X , connected to a tree infrastructure N ,

we have that if

〈addr, on,X , . . .〉a
{‘Q’,{addr},X}
∼∼∼∼∼∼∼∼∼∼∼∼∼B 〈addr, 0,X , . . .〉a

then N ∼∼B∗N ′ and

〈addr,mid, . . .〉a
{‘R’,id,{},addr}
∼∼∼∼∼∼∼∼∼∼B 〈addr, id, . . .〉a

10 Yehia Abd Alrahman, Giulio Garbi

Proof A component a1 can send a request by applying

rule Req, Table 2 and its node, say s1, can receive it by

applying rule In, Table 4 and adds it to its input queue.

The tree evolves with rule s↔ a, Table 3. By relying

on Proposition1 and N ∼∼B∗N ′, s1 will send a reply

back to a1 by applying either rule Reply or rFwd,

Table 4. On the other hand, a1 will receive the reply

by applying rule RcvR and the tree evolves with rule

s↔ a, Table 3 as required. ut

To prove Proposition3, we need first to prove the

following Lemma. This lemma ensures that adjacent

nodes will eventually converge to the same nid. In other

words, a node must forward the removed data message

from its queue to all immediate neighbours (i.e., tree

nodes in its D) before incrementing its nid.

Lemma 1 For every two tree nodes s1 and s2 and a

tree-based infrastructure N such that s1, s2 ∈ N [S], we

have that:

– If s1 ≺ s2 ∧ s1[nid] < s2[nid] then N ∼∼B∗N ′ and

s1[nid] = s2[nid].

– If s2 ≺ s1 ∧ s1[nid] < s2[nid] then N ∼∼B∗N ′ and

s1[nid] = s2[nid].

Proof The proof proceed by induction on the difference

between s2[nid] and s1[nid]. We only prove the first

statement as the second one is analogous.

– Base case, s2[nid]− s1[nid] = 1: From Table 4, rule

eFwd, nid is only incremented after message m,

where m[id] = s2[nid] − 1, is forwarded to the last

child in D. It can also be incremented when the

message is discarded by rule nFwd to avoid send-

ing the message back to the sender. But s1 ≺ s2, so

we know that s1 already received m and added m

to its input queue by rule In. Thus N ∼∼B∗N ′ and

finally m moves from the input queue to the wait-

ing queue i.e., s1[W] = m :: q by either rule wIn

or rule wNxt. Note that this is a priority queue

that sorts its messages according to their identities.

Since s2[nid] − s1[nid] = 1, we have that s2[nid] −
1 = s1[nid] = m[id]. This means that m is ordered

with respect to s1. By multiple applications of rule

dFwd and followed by one application of rule eFwd

and/or nFwd, Table 4 to forward m to children, we

have that s1[nid] = s1[nid]+1 = s2[nid] as required.

– Inductive hypothesis: s2[nid] − s1[nid] ≤ k given

that s1 ≺ s2, then N ∼∼B∗N ′ and s1[nid] = s2[nid].

– Inductive step: Now it is sufficient to prove the claim

for s1 and s2 such that s2[nid]− s1[nid] = k + 1.

From Table 4, rules eFwd and nFwd, we know that

message m, where m[id] = s2[nid]− 1, has been al-

ready forwarded to children in D and/or to next

node by rule wNxt and s1 already received m and

added m to its input queue. We have that N ∼∼B∗N ′
and finally m moves from the input queue to the

waiting queue by either rule wIn or rule wNxt.

Since s2[nid]−s1[nid] = k+1 then m[id]−s1[nid] =

k. This means that k-messages from s2 already ex-

ist in the queue of s1 and need to be processed first

and then after m can be processed. By the induction

hypothesis, N ∼∼B∗N ′ and s1[nid] = s2[nid] where

s2[nid] − s1[nid] ≤ k. So we have that s1[nid] =

s1[nid] + k, but m[id] − s1[nid] = k. This implies

that m[id] = s1[nid], i.e., message m is ordered with

respect to s1. Now again by Table 4, multiple ap-

plications of rule dFwd followed by one application

of rule eFwd and/or nFwd, N ′ ∼∼B∗N ′′, s1[nid] =

s1[nid] + 1 = s2[nid] = s1[nid] +k+ 1 and s2[nid] =

s1[nid] as required. ut

Proposition 3 Let s1 and s2 be two tree nodes and N
be a tree-based infrastructure, ∀s1, s2 ∈ N [S]∧ s1[nid] <

s2[nid], we have that N ∼∼B∗N ′ and s1[nid] = s2[nid].

Proof The proof proceeds by case analysis on s ≺+ s′.

Since the topology of the infrastructure is tree-based,

we have three cases.

– Case 1, s1 ≺+ s2: This case can be proved by induc-

tion on the distance, d(s1, s2), between s1 and s2 in

the tree. Function d(s1, s2) is defined inductively as

follows:

d(s1, s2) =

0, for s1 ≺ s2 or s2 ≺ s1
1 + d(t′, s2), for s1 ≺+ s2 where s1 ≺ t′

1 + d(s1, t
′), for s2 ≺+ s1 where s2 ≺ t′

– Base case, d(s1, s2) = 0: directly from Lemma 1.

– Inductive hypothesis: Suppose that ∀s1, s2 ∈
N [S] : d(s1, s2) ≤ k where k > 0 and given

s1[nid] < s2[nid], we have that N ∼∼B∗N ′ and

s1[nid] = s2[nid].

– Inductive step: Now it is sufficient to prove the

claim for s1 and s2 where d(s1, s2) = k + 1.

From Lemma 1, for s2 at distance k+ 1 from s1
and s3 at distance k from s1, i.e., s1 ≺+ s3 ≺ s2,

we have that N ∼∼B∗N ′ and s3[nid] = s2[nid].

But d(s1, s3) = k, so by the induction hypothesis

we have that N ′ ∼∼B∗N ′′ and s1[nid] = s3[nid] =

s2[nid] as required.

– Case 2, s2 ≺+ s1: is analogous to the previous case.

– Case 3, ∃s3 : s1 ≺+ s3 ∧ s2 ≺+ s3: we have several

cases, but here we only consider one case and the

others follow in a similar way. If s1[nid] > s3[nid] <

s2[nid], we first take s3 and s2 and by Case 2, we

have that N ∼∼B∗N ′ and s3[nid] = s2[nid] > s1[nid].

Now for s1 and s3 and by Case 1, we have that

N ′ ∼∼B∗N ′′ and s1[nid] = s2[nid] as required. ut

A Distributed API for Coordinating AbC Programs 11

Proposition 4 Given any two components a1 and a2
in a tree infrastructure N such that a1[nid] < a2[nid],

we have that N ∼∼B∗N ′ and a1[nid] = a2[nid].

Proof The proof follows directly by Proposition 3 and

the semantics rules in Table 2 and Table 3. ut

Proposition 5 Given a tree infrastructure N = 〈S,A〉,
for any c ∈ S ∪ A where c[W] = m ::W ′, we have that

N ∼∼B∗N ′ and c[W] = W ′ ++W ′′ where ++ returns a

priority queue composed by the sub queues W ′ and W ′′.

Proof The proof follows from Proposition 2, Proposi-

tion 3, Proposition 4, and by induction on the difference

between c[nid] and m[id]. ut

Proposition 5 states that a message m on top of the

waiting queueW of a component cannot stay forever as

the infrastructure N evolves. The component processes

m and removes it from W during the infrastructure

evolution. While doing so, other messages (represented

by a sub-queue W ′′) may arrive to the end of W.

4 A Go Attribute-based Interaction API

GoAt1 is a distributed programming API for supporting

attribute-based interaction directly in Google Go. Go

is a new programming language, developed by Google

to handle the complexities of networked systems and

massive computation clusters, and to make working in

these environments more productive. It supports con-

currency and inter-process communication through a

compact set of powerful primitives and lightweight pro-

cesses, called goroutines.

As opposed to Java, Go provides an intuitive and

lightweight concurrency model with a well-understood

semantics. It extends the CSP model [23] with mobil-

ity by allowing channel-passing, like in π-calculus [28].

However, channel passing in Go is possible only locally

between goroutines. Go also supports buffered channels

with a finite size. When the buffer size is 0, goroutines

block execution and can only communicate by means of

synchronisation. Otherwise, channels behave like mail-

boxes in Erlang which is, however, actor-based [5], and

for interaction, it relies on identities rather than on

channels. Note that such concurrency features of Go

can be mimicked with the core.async concurrency

library of Clojure. However, the main difference is that

concurrency in Go is an actual ingredient of the lan-

guage rather than an integrated library. Also note that

Clojure way of dealing with concurrency is similar to

1 https://giulio-garbi.github.io/goat/.

the one of Java and thus without the core.async
library, concurrent programming in Clojure is not an

ideal choice. On the other hand, Clojure is less verbose

and has a clean typing system when compared to Go.

Thus using Clojure with the core.async library pro-

vides an elegant and clean environment to write con-

current programs. Another candidate would be using

the Akka concurrency library in Scala. Akka handles

concurrency based on the Actor model as the case of

Erlang. However, being integrated in a rich and func-

tional language like Scala, it unlocks the reuse of Scala

internal DSL features and easily supports interoperabil-

ity of Java and other JVM-based languages.

All of these alternatives have their pros and cons and

it would be interesting as a future work to find out what

class of applications each one of them handles the best.

However, since this is out of the scope of this article

we only focus on the Go language. We believe that the

generality, efficiency and the clean concurrency model

of Go make it an appropriate language for programming

CAS. Thus, we integrated attribute-based interaction in

Go via the distributed GoAt API to move the mobility

of Go concurrency to the next level.

In what follows, we present the actual implementa-

tion of the distributed coordination infrastructures in

Google Go and present the syntax of the GoAt API.

4.1 A Go Implementation of Infrastructures

In this section, we consider a Go implementation of

three distributed coordination infrastructures for man-

aging message exchange of the GoAt API. These in-

frastructures model faithfully the parallel composition

operator of the AbC calculus.

The projection of a GoAt system with respect to a

specific component is reported in Fig. 2. It mainly con-

sists of three parts: (i) component, (ii) agent, and (iii)

infrastructure. The agent provides a standard interface

between a GoAt component and the underlying coordi-

nation infrastructure and mediates message-exchange

between them. Actually, the agent hides the details of

the infrastructure from a component. An agent can be

seen as a piece of software that handles the interaction

between a component and the infrastructure server con-

nected to it. A component registers to a server in the

infrastructure by creating a dedicated agent through a

registration address to handle their interactions.

In what follows, we provide a brief description of the

implementation and of the dynamics of our distributed

coordination infrastructures.

The Component. As reported in Fig. 2, a GoAt com-

ponent consists of a behavioural part represented by its

https://giulio-garbi.github.io/goat/

12 Yehia Abd Alrahman, Giulio Garbi

Infrastructure

Agent1

Input handler

Msg dispatcher Msg ID handler

proc1 proc2 proc3 procn-2 procn-1 procn

Component1

Agent2

... ...

Agentm

Interface

Behaviour

S1

S2

... ...

Sn

Attribute Environment

Fig. 2: A Component interface to a GoAt system

running processes and an interface (its agent) to deal

with the infrastructure’s server connected to it. The in-

terface consists of three entities: the Input handler, the

Msg dispatcher, and the Msg ID handler.

The Input handler is used to collect all incoming

messages from the infrastructure’s server and to for-

ward reply messages to the Msg ID handler.

The Msg dispatcher stores a message in the waiting

queue of the component until all messages with smaller

id have been sent/delivered. Once this condition is satis-

fied, the Msg dispatcher forwards the message to a pro-

cess; if the process accepts, the message is considered as

delivered, otherwise, the Msg dispatcher tries with an-

other process. The procedure continues until either the

message is accepted by some process or all processes

have rejected it. In both cases, the message is consid-

ered as delivered and the new id is notified to the Msg

ID handler which updates the id of the next message to

receive. It is important to note that any change to the

attributes during the decision of accepting or rejecting

the message can be only committed if the message is

accepted, otherwise it will be rolled-back.

The Msg ID handler deals with requests of pro-

cesses wanting to send a message, and provides them

with fresh ids. The handler forwards the request to the

infrastructure’s server. While the process is waiting to

send its message, dispatched messages are added to the

waiting queue of the component. Once a reply message

with a fresh id is received, the Msg ID handler forwards

it to the process only when all messages with smaller id

have been processed. The process can now manipulate

the attributes environment and send a new message to

the Msg ID handler which will forward it to the infras-

tructure’s agent. All attribute updates are committed

and the msg dispatcher is notified about the new id.

The Coordination Infrastructures. These infras-

tructures are responsible for forwarding messages to

components and also for issuing fresh message ids. Each

kind of infrastructure consists of a set of server nodes

that are logically connected in a specific way and collab-

orate to deliver sent messages to all connected compo-

nents except for the sender. The implementation details

of each infrastructure are reported below:

– The Cluster Infrastructure. It consists of a reg-

istration node and a set of servers sharing a counter

node and an input queue. A GoAt component needs

to register itself to the cluster. The component con-

tacts the registration node which will forward its

network address to all cluster’ servers. The compo-

nent forwards its messages to the input queue of the

cluster. A cluster server gets a message from the in-

put queue which acts as a synchronisation point. If

the message is a request for a fresh id, the server

asks for a fresh id from the counter node and sends

a reply back to the requester; otherwise the mes-

sage is forwarded to all components connected to

the cluster except for the sender. This kind of infras-

tructure is a straightforward generalisation of a cen-

tralised implementation where only a single server is

responsible for forwarding and sequencing messages.

– The Ring Infrastructure. It consists of a regis-

tration node and a set of servers sharing a counter

node. Upon registration, a component is only reg-

istered to one server (a parent) in the ring. This

server will be the only interface for the component

to interact with the infrastructure. The fact that

components are assigned to specific servers allows

us to re-use the same TCP connection. This would

avoid unnecessary delays caused by re-establishing

the connection every time a message is exchanged. A

component forwards its messages to the input queue

of its parent server. A ring server gets a message

from its input queue: if it is a request message, the

server asks for a fresh id from the counter node and

sends a reply back to the requester, otherwise the

message is forwarded to all components directly con-

nected to this server except for the sender. The mes-

sage is also forwarded to its neighbour in the ring.

When a server receives a message from its neigh-

bour, it will accept the message only when its id is

greater than the id of the last message processed at

this server, otherwise the message is discarded.

– The Tree Infrastructure. The tree infrastructure

consists of a registration node and a set of servers

organised in a logical tree. The registration node

handles the construction of the infrastructure and

the registration of components. When a component

registers to the infrastructure through its agent, the

registration node associates the agent to a specific

server by assigning it communication ports to man-

A Distributed API for Coordinating AbC Programs 13

age interaction with the selected server. The root

of the tree is the only server that is responsible for

generating sequence numbers. Each server is respon-

sible for a group of agents and has its own input

queue. The agent forwards its component messages

to the input queue of its parent server. The server

gets a message from its input queue: if it is a re-

quest message and the server is the root of the tree,

the server assigns it a fresh id and sends a reply

back to the requester, otherwise the server forwards

the message to its parent until the message reaches

the root. Every time a request message traverses a

server, it records its address in a linked list to help

trace back the reply to the original requester with a

minimal number of messages. If the server receives

a reply message, it will forward it to the address

on top of the message’s linked list storing the path.

As a consequence, this address is removed from the

linked list. Finally, when a data message is received,

it is forwarded to all connected agents and servers

except for the sender.

In what follows we briefly introduce the program-

ming constructs of the GoAt API and show how they

relate to the AbC primitives.

4.2 The programming Interface

The main programming constructs of the GoAt API are

reported in Fig. 3.

A component is the main building block of a GoAt

system; each component contains a set of processes,

defining its behaviour, and a set of attributes, defin-

ing its run-time status and contextual data. A GoAt

system consists of a collection of GoAt components.

Components execute in parallel and exchange messages

only through message passing. In Fig. 3, Part 1, we

show how to define a GoAt component, connect it to

an infrastructure, and manipulate its attribute values.

The method NewComponent(Agent,Environment) takes

an agent which is created based on the registration ad-

dress of an infrastructure Addr. It also takes an at-

tribute environment Environment and creates a GoAt

component. Components are parametric with respect to

the infrastructure that mediates their interactions and

the programmer needs only to know the registration

address of components in the infrastructure. Currently

three types of infrastructures are supported, namely

Tree, Cluster, and Ring. The attribute environment of

a component is defined as a map from attribute identi-

fiers to their values. The attributes of a component can

be retrieved and set via the methods Comp(attribute)

and Set(attribute, value) respectively.

Part 1: Initialization

1 Component:=goat.NewComponent(Agent,Environment)
2
3 Agent := goat.NewTreeAgent(Addr)
4
5 Environment := map[string]interface{}
6
7 Comp(Attribute)
8
9 Set(Attribute, Value)

Part 2: Behaviour

1 goat.NewProcess(Component).Run(proc ∗goat.Process)

Part 3: Process declaration

1 func(proc ∗goat.Process){
2 proc.Command 1
3 ...
4 proc.Command n
5 }

Part 4: Commands

1 Send(Tuple, Predicate)
2
3 Receive(acceptFnc func(Attributes,Tuple) bool)
4
5 SendUpd(Tuple, Predicate, updFnc)
6
7 GSendUpd(Guard, Tuple, Predicate, updFnc)
8
9 Spawn(Process)

10
11 Call(Process)
12
13 WaitUntilTrue(Predicate)
14
15 Select(cases ...Case)
16
17 Case(Predicate, Action, Process)

Part 5: Predicates

1 Equals(,), And(,), Belong(,), Not(), etc ...

Fig. 3: The GoAt API

Example (step 6/7): In our example we create a ver-

tex as follows:

environment := map[string]interface{}{”round”: 0, ”used”: {}, ...}
agent := goat.NewTreeAgent(”127.0.0.1:17000”)//registration address
vertex := goat.NewComponent(agent, environment)

In Fig. 3, Part 2, the method Run is used to assign

a behaviour to a GoAt component and also to start its

execution. This method takes a process as an argument

and executes it within the scope of the current compo-

14 Yehia Abd Alrahman, Giulio Garbi

nent. The code inside the Run method represents the

actual behaviour of a component.

Example (step 7/7): In our example processes processF,

processT, processD and processA are created inside the

vertex and they start executing as follows:

1 goat.NewProcess(vertex).Run(
2 func(proc ∗goat.Process) {
3 proc.Spawn(processF)
4 proc.Spawn(processT)
5 proc.Spawn(processD)
6 proc.Spawn(processA)
7 }
8)

Processes processF, processT, processD, and processA
code will be detailed in Section 4.3.

The generic behaviour of a GoAt process is imple-

mented via a Go function as reported in Fig. 3, Part 3.

This function takes a reference to a GoAt process and

executes its commands. Note that beside GoAt com-

mands, which will be explained later, the usual loop

and branching statements of Go can also be used. Fur-

thermore, in Fig. 3, Part 4, we define the available GoAt

commands. The main communication actions, send and

receive, are implemented via Send(Tuple,Predicate) and

Receive (acceptfunc(attr ∗ Attributes,msgTuple)bool)
methods. The send method communicates a tuple of

values, Tuple, to components whose attributes satisfy

the predicate Predicate. The receive method accepts

a message and passes it to a boolean function that

checks if it satisfies the receiving predicate of a com-

ponent. We also provide two other versions of the send

action: a side-effect send SendUpd and a guarded side-

effect send GSendUpd. The former has immediate at-

tribute updates once executed and the latter can also

be guarded by a predicate Guard that blocks the execu-

tion until the guard is satisfied.

Spawn dynamically creates a new process Process
and executes them in parallel with the main process at

run time while Call(Process) implements a process call.

The awareness operator, implemented via the method

WaitUntilTrue(Predicate), blocks the execution of a pro-

cess until predicate Predicate is satisfied. The method

Select(cases ...Case) is a non-deterministic selection of

guarded processes. This method takes a finite number

of arguments of type Case, each of which is composed

of an action guarded by a predicate and a continua-

tion process as shown in the syntax of a case. When

the guarding predicate of one branch is satisfied, the

method enables it and terminates other branches. Fi-

nally Part 5 shows some of the supported predicates,

i.e., Equals,And, Belong, and Not correspond to =, ∧, ∈
and ¬ respectively. Other standard predicates are also

available. We use Receiver(a) in the sender pred-

icate to evaluate the predicate based on the value of

attribute a in the receiver side. For instance, Belong(
goat.Comp("id"),goat.Receiver("N")) is equiv-

alent to this.id ∈ N.

4.3 Case Study: A Distributed Graph Colouring

In this section we show how to use the programming

constructs of the GoAt API to program a distributed

variant of the graph colouring algorithm [24] presented

in the running example. We render the problem as a

typical CAS scenario where a collective of agents, exe-

cuting the same code, collaborate to achieve a system-

level goal without any centralised control. To avoid ver-

bosity, we omit all auxiliary functions, but we comment

on their behaviour.

Process F, reported below, proposes a colour. If a

vertex is not assigned a colour and the value of at-

tribute send try is true, the process sends a try mes-

sage to its neighbours identifying them by the predi-

cate Belong(goat.Comp(”id”), goat.Receiver(”N”)). The

try message contains a try label, the proposed colour,

the current round, and the id of this vertex. The pro-

posed colour is the smallest colour that has not yet

been selected by neighbours (not in used). The func-

tion Evaluate(minColorNot, goat.Comp(”used”)) is used

to propose a colour. As side effects, the attribute colour
is assigned the new colour and the attribute send try is

set to false.

1 func processF(proc ∗goat.Process) {
2 for {
3 proc.GSendUpd(goat.And(goat.Equals(goat.Comp(”assigned”),

false), goat.Equals(goat.Comp(”send try”), true)),
goat.NewTuple(”try”, goat.Evaluate(minColorNot,
goat.Comp(”used”)), goat.Comp(”round”),
goat.Comp(”id”)), goat.Belong(goat.Comp(”id”),
goat.Receiver(”N”)),

4 func(attr ∗goat.Attributes){
5 attr.Set(”colour”, minColorNot(attr.GetValue(”used”)))
6 attr.Set(”send try”, false) })
7 }}

Process T deals with try-messages (“try”, y, z, tid) as

mentioned before. If the current round equals the round

attached in the message z then the received message has

been originated by another component performing the

same round of the algorithm and we have two cases

(Lines 12-19). The first case is executed when the id

of the vertex is greater than the id of the message tid,

i.e., the sender has an id smaller than the id of the

receiver. In this case, the message is ignored (there is

no conflict), simply the counter of received messages is

incremented. In the second case, the received colour is

recorded to check the presence of conflicts. The value

of y is added to constraints and the counter is incre-

mented by 1. If z is greater than the current round, as in

(Lines 21-32), then the received message has been origi-

nated by a component executing a successive round and

A Distributed API for Coordinating AbC Programs 15

two possible alternatives are considered (thisId > tid or

thisId < tid). In both cases, round is set to z, send try
and counter are updated accordingly, and constraints is

set to the value of y if thisId < tid.

1 func processT(proc ∗goat.Process) {
2 for {
3 proc.Receive(func(attr ∗goat.Attributes, msg goat.Tuple) bool{
4 if msg.IsLong(4) && msg.Get(0) == ”try” {
5 y := msg.Get(1)
6 z := msg.Get(2).(int)
7 tid := msg.Get(3).(int)
8
9 thisRound := attr.GetValue(”round”).(int)

10 thisId := attr.GetValue(”id”).(int)
11
12 if thisRound == z {
13 if thisId > tid {
14 attr.Set(”counter”, attr.GetValue(”counter”).(int) + 1)
15 return true
16 } else if thisId < tid {
17 attr.Set(”counter”, attr.GetValue(”counter”).(int) + 1)
18 attr.Set(”constraints”, add(attr.GetValue(”constraints”),

y))
19 return true
20 }
21 } else if thisRound < z {
22 if thisId > tid {
23 attr.Set(”round”, z)
24 attr.Set(”send try”, true)
25 attr.Set(”counter”, 1)
26 attr.Set(”constraints”, goat.NewTuple())
27 return true
28 } else if thisId < tid {
29 attr.Set(”round”, z)
30 attr.Set(”send try”, true)
31 attr.Set(”counter”, 1)
32 attr.Set(”constraints”, goat.NewTuple(y))
33 return true
34 }
35 }
36 }
37 return false
38 })}}

Process D, below, is used to receive done-messages of

the form (“done”, y, z, tid) where y is the assigned colour,

z is the attached round, and tid is the sender id. These
are sent by components that have reached a final deci-

sion about their colour. We have two cases: either the

attribute round is < z or ≥ z . In both cases, the used

colour is registered in used and the counter done is incre-

mented. However, in the second case, private attributes

are updated to indicate the startup of a new round (z).

1 func processD(proc ∗goat.Process) {
2 for {
3 proc.Receive(func(attr ∗goat.Attributes, msg goat.Tuple) bool{
4 if msg.IsLong(4) && msg.Get(0) == ”done” {
5 if attr.GetValue(”round”).(int) < msg.Get(2).(int) {
6 attr.Set(”round”, msg.Get(2))
7 attr.Set(”constraints”, goat.NewTuple())
8 attr.Set(”send try”, true)
9 attr.Set(”counter”, 0)

10 }
11 attr.Set(”done”, attr.GetValue(”done”).(int) + 1)
12 attr.Set(”used”, add(attr.GetValue(”used”), msg.Get(1)))
13 return true
14 } else {
15 return false
16 }})}}

Process A, reported below, is used to assign a final

colour to a vertex. It can only be executed when mes-

Fig. 4: The GoAt plugin

sages from neighbours (which are not assigned colours)

have been received and no conflict has been found (i.e.,

the colour is neither in used nor in constraints). When

the above conditions are satisfied, message (“done”,

colour, round + 1, id) is sent to neighbours, the attribute

Assigned is set to true, and the process terminates.

1 func processA(proc ∗goat.Process) {
2 proc.GSendUpd(goat.Equals(goat.Evaluate(canAssign,

goat.Comp(”counter”), goat.Comp(”N”),
goat.Comp(”done”), goat.Comp(”colour”),
goat.Comp(”constraints”), goat.Comp(”used”)), true),
goat.NewTuple(”done”, goat.Comp(”colour”),
goat.Evaluate(inc, goat.Comp(”round”)), goat.Comp(”id”)),
goat.Belong(goat.Comp(”id”), goat.Receiver(”N”)),

3 func(attr ∗goat.Attributes){attr.Set(”assigned”, true)})
4 }

4.4 The Eclipse Plugin for GoAt

In this section, we would like to briefly comment on

the Eclipse plugin2 we have developed for GoAt. The

main goal of the GoAt plugin is to permit programming
in a high-level syntax (i.e., the syntax of the original

calculus AbC).

This syntax can be then analysed via formal meth-

ods by relying on the operational semantics of the AbC

calculus. Once the code has been analysed, the GoAt

plugin will generate formally verifiable Go code because

of the correspondence results we prove in this article. In

this article, we focus on the implementation part and

we will consider verification tools for future works.

Fig. 4 shows the project explorer of a GoAt plugin

project. The source folder src consists of two main

files: the infrastructure file with .ginf extension and

the system file with .goat extension. The infrastruc-

ture file is used to create an infrastructure which can be

of three types: cluster, ring, and tree. We also support

local concurrency. The system file contains the actual

GoAt specifications and a reference to the infrastruc-

ture that mediates the interaction between GoAt com-

2 https://github.com/giulio-garbi/goat-plugin

https://github.com/giulio-garbi/goat-plugin

16 Yehia Abd Alrahman, Giulio Garbi

ponents. Once these files are saved, the GoAt plugin au-

tomatically generates Go code in the src-gen folder.

We plan to integrate, in the near future, formal tools

and rely on static analysis to inspect GoAt specifications

before code generation.

Below, we show how Process F in Sect. 4.3 would be

written using the Eclipse plugin. Clearly, the syntax is

clean and less verbose which helps the modellers to fo-

cus on the problem they are trying to solve rather than

worrying about complicated syntactic constructions.

process F {
loop{
if(comp.send try && !comp.assigned)
send{”try”, minFeasibleColor(comp.used), comp.round,

comp.id}@(comp.id in receiver.N)[comp.send try := false,
comp.colour := minFeasibleColor(comp.used)];

}}

Other examples can be found in the WebPage of

GoAt. There, we also show how to program a com-

plex and sophisticated variant of the well-known prob-

lem of Stable Allocation in Content Delivery Network

(CDN) [27] using the GoAt plugin. We show that al-

though our solution is more open and less-restrictive,

the complexity of our solution is still comparable to

the original one adopted by Akamai’s CDN; one of the

largest distributed systems available.

5 Performance Evaluation

We compare the above mentioned infrastructures by

modelling them in terms of a Continuous Time Markov

Process [32]. Note that we use Markov Processes to

model and evaluate our infrastructures because it is

very hard, or even impossible, to perform statistical

analyses of a real distributed system when the num-

ber of participants is large, like in the scenarios con-

sidered in this section. We do not have enough com-

putation resources to setup large infrastructures and

conduct the comparison. If we rely on small infrastruc-

tures we would get subjective results. It is clear that

the tree would perform better in large settings while

the cluster performs better in small ones. Thus all re-

sults in this section are based on stochastic simulation

which anyway provides a quality approximation of the

actual performance of the GoAt implementation.

The state of a process represents possible infrastruc-

ture configurations, while the transitions (that are se-

lected probabilistically) are associated with events on

messages. We have three types of events: a new mes-

sage sent by a component; a message transmitted from a

node to another in the infrastructure; a message locally

handled by a node (i.e. removed from an input/wait-

ing queue). Each event is associated with a rate that is

the parameter of the exponentially distributed random

variable governing the event duration. We developed a

simulator3 for performance evaluation.

To perform the simulation we need to fix three pa-

rameters: the component sending rate λs; the infras-

tructure transmission rate λt; and the handling rate λh.

In all experiments, we fix the following values: λs = 1.0,

λt = 15.0, and λh = 1000.0 and rely on kinetic Monte

Carlo simulation [33]. The infrastructure configurations

are defined as follows:

– C[x, y], indicates a cluster with x nodes and y com-

ponents;

– R[x, y] indicates a ring with x nodes each of which

manages y components;

– T [x, y, z] indicates a tree with x levels. Each node

(but the leafs) has y + z children: y nodes and z

components. A leaf node has z components.

We consider two scenarios: (1) Data Providers (DP):

In this scenario only a fraction of components sends

data messages that they, for example, acquire via sen-

sors in the environment where they operate. An ex-

ample could be a Traffic Control System where data

providers are devices located in the city and data re-

ceivers are the vehicles traveling in the area; (2) com-

munication intensive (CI): This scenario is used to esti-

mate the performance when all components send mes-

sages continuously at a fixed rate so that we can evalu-

ate situations of overloaded infrastructures. The former

scenario is more realistic for CAS.

We consider two measures: the average delivery time

and the average message time gap. The first measure in-

dicates the time needed for a message to reach all com-

ponents, while the latter indicates the interval between

two different messages received by a single component.

Data provider scenario (DP) We consider configura-

tions with 31 server nodes 155, 310, or 620 components

and assume that only 10% of the components is sending

data. The average delivery time is reported in Fig. 5

while the average message time gap (with confidence

intervals) is reported in Fig. 6. The tree structure of-

fers the best performance while the cluster one is the

worst. When the cluster reaches an equilibrium (at time

∼ 2000), ∼ 90 time units are needed to deliver a mes-

sage to 155 components while the ring and the tree

need only ∼ 25 and ∼ 10 time units, respectively. The

reason is that in the cluster all server nodes share the

same input queue while in the tree and the ring each

server node has its own queue. We can also observe that

the performance of the ring in this scenario is close

to the one of the tree. Moreover, in the cluster, the

3 https://bitbucket.org/Lazkany/abcsimulator

https://bitbucket.org/Lazkany/abcsimulator

A Distributed API for Coordinating AbC Programs 17

Fig. 5: DP scenario: x-axis: simulation time and y-axis: Avg. Delivery Time for Cluster, Ring, and Tree

Fig. 6: DP scenario: x-axis: simulation time and y-axis: Avg. Message Time Gap for Cluster, Ring, and Tree

performance degrades when the number of components

increases. This does not happen for the tree and the

ring. Finally, we can observe that messages are deliv-

ered more frequently in the ring (∼ 1.9 time units) and

the tree (∼ 1.1 time units) than in the cluster (∼ 5.5

time units) as reported in Fig. 6.

Communication intensive scenario (CI) We consider

infrastructures composed by 155 components that con-

tinuously send messages to all the others. Simulations

are based on the following configurations:

– Cluster-based: C[10, 155], C[20, 155] and C[31, 155];

– Ring-based: R[5, 31] and R[31, 5];

– Tree-based: T [5, 2, 5] and T [3, 5, 5].

Fig. 7 shows the average delivery time for a cluster

of 155 connected components and 10, 20 or 31 server

nodes. Clearly, when the cluster reaches an equilibrium

(∼ 2000), ∼ 800 time units are needed to deliver a mes-

sage to all components. We also observe that the num-

ber of server nodes in the cluster has a minimal impact

on this measure because they all share the same input

queue. The Average Message Time Gap of the cluster,

in Fig. 8, indicates that in the long run a component

receives a message every 6/5.5 time units even if the

number of servers is increased from 10 to 31.

Better performance can be obtained for the ring in-

frastructure. In the first two plots of Fig. 9 we report

the average delivery time for the configurations R[5, 31]

and R[31, 5]. The last plot compares the average mes-

sage time gap of the two configurations. In the first one,

a message is delivered to all the components in 350 time

units while in the second one 250 time units are needed.

This indicates that increasing the number of nodes in

the ring enhances performance. This is because in the

ring all nodes cooperate to deliver a given message. Also

the time gap decreases, i.e., a message is received every

2.6 and 1.8 time units.

Fig. 10 shows how the average delivery time changes

during the simulation for T [5, 2, 5] and T [3, 5, 5]. The
two configurations have exactly the same number of

nodes (31) with a different arrangement. The two con-

figurations work almost in the same way: a message is

delivered to all the components in about 120 time units.

Clearly, the tree is 5-time faster than the cluster and

2-time faster than the ring. Moreover, in the tree-based

approach, a message is delivered to components every

∼ 1.1 time units as reported in Fig. 11. This means that

messages are constantly delivered after an initial delay.

The summarised results of the infrastructures with

31 nodes when measuring the average delivery time

for 155 and 310 connected components are reported in

Fig. 12. These results show that tree infrastructures

offer the best performance; cluster-based ones do not

work well while ring-based ones are in between the two.

Differences become clearer when increasing the number

of components from 155 to 310 (right side of Fig. 12).

18 Yehia Abd Alrahman, Giulio Garbi

Fig. 7: CI scenario: x-axis: simulation time and y-axis: Avg. Delivery Time for Cluster with 10/20/31 servers

Fig. 8: CI scenario: x-axis: simulation time and y-axis: Avg. Message Time Gap for Cluster with 10/20/31 servers

Fig. 9: CI scenario: x-axis: simulation time and y-axis: Avg. Delivery Time and Avg. Message Time Gap for Ring

with 5 and 31 servers

6 Related Work

In this section we relate our work to existing ones in

terms of: collective formation, adaptation and distributed

coordination through total order broadcast.

Several frameworks have been proposed to target

the problem of collective (or ensemble) formation. These

approaches usually differ in the way they represent col-

lectives and in their generality. The SCEL language [19],

proposed in the ASCENS project [35], is a kernel lan-

guage that has been designed to support the program-

ming of autonomic computing systems. This language

relies on the notions of autonomic components repre-

senting the collective members, and autonomic compo-

nent ensembles representing collectives. Each compo-

nent is equipped with an interface, consisting of a col-

lection of attributes, describing its features. Attributes

are used by components to dynamically organise them-

selves into ensembles and as a way to select partners

for interaction. SCEL has inspired the development of

the core calculus AbC to study the impact of attribute-

based communication. Compared with SCEL, the knowl-

edge representation in AbC is abstract and is not de-

signed for detailed reasoning during the model evolu-

tion. This reflects the different objectives of SCEL and

AbC . While SCEL focuses on programming issues, AbC

concentrates on a minimal set of primitives to study

attribute-based communication.

DEECo [14] and Helena [25] adopt an architecture-

based approach to specify ensembles. In general they

impose logical conditions on the membership of ensem-

bles that components have to satisfy. As opposed to

GoAt, the ensemble is a first class entity in these lan-

guages while in GoAt ensemble are logical entities im-

plied by the run-time status of components and the

interaction predicates.

A Distributed API for Coordinating AbC Programs 19

Fig. 10: CI scenario: x-axis: simulation time and y-axis: Avg. Delivery Time: Tree/ T [5, 2, 5] and T [3, 5, 5]

Fig. 11: CI scenario: x-axis: simulation time and y-axis: Avg. Message Time Gap: Tree/ T [5, 2, 5] and T [3, 5, 5]

Fig. 12: Summary: x-axis: simulation time and y-axis: Avg. Delivery Time Cluster/Ring/Tree (155/310 comp.)

JULIA [13] is also an architecture-based and achieves

adaptation by defining systems that can adapt their

configurations with respect to contextual conditions.

System components manipulate their internal structure

by adding, removing, or modifying connectors. How-

ever, in this approach interaction is still based on ex-

plicit connectors. In GoAt predefined connections sim-

ply do not exist, we do not assume a specific architec-

ture or containment relations between components.

Furthermore, Context Oriented Programming [22]

provides linguistic primitives is to define context de-

pendent behavioural variations. These variations are

expressed as partial definitions of modules that can be

overridden at run-time to adapt to contextual informa-

tion. They can be grouped via layers to be activated or

deactivated together dynamically. These layers can be

also composed according to some scoping constructs.

Our approach is different in that components adapt

their behaviour by considering the run-time changes of

the values of their attributes which might be triggered

by either contextual conditions or by local interaction.

Other approaches that target similar problems re-

volve around team formation [30]. However, these ap-

proaches are usually developed for a specific purpose

and thus have limited reusability. A more general and

reusable framework, named RMASBench [26], was pro-

posed for multi-agent coordination. Its main focus is

on benchmarking of distributed constraints optimisa-

tion algorithms used within this framework to resolve

team formation of agents.

Regarding total order broadcast protocols, we would

like to mention (1) the fixed sequencer approach [18],

(2) the moving sequencer approach [16], and (3) the

privilege-based approach [17]. The first approach is cen-

tralised and relies on a single sequencer of messages.

We can consider the cluster infrastructure as a natural

generalisation of this approach where instead of a sin-

gle server, many servers collaborate to deliver messages.

The second approach is similar to the ring infrastruc-

20 Yehia Abd Alrahman, Giulio Garbi

ture with the only exception that the role of the se-

quencer is transferred between the ring servers. This is

achieved by circulating a specific token between ring

servers. However, the liveness of this approach depends

on the token and fairness is hard to achieve if one server

has a larger number of senders than the other servers.

The third approach relies on consensus between compo-

nents to establish a total order. As mentioned before,

consensus-based approaches are not suitable for open

systems and they cannot deal with component failures.

7 Concluding Remarks and Future works

We proposed a distributed coordination infrastructure

for the AbC calculus and we proved its correctness. We

developed a corresponding programming API, named

GoAt, to exploit the main interaction primitives of the

AbC calculus directly in Go. The actual implementa-

tion of the API fully relies on the formal semantics

of AbC and is parametric with respect to the coordi-

nation infrastructure that manages the interaction be-

tween components. We used the GoAt API to program a

distributed variant of the graph colouring problem and

commented about the simplicity of its use. We eval-

uated the performance of the proposed infrastructure

with respect to others. The results showed that our in-

frastructure exhibits a good performance. We also de-

veloped an Eclipse plugin for GoAt to permit program-

ming in a high-level syntax which is less verbose and

helps programmers to focus on the problem they want

to solve rather than worrying about complicated syn-

tactic constructions.

We consider the tools that we have developed so

far as a starting point for integrating formal tools that

analyse the GoAt plugin code and ensure that it satisfies

specific properties before code generation. We also plan

to enhance the implementation of our infrastructures

by considering fairness and reliability issues. We also

want to consider the challenging problem of verifying

collective properties of GoAt code. As a step in this

direction, we developed the ReCiPe framework [10] (a

symbolic representation of AbC specifications) and we

extended LTL to be able to specify collective properties.

References

1. Y. Abd Alrahman, R. De Nicola, and M. Loreti. On the
power of attribute-based communication. In Formal Tech-

niques for Distributed Objects, Components, and Systems -
36th IFIP International Conference, FORTE, pages 1–18.
Springer, 2016.

2. Y. Abd Alrahman, R. De Nicola, and M. Loreti. Pro-
gramming of CAS systems by relying on attribute-based

communication. In Leveraging Applications of Formal

Methods, Verification and Validation: Foundational Tech-

niques - 7th International Symposium, ISoLA ’16, Proceed-
ings, Part I, pages 539–553. Springer, 2016.

3. Y. Abd Alrahman, R. De Nicola, and M. Loreti. Pro-
gramming the Interactions of Collective Adaptive Sys-
tems by Relying on Attribute-based Communication.
ArXiv e-prints, Oct. 2017.

4. Y. Abd Alrahman, R. De Nicola, M. Loreti, F. Tiezzi,
and R. Vigo. A calculus for attribute-based communica-
tion. In Proceedings of the 30th Annual ACM Symposium

on Applied Computing, SAC ’15, pages 1840–1845. ACM,
2015.

5. G. Agha. Actors: A Model of Concurrent Computation in

Distributed Systems. MIT Press, Cambridge, MA, USA,
1986.

6. Y. A. Alrahman, R. De Nicola, and G. Garbi. GoAt:
Attribute-based interaction in google go. In Leveraging

Applications of Formal Methods, Verification and Valida-

tion. Distributed Systems - 8th International Symposium,
ISoLA 2018, pages 288–303, 2018.

7. Y. A. Alrahman, R. De Nicola, G. Garbi, and M. Loreti.
A distributed coordination infrastructure for attribute-
based interaction. In Formal Techniques for Distributed

Objects, Components, and Systems - 38th IFIP WG 6.1 In-
ternational Conference, FORTE 2018, Proceedings, pages
1–20, 2018.

8. Y. A. Alrahman, C. A. Mezzina, and H. T. Vieira. Testing
for coordination fidelity. In Models, Languages, and Tools
for Concurrent and Distributed Programming, pages 152–
169, 2019.

9. Y. A. Alrahman, R. D. Nicola, and M. Loreti. A cal-
culus for collective-adaptive systems and its behavioural
theory. Information and Computation, 268:104457, 2019.

10. Y. A. Alrahman, G. Perelli, and N. Piterman. A compu-
tational framework for adaptive systems and its verifica-
tion. CoRR, abs/1906.10793, 2019.

11. Y. A. Alrahman and H. T. Vieira. A coordination pro-
tocol language for power grid operation control. Jour-
nal of Logical and Algebraic Methods in Programming,
109:100487, 2019.

12. E. Bonabeau. From classical models of morphogenesis to
agent-based models of pattern formation. Artificial Life,
3(3):191–211, 1997.

13. E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and
J.-B. Stefani. The fractal component model and its sup-
port in Java. Software: Practice and Experience, 36(11-
12):1257–1284, 2006.

14. T. Bures, F. Plasil, M. Kit, P. Tuma, and N. Hoch. Soft-
ware abstractions for component interaction in the inter-
net of things. IEEE Computer, 49(12):50–59, 2016.

15. S. Camazine, J. Deneubourg, N. R. Franks, J. Sneyd,
and G. Theraulaz. Self-Organization in Biological Sys-

tems. Princeton studies in complexity. Princeton Uni-
versity Press, 2003.

16. J.-M. Chang and N. F. Maxemchuk. Reliable broadcast
protocols. ACM Trans. Comput. Syst., 2:251–273, Aug.
1984.

17. F. Cristian. Asynchronous atomic broadcast. IBM Tech-
nical Disclosure Bulletin, 33(9):115–116, 1991.

18. F. Cristian and S. Mishra. The pinwheel asynchronous
atomic broadcast protocols. In Autonomous Decentral-
ized Systems, 1995. Proceedings. ISADS 95., Second Inter-

national Symposium on, pages 215–221. IEEE, 1995.
19. R. De Nicola, D. Latella, A. Lluch-Lafuente, M. Loreti,

A. Margheri, M. Massink, A. Morichetta, R. Pugliese,
F. Tiezzi, and A. Vandin. The SCEL language: Design,

A Distributed API for Coordinating AbC Programs 21

implementation, verification. In Software Engineering for
Collective Autonomic Systems - The ASCENS Approach,
pages 3–71. 2015.

20. A. Ferscha. Collective adaptive systems. In Adjunct Pro-
ceedings of the 2015 ACM International Joint Conference

on Pervasive and Ubiquitous Computing and Proceedings of
the 2015 ACM International Symposium on Wearable Com-

puters, UbiComp/ISWC’15 Adjunct, pages 893–895, New
York, NY, USA, 2015. ACM.

21. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impos-
sibility of distributed consensus with one faulty process.
J. ACM, 32(2):374–382, 1985.

22. R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-
oriented programming. Journal of Object Technology, 7(3),
2008.

23. C. A. R. Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666–677, 1978.

24. T. R. Jensen and B. Toft. Graph coloring problems, vol-
ume 39. John Wiley & Sons, 1995.

25. A. Klarl, L. Cichella, and R. Hennicker. From helena
ensemble specifications to executable code. In Formal

Aspects of Component Software - 11th International Sym-

posium, FACS 2014, pages 183–190, 2014.
26. A. Kleiner, A. Farinelli, S. D. Ramchurn, B. Shi, F. Maf-

fioletti, and R. Reffato. Rmasbench: benchmarking dy-
namic multi-agent coordination in urban search and res-
cue. In International conference on Autonomous Agents and

Multi-Agent Systems, AAMAS ’13, Saint Paul, MN, USA,

May 6-10, 2013, pages 1195–1196, 2013.
27. B. M. Maggs and R. K. Sitaraman. Algorithmic nuggets

in content delivery. SIGCOMM Comput. Commun. Rev.,
45(3):52–66, July 2015.

28. R. Milner, J. Parrow, and D. Walker. A calculus of mobile
processes, ii. Information and computation, 100(1):41–77,
1992.

29. P. D. Mosses. Modular structural operational semantics.
J. Log. Algebr. Program., 60-61:195–228, 2004.

30. J. Parker, E. Nunes, J. Godoy, and M. L. Gini. Exploiting
spatial locality and heterogeneity of agents for search and
rescue teamwork. J. Field Robotics, 33(7):877–900, 2016.

31. K. Prasad. A calculus of broadcasting systems. In TAP-

SOFT’91, pages 338–358. Springer, 1991.
32. J. B. Robertson. Continuous-time markov chains (W. j.

anderson). SIAM Review, 36(2):316–317, 1994.
33. T. P. Schulze. Efficient kinetic monte carlo simulation.

Journal of Computational Physics, 227(4):2455 – 2462,
2008.

34. M. Vukolić. The quest for scalable blockchain fabric:
Proof-of-work vs. bft replication. In J. Camenisch and
D. Kesdoğan, editors, Open Problems in Network Security,
pages 112–125, Cham, 2016. Springer International Pub-
lishing.

35. M. Wirsing, M. M. Hölzl, N. Koch, and P. Mayer, editors.
Software Engineering for Collective Autonomic Systems -
The ASCENS Approach, volume 8998 of Lecture Notes in
Computer Science. Springer, 2015.

	Introduction
	The AbC Calculus
	A Distributed Coordination Infrastructure
	A Go Attribute-based Interaction API
	Performance Evaluation
	Related Work
	Concluding Remarks and Future works

