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ABSTRACT

We propose a formalism to model and reason about multi-agent
systems. We allow agents to interact and communicate in different
modes so that they can pursue joint tasks; agents may dynamically
synchronize, exchange data, adapt their behaviour, and reconfig-
ure their communication interfaces. The formalism defines a local
behaviour based on shared variables and a global one based on mes-
sage passing. We extend ltl to be able to reason explicitly about
the intentions of the different agents and their interaction protocols.
We also study the complexity of satisfiability and model-checking
of this extension.

KEYWORDS

Agent Theories and Models, Logics for Agent Reasoning, Verifica-
tion of Multi-Agent Systems
ACM Reference Format:

Yehia Abd Alrahman, Giuseppe Perelli, and Nir Piterman. 2020. Reconfig-
urable Interaction for MAS Modelling. In Proc. of the 19th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS 2020),

Auckland, New Zealand, May 9–13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION

In recent years formal modelling of multi-agent systems (MAS) and
their analysis through model checking has received much atten-
tion [30, 41]. Several mathematical formalisms have been suggested
to represent the behaviours of such systems and to reason about
the strategies that agents exhibit [6, 30]. For instance, modelling
languages, such as RM [5, 22] and ISPL [30], are used to enable
efficient analysis by representing these systems through the usage
of BDDs. Temporal logics have been also extended and adapted
(e.g., with Knowledge support [17] and epistemic operators [20])
specifically to support multi-agent modelling [21]. Similarly, logics
that support reasoning about the intentions and strategic abilities
of such agents have been used and extended [14, 37].

These works are heavily influenced by the formalisms used for
verification (e.g., Reactive Modules [4, 5], concurrent game struc-
tures [6], and interpreted systems [30]). They rely on shared mem-
ory to implicitly model interactions. It is generally agreed that
explicit message passing is more appropriate to model interactions
among distributed agents because of its scalability [9, 26]. However,
the mentioned formalisms trade the advantages of message pass-
ing for abstraction, and abstract message exchange by controlling
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the visibility of state variables of the different agents. Based on an
early result, where a compilation from shared memory to message
passing was provided [8], it was believed that a shared memory
model is a higher level abstraction of distributed systems. How-
ever, this result holds only in specific cases and under assumptions
that practically proved to be unrealistic, see [2]. Furthermore, the
compositionality of shared memory approaches is limited and the
supported interaction interfaces are in general not very flexible [10].
Alternatively, message passing formalisms [35] are very composi-
tional and support flexible interaction interfaces. However, unlike
shared memory formalisms, they do not accurately support aware-
ness capabilities, where an agent may instantaneously inspect its
local state and adapt its behaviour while interacting1.

To combine the benefits of both approaches recent develop-
ments [2, 39] suggest adopting hybrids, to accurately represent
actual distributed systems, e.g., [3, 33]. We propose a hybrid for-
malism to model and reason about distributed multi-agent sys-
tems. A system is represented as a set of agents (each with local
state), executing concurrently and only interacting by message
exchange. Inspired by multi-robot systems, e.g., Kilobot [38] and
Swarmanoid [15], agents are additionally able to sense their local
states and partially their surroundings. Interaction is driven by mes-
sage passing following the interleaving semantics of [35]; in that
only one agent may send a message at a time while other agents
may react to it. To support meaningful interaction among agents
[40], messages are not mere synchronisations, but carry data that
might be used to influence the behaviour of receivers.

Our message exchange is adaptable and reconfigurable. Thus,
agents determine how to communicate and with whom. Agents
interact on links that change their utility based on the needs of
interaction at a given stage. Unlike existing message-passing mech-
anisms, which use static notions of network connectivity to estab-
lish interactions, our mechanisms allow agents to specify receivers
using logical formulas. These formulas are interpreted over the
evolving local states of the different agents and thus provide a
natural way to establish reconfigurable interaction interfaces (for
example, limited range communication [33], messages destined for
particular agents [1], etc.).

The advantages of our formalism are threefold. We provide more
realistic models that are close to their distributed implementations,
and how actual distributed MAS are developed, e.g., [25]. We pro-
vide a modelling convenience for high level interaction features
of MAS (e.g., coalition formation, collaboration, self-organisation,
etc), that otherwise have to be hard-coded tediously in existing
formalisms. Furthermore, we decouple the individual behaviour of
agents from their interaction protocols to facilitate reasoning about
either one separately.
1They model agents as mathematical expressions over interaction operators. Thus the
state of an agent is implicit in the structure of the expression.



In addition, we extend ltl to characterise messages and their
targets. This way we allow reasoning about the intentions of agents
in communication. Our logic can refer directly to the interaction
protocols. Thus the interpretation of a formula incorporates in-
formation about the causes of assignments to variables and the
flow of the interaction protocol. We also study the complexity of
satisfiability and Model-checking for our logic.

The paper’s structure is as follows: In Sect. 2, we informally
present our model and motivate our design choices. In Sect. 3,
we give the background. In Sect. 4 and Sect. 5 we introduce the
formalism and a case study. In Sect. 6 we discuss our extension to
LTL and in Sect. 7 we conclude.

2 AN INFORMAL OVERVIEW

We use a collaborative-robot scenario to informally illustrate the
distinctive features of our formalism and we later formalise it in
Section 5. The scenario is based on Reconfigurable Manufacturing
Systems (RMS) [27, 31], where assembly product lines coordinate
autonomously with different types of robots to produce products.

In our formalism, each agent has a local state consisting of a
set of variables whose values may change due to either contextual
conditions or side-effects of interaction. The external behaviour of
an agent is only represented by the messages it exposes to other
agents while the local one is represented by changes to its state
variables. These variables are initialised by initial conditions and
updated by send- and receive- transition relations. In our example,
a product-line agent initiates different production procedures based
on the assignment to its product variable “prd”, which is set by the
operator, while it controls the progress of its status variable “st”
based on interactions with other robots. Furthermore, a product-
line agent is characterised: (1) externally only by the recruitment
and assembly messages it sends to other robots and (2) internally
by a sequence of assignments to its local variables.

Before we explain the send- and receive- transition relations and
show the dynamic reconfiguration of communication interfaces we
need to introduce a few additional features. We assume that there is
an agreed set of channels/links ch that includes a unique broadcast
channel⋆. Broadcasts have non-blocking send and blocking receive
while multicasts have blocking send and receive. In a broadcast,
receivers (if exist) may anonymously receive a message when they
are interested in its values and when they satisfy the send guard.
Otherwise, the agent does not participate in the interaction either
because they cannot (do not satisfy the guard) or because they are
not interested (make an idle transition). In multicast, all agents
connected to the multicast channel must participate to enable the
interaction. For instance, recruitment messages are broadcast be-
cause a line agent assumes that there exist enough robots to join the
team while assembly messages are multicast because they require
that the whole connected team is ready to assemble the product.

Agents dynamically decide (based on local state) whether they
can use/connect-to multicast channels while the broadcast channel
is always available. Thus, initially, agents may not be connected
to any channel, except for the broadcast one ⋆. These channels
may be learned using broadcast messages and thus a structured
communication interface can be built at run-time, starting from a
(possibly) flat one.

Agents usemessages to send selected data and specify how and to
whom. Namely, the values in a message specify what is exposed to
the others; the channel specifies how to coordinate with others; and
a send guard specifies the target. Accordingly, each message carries
an assignment to a set of agreed data variables d, i.e., the exposed
data; a channel ch; and a send guardдs . In order to write meaningful
send guards, we assume a set of common variables cv that each
agent stores locally and assigns its own information (e.g., the type of
agent, its location, its readiness, etc.). Send guards are expressed in
terms of conditions on these variables and are evaluated per agent
based on their assigned local values. Send guards are parametric
to the local state of the sender and specify what assignments to
common variables a potential receiver must have. For example, an
agent may send a dedicated link name to a selected set of agents
by assigning a data variable in the communicated message and this
way a coalition can be built incrementally at run-time. In our RMS,
the send guard of the recruitment message specifies the types of
the targeted robots while the data values expose the number of
required robots per type and a dedicated multicast link to be used
to coordinate the production.

Targeted agents may use incoming messages to update their
states, reconfigure their interfaces, and/or adapt their behaviour. In
order to do so, however, agents are equipped with receive guards
дr ; that might be parametrised to local variables and channels, and
thus dynamically determine if an agent is connected to a given
channel. The interaction among different agents is then derived
based on send- and receive- transition relations. These relations are
used to decide when to send/receive a message and what are the
side-effects of interaction. Technically, every agent has a send and a
receive transition relation. Both relations are parameterised by the
state variables of the agent, the data variables transmitted on the
message, and by the channel name. A sent message is interpreted as
a joint transition between the send transition relation of the sender
and the receive transition relations of all the receivers. For instance,
a robot’s receive guard specifies that other than the broadcast link
it is also connected to a multicast link that matches the current
value of its local variable “lnk”. The robot then uses its receive
transition relation to react to a recruitment message, for instance,
by assigning to its “lnk” the link’s data value from the message.

Furthermore, in order to send a message the following has to
happen. The send transition relation of the sender must hold on:
a given state of the sender, a channel name, and an assignment
to data variables. If the message is broadcast, all agents whose
assignments to common variables satisfy the send guard jointly
receive the message, the others discard it. If the message is multicast,
all connected agents must satisfy the send guard to enable the
transmission (as otherwise they block the message). In both cases,
sender and receivers execute their send- and receive-transition
relations jointly. The local side-effect of the message takes into
account the origin local state, the channel, and the data. In our
example, a (broadcast) recruitment message is received by all robots
that are not assigned to other teams (assigned ones discard it) and
as a side effect they connect to a multicast channel that is specified
in the message. A (multicast) assembly message can only be sent
when the whole recruited team is ready to receive (otherwise the
message is blocked) and as a side effect the team proceeds to the
next production stage.



Clearly, the dynamicity of our formalism stems from the fact that
we base interactions directly over the evolving states of the different
agents rather than over static notions of network connectivity as
of existing approaches.

3 TRANSITION SYSTEMS

ADoubly-Labeled Transition System (DLTS) is𝒯 = ⟨Σ, ϒ, S, S0,R,L⟩,
where Σ is a state alphabet, ϒ is a transition alphabet, S is a set of
states, S0 ⊆ S is a set of initial states, R ⊆ S × ϒ × S is a transition
relation, and L : S → Σ is a labelling function.

A path of a transition system 𝒯 is a maximal sequence of states
and transition labels σ = s0,a0, s1,a1, . . . such that s0 ∈ S0 and for
every i ≥ 0 we have (si ,ai , si+1) ∈ R. We assume that for every
state s ∈ S there are a ∈ ϒ and s ′ ∈ S such that (s,a, s ′) ∈ R. Thus,
a sequence σ is maximal if it is infinite. If |ϒ| = 1 then 𝒯 is a
state-labeled system and if |Σ| = 1 then 𝒯 is a transition-labeled
system.

We introduce Discrete Systems (DS) that represent state-labeled
systems symbolically. ADS is𝒟 = ⟨𝒱 ,θ , ρ⟩, where the components
of 𝒟 are as follows:
• 𝒱 = {v1, ...,vn }: A finite set of typed variables. Variables range
over discrete domains, e.g., Boolean or Integer. A state s is an
interpretation of 𝒱 , i.e., if Dv is the domain of v , then s is in∏

vi ∈𝒱 Dvi .
• θ : This is an assertion over 𝒱 characterising all the initial states
of the DS. A state is called initial if it satisfies θ .

• ρ : A transition relation. This is an assertion ρ(𝒱 ∪ 𝒱 ′), where
𝒱 ′ is a primed copy of variables in 𝒱 . The transition relation
ρ relates a state s ∈ Σ to its 𝒟-successors s ′ ∈ Σ, i.e., (s, s ′) ⊨
ρ, where s is an interpretation to variables in 𝒱 and s ′ is for
variables in 𝒱 ′.
The DS 𝒟 gives rise to a state-labeled transition system 𝒯𝒟 =

⟨Σ, {1},T ,T0,R⟩, where Σ and T are the set of states of 𝒯𝒟 , T0 is
the set of initial states, and R is the set of triplets (s, 1, s ′) such that
(s, s ′) ⊨ ρ. Clearly, the paths of 𝒯𝒟 are exactly the paths of 𝒟 , but
the size of 𝒯𝒟 is exponentially larger than the description of 𝒟 .

A common way to translate a DLTS into a DS, which we adapt
and extend below, would be to include additional variables that
encode the transition alphabet. Given such a set of variables 𝒱ϒ , an
assertion ρ(𝒱 ∪ 𝒱ϒ ∪ 𝒱 ′) characterises the triplets (s,υ, s ′) such
that (s,υ, s ′) ⊨ ρ, where s supplies the interpretation to 𝒱 , υ to 𝒱ϒ

and s ′ to 𝒱 ′.

4 RECIPE: RECONFIGURABLE

COMMUNICATING PROGRAMS

We formally present the ReCiPe communication formalism and its
main ingredients. We start by specifying agents (or programs) and
their local behaviours and we show how to compose these local
behaviours to generate a global (or a system) one. We assume that
agents rely on a set of common variables cv, a set of data variables
d, and a set of channels ch containing the broadcast one ⋆.

Definition 4.1 (Agent). An agent isAi = ⟨Vi , fi , д
s
i , д

r
i ,𝒯

s
i , 𝒯

r
i ,θi ⟩,

where:
• Vi is a finite set of typed local variables, each ranging over a
finite domain. A state si is an interpretation ofVi , i.e., if Dom(v)
is the domain of v , then si is an element in

∏
v ∈Vi Dom(v). We

use V ′ to denote the primed copy of V and Idi to denote the
assertion

∧
v ∈Vi v = v

′.
• fi : cv → Vi is a function, associating common variables to
local variables. We freely use the notation fi for the assertion∧
cv ∈cv cv = fi (cv).

• дsi (Vi , ch,d, cv) is a send guard specifying a condition on re-
ceivers. That is, the predicate, obtained from дsi after assigning
si , ch, and d (an assignment to d) , which is checked against
every receiver j after applying fj .

• дri (Vi , ch) is a receive guard describing the connection of an
agent to channel ch. We let дri (Vi ,⋆) = true, i.e., every agent is
always connected to the broadcast channel. We note, however,
that receiving a broadcast message could have no effect on an
agent.

• 𝒯 s
i (Vi ,V

′
i ,d, ch) is an assertion describing the send transition

relation while 𝒯 r
i (Vi ,V

′
i ,d, ch) is an assertion describing the

receive transition relation. We assume that an agent is broadcast
input-enabled, i.e., ∀v, d ∃v ′ s.t. 𝒯 r

i (v,v ′, d,⋆).
• θi is an assertion onVi describing the initial states, i.e., a state is
initial if it satisfies θi .

Agents exchange messages. A message is defined by the channel
it is sent on, the data it carries, the sender identity, and the assertion
describing the possible local assignments to common variables of
receivers. Formally:

Definition 4.2 (Observation). An observation is a tuple m =

(ch, d, i,π ), where ch is a channel, d is an assignment to d, i is
an identity, and π is a predicate over cv.

In Definition 4.2 we interpret π as a set of possible assignments to
common variables cv. In practice, π is obtained fromдsi (s

i , ch, d, cv)
for an agent i , where si ∈

∏
v ∈Vi Dom(v) and ch and d are the

channel and assignment in the observation. We freely use π to
denote either a predicate over cv or its interpretation, i.e., the set
of variable assignments c such that c ⊨ π .

A set of agents agreeing on the common variables cv, data vari-
ables d, and channels ch define a system. We define a DLTS captur-
ing the interaction and then give a DS-like symbolic representation
of the same system.

Let ϒ be the set of possible observations. That is, let ch be the
set of channels, 𝒟 the product of the domains of variables in d, 𝒜
the set of agent identities, and Π(cv) the set of predicates over cv
then ϒ ⊆ ch × 𝒟 × 𝒜 × Π(cv). In practice, we restrict attention
to predicates in Π(cv) that are obtained from дsi (Vi , ch,d, cv) by
assigning to i and Vi the identity and a state of some agent.

Let Si=Πv ∈ViDom(v) and S = ΠiSi . Given an assignment s ∈ S
we denote by si the projection of s on Si .

Definition 4.3 (Transition System). Given a set {Ai }i of agents,
we define a doubly-labeled transition system 𝒯 = ⟨Σ, ϒ, S, S0,R,L⟩,
where ϒ and S are as defined above, Σ = S , S0 are the states that
satisfy

∧
i θi , L : S → Σ is the identity function, and R is as follows.

A triplet (s,υ, s ′) ∈ R, where υ = (ch, d, i,π ), if the following
conditions hold:
• For the sender i we have that π = дsi (si , ch, d), i.e., π is obtained
from дsi by assigning the state of i , the data variables assignment
d and the channel ch, and 𝒯 s

i (si , s
′
i , d, ch) evaluates to true.



• For every other agent i ′ we have that either (a) π (f −1i′ (si′)),
𝒯 r
i′ (si′ , s

′
i′ , d, ch), andд

r
i′(si′ , ch) all evaluate to true, (b)д

r
i′(si′ , ch)

evaluates to false and si′ = s ′i′ , or (c) ch = ⋆, π (f
−1
i′ (si′)) evalu-

ates to false and si′ = s ′i′ . By π (f
−1
i′ (si )) we denote the assign-

ment of v ∈ cv by si (fi′(v)) in π .

An observation (ch, d, i,π ) labels a transition from s to s ′ if the
sender i determines the predicate (by assigning si , d, and ch in дsi )
and the send transition of i is satisfied by assigning si , s ′i and d to
it, i.e., the sender changes the state from si to s ′i and sets the data
variables in the observation to d. All the other agents either (a)
satisfy this condition on receivers (when translated to their local
copies of the common variables), are connected to ch (according to
дri′ ), and perform a valid transition when reading the data sent in d,
(b) are not connected to ch (according to дri′ ) and all their variables
do not change, or (c) the channel is a broadcast channel, the agent
does not satisfy the condition on receivers, and all their variables
do not change.

We now define a symbolic version of the same transition system.
To do that we have to extend the format of the allowed transitions
from assertions over an extended set of variables to assertions that
allow quantification.

Definition 4.4 (Discrete System). Given a set {Ai }i of agents, a
system is defined as follows: S = ⟨𝒱 , ρ, θ⟩, where 𝒱 =

⊎
i
Vi and

θ =
∧
i
θi and a state of the system is in

∏
i
∏

v ∈Vi Dom(v). The

transition relation of the system is characterised as follows:

ρ : ∃ch ∃d ∨
k
𝒯 s
k (Vk , V ′

k , d, ch) ∧
∧
j,k

∃cv.fj∧

©«
дrj (Vj , ch) ∧ 𝒯 r

j (Vj , V
′
j , d, ch) ∧ дsk (Vk , ch, d, cv)

∨ ¬дrj (Vj , ch) ∧ Idj

∨ ch = ⋆ ∧ ¬дsk (Vk , ch, d, cv) ∧ Idj

ª®®®¬
The transition relation ρ relates a system state s to its successors

s ′ given an observationm = (ch, d,k,π ). Namely, there exists an
agent k that sends a message with data d (an assignment to d)
with assertion π (an assignment to дsk ) on channel ch and all other
agents are either (a) connected, satisfy the send predicate, and
participate in the interaction, (b) not connected and idle, or (c) do
not satisfy the send predicate of a broadcast and idle. That is, the
agents satisfying π (translated to their local state by the conjunct
∃cv. fj ) and connected to channel ch (i.e.,дrj (s j , ch)) get the message
and perform a receive transition. As a result of interaction, the state
variables of the sender and these receivers might be updated. The
agents that are not connected to the channel (i.e., ¬дrj (s

j , ch)) do
not participate in the interaction and stay still. In case of broadcast,
namely when sending on ⋆, agents are always connected and the
set of receivers not satisfying π (translated again as above) stay still.
Thus, a blocking multicast arises when a sender is blocked until
all connected agents satisfy π ∧ fj . The relation ensures that, when
sending on a channel that is different from the broadcast channel
⋆, the set of receivers is the full set of connected agents. On the
broadcast channel agents who do not satisfy the send predicate do
not block the sender.

The translation above to a transition system leads to a natural
definition of a trace, where the information about channels, data,

senders, and predicates is lost. We extend this definition to include
this information as follows:

Definition 4.5 (System trace). A system trace is an infinite se-
quence s0

m0
−−→ s1

m1
−−→ . . . of system states and observations such

that ∀t ≥ 0:mt = (cht , dt ,k,πt ), πt = дsk (s
k
t , dt , cht ), and:

(st , st+1) ⊨ 𝒯 s
k (skt , s

k
t+1, dt , cht ) ∧

∧
j,k

∃cv.fj∧

©«
дrj (s

j
t , cht ) ∧ 𝒯 r

j (s
j
t , s

j
t+1, dt , cht ) ∧ πt

∨ ¬дrj (s
j
t , cht ) ∧ s jt = s

j
t+1

∨ cht = ⋆ ∧ ¬πt ∧ s jt = s
j
t+1

ª®®®¬
That is, we use the information in the observation to localize

the sender k and to specify the channel, data values, and the send
predicate.

The following lemma relates the traces arising from Defini-
tion 4.5 to that of Definition 4.3.

Lemma 4.6. The traces of a system composed of a set of agents

{Ai }i are the paths of the induced DLTS.

5 COLLABORATIVE ROBOTS

We complete the details of the RMS example informally described
in Section 2. Many aspects of the example are kept very simple on
purpose due to lack of space.

The system, in our scenario, consists of an assembly product
line agent (line) and several types of task-driven robots. We only
give a program for type-1 (t1) because type-2 (t2) and type-3 (t3)
are similar. A product line is responsible for assembling the main
parts and delivering the final product. Different types of robots
are responsible for sub-tasks, e.g., retrieving and/or assembling
individual parts. The product line is generic and can be used to
produce different products and thus it has to determine the set of
resources, to recruit a team of robots, to split tasks and to coordinate
the final stage of production.

Every agent has copies of the common variables:@type indicating
its type (line, t1, t2, t3), @asgn indicating whether a robot is assigned,
and@rdy indicating what stage of production the robot is in. The set
of channels includes the broadcast channel⋆ andmulticast channels
{A, . . .}. For simplicity, we only use the multicast channel A and
fix it to the line agent. The set of data variables is {msg,no, lnk}
indicating the type of the message, a number (of robots per type),
and a name of a channel. When a data variable is not important
for some message it is omitted from the description. We also use
the notation keep(v) to denote that a variable is not changed by a
transition.

In addition to copies of common variables (e.g., fl (@type) =

ltype), the line agent has the following state variables: st is a state
ranging over {pnd, strt} (pending and start), lnk is the link of the
product line, prd is the id of the active product, and stage is used
to follow stages of the production. The initial condition θl of a line
agent is:
θl : st = pnd ∧ stage = 0 ∧ lnk = A ∧ (prd = 1 ∨ prd = 2)

Thus, the line agent starts with a task of assembling one of two
products and uses channel A. If there are multiple lines, then each
is initialised with a different channel.



The send guard of Line is of the form:

дsl : ch=⋆ ∧¬@asgn ∧ (prd=1→(@type=t1 ∨ @type=t2))∧

(prd=2→(@type=t1 ∨ @type=t3)) ∨ ch=lnk ∧ @rdy = stage

Namely, broadcasts are sent to robots whose @asgn is false (i.e.,
free to join a team). If the identity of the product to be assembled
is 1, then the required agents are t1 and t2 and if the identity of
the product is 2, then the required agents are t1 and t3. Messages
on channel A (the value of lnk) are sent to connected agents when
they reach a matching stage of production, i.e., @rdy = stage. The
receive guard of Line is ch = ⋆, i.e., it is only connected to channel
⋆.

The send transition relation of Line is of the form:

𝒯 s
l : keep(lnk, prd, ltype, lasgn, lrdy)∧©«

st = pnd ∧ d(msg 7→ team;no 7→ 2; lnk 7→ lnk)
∧ stage′ = 1 ∧ st′ = strt ∧ ch = ⋆

∨ st = strt ∧ d(msg 7→ asmbl) ∧ stage = 1∧

∧ st′ = strt ∧ stage′ = 2 ∧ ch = lnk

∨ st = strt ∧ d(msg 7→ asmbl) ∧ st′ = pnd

∧ stage = 2 ∧ stage′ = 0 ∧ ch = lnk

ª®®®®®®®®¬
Line starts in the pending state (see θl ). It broadcasts a request
(d(msg 7→ team)) for two robots (d(no 7→ 2)) per required type
asking them to join the team on the multicast channel stored in its
lnk variable (d(lnk 7→ lnk)). According to the send guard, if the
identity of the product to assemble is 1 (prd = 1) the broadcast goes
to type 1 and type 2 robots and if the identity is 2 then it goes to type
1 and type 3 robots. Thanks to channel mobility (i.e., d(lnk) = lnk)
a team on a dedicated link can be formed incrementally at run-time.
In the start state, Line attempts an assemble (blocking)multicast on
A. The multicast can be sent only when the entire team completed
the work on the production stage (when their common variable
@rdy agrees with stage). One multicast increases the value of stage
and keeps Line in the start state. A second multicast finalises the
production and Line becomes free again.

We set 𝒯 r
l : keep(all) as Line’s recieve transition relation. That

is, Line is not influenced by incoming messages.
We now specify the behaviour of t1-robots and show how an

autonomous and incremental one-by-one team formation is done
anonymously at run-time. In addition to copies of common variables
a t1-robot has the following variables: st ranges over {pnd, strt, end},
step is used to control the progress of individual behaviour, no (resp.
lnk) is a placeholder to a number (resp. link) learned at run-time,
and fb relabels common variables as follows: fb (@type) = btype,
fb (@asgn) = basgn and fb (@rdy) = brdy.

Initially, a robot is available for recruitment:
θb : (st = pnd) ∧ (btype = t1) ∧ ¬basgn ∧ (lnk = ⊥)∧

(step = brdy = no = 0)

The send guard specifies that a robot only broadcasts to unas-
signed robots of the same type, namely:

дsb : (ch = ⋆) ∧ (@type = btype) ∧ ¬@asgn.

The receive guard specifies that a t1-robot is connected either to
a broadcast⋆ or to a channel matching the value of its link variable:
дrb : ch = ⋆ ∨ ch = lnk.

The send 𝒯 s
b and receive 𝒯 r

b transition relations are:

𝒯 s
b : keep(lnk, btype)∧©«

st = strt ∧ d(msg 7→ form; lnk 7→ lnk;no 7→ no − 1)

∧ (no ≥ 1) ∧ step = 0 ∧ step′ = 1 ∧ st′ = end

∧ basgn′ ∧ (no′ = 0) ∧ ch = ⋆

∨ st = end ∧ step = 1 ∧ step′ = 2 ∧ . . .

.

.

. [individual behavior]

∨ st = end ∧ · · · ∧ step′ = n ∧ brdy′ = 1

ª®®®®®®®®®®¬
𝒯 r
b : keep(btype)∧©«

st = pnd ∧ d(msg 7→ team) ∧ st′ = strt

∧ lnk′ = d(lnk) ∧ no′ = d(no) ∧ ch = ⋆

∨ st = st′ = strt ∧ d(msg 7→ form) ∧ d(no) > 0 ∧ ch = ⋆

∧ ¬basgn′ ∧ lnk′ = d(lnk) ∧ no′ = d(no)
∨ st = strt ∧ d(msg 7→ form;no 7→ 0) ∧ ch = ⋆

∧ ¬basgn′ ∧ st′ = pnd ∧ lnk′ = ⊥ ∧ no′ = 0

∨ st = end ∧ d(msg 7→ asmbl) ∧ brdy = 1 ∧ ch = lnk
∧ basgn′ ∧ step = n ∧ st′ = end ∧ brdy′ = 2 ∧ step′ = 0

∨ st = end ∧ d(msg 7→ asmbl) ∧ brdy = 2 ∧ ch = lnk
∧ st′ = pnd ∧ brdy′ = 0 ∧ lnk′ = ⊥ ∧ ¬basgn′

ª®®®®®®®®®®®®®®®®®¬
The team formation starts when unassigned robots are in pend-

ing states (pnd) as specified by the initial condition θb . From this
state they may only receive a team message from a line agent (by
the 1st disjunct of 𝒯 r

b ). The message contains the number of re-
quired robots d(no) and a team link d(lnk). The robots copy these
values to their local variables (i.e., lnk′ = d(lnk) etc.) and move to
the start state (st′ = strt) where they either join the team (by 𝒯 s

b )
or step back (by 𝒯 r

b ) as follows:
• By the 1st disjunct of 𝒯 s

b a robot joins the team by broadcasting a
formmessage to t1-robots forwarding the number of still required
robots (d(no) = (no − 1)) and the team link (d(lnk) = lnk). This
message is sent only if no ≥ 1, i.e, at least one robot is needed.
The robot then moves to state (end) to start its mission.

• By the 2nd disjunct of 𝒯 r
b a robot receives a form message from

a robot, updating the number of still required robots (i.e., if
d(no) > 0), and remains in the start state.

• By the 3rd disjunct of 𝒯 r
b a robot receives a form message from a

robot, informing that no more robots are needed, i.e., d(no) = 0.
The robot then moves to the pending state and disconnects from
the team link, i.e., lnk′ = ⊥. Thus it may not block interaction
on the team link.

The last disjuncts of 𝒯 s
b specify that a team robot (i.e., with step = 1)

starts its mission independently until it finishes (step′ = n∧brdy′ =
1) . When all team robots finish they enable an asmbl message on
A, to start the next stage of production as specified by the 4th
disjunct of 𝒯 r

b . When the robots are at the final stage (i.e., brdy′ =
2) they enable another asmbl message to finalise the product and
subsequently they reset to their initial conditions.

6 LTOL: AN EXTENSION OF LTL

We introduce ltol, an extension of ltl with the ability to refer
and therefore reason about agents interactions. We replace the next
operator of ltl with the observation descriptors: possible ⟨O⟩ and
necessary [O], to refer to messages and the intended set of receivers.



The syntax of formulas φ and observation descriptorsO is as follows:

φ ::= v | ¬v | φ ∨ φ | φ ∧ φ | φ 𝒰 φ | φ ℛφ | ⟨O⟩φ | [O]φ

O ::= cv | ¬cv | ch | ¬ch | k | ¬k | d | ¬d | •∃O | •∀O
| O ∨O | O ∧O

We use the classic abbreviations→,↔ and the usual definitions
for true and false. We also introduce the temporal abbreviations
Fφ ≡ true 𝒰 φ (eventually), Gφ ≡ ¬F¬φ (globally) and φ 𝒲 ψ ≡

ψℛ(ψ∨φ) (weak until). Furthermorewe assume that all variables are
Boolean because every finite domain can be encoded by multiple
Boolean variables. For convenience we will, however, use non-
Boolean variables when relating to our RMS example.

The syntax of ltol is presented in positive normal form to facili-
tate translation into alternating Büchi automata (ABW) as shown
later. We, therefore, use Θ to denote the dual of formula Θ where
Θ ranges over either φ or O . Intuitively, Θ is obtained from Θ
by switching ∨ and ∧ and by applying dual to sub formulas, e.g.,
φ1 𝒰 φ2 = φ1 ℛφ2, φ1 ∧ φ2 = φ1 ∨ φ2, cv = ¬cv , and •∃O = •∀O .

Observation descriptors are built from referring to the different
parts of the observations and their Boolean combinations. Thus,
they refer to the channel in ch, the data variables in d, the sender
k , and the predicate over common variables in cv. These predicates
are interpreted as sets of possible assignments to common vari-
ables, and therefore we include existential •∃O and universal •∀O
quantifiers over these assignments.

The semantics of an observation descriptor O is defined for an
observationm = (ch, d, k, π ) as follows:

m ⊨ ch′ iff ch = ch′ m ⊨ ¬ch′ iff ch , ch′

m ⊨ d ′ iff d(d ′) m ⊨ ¬d ′ iff ¬d(d ′)
m ⊨ k ′ iff k = k ′ m ⊨ ¬k ′ iff k , k ′

m ⊨ cv iff for all c ∈ π we have c ⊨ cv
m ⊨ ¬cv iff there is c ∈ π such that c ⊭ cv
m ⊨ •∃O iff there is c ∈ π such that (ch,d,k, {c}) ⊨ O
m ⊨ •∀O iff for all c ∈ π it holds that (ch,d,k, {c}) ⊨ O
m ⊨ O1 ∨O2 iff eitherm ⊨ O1 orm ⊨ O2
m ⊨ O1 ∧O2 iff m ⊨ O1 andm ⊨ O2

We only comment on the semantics of the descriptors •∃O and
•∀O and the rest are standard propositional formulas. The descrip-
tor •∃O requires that at least one assignment c to the common
variables in the sender predicate π satisfies O . Dually •∀O requires
that all assignments in π satisfy O . Using the former, we express
properties where we require that the sender predicate has a pos-
sibility to satisfy O while using the latter we express properties
where the sender predicate can only satisfy O . For instance, both
observations (ch, d,k, cv1 ∨ ¬cv2) and (ch, d,k, cv1) satisfy •∃cv1
while only the latter satisfies •∀cv1. Furthermore, the observation
descriptor •∀false∧ch = ⋆ says that a message is sent on the broad-
cast channel with a false predicate. That is, the message cannot
be received by other agents. In our RMS example in Section 5, the
descriptor •∃(@type = t1) ∧ •∀(@type = t1) says that the message is
intended exactly for robots of type-1.

Note that the semantics of •∃O and •∀O (when nested) ensures
that the outermost cancels the inner ones, e.g., •∃(O1 ∨ (•∀(•∃O2)))
is equivalent to •∃(O1 ∨O2). Thus, we assume that they are written
in the latter normal form.

We interpret ltol formulas over system computations:
Definition 6.1 (System computation). A system computation ρ

is a function from natural numbers N to 2𝒱 ×M where 𝒱 is the
set of state variable propositions and M = ch × 2d × K × 22

cv
is

the set of possible observations. That is, ρ includes values for the
variables in 2𝒱 and an observation inM at each time instant.

We denote by si the system state at the i-th time point of the
system computation. Moreover, we denote the suffix of ρ starting
with the i-th state by ρ≥i and we usemi to denote the observation
(ch, d,k,π ) in ρ at time point i .

The semantics of an ltol formula φ is defined for a computation
ρ at a time point i as follows:

ρ≥i ⊨ v iff si ⊨ v and ρ≥i ⊨ ¬v iff si ⊭ v ;
ρ≥i ⊨ φ2 ∨ φ2 iff ρ≥i ⊨ φ1 or ρ≥i ⊨ φ2;
ρ≥i ⊨ φ2 ∧ φ2 iff ρ≥i ⊨ φ1 and ρ≥i ⊨ φ2;
ρ≥i ⊨ φ1 𝒰 φ2 iff there exists j ≥ i s.t. ρ≥j ⊨ φ2 and,

for every i ≤ k < j, ρ≥k ⊨ φ1;
ρ≥i ⊨ φ1 ℛφ2 iff for every j ≥ i either ρ≥j ⊨ φ2 or

there exists i ≤ k < j s.t. ρ≥k ⊨ φ1;
ρ≥i ⊨ ⟨O⟩φ iff mi ⊨ O and ρ≥i+1 ⊨ φ;
ρ≥i ⊨ [O]φ iffmi ⊨ O implies ρ≥i+1 ⊨ φ.

Intuitively, the temporal formula ⟨O⟩φ is satisfied on the compu-
tation ρ at point i if the observationmi satisfiesO and φ is satisfied
on the suffix computation ρ≥i+1. On the other hand, the formula
[O]φ is satisfied on the computation ρ at point i ifmi satisfying O
implies that φ is satisfied on the suffix computation ρ≥i+1. Other
formulas are interpreted exactly as in classic ltl.

With observation descriptors we can refer to the intention of
senders. For example, O1 := •∃(@type = t1) ∧ •∃(@type = t2) ∧

•∀(@type = t1 ∨ @type = t2) specifies that the target of the message
is “exactly and only" both type-1 and type-2 robots. Thus, we may
specify that whenever the line agent “l" recruits for a product with
identity 1, it notifies both type-1 and type-2 robots:G((prd = 1∧st =
pnd ∧ ⟨l ∧ ch = ⋆⟩true) → ⟨O1⟩true). Namely, whenever the line
agent is in the pending state and tasked with product 1 it notifies
both type-1 and type-2 robots by a broadcast. The pattern “After q
have exactly twop until r” [16, 32] can be easily expressed in ltl and
can be used to check the formation protocol. Consider the following
formulas. Let φ1 := ⟨msg = team ∧ no = 2 ∧ •∃(@type = t1)⟩true, i.e.,
a team message is sent to type-1 robots requiring two robots. Let
φ2 := ⟨msg = form ∧ •∃(@type = t1)⟩true, i.e., a formation message
is sent to type-1 robots. Let φ3 := ⟨ch = A⟩true, i.e., a message is
sent on channel A. Then, “After φ1 have exactly two φ2 until φ3”
says that whenever a team message is sent to robots of type-1 re-
quiring two robots, then two form messages destined for type-1
robots will follow before using the multicast channel. That is, two
type-1 robots join the team before a (blocking) multicast on channel
Amay become possible.

We can also reason at a local rather than a global level. For
instance, we can specify that robots follow a “correct” utilisation
of channel A. Formally, let O1(t) := msg=team ∧ •∃(@type=t), i.e., a
team message is sent to robots of type t;O2(k, t) := msg=form∧¬k∧
no=0 ∧ •∃(¬@asgn ∧ @type=t), i.e., a robot different from k sends a
formmessage saying no more robots are needed and this message is
sent to unassigned type t robots; and let O3(t) := msg=asmbl ∧ ch =
A ∧ @rdy=2 ∧ •∃(@type=t), i.e., an assembly message is sent on



channelA to robots of type t who reached stage 2 of the production.
Thus, for robot k of type t, the formulas
(1) φ1(t ) := (lnk,A)𝒲 ⟨O1(t )⟩true
(2) φ2(k, t ) := G([O2(k, t ) ∨O3(t )]φ1(t ))

state that: (1) robots are not connected to channel A until they get
a team message, inviting them to join a team; (2) if either they are
not selected (O2(k, t)) or they finished production after selection
(O3(t)) then they disconnect again until the next team message.
This reduces to checking the “correct” utilisation of channel A to
individual level, by verifying these properties on all types of robots
independently. By allowing the logic to relate to the set of targeted
robots, verifying all targeted robots separately entails the correct
“group usage" of channel A.

To model-check ltol formulas we first need to translate them to
Büchi automata. The following theorem states that the set of com-
putations satisfying a given formula are exactly the ones accepted
by some finite automaton on infinite words. Before we proceed
with the theorem, we fix the following notations. Given a tuple
T = (t1, . . . , tn ), we use T [i] to denote the element ti of T and
T [x/i] to denote the tuple where ti is replaced with x .

Theorem 6.2. For every ltol formula φ, there is an ABW Aφ =
⟨Q, Σ,M,δφ ,q0, F ⊆ Q⟩ such that Lω (Aφ ) is exactly the set of com-

putations satisfying the formula φ.

Proof. The set of states Q is the set of all sub formulas of φ
with φ being the initial state q0. The automaton has two alphabets,
namely a state-alphabet Σ = 2𝒱 and a message-alphabet M =

ch × 2d × K × 22
cv

. The set F of accepting states consists of all
sub formulas of the form φ1 ℛ φ2. The transition relation δφ :
Q × Σ ×M → ℬ+(Q) is defined inductively on the structure of φ.
It also relies on an auxiliary function f : O ×M → B to evaluate
observations and is defined recursively on O as follows:
• f (cv,m) =

∧
c ∈m[4] c(cv) and

f (¬cv,m) =
∨
c ∈m[4] ¬c(cv);

• f (ch,m) = true ifm[1] = ch and false otherwise;
• f (¬ch,m) = true ifm[1] , ch and false otherwise;
• f (d,m) = true ifm[2](d) and false otherwise;
• f (¬d,m) = true if ¬m[2](d) and false otherwise;
• f (k,m) = true ifm[3] = k and false otherwise;
• f (¬k,m) = true ifm[3] , k and false otherwise;
• f (O1 ∨O2,m) = f (O1,m) ∨ f (O2,m) and

f (O1 ∧O2,m) = f (O1,m) ∧ f (O2,m);
• f (•∃O,m) =

∨
c ∈m[4] f (O,m[c/4]);

• f (•∀O,m) =
∧
c ∈m[4] f (O,m[c/4]).

The transition relation δφ is defined as follows:
• δφ (v,σ ,m) = true if v ∈ σ and false otherwise;
• δφ (¬v,σ ,m) = true if v < σ and false otherwise;
• δφ (φ1 ∨ φ2,σ ,m) = δφ (φ1,σ ,m) ∨ δφ (φ2,σ ,m);
• δφ (φ1 ∧ φ2,σ ,m) = δφ (φ1,σ ,m) ∧ δφ (φ2,σ ,m);
• δφ (φ1 𝒰 φ2,σ ,m) = δφ (φ1,σ ,m) ∧ φ1 𝒰 φ2 ∨ δφ (φ2,σ ,m);
• δφ (φ1 ℛφ2,σ ,m) = (δφ (φ1,σ ,m) ∨ φ1 ℛφ2) ∧ δφ (φ2,σ ,m);
• δφ (⟨O⟩φ,σ ,m) = φ ∧ f (O,m);
• δφ ([O]φ,σ ,m) = φ ∨ f (O,m).
The proof of correctness of this construction proceeds by induc-

tion on the structure of φ. □

Note that, from Theorem 6.2, the number of states inAφ is linear
in the size ofφ, i.e., |Q | is in𝒪(|φ |). The size of the transition relation
|δφ | is in𝒪(|Q |2.|Σ|.|M |), i.e., it is in |φ |2.|ch|.|K |.2𝒪( |𝒱 |+ |d |+2|cv|).
Furthermore the function f can be computed in 𝒪(|O |.|cv|) time
and in𝒪(log |O | + log |cv|) space. Finally, the size of the alternating
automaton |Aφ | is in
𝒪(|Q |.|δφ |), i.e., |Aφ | is in (|φ |)3.|ch|.|K |.2𝒪( |𝒱 |+ |d |+2|cv|)

Proposition 6.3 ([36]). For every alternating Büchi automaton A
there is a nondeterministic Büchi automaton A′

such that Lω (A
′) =

Lω (A) and |Q ′ | is in 2𝒪( |Q |)
.

By Theorem 6.2 and Proposition 6.3, we have that:

Corollary 6.4. For every formula φ there is a Büchi automaton

A with a state-alphabet Σ = 2𝒱
and a message-alphabetM = ch ×

2d × K × 22
cv

where A = ⟨Q, Σ, M, S0,δ , F ⟩ and Lω (A) is exactly
the set of computations satisfying the formula φ such that:

• |Q | is in 2𝒪( |φ |)
and |δ | is in 𝒪(|Q |2.|Σ|.|M |), i.e., |δ | is in

|ch|.|K |.2𝒪( |φ |+ |𝒱 |+ |d |+2|cv|)

• The required space for building the automaton is nlog(|Q |.|δ |),

i.e., it is in 𝒪(log |ch| + log |K | + |φ | + |𝒱 | + |d| + 2 |cv |)
• The size of the Büchi automaton is |Q |.|δ |, i.e., |A| is in

|ch|.|K |.2𝒪( |𝒱 |+ |d |+2|cv|)

We do not see the double exponential in the automaton size with
respect to common variables cv as a major restriction. Note that
|cv| does not grow with respect to the size of the formula or to the
number of the agents. Thus, if we limit the number of common
variables (which should be small), efficient verification can still be
attainable.

Theorem 6.5. The satisfiability problem of ltol is pspace-complete

with respect to |φ |, |𝒱 |, |d|, log |ch|, log |K | and expspace with re-

spect to |cv|.

Theorem 6.6. The model-checking problem of ltol is pspace-

complete with respect to |Sys |, |φ |, |𝒱 |, |d|, log |ch|,
log |K | and expspace with respect to |cv|.

7 CONCLUDING REMARKS

We introduced a formalism that combines message-passing and
shared-memory to facilitate realistic modelling of distributed MAS.
A system is defined as a set of distributed agents that execute
concurrently and only interact by message-passing. Each agent
controls its local behaviour as in Reactive Modules [5, 19] while
interacting externally by message passing as in π -calculus-like
formalisms [1, 35]. Thus, we decouple the individual behaviour of
an agent from its external interactions to facilitate reasoning about
either one separately. We also make it easy to model interaction
features of MAS, that may only be tediously hard-coded in existing
formalisms.

We introduced an extension to ltl, named ltol, that charac-
terises messages and their targets. This way we may not only be
able to reason about the intentions of agents in communication, but
also we may explicitly specify their interaction protocols. Finally,
we showed that the model-checking problem for ltol is expspace
only with respect to the number of common variables and pspace-
complete with respect to the rest of the input.



Related works. As mentioned before, formal modelling is highly
influenced by traditional formalisms used for verification, see [5, 17].
These formalisms are, however, very abstract in that their models
representations are very close to their mathematical interpreta-
tions (i.e., the underlying transition systems). Although this may
make it easy to conduct some logical analysis [6, 14, 37] on mod-
els, it does imply that most of the high-level MAS features may
only be hard-coded, and thus leading to very detailed models that
may not be tractable or efficiently implementable. This concern has
been already recognised and thus more formalisms have been pro-
posed, e.g., Interpreted Systems Programming Language (ISPL) [30]
and MOCHA [7] are proposed as implementation languages of
Interpreted Systems (IS) [17] and Reactive Modules (RM) [5] respec-
tively. They are still either fully synchronous or shared-memory
based and thus do not support flexible coordination and/or in-
teraction interfaces. A recent attempt to add dynamicity in this
sense has been adopted by visibly CGS (vCGS) [10]: an extension of
Concurrent-Game Structures (CGS) [6] to enable agents to dynami-
cally hide/reveal their internal states to selected agents. However,
vCGS relies on an assumption of [8] which requires that agents
know the identities of each other. This, however, only works for
closed systems with a fixed number of agents.

Other attempts to add dynamicity and reconfiguration include
dynamic I/O automata [13], Dynamic reactive modules of Alur and
Grosu [4], Dynamic reactive modules of Fisher et al. [19], and open
MAS [28]. However, their main interest was in supporting dynamic
creation of agents. Thus, the reconfiguration of communication
was not their main interest. While ReCiPe may be easily extended
to support dynamic creation of agents, none of these formalisms
may easily be used to control the targets of communication and
dissemination of information.

As for logics we differ from traditional languages like ltl and
ctl in that our formula may refer to messages and their constraints.
This is, however, different from the atomic labels of pdl [34] and
modal µ-calculus [29] in that ltol mounts complex and structured
observations on which designers may predicate on. Thus the in-
terpretation of a formula includes information about the causes of
variable assignments and the interaction protocols among agents.
Such extra information may prove useful in developing composi-
tional verification techniques.

Future works. We plan to provide tool support for ReCiPe and
ltol, but with a more user-friendly syntax.

We want to exploit the interaction mechanisms in ReCiPe and
the extra information in ltol formulas to conduct verification com-
positionally. As mentioned, we believe that relating to sender in-
tentions will facilitate that.

We intend to study the relation with respect to temporal epis-
temic logic [24]. Although we do not provide explicit knowledge
operators, the combination of data exchange, receivers selection,
and enabling/disabling of synchronisation allow agents to dynami-
cally deduce information about each other. Furthermore we want
to extend ReCiPe to enable dynamic creation of agents while re-
configuring communication.

Finally, we want to target the distributed synthesis problem [18].
Several fragments of the problem have been proven to be decidable,
e.g., when the information of agents is arranged hierarchically [12],

the number of agents is limited [23], or the actions are made pub-
lic [11]. We conjecture that the ability to disseminate information
and reason about it might prove useful in this setting.
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