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In magnetic trilayer systems, spin pumping is generally addressed as a reciprocal mechanism characterized
by one unique spin-mixing conductance common to both interfaces. However, this assumption is questionable
in cases where different types of interfaces are present. Here, we present a general theory for analyzing spin
pumping in cases with more than one unique interface and where the magnetic coupling is allowed to be
noncollinear. The theory is applied to analyze layer-resolved ferromagnetic resonance experiments on the trilayer
system Ni80Fe20/Ru/Fe49Co49V2 where the Ru spacer thickness is varied to tune the indirect exchange coupling.
It is demonstrated that the equation of motion of macrospins driven by spin pumping need to be modified in case
of noncollinear coupling. Our analysis also shows that the spin pumping in trilayer systems with dissimilar
magnetic layers, in general, is nonreciprocal.
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I. INTRODUCTION

Spin transport in thin-film heterostructures can generate
a rich spectrum of physical effects [1–9] and has great
potential for realizing new spintronic functionality [10,11].
Pure spin currents, which can modify the dynamics of mag-
netic multilayers, can be generated in metallic ferromagnetic
(FM)/nonmagnetic (NM) heterostructures via the spin pump-
ing process [12]. Precessing spins in the FM generate a spin
current that can diffuse away from the FM/NM interface and
into the NM layer. Propagation of spin currents in the het-
erostructure can lead to spin accumulation in the NM material
[13], spin to charge conversion in a NM layer [14], increased
Gilbert-like damping [15], and nonlocal perturbation of a
second FM layer [16].

The efficiency of the spin-pumping process across a
FM/NM interface is typically parametrized by the spin-
mixing conductance g↑↓ which relates the additional damping
from spin pumping to the film thickness and intrinsic proper-
ties [12,17]. In magnetic trilayer structures (FM1/NM/FM2),

spin pumping is often treated as a reciprocal process (FM1
SP⇔

FM2), characterized by a single g↑↓ common to both inter-
faces; this approach works well when FM1 and FM2 are the
same material that generates an equivalent FM/NM inter-
face [18,19]. Many spintronic devices rely on layered mag-
netic structures where FM1 and FM2 are different materials
[20–25] with different interfaces on each side of the spacer
layer. In several cases, these systems have more complex
interlayer exchange, such as biquadratic exchange, combined
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with noncollinear magnetic configurations. This calls for an
analytical framework to analyze magnetization dynamics of
such systems where such complexities are explicitly con-
sidered. We provide such a theoretical model in this article
together with experimental data.

The model proposed accounts for FM1 and FM2 layers
with different intrinsic parameters. Two key features of the
treatment are as follows: (a) the separation of the spin-mixing
conductance into distinct contributions for the two dissimilar
interfaces, and (b) a self-consistent macrospin framework for
noncolinear magnetizations. We apply this theory to analyze
layer-resolved ferromagnetic resonance (FMR) experiments
measured with x-ray-detected FMR (X-FMR) from magnetic
trilayer samples where the NM spacer thickness is varied to
tune the indirect exchange coupling. The analysis demon-
strates that the spin-pumping damping from FM1 into FM2 is
nonreciprocal with the spin-pumping damping in the reverse
direction. The nonreciprocity is significant, which may enable
new spintronics technologies.

II. NONRECIPROCAL SPIN PUMPING
DAMPING FRAMEWORK

We consider a trilayer system involving permalloy
(Py-Ni80Fe20), Ru, and permendur (Pmd-Fe49Co49V2). In the
Py/Ru/Pmd system, the Py and Pmd layers provide large
magnetic moments, whereas Ru is the NM spacer. In the
following, the first magnetic layer (Py) is labeled by 1, and
the second magnetic layer is labeled by 2 (Pmd) as shown
in Fig. 1. We assume that each layer can be represented
by a single mi and m j (macrospin approximation), where
i, j = 1, 2.
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FIG. 1. Trilayer system composed of permalloy (1) and perme-
ndur (2) layers separated by a ruthenium spacer. The coordinate
system is shown on the bottom right. The blue arrow represents the
precession of the spin on the ŷ-̂z plane, and the black arrow indicates
the direction of the external magnetic field. The sphere represents
the locus of constant magnetization length whereas � stands for the
plane tangential to the surface of the sphere. The red-yellow arrows
indicate the local (αii) and interlayer (αi j) spin-pumping damping due
to the currents flowing in and out of the layers. The magnetic layer’s
thickness is represented by d1 and d2.

The equation of motion of the macrospins can be recast as

∂mi

∂t
= −γ mi × H i

eff + (
α0

i + α
sp
ii

)
mi × ∂mi

∂t

− α
sp
i j

|mi|2 mi ×
(

m j × ∂m j

∂t

)
× mi, (1)

where γ ≈ 3.5 × 10−5 GHz−1 m−1 A is the gyromagnetic ra-
tio. Both macrospins (mi, i = 1, 2) precess around their ef-
fective fields H i

eff = −∂H/∂mi, where H is the spin Hamil-
tonian. The nonlocal interlayer damping α

sp
i j accounts for

spin-pumping contributions into layer i from layer j, whereas
the local damping α

sp
ii parametrizes spin pumping out of layer

i. The influence of the spin-pumping damping (αsp
i j ) on the

model is discussed in Appendix A. The intrinsic damping of
layer i is given by α0

i . The last term is of a form previously
not discussed and represents the influence of nonlocal dy-
namic spin pumping of a noncollinear magnetic arrangement
between two ferromagnetic layers of a trilayer system. This
term describes a projection of the vector m j × ∂m j

∂t from layer
j over plane � tangential to the sphere circumscribed by the
macrospin i as shown in Fig. 1. The last term of Eq. (1) fulfills
the requirement that the rate of change of magnetization
( ∂mi

∂t ) is perpendicular to the magnetization (mi) at all times
(mi · ∂mi

∂t ) = 0.
The coupled trilayer system in the coordinate system indi-

cated in Fig. 1 is described by the following Hamiltonian H:

H = − Aex

μ0di

mi · m j

|mi||m j | − Bex

μ0di

(mi · m j )2

|mi|2|m j |2 + 1

2
¯̄Nim2

i

− H0̂x · mi + 1

2
δîx · mi − ĥy · mi

+ Ku
1i

μ0|mi|2 (mi · êu)2 + Kc
1i

μ0|mi|4 [(mi · x̂)2(mi · ŷ)2

+ (mi · ŷ)2(mi · ẑ)2 + (mi · ẑ)2(mi · x̂)2], (2)

where the first (Aex) and second (Bex) terms represent the
bilinear and biquadratic exchange energies, respectively. The
parameter di indicates the thickness of the ferromagnetic
layer whereas μ0 ≈ 4π × 10−7 J m−1 A−2 is the vacuum
permeability. The next term is the demagnetization energy. In
a thin film with x, y � z and with the magnetization in-plane
(x-y plane), the demagnetization tensor ¯̄Ni is almost zero
and will not be considered hereafter. The fourth term (H0)
represents the energy of a static external magnetic field along
the x̂ direction whereas the following term is the magnetic
dipolar field where δi is a term that depends on the structural
parameters of the layer as shown in Ref. [26]. We consider
here only the influence of the field along the x̂ direction since
the dipolar field at a distant point (0, 0, z) has only the x
component for the field. The next term is the microwave field
h = h̃e−iωt oscillating at a frequency ω along the ŷ direction
in the experimental setup. Finally, the last two terms represent
the uniaxial (with the easy axis eu) and cubic magnetocrys-
talline anisotropy energy, respectively.

Since the moments rotate around the external mag-
netic field, the condition mx � my, mz is fulfilled; hence,
dmx

i
dt = 0. Moreover, the sinusodial microwave field induces

a magnetization that conveniently can be expressed in a
complex form. Thus, my

i (t ) = m̃y
i exp[i(φi + ωit )], mz

i (t ) =
m̃z

i exp[i(φ′
i + ωit )] with φ′

i = φi + π/2 and ω = ωi. The
phase φi at time t = 0 of layer i is a function of the external
magnetic field and is measured by X-FMR experiments [see
Figs. 2(d)–2(f)]. Assuming that the angle of precession of the
macrospin is relatively small (mx � my, mz) and that h � H0,
it is a good approximation to linearize the equations of motion.
We retain only the terms linear in h, my, and mz. By inserting
Eq. (2) into Eq. (1) through the definition of the effective field,
the linearized coupled equations of motion for both magnetic
layers are given by

¯̄χ

⎛
⎜⎜⎝

0
h̃
0
h̃

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

m̃y
1

m̃z
1

m̃y
2

m̃z
2

⎞
⎟⎟⎟⎠, (3)

where the elements of the magnetic susceptibility matrix
¯̄χ are shown in Appendix B. The dimensionless intrinsic
Gilbert damping parameter is defined as η0

i = mx
i α

0
i . The spin-

pumping damping parameter out of layer i is η
sp
ii = mx

i α
sp
ii ,

whereas the dimensionless spin backflow into layer i from
layer j is defined as η

sp
i j = mx

jα
sp
i j . The amplitude of the

macrospin precession shown in Figs. 2(a)–2(c) is calculated
from the four-index susceptibility matrix [27] of the system
¯̄χ as

ψ1 =
√

[Re(χ12 + χ14)]2 + [Im(χ12 + χ14)]2, (4)

ψ2 =
√

[Re(χ32 + χ34)]2 + [Im(χ32 + χ34)]2. (5)

where ψ1 and ψ2 represent the amplitudes of Py and Pmd
layers, respectively.
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FIG. 2. Nonreciprocal spin-pumping damping theory and X-FMR measurements. Measured X-FMR amplitude and phase data (discrete
points) acquired at an excitation frequency of 3.96 GHz are shown as functions of applied field for three different Ru spacer layer thicknesses:
(a) and (d) 170 Å, (b) and (e) 12 Å, and (c) and (f) 7 Å. The solid lines in the graphs showing the phase are high-order B splines, whereas
the solid lines for the amplitude response are model calculations based on Eq. (1). The Pmd layer response is shown in blue, whereas the
Py is shown in red. The inset to (b) presents typical X-FMR delay scans for the Co and Ni edges acquired at different static bias fields. The
inset in (c) shows model calculations for the tRu 7-Å sample with symmetric spin-pumping damping (η12 = η21 = 0.54). The insets in (d)–(f)
present static magnetometry data, showing independent switching/no coupling [170 Å (d)], ferromagnetic coupling [12 Å (e)], and biquadratic
interaction [7 Å (f)].

III. X-FMR MEASUREMENTS

X-FMR [28–31] is the ideal technique to investigate nonre-
ciprocal spin-pumping damping. Using X-FMR, it is feasible
to measure the full complex susceptibility (χ ′ and χ ′′) [32] or,
equivalently, the amplitude and phase of oscillation resolved
to individual elements and, hence, distinct magnetic layers
[33–35]. X-FMR was used to determine the relative orien-
tation of precessing spins in ferrimagnets [36] as well as to
examine topics including spin pumping and the influence of
spin currents [37–39]. For the investigation of nonreciprocal
spin-pumping damping, the measured response of the indi-
vidual layers can be compared directly with the equation of
motion [Eq. (1)] for FM1 and FM2.

We use the X-FMR technique to study a series of
Py/Ru/Pmd magnetic trilayer film structures. The film sam-
ples were fabricated at room temperature using dc mag-
netron sputtering (base pressure of 5 × 108 Torr) with the
following structure: substrate/Ta(30 Å)/Py(80 Å)/Ru(tRu)/
Pmd(80 Å)/Ta(30 Å). Here, tRu varies between 7 and 170 Å.
Single films of Pmd and Py with the same seed and cap
layers were also fabricated for control measurements. The Ru
spacer layer was deposited at low sputtering rate (0.4 Å/s)
and low Ar gas pressure (3 mTorr) for optimal uniformity and
interface smoothness. Composition and thickness of the films
were verified using Rutherford backscattering spectrometry.
Each sample was fabricated simultaneously on an oxidized Si
substrate for magnetometry and structural measurements and
on 100-nm-thick Si3N4 membranes for X-FMR. To minimize

the number of free parameters in Eq. (2), we conducted a
series of static magnetometry and FMR measurements on the
samples. In the X-FMR studies, the Ni in Py and Co in Pmd
provide the elemental contrast to resolve the dynamics in the
individual FM layers whereas Ru produces a strong interlayer
exchange coupling that can be tuned from favoring parallel
or antiparallel ground-state coupling as a function of the NM
spacer thickness [40].

In X-FMR, we perform time-delay scans (equivalent to
varying the phase between the sinusoidal RF excitation at
3.96 GHz and the x-ray bunches) with the photon energy
tuned to the Ni or Co L3 edge. The inset to Fig. 2(b) presents a
subset of these delay scans; additional details on X-FMR are
presented in Appendix C and in Ref. [32]. The amplitude and
phase of the sinusoidal waveforms are extracted and plotted
as discrete points in Figs. 2(a)–2(f). Also shown as insets to
Figs. 2(d)–2(f) are normalized magnetization curves for the
tRu = 170, 12, and 7 Å samples, showing the magnetic cou-
pling is very weak [170 Å, Fig. 2(d)], ferromagnetic [12 Å,
Fig. 2(e)], and biquadratic [7 Å, Fig. 2(f)].

The tRu = 170 Å sample does not exhibit any bilinear or
biquadratic interlayer exchange coupling, and the amplitude
data in Fig. 2(a) reveal two resonances at ∼27 mT and at
∼9 mT. The coupled nature of the dynamics of the FM layers
precludes assignment of the combined resonance to a single
layer, and we refer to these as a low-field resonance (LFR) and
high-field resonance (HFR). The other samples also present
a LFR and a HFR. At either resonant field, a particular FM
layer does not respond independently; the other layer also
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exhibits a distinct, albeit weaker, response. This is clear, e.g.,
from Fig. 2(a) where the Py and Pmd layers have a maximum
at the HFR and LFR, respectively. However, each layer has
a second smaller peak in the amplitude that coincides with
the resonance field of the other magnetic layer. This produces
a nontrivial behavior of the amplitudes, originating from the
coupling between the layers, and we observe a similar effect
for all samples of this investigation.

The phase data also reveal a complex response of the
oscillation phase as the magnetic field is swept through the
resonance. For noninteracting layers, the phase of FM1 would
change by 180◦ when passing through the resonant field
whereas the other layer would remain essentially unchanged.
For coupled magnetic layers, the phases of the dynamic
response would change according to Eq. (3). In the sample
with the weakest coupling between Py and Pmd [tRu = 170 Å,
Fig. 2(d)], the phase of the Py layer changes by ∼180◦ through
the HFR. However, the Pmd layer undergoes approximately
the same phase shift through the HFR and then experiences an
additional phase shift of ∼120◦ through the LFR, indicating
that there is sufficient coupling to cause a response distinctly
different from that of noninteracting layers.

The variations in amplitude and phase are even more
dramatic for the more strongly coupled samples (tRu = 12
and 7 Å). In these systems, the phase of the Py layer shifts
by about 180◦ as the field is tuned from high fields down
through the HFR; the Pmd phase initially follows the increase
in phase, but once the HFR is passed, it falls off again. The
effect is particularly pronounced in the FM-coupled tRu =
12 Å sample where the two phases are essentially equal from
the high field down through the HFR at ∼16 mT. As the field
is reduced towards the LFR, the Pmd phase rises sharply to
approach a value that is ∼120◦ lower than that of the Py
layer. For the tRu = 7 Å sample with biquadratic coupling,
the phases of the two layers are distinctly different for all
field strengths. This suggests, somewhat surprisingly, that the
system with the closest distance between the Py and the Pmd
layers, has the largest degree of independence in the magnetic
response of both Py and Pmd.

IV. ANALYSIS AND DISCUSSION

We begin our analysis with the phase data in Figs. 2(d)–
2(f). We fit the experimental phase data with a high-order B
spline [41] and use these interpolated values for the phase
together with the parameters for magnetization, anisotropy,
and interlayer exchange to calculate the amplitude response
based on Eqs. (4) and (5). The results are presented as the
solid lines in Figs. 2(a)–2(c). Apart from the phase data, all
sample parameters used in the amplitude calculations (i.e.,
magnetization, anisotropy, layer thickness, exchange param-
eters, etc.) were obtained from independent magnetometry
and conventional ferromagnetic resonance measurements (see
Appendix D for details).

Generally, the theoretical model is in good agreement with
the data in Fig. 2. The model captures the essential features of
the Py and Pmd layers across both the LFR and the HFR; peak
positions and amplitudes are well reproduced for the main
resonance and the weaker response connected to the second
layer. For example, in the coupled trilayer sample with the

TABLE I. Estimated spin-pumping-induced damping parameters
and real part of the spin-mixing conductance in cm−2 for samples
with tRu = 7, 12, and 170 Å.

tRu η
sp
11 η

sp
22 Re(g↑↓

1 ) Re(g↑↓
2 )

Å 10−4 10−3 η
sp
12 η

sp
21 1015 1015

7 3 1.6 0.47 0.61 11.75 3.64
12 3 1.0 0.69 0.45 8.65 5.33
170 3 9.2 0.30 0.40 7.76 2.30

shortest interlayer distance [Fig. 2(c), tRu = 7 Å], the model
reproduces the increased amplitude in the response of the Pmd
layer at the resonant field of the Py layer. For the ferromag-
netically coupled sample [Fig. 2(b), tRu = 12 Å], the model
accurately produces a reduced amplitude of the Pmd response
at 5 mT in comparison with the main Py resonance at 16 mT,
in agreement with our experimental observations. The sample
with the thickest Ru spacer [Fig. 2(a), tRu = 170 Å] where
interlayer exchange and dipolar coupling effects are negligible
is particularly interesting. For completely decoupled layers,
we would expect that the amplitude of the two resonances
can be described by smooth symmetric Lorentzian functions.
However, the experimental data show an increase in the Pmd
(Py) amplitude at the resonant field of the Py (Pmd) layer and
a deviation from Lorentzian shape, an effect that is clearly
reproduced by the theory.

By using the measured phase response along with the in-
dependently derived material parameters, our model provides
estimates of the precessional damping and the contributions
from spin pumping (see Table I). Re (g↑↓

i ) (the real part
of the spin-mixing conductance of layer i) is related to the
dimensionless spin-pumping parameter ηi j as [42]

Re(g↑↓
i ) = 8πmx

jd jη ji

g jμB
, where i �= j. (6)

Here, g j is the spectroscopic g factor, and μB is the Bohr
magneton. The contributions of the two interfaces (Py/Ru or
Ru/Pmd) to the spin-mixing conductance are not reciprocal.
For all the samples studied, we observe that the real part of
the spin-mixing conductance from the Py layer that influences
the Pmd layer is clearly bigger than the reversed spin-mixing
conductance. The latter is close to values reported in the
literature [42]. A symmetric spin-pumping damping model
reproduces the data poorly as can be seen in the inset to
Fig. 2(c), which assumes η12 = η21 = 0.54. Apart from an
overall poor description of the shape of the X-FMR data,
such a model overestimates the magnitude of the Pmd (Py)
response at most fields.

In the standard picture of spin pumping, a magnetic layer
excited into precession drives a diffusive spin current in the
direction transverse to the FM1/NM interface. The spin cur-
rent incident upon the NM layer leads to spin accumulation in
the NM near the interface and generates a flow of spin current
back to the FM1. The spin-mixing conductance parametrizes
the balance of the initial spin current (FM1 → NM) and the
backflow into the magnetic layer. For NM layers that are thin
compared to the spin-diffusion length in this layer (∼150 Å
in Ru [43]), the spin current driven transports angular
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momentum across the NM/FM2 interface (with its own char-
acteristic spin-mixing conductance) and thereby influencing
the dynamics of FM2. The two spin-mixing conductances
are often assumed to be equivalent [42]. However, the mul-
tilayer spin-pumping theory presented above together with
the X-FMR data clearly indicate that spin-pumping damping
is nonreciprocal (i.e., dependent on the direction of the spin
current normal to the interface) in systems with nonequivalent
interfaces [44–46]. The asymmetry of the spin-mixing con-
ductance, albeit little discussed, is physically motivated, as it
is proportional to the self-energy and the electronic structure
of the respective magnetic layer [47]. There is no reason why
this self-energy should be the same for Py and Pmd. In terms
of symmetry, the nonreciprocity of the spin-pumping damping
could be explained by breaking of the space inversion symme-
try in the neighborhood of the interfaces induced by having
two dissimilar ferromagnetic layers as was shown in Ref. [48]
for the nonreciprocal magnon transport in synthetic magnets.

Interface spin transport governs a variety of phenomena,
such as spin injection, the generation of pure spin currents,
and the determination of spin Hall angles [3,49–51]. Spin
pumping presents another method for manipulating magneti-
zation across an interface, allowing for nonlocal effects. Spin-
pumping damping in magnetic trilayers has been examined
previously in configurations with both parallel alignment and
antiparallel moments canted in the direction of an external
field [52,53]. Our analysis extends spin-pumping theory to-
wards more general magnetic multilayer structures, which
may have noncollinear or biquadratic interlayer exchange, dif-
ferent layer anisotropies, and distinctly different spin-mixing
conductances. These effects will influence the dynamics of
individual layers; however, when these issues are assessed
independently, the asymmetry of the spin-pumping damping
is revealed. Also, the description of magnetization dynam-
ics in Eq. (1) is novel since it allows for spin pumping in
noncollinear systems. In this paper, we report nonreciprocal
spin-pumping damping in magnetic trilayers with dissimilar
interfaces, and our findings may open possibilities in spin-
tronics technology. Earlier first-principles calculations of spin
pumping indicate that band matching across the interface (the
matching of states in the NM with spin-resolved propagating
states in the FM layer) greatly affects spin transmission and
reflection across the interface [44,45]. Our analysis supports
this viewpoint and shows that X-FMR can uniquely reveal
differences in spin-pumping damping. Finally, we note that
additional contributions to spin-pumping damping, such as
spin-orbit coupling at the Ru/FM interfaces and spin current
backflow variations for thick NM spacer layers, may affect
the mutual spin dynamics in the FM layers. These contri-
butions are being investigated with on-going first-principles
calculations of the FM/NM interfaces, spin transport theory,
and additional analytical modeling.
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APPENDIX A: INFLUENCE OF SPIN-PUMPING DAMPING

In Figs. 3 and 4, we show the influence of the variation of
the spin-pumping damping on the amplitude of the resonant
response for the particular case of the sample with Ru thick-
ness of 7 Å. In general, a small variation of the spin-pumping
damping produces a significant variation of the amplitude
particularly around the resonance field. Since η21 determines
the spin pumping in the Pmd layer produced by the Py layer,
the small resonant peak (or secondary peak) at around 20 mT
varies with η21 [see Fig. 3, the dashed red and dotted black

FIG. 4. Amplitude of the resonant response for the sample with
Ru thickness of 7 Å. The spin-pumping damping η12 has been varied
whereas keeping constant the remaining parameters except for the
dipolar field and the scaling parameter. The spin-pumping damping
η21 was fixed at 0.60.
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lines], whereas the small resonant peak at around 5 mT is
unchanged. Note also that, if η21 decreases, the secondary
resonant peak also decreases and vice versa. The physical
interpretation is as follows: By decreasing the spin-pumping
damping, the Pmd layer experiences a smaller influence of
the magnetization precession in the Py layer. The same line
of reasoning is applied to the spin-pumping damping η12 as
shown in Fig. 4.

The FMR results are generally consistent with single-layer
damping values presented in Table I. In particular, the FMR
linewidth data indicate a higher damping value for the Pmd
layer in the tRu = 170-Å sample as might be expected with a
slightly rougher Ru/Pmd interface with the thicker Ru spacer.

APPENDIX B: NONRECIPROCAL SPIN-PUMPING
DAMPING THEORY

The magnetic susceptibility, which is a 4 × 4 matrix
[according to Eq. (3) of the main part of the paper], is
defined as

¯̄χ = ¯̄A−1, (B1)

where the elements of the matrix ¯̄A are as follows:

a11 = −iωeiφ1

γ mx
1

,

a12 =
(

− Aex + 2Bex cos β

μ0d1mx
1

2 − H0 − δ1

mx
1

− 2Kc
11

μ0mx
1

2

+ 2Ku
11

μ0mx
1

2 cos2 θ1 −
(
η0

1 + η
sp
11

)
iω

γ mx
1

)
ieiφ1 ,

a13 = 0,

a14 =
(

Aex + 2Bex cos β

μ0d1mx
1mx

2

+ η
sp
12iω

γ mx
1

)
ieiφ2 ,

a21 =
(

2Ku
11

μ0mx
1

2 (1 − 2 cos2 θ1) + 2Kc
11

μ0mx
1

2 + Aex + 2Bex cos β

μ0d1mx
1

2

+ H0 − δ1

mx
1

+
(
η0

1 + η
sp
11

)
iω

γ mx
1

)
eiφ1 ,

a22 = ωeiφ1

γ mx
1

,

a23 =
(

−Aex + 2Bex cos β

μ0d1mx
1mx

2

− η
sp
12iω

γ mx
1

)
eiφ2 ,

a24 = 0,

a31 = 0,

a32 =
(

Aex + 2Bex cos β

μ0d2mx
1mx

2

+ η
sp
21iω

γ mx
2

)
ieiφ1 ,

a33 = −iωeiφ2

γ mx
2

,

a34 =
(−2Kc

12

μ0mx
2

2 − Aex + 2Bex cos β

μ0d2mx
2

2 − H0 − δ2

mx
2

+ 2Ku
12 cos2 θ2

μ0mx
2

2 −
(
η0

2 + η
sp
22

)
iω

γ mx
2

)
ieiφ2 ,

TABLE II. Estimated exchange constants and intrinsic dampings
for samples with tRu = 7, 12, and 170 Å.

Aex Bex

tRu (J/m2) (J/m2) η1 η2

7 0 −10.5 × 10−5 0.00852 0.00426
12 4.5 × 10−5 0 0.00852 0.00442
170 0 0 0.00852 0.00640

a41 =
(

−Aex + 2Bex cos β

μ0d2mx
1mx

2

− η
sp
21iω

γ mx
2

)
eiφ1 ,

a42 = 0,

a43 =
(

2Ku
12

μ0mx
2

2 (1 − 2 cos2 θ2) + 2Kc
12

μ0mx
2

2 + Aex + 2Bex cos β

μ0d2mx
2

2

+ H0 − δ2

mx
2

−
(
η0

2 + η
sp
22

)
iω

γ mx
2

)
eiφ2 ,

a44 = ωeiφ2

γ mx
2

.

The angle between the direction of the magnetization in the
Py layer with respect to the magnetization in the Pmd layer is
indicated here by the symbol β. By using the data collected
in Tables I and II and the measured phase shown in Fig. 2,
the model described by Eq. (3) provides the spin-pumping
dampings, angle β, and dipolar field prefactors (δi). These data
are collected in Tables I and III.

APPENDIX C: X-FMR MEASUREMENTS

X-ray detected ferromagnetic resonance [28–31], or X-
FMR, is the ideal technique to investigate nonreciprocal spin-
pumping damping. X-FMR combines x-ray magnetic circu-
lar dichroism (XMCD) with FMR, and an overview of the
technique is presented in Fig. 5. As with measurements of
element-specific hysteresis loops, tuning the x-ray energy to
the absorption edge of different elements (e.g., the Co or Ni
L3 edges) isolates the magnetic contribution from a single
layer in a multilayer magnetic structure. And by using a
microwave FMR excitation that is phase locked with the x-ray
bunch clock at a synchrotron storage ring, the full complex
susceptibility (χ ′ and χ ′′) [32] or, equivalently, the amplitude
and the phase of the FMR oscillation is resolved to individual
elements and, hence, distinct magnetic layers [33–35]. X-
FMR was previously used to determine the relative orientation

TABLE III. Angle between the direction of the magnetization in
the Py layer with respect to the magnetization in the Pmd layer as
well as the layer-dependent dipolar field prefactor for samples with
tRu = 7, 12, and 170 Å.

β δ1 δ2

tRu rad mT mT

7 2 −117.78 111.88
12 0 −91.83 121.56
170 0 −124.02 156.29
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CoFeV

NiFe

Ni L3Co L3

Ru

CoFeV

NiFe

Ru

(a)

XMCD
Spectra

(b)   X-FMR Schematic (c)   X -FMR Delay Scans

-waves (4 GHz)

X

FIG. 5. X-FMR principle and setup. (a) XMCD spectra from a Pmd/Ru/Py trilayer. By tuning the photon energy to the Co (Ni) L3 edge,
the magnetization dynamics of the Pmd (Py) layer can be isolated from the collective response. (b) X-FMR scans are conducted in x-ray
transmission mode. The sample is placed on a co-planar waveguide, and the microwave excitation is synchronized with the x-ray bunches. A
digital delay generator (not shown) varies the phase between the x-ray bunches and the rf excitation. (c) Typical delay scans from the Pmd or
Py layer are sinusoidal functions from which the amplitude and relative phase can be extracted.

of precessing spins in ferrimagnets [36] as well as to examine
topics including spin pumping and the influence of spin
currents [37,38,54,55]. For the investigation of nonreciprocal
spin-pumping damping, the measured motion of the individ-
ual layers via X-FMR can then be compared directly with
results that come from the equation of motion [Eq. (1)] for
FM1 and FM2.

In our implementation of the technique, X-FMR is a pump-
probe measurement where the pump is a sinusoidal rf signal
that is phase locked to the photon bunch repetition frequency
of the synchrotron. The probe is the circularly polarized x
rays whose energy is tuned to the L3 absorption edge of
Co for sensitivity to the Pmd layer or Ni for the Py layer
[see Fig. 5(a)]. The thin-film sample is placed on a custom
co-planar waveguide that permits transmission of the incident
x rays. The rf signal excites precession of the magnetization

in the magnetic layers, and the x rays transmitted through
the sample are detected with a photodiode [Fig. 5(b)]. We
conducted the X-FMR measurements at beamline 4-ID-C of
the Advanced Photon Source (Argonne National Laboratory,
Argonne, IL). In X-FMR experiments, we perform time-delay
scans, which are equivalent to varying the phase between
the sinusoidal rf signal and the arrival of the x-ray photons.
Figure 5(c) presents a subset of these delay scans; for further
details, refer to Ref. [29]. The x-ray photon bunches with
a bunch length of ∼60 ps [32] sample the projection of
the magnetization along the beam propagation direction as
a function of time delay or phase. The simple sinusoidal
waveforms of the delay scans allow us to extract the amplitude
of the precessional motion and phase relative to the microwave
field of the pump. We use a fixed frequency of 3.96 GHz
(the 45th harmonic of the 88-MHz bunch repetition frequency
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of the synchrotron) and recorded the response of the Pmd
and Py layers as we varied the static bias field HB through
both the high- and the low-field resonances. The resulting
amplitude and phase data for the three samples are shown in
Figs. 2(a)–2(f) of the main text as discrete points.

APPENDIX D: STATIC MAGNETOMETRY AND
FERROMAGNETIC RESONANCE MEASUREMENTS

Field hysteresis measurements of single magnetic layers
of the control samples provided the saturation magnetization
for each magnetic layer: 4πmPy = 0.89 × 107 and 4πmPmd =
2.25 × 107 A/m. Magnetization curves for a selected number
of samples with tRu = 7, 12, 170 Å are shown as insets in
Figs. 2(f), 2(e) and 2(d), respectively. The tRu = 7-Å sample
shows the behavior typical for a 90◦ coupling between Py and
Pmd layers. A Ru thickness of tRu = 12 Å favors FM coupling
between magnetic layers, and for a thick Ru spacer (tRu =
170 Å) the magnetic layers are decoupled. Magnetometry
results correlate well with the FMR measurements.

We measured the in-plane uniaxial anisotropy constants
with angular-dependent X -band (9.8-GHz) FMR (rotation
about the surface normal) whereas the interlayer exchange
constants (Aex and Bex) were determined from in-plane FMR
measurements at varying excitation frequencies (2–12 GHz).
The uniaxial anisotropy field is in-plane, i.e., it lies on the
x-y plane. Here, θi is the angle between the uniaxial easy
axis and the magnetization at layer i. Then, the dependence
of the uniaxial anisotropy field on the θi angle is (mi · êu )̂eu =
(mx

i cos θi + my
i sin θi )(cos θi, sin θi, 0). In the samples con-

sidered here, the uniaxial anisotropy is along the x axis, i.e.,
θi = 0. The angular-dependent X -band measurements indi-
cate that all samples exhibit a weak uniaxial anisotropy with
the largest anisotropy constant at about Ku

Pmd = 2408 J/m3

TABLE IV. Measured physical magnitudes for Py and Pmd layers.

Ku
i Kc

i di mx
i ω

Layer (J/m3) (J/m3) (m) (A/m) (GHz)

Py (i = 1) 184.142 10.624 8 × 10−9 (0.89 × 107)/(4π ) 3.96
Pmd (i = 2) 2408.213 179.049 8 × 10−9 (2.25 × 107)/(4π ) 3.96

for Pmd and Ku
Py = 184 J/m3 for Py. Cubic anisotropy was

found to be negligibly small: Kc
Pmd = 179 J/m3 and Kc

Py =
10.6 J/m3. Note that we consider the anisotropy constants
as independent of the spacer layer thickness. All measured
parameters are summarized in Table IV.

We determined Aex and Bex from fits of the resonant field
vs frequency as outlined in Ref. [56]. The sample with the
thickest NM spacer layer (tRu = 170 Å) does not present any
bilinear or biquadratic coupling, consistent with the M vs
H loops which show the switching of the individual layers
[see the inset in Fig. 2(d)]. As the Ru thickness decreases,
interlayer-exchange coupling begins to correlate the switching
of the two layers. The tRu = 12-Å sample shows FM cou-
pling between magnetic layers with only a bilinear type of
coupling present Aex = 4.5 × 10−5 J/m2; the field hysteresis
loops confirm this as only a single switching field is evident
[see the inset in Fig. 2(e)]. Finally, for the tRu = 7 Å sample
we find the bilinear exchange coupling constant Aex = 0,
although there is a large biquadratic coupling parameter Bex =
−10.5 × 10−5 J/m2. This indicates that the coupling of the
two layers is shifting from FM to AFM, leaving a ∼90◦
coupling between the Py and the Pmd layers. Exchange con-
stants together with the intrinsic dampings are summarized in
Table II.
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