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We implement an experimental system based on optical levitation of a silicone oil droplet to

demonstrate a damped driven harmonic oscillator. The apparatus allows us to control all the

parameters present in the differential equation that theoretically describes such motion. The

damping coefficient and driving force can be manipulated in situ by changing the pressure in the

apparatus and by applying a variable electric field. We present two different experimental

procedures. First, a transition from the overdamped to underdamped regimes is demonstrated by

gradually lowering the air pressure. The characteristic resonance associated with an underdamped

driven harmonic oscillator is observed by studying how the amplitude of the oscillation varies as a

function of the driving force. Second, in order to observe qualitative differences between the

overdamped and underdamped regimes of a harmonic oscillator, three driving functions (sine,

square, and sharp delta pulses) were separately applied, both at atmospheric pressure and under

vacuum conditions. Our overall aim is to design a hands-on apparatus that is easy to use and that

allows undergraduate and graduate students to observe and manipulate the basic physical processes

associated with a damped driven harmonic oscillator. VC 2020 American Association of Physics Teachers.

https://doi.org/10.1119/10.0000960

I. INTRODUCTION

Oscillatory motion is of great importance in the teach-
ing of physics at all levels. For example, it appears in text-
book subjects such as mechanics, electromagnetism, and
waves. Traditionally, oscillatory motion is introduced to
undergraduate students by using the simple pendulum or a
mass-spring system. In such simple cases, the equation of
motion can be easily solved since the restoring force is
proportional to the displacement, i.e., it obeys Hooke’s
law. Both the ideal undamped oscillator and the more real-
istic damped oscillator are described by a second-order
differential equation that admits closed analytical
solutions.1,2 Such a system is referred to as a harmonic
oscillator (HO). There are many diverse applications
involving HOs, including the Laser Interferometer
Gravitational-Wave Observatory (LIGO) search for gravi-
tational waves,3 nonlinear driven oscillations of the string
of a guitar,4 motion of ultracold atoms in a harmonic
trap,5 laser cooling of atoms,6 and medical-physics studies
of the human body’s response to glucose.7

A harmonic oscillator subjected to driving and damping
forces is referred to as a damped driven harmonic oscillator
(DDHO). This system is commonly used in physics as a
model to study resonance phenomena.1,8 Such phenomena
occur in many fields of science and engineering,2,9 for

example, subatomic particle resonances,10 design of pico-
gram mass sensors,11 and energy cost calculations of human
walking.12 Nevertheless, a short sampling of physics text-
books13–16 shows that most of the DDHO-related examples
are limited to springs, pendulums, or electronic cir-
cuits.8,9,17 Springs have the advantage that they are visible
and suitable for demonstrations, but their damping forces
are difficult to vary. On the other hand, parameters are easy
to change in electric circuits, but the effects they produce
are not directly observable. Finally, in pendulums, har-
monic oscillator approximation is not valid for large ampli-
tude oscillations, and the resonance condition must be
calculated numerically.18 For these reasons, visible demon-
strations of resonance behavior are difficult to achieve.

Often, students first observe evidence of a resonance in a
video of a drinking glass being shattered by a sound wave or
a bridge collapsing as a result of mechanical vibrations.
However, optical manipulation (OM) offers a different
approach to the study of oscillations and resonances. Here, a
focused laser is used to trap small particles in a harmonic
potential well. The movement of the particle is described by
the DDHO differential equation, where the main parameters
are the restoring force constant, the damping coefficient, and
the driving force. OM presents a visible approach to the
study of the motion of a DDHO for which the main parame-
ters can be easily varied.

490 Am. J. Phys. 88 (6), June 2020 http://aapt.org/ajp VC 2020 American Association of Physics Teachers 490

https://doi.org/10.1119/10.0000960
http://crossmark.crossref.org/dialog/?doi=10.1119/10.0000960&domain=pdf&date_stamp=2020-05-18


The use of laser light to manipulate microscopic objects
was first demonstrated in the 1970s by Arthur Ashkin and
Joe Dziedzic.19 They discovered how to exert forces on
micron-sized particles using continuous-wave laser beams.
In 1971, these authors were able to levitate several glass
spheres,20 initiating the field of optical manipulation, where
the main tools are called optical tweezers. Today, trapping
and manipulating small particles have developed into an
important research technique and, as a consequence, Arthur
Ashkin was awarded the Nobel Prize in 2018. The educa-
tional uses of OM that appear in the literature are ample.
Designs for cheap optical tweezers systems have been
reported21–23 with applications to biophysical educational
modules24 as well as demonstrations of the interaction of
ionizing radiation with matter.25 Useful resources, such as a
theoretical approach for undergraduates23 and downloadable
trapping simulation software,26 are also available.

Optical levitation under vacuum conditions was also intro-
duced by Ashkin et al.27 in experiments, where the under-
damped harmonic oscillation of a levitated droplet was
observed. In the present work, we extend these pioneering
experiments to an investigation of resonance behavior asso-
ciated with the motion of a levitating droplet. We also show
the transition between the overdamped and underdamped
regimes and make a comparison of the oscillator’s character-
istic parameters in each case.

With this purpose in mind, a versatile optical levitation
system has been developed in which the three parameters in
the DDHO differential equation are fully manipulable. The
driving force and damping coefficient can be manipulated
in situ by varying the air pressure in the trapping chamber
and the magnitude of the applied electric field. The restoring
force constant, commonly known as trap stiffness in the OM
field, can be varied by changing the focal length of the lens
that focuses the laser to form the trap. In this manner, we
were able to create an oscillator and have control over all the
parameters in the DDHO equation.

Two experiments are presented, whose results can be
recorded in a computer, magnified for view on a screen, or
viewed with the naked eye. In the first experiment, a droplet
is trapped at different pressures and made to oscillate in the
presence of a sinusoidal driving electric force. The transition
from the overdamped to underdamped regimes can be
observed at a critical pressure value of about 1 mbar. Below
this value, resonance begins to appear. Students are then able
to measure the resonance frequency empirically and use it to
calculate the restoring force constant of the system.

In the second experiment, students observe qualitative dif-
ferences between the overdamped and underdamped regimes
by driving the droplets in both regimes at atmospheric pres-
sure as well as under vacuum conditions with sine, square, or
sharp delta pulse functions. The results are in agreement
with the known theoretical results found in the literature.

Our system offers undergraduate or graduate physics stu-
dents an easily understandable approach, which connects the
fields of mechanics, optics, and fluid dynamics. At the same
time, it introduces students to the topic of optical manipula-
tion, which is widely used in modern research fields.

Our work is presented in the following manner. In Sec. II,
we briefly describe the fundamentals of DDHO theory. In
Sec. III, we present the design of our experimental setup,
and in Sec. IV, we discuss our findings and provide a discus-
sion of these results. Finally, in Sec. V, we give the conclu-
sions derived from our work.

II. THEORY

A. Damped driven harmonic oscillator

The motion of a droplet trapped in a harmonic potential
well, driven by an external force and damped by the air, is
governed by the DDHO equation

d2y

dt2
þ c

dy

dt
þ x2

0y ¼ F

m
; (1)

where y is the vertical position of the droplet with respect to
its equilibrium position, c is the air friction coefficient, x0 is
the angular resonance frequency, F is the driving force, and
m is the mass of the particle. The resonance frequency x0 is
related to the restoring force constant k by the equation

x2
0 ¼

k

m
: (2)

For a given resonance frequency x0, the particle will be in
either the overdamped or the underdamped regime, depend-
ing on the magnitude of the air friction coefficient c given by
the expressions

c2 � 4x2
0 > 0 overdamped;

c2 � 4x2
0 < 0 underdamped: (3)

There is a significant qualitative difference between these
two regimes. Figure 1 shows the theoretical response of a
particle displaced from the stability position for both over-
damping and underdamping. In the overdamped regime [Fig.
1(a)], the return to equilibrium is exponential in time while,
for underdamping [Fig. 1(b)], the return is the product of a
sinusoidal oscillation and a decaying exponential.

Another important difference between these two regimes
is the enhancement in amplitude of the resonance when the
damping is small. Solving the DDHO differential equation
[Eq. (1)] for a sinusoidal driving force F ¼ F0 sin ðxtÞ gives

y ¼ Aðx; cÞ sin ðxt� aÞ; (4)

where x is the driving frequency. The phase shift a between
the driving force and the oscillator is given by13,28

aðx; cÞ ¼ p
2
� arctan

x2 � x2
0

cx

 !
; (5)

while the oscillation amplitude A is13,28

Aðx; cÞ ¼ F0

m

sin
p
2
þ a

� �
x2

0 � x2
: (6)

Figure 2 shows curves derived using Eqs. (5) and (6).
These curves represent the amplitude of the oscillation as a
function of the driving frequency x, where each curve is
plotted for a different value of the damping constant c. The
assumed numerical value of c is indicated below each curve.
Close to the vertical line in Fig. 2(a), a gradual increase in
amplitude with respect to frequency can be observed. This
increase is only apparent in the underdamped regime and is
represented by the curves above the critical case, i.e., the
curves for c¼ 1 and c ¼ 0:4.
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B. Stokes’ law

A spherical droplet moving (at sufficiently slow speed) in
air experiences a damping force Fd due to friction given by
Stokes’ law14

Fd ¼ 6pgrv; (7)

where g is the viscosity of air, r is the radius of the droplet,
and v is the speed of the particle. The 6pgr term corresponds
to the air friction coefficient c defined previously. As air pres-
sure is decreased, air viscosity and, along with it, air friction
are reduced. For droplets with a diameter of around 20 lm,
like the ones presented here, air pressures below 1 mbar are
required to bring the motion into the underdamped regime.

Equation (7) implies that the air around the droplet is in
laminar flow, that is, the Reynolds number is small. For a
sphere moving in air, Reynolds number is defined as
Re ¼ qdv=g, where q is the density of air, d is the droplet
diameter, v is the air velocity respect to the droplet, and g is
the viscosity of air. Using standard values at normal temper-
ature and pressure (NTP), q ¼ 1:28 Kg m�3, g ¼ 1:83
�10�5 N s m�2, d ¼ 20� 10�5 m. Then, for a sphere with
velocity v¼ 0.05 m/s, we obtain Re � 0:07. The values given
here represent the largest velocity and density of the air,
respectively, in our experiment. Hence, all data shown in this
work have been obtained with a droplet moving in the lami-
nar regime.

C. Optical levitation

An optical levitation trap for spherical droplets consists of
a laser beam directed upwards and focused by a lens, as

shown in Fig. 3. Here, we assume that we are in the ray
optics regime, since all the dimensions in the experiment are
much larger than the wavelength of the laser light. The laser
light can then be considered as individual rays that carry
momentum. When laser light is absorbed, refracted, or
reflected by a droplet in the trap, there is a transfer of
momentum to the droplet. This momentum transfer creates a
vertical force, termed the scattering force, given by29

Fscatter ¼ Q
nP

c
; (8)

which pushes the droplet in the direction of the laser beam.
Here, P represents the laser power that strikes the droplet, n
is the droplet’s refractive index, c is the speed of light, and Q
is a dimensionless factor between 0 and 2. If all of the light
is reflected, Q¼ 2; if it is all absorbed, Q¼ 1; if it is all trans-
mitted, Q¼ 0.

As the droplet falls closer to the laser beam waist, the
beam profile becomes narrower, increasing the optical power
density and, with it, the magnitude of the scattering force. At
equilibrium, the upward-directed scattering force is exactly
equal to the downward-directed gravitational force, creating
a stable trapping position along the beam axis. Above this
stable point, the net force pulls the droplet down; below it,
the droplet is pushed up. The droplet is trapped in the region
above the focal point in a Gaussian beam waist, where the
size of the beam is increasing linearly with the vertical posi-
tion. By integrating the Gaussian profile over the size of the
droplet, one can show that the amount of light that strikes the
spherical droplet varies linearly, as it moves along this laser
profile. We have also experimentally confirmed that the

Fig. 1. (Color online) Theoretical temporal return to the equilibrium position of a displaced particle in an (a) overdamped and (b) underdamped harmonic oscil-

lator. The dot-dashed curve in (b) is plotted to show the exponential decay of the oscillations.

Fig. 2. (Color online) Calculated (a) amplitude and (b) phase shift, as a function of the driving frequency for a DDHO. The dashed curve shows the critically

damped case. The numbers below the curves indicate the values of the frictional damping coefficient c. The vertical solid lines mark the resonance frequency.
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restoring force is linear as the droplet is moved away from
the equilibrium point. Hence, we have a harmonic trap in the
vertical direction.

A restoring force also exists in the radial direction. A
droplet displaced from the center of a Gaussian laser profile
beam, as shown in Fig. 4, refracts more light towards the
direction it is displaced. To conserve momentum, the droplet
experiences a force in the opposite direction to its displace-
ment. This force is called the gradient force. The scattering
and gradient forces together establish a stable trapping point
in space for the droplet.

D. A charged particle in an electric field

The droplets used in our experiments are negatively
charged (as will be discussed in Sec. III) and can hence be
manipulated with electrical fields. In the centre of the ringed
electrodes, a locally homogeneous vertical electric field is
created. This can be approximated as a set of two horizontal
plane electrodes, and the magnitude of the field will be given
by

E ¼ V

d
; (9)

where V is the applied voltage and d is the distance between
the plane electrodes. A droplet with negative charge q placed

in such an electric field experiences a force in the opposite
direction of the applied field that has a magnitude of

F ¼ Eq: (10)

Here, q ¼ �Nee, where Ne is the number of excess electrons
on the droplet and the electric field E is directed downward
for positive voltages.

III. EXPERIMENTAL SETUP

A. Trapping and manipulation

The setup used in this work is shown schematically in Fig.
5(a). A droplet is levitated inside an aluminum vacuum
chamber 60 mm high, 50 mm wide, and 50 mm deep. The
chamber has a window on the lower face through which the
laser beam enters and windows on the sides to let the light
scattered from the droplet out. A removable lid on the top
surface is used to enclose the system after a droplet is
trapped. A detailed list of the components and approximate
price is provided in the Appendix.

1. Trapping

In our work, we use a continuous-wave laser at a wave-
length of 532 nm. The laser’s output power is 2 W, and it
produces a Gaussian beam profile (Laser Quantum gem532).
The laser beam is directed vertically upwards by use of a
mirror and is focused by a 100 mm biconvex lens (Lens 1)
into the vacuum chamber. A lens with long focal length was
chosen in order to create a somewhat weaker trap in the ver-
tical direction, thus enhancing the driven motion of the drop-
let in this direction. Our experience shows, however, that
lenses with focal length as short as 30 mm also allow suc-
cessful trapping. The focusing lens is placed about 70 mm
below the lower window in order to focus the laser close to
the center of the chamber. A liquid microdispenser (GeSiM
Bent Steel Capillary) is situated directly above the laser
beam and is used to dispense micron-sized droplets into it.
The dispenser consists of a capillary attached to a piezoelec-
tric crystal. By applying a voltage to the piezo crystal, a
micrometer-sized droplet is emitted. The droplet emitted
from the dispenser becomes negatively charged due to fric-
tion between the dispenser and the droplet. The emitted
droplet falls under gravity into the laser field until it is
trapped. A trapped droplet levitates above the focal point
and scatters light in all directions. The laser power needed
for trapping was in the range of 400–1000 mW. Once a drop-
let is trapped, the lid is carefully put back into place.

The microdispenser’s syringe contains a solution with a
5:1 ratio of isopropanol-to-silicone oil. The isopropanol in a
levitated droplet evaporates quickly and only the silicone oil
remains. The dispenser produces droplets with very small
dispersion in size. According to the manufacturer specifica-
tions, the minimum diameter of a dispensed droplet is
55 lm, which shrinks to about 30 lm after the evaporation of
the isopropanol. Silicone oil was chosen because of its high
vapor pressure, which stops it from evaporating in vacuum.
The silicone oil and isopropanol solution were chosen,
because its reduced viscosity facilitates the dispensing
process.

Fig. 4. (Color online) A radially displaced spherical droplet feels a restoring

gradient force towards the center of a Gaussian beam.

Fig. 3. (Color online) At the equilibrium (stability) point for the spherical

droplet, the scattering force cancels out the gravitational force. When dis-

placed, the droplet is pushed back towards the stability point via a harmonic

restoring force.
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2. Manipulation of the air damping

A vacuum pump (Pfeiffer Vacuum DUO5M) is connected to
the side of the vacuum chamber through a variable leak valve
(Leybold Gmbh DN 16 ISOKF right angle valve). The system
pump can be used to reduce the pressure in the chamber from
atmospheric pressure to 1� 10�2 mbar. A pressure gauge
(Pfeiffer Single Gauge) measures the air pressure inside the
chamber. The air was pumped out slowly to avoid strong air
currents inside the chamber that could push the droplet out of
the trap. The speed of the pumping is controlled by opening the
valve. It takes about 10 min to reduce the pressure to the mini-
mum inside the chamber without losing the droplet.

3. Manipulation of the driving force

Inside the chamber, there are two horizontal ring-shaped
electrodes (see Fig. 5). They have a radius of 5 mm and a ver-
tical separation of 20 mm. Hence, the laser beam can pass
through the center of the rings without being intercepted. The
position of the electrodes inside the chamber is such that the
lower one lies above the focal point of Lens 1. The lower elec-
trode is connected to the vacuum chamber, which in turn, is
connected to the electrical ground. The upper electrode is con-
nected to a voltage amplifier (Kepco BOP1000M) with a max-
imum voltage output of 61000 V. The power supply is fed
with a signal from a function generator (Leader LFG-1300),
which can deliver a variety of functions (AC, DC, squared,
etc.) with an output voltage in the range of 610 V. The ampli-
fier then multiplies the input times 100.

The voltage difference between the electrodes creates a
locally homogeneous, vertically directed electric field. This
field will, since the droplets carry a negative charge, produce a
driving force. The voltage needed to manipulate the droplets
depends on their charge and mass, but effects visible to the eye
could be achieved with voltage in the range 20 V to 1000 V.

B. Visualization

The technique of recording the vertical displacement of the
droplet is very similar to the one that has been presented in
detail by Isaksson et al.25 In short, a 30 mm lens (Lens 2),
placed 33.6 mm away from the droplet, focuses the scattered

light onto a position sensitive detector (PSD) (Sitek Electro
Optics AB S10006) situated at a distance of 280 mm from the
lens. The PSD is connected to a computer via a data acquisi-
tion device (National Instruments BNC-2110 connected with
a SCH68–68-EPM cable to a PCIe-6321 placed in an expan-
sion slot of the computer). A custom-made LabVIEW pro-
gram calculated the droplet’s real displacement. However, it
is also possible to project a magnified image of the droplet
onto a screen or to simply observe its oscillations directly
with the naked eye, using appropriate protective goggles.

C. Size measurement

For several applications, it is necessary to know the size
and mass of the droplet. The diffraction patterns the droplet
creates when situated in the laser beam can be used to mea-
sure these parameters with micrometer precision.

Along the direction of the laser, the droplet acts as a circu-
lar obstacle around which the reminder of the beam passes.
Such an obstacle creates an Airy diffraction pattern [see Fig.
6(a)]. The radius r of the droplet can be determined from the
first dark ring’s diameter Z by30

r ¼ 1:22
kRAiry

Z
; (11)

where k denotes the wavelength of the light and RAiry is the
distance between the object and the screen.

The light scattered from the droplet to the sides can be
modeled as two bright point sources coming from the top

Fig. 5. (Color online) (a) Sketch of the experimental apparatus. Inside a vacuum chamber, a focused laser beam creates an optical levitation trap for a micron-

sized silicone oil droplet. The droplet levitates above the focal point of Lens 1; the focal point is indicated by a dot. An illustration of the diffraction patterns

produced by the droplet is shown above the apparatus and to its left. The position sensitive detector (PSD) is shown to the right. (b) Photo of the experimental

chamber. A levitated droplet is seen as a small bright spot in the center of the image.

Fig. 6. (Color online) (a) Airy pattern produced by the droplet. The horizon-

tal line marks the diameter Z of the first dark ring. (b) Double-slit diffraction

pattern created by a levitated droplet. S is the distance between two dark

interference bands.
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and bottom of the sphere. This creates a double-slit diffrac-
tion pattern [see Fig. 6(b)], where the separation between the
two bright sources (slits) is the droplet diameter. S is the dis-
tance between the center of two dark lines, and RStripes is the
distance between the droplet and the screen. The radius r of
the droplet is given by31

r ¼ 2kRStripes

S 2þ
ffiffiffi
2
p� � : (12)

The mass m of the spherical droplet can then be calculated
using the density of silicone oil q¼ 971 kg/m3 at 25 �C in the
equation

m ¼ qV ¼ q
4

3
pr3

� �
: (13)

IV. RESULTS AND DISCUSSION

A. Resonance frequency

A sinusoidal driving force was applied to a trapped droplet
in air by modulating the magnitude of the electric field. The
frequency of the driving force was then slowly increased.
Figure 7 shows the resulting oscillations of the droplet
(decaying amplitude curve) and the driving force (constant
amplitude curve). As to be expected from an oscillator in the
overdamped regime, the amplitude of the oscillations
decreases as the frequency is increased. Additionally, fric-
tion from the air causes a lag in the motion that creates a
phase shift. This effect can be seen, for example, at t ¼ 38 s
in Fig. 7, where the crests of the oscillation and the driving
motion do not overlap.

A frequency sweep of the driving force, like the one
shown in Fig. 7, was repeated at decreasing pressures. For
every oscillation, the amplitude and phase shift were deter-
mined and plotted against the driving frequency. The ampli-
tudes were normalized to that at the lowest frequency.

Figure 8 shows a gradual transition from the overdamped
to the underdamped regimes recorded, when the air pressure
inside the chamber was decreased. Each frame shows a fre-
quency sweep at a different air pressure. The effect on the
amplitude and phase shift is apparent. The same procedure is
followed for other pressures. The circular and triangular
symbols represent the experimental data. The amplitude and
phase shift curves are obtained by use of Eqs. (6) and (7),
respectively. Both equations depend only on the restoring
constant and the damping coefficient. These constants were
found by fitting Eq. (6) to the experimental amplitude data at

each pressure. The same pair of constants were then used to
plot both the amplitude and phase shift curves.

There are some outlying points in Fig. 8, such as those
close to 34 rad/s in Fig. 8(e). These outliers are caused by so-
called whispering gallery modes,32 which occur when the cir-
cumference of the droplet exactly matches an integer multiple
of the laser wavelength. Under this condition, the optical cou-
pling into the droplet increases, causing a larger scattering
force, which in turn changes the force balance that holds the
droplet in equilibrium. This circumstance occurs, because the
silicon oil is very slowly evaporating, causing a change in the
size of the droplet. However, it was found that these outlying
points did not affect the fitting of the data to the DDHO model
and so no correction was needed. A more detailed discussion
of this effect is outside the scope of this paper, and it is left
for a forthcoming publication.

By qualitatively comparing Figs. 8 and 2, we can see that at
980 mbar and 8.7 mbar the system is overdamped, at 1 mbar
it is critically damped, and below 1 mbar it is underdamped.
Furthermore, in the underdamped regime, a resonance starts
to appear in the amplitude data. In particular, at 0.3 mbar, one
observes a significant 2.5 times increase in the peak amplitude
with respect to that at low driving frequencies.

The value of the resonance frequency can be calculated by
fitting the data using Eq. (6). Alternatively, one can empirically
find the value at which the amplitude is maximized from the
experimental data. In Fig. 8(e), the resonance occurred at a
driving frequency of w0 ¼ 30 rad/s. The droplet produced an
Airy pattern with a diameter of Z ¼ 7:7 6 0:2 cm. Hence,
using Eq. (11), it had a radius of 10.7 6 0.2 lm. Then, using
Eq. (13), we find the droplet had a mass of 5:0 6 0:2
�10�12 kg. The resulting restoring force constant derived
from Eq. (2) is k ¼ 4:59 6 0:16 nN/m. Calculating the
restoring constant using a previous procedure,25 in which a
change in laser power is balanced by the electric field, gave
k ¼ 4:10 6 0:60 nN/m.

At the resonance frequency x0 ¼ 30 rad/s, the phase shift
between the driving field and the position of the droplet is
p=2. As a consequence, the velocity of the droplet, which is
the derivative of its position, is in phase with the sinusoidally
varying electric field. Thus, the force is always pushing the
droplet in the direction of its velocity and, as a consequence,
increases the amplitude of the oscillation.

B. Overdamped and underdamped regimes

To investigate other qualitative differences between the
overdamped and underdamped regimes, a droplet was trapped
in air as well as in near-vacuum conditions, and driving func-
tions with different time structures were applied. Results of
this investigation are shown in Fig. 9. The time-dependent
position of the droplets is shown by the solid green curves,
and the dashed blue curves represent time dependence of the
applied driving force. A function generator was used to pro-
duce the following driving forces: (a) sinusoid at atmospheric
pressure, (b) sinusoid at near-vacuum (10�2 mbar), (c) square
pulsed function with a time width of 5 s at atmospheric pres-
sure, and (d) sharp delta pulse at near-vacuum.

In the case of a sinusoidal driving force in air at atmo-
spheric pressure, the damping due to friction reduces the
amplitude of the oscillation and creates a phase lag between
the value of the driving force and the position of the droplet.
The phase lag is barely present in the case of near-vacuum,
where frictional damping is negligible. This qualitative

Fig. 7. (Color online) Position of a levitated droplet at air pressure of 980

mbar decaying amplitude curve driven by a sinusoidal force constant ampli-

tude curve.
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difference is shown in Figs. 9(a) and 9(b), where the dotted
vertical lines mark the crests of the two functions. The dis-
tance between the vertical lines represents the phase shift. It
can be seen that below 1 mbar, the phase shift is close to
zero because the drag caused by the air is significantly
reduced. In contrast, at atmospheric pressure, the frictional
drag force produces a larger phase shift and a reduction in
amplitude compared to the same quantities under vacuum
conditions.

Another qualitative comparison can be made between
Figs. 9(c) and 9(d). In Fig. 9(c), a slowly varying square
pulse driving force was applied at atmospheric pressure. The
frictional damping, at this air pressure, slows down the drop-
let and its return to equilibrium, after the driving force is
removed, has an exponential behaviour, as shown in Fig.

1(a). In Fig. 9(d), a sharp delta pulse driving force momen-
tarily displaced the droplet when in near-vacuum. With small
frictional damping under the near-vacuum conditions, the
droplet returns to the equilibrium position, and an oscillation
around this point followed. The amplitude of the oscillations
decrease exponentially as the droplet is slowed down by the
frictional interaction with the air. Additional curves are plot-
ted to show the exponential decay of the amplitude of the
oscillator. This behavior coincides qualitatively with the one
displayed in Fig. 1.

V. CONCLUSIONS

The motivation for the present work was to create an eas-
ily visualizable damped driven harmonic oscillator, which

Fig. 8. (Color online) Gradual transition between the overdamped and underdamped regimes of an optically levitated droplet at five different pressures. (a) and

(b) show the overdamped regime; (c) represents a critically damped system; and (d) and (e) represent the underdamped regime. In the underdamped regime, a

resonance structure begins to appear. The circular experimental data symbols (�) represent the normalized amplitude of each oscillation, and those shown as

triangles (�) represent the measured phase shift. The pressure was maintained constant throughout each frequency sweep. The figure also shows some outlier

points, such as those at 34 rad/s in (e), which are caused by the so-called Whispering Gallery modes; see the text for discussion.
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will allow instructors to introduce the concept of a mechan-
ical resonance to students. Such a system is described theo-
retically by a second-order differential equation with
frictional damping, resonance frequency, mass, and fre-
quency and amplitude of the driving force as its parameters.
The goal was achieved by building an optical levitation
apparatus that allows us to experimentally manipulate these
parameters and, at the same time, introduce students to
optical manipulation.

By changing the pressure inside the vacuum chamber and
thereby changing the amount of frictional damping, we were
able to observe the transition between the overdamped and
underdamped regimes of the DDHO. In particular, in the
underdamped regime, a broad resonance was observed in the
oscillation data over a range of frequencies of the sinusoidal
driving force.

We were also able to show how the temporal structure of
the driving force could be changed by using a function gen-
erator. We used sine, square, and sharp delta pulse functions
in the experiment, but in general, any function could be
applied. The response to the applied driving forces was
shown to be in agreement with theory, and the results were
used to compare the overdamped and underdamped regimes
of the DDHO.

The apparatus is such that students can easily manipulate
the driving force and friction coefficient by just turning asso-
ciated “knobs.” It was very satisfying for us to see how such
a simple apparatus can be used to illustrate the physics of a
damped driven harmonic oscillator. The apparatus show-
cases oscillatory behavior in optics, fluid dynamics, and the
modern technique of optical levitation. The apparatus we
have presented can be used to study various physical effects.
For example, as a next step, we aim to investigate the whis-
pering gallery modes that can occur in this type of motion.
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APPENDIX: LIST OF EXPERIMENTAL

COMPONENTS

• Laser GEM-532 from Laser Quantum. Wavelength
532 nm and power 50 mW to 2 W. Approximate cost:
$10000.

• Droplet Dispenser Bent steel capillary (No. A010-002)
and control unit multi-dose 2 (No. A020-301).
Approximate cost: $5000.

• Vacuum Pump Pfiffer vacuum rotary vane pump. Model
Duo 5M. Approximate cost: $1500.

• PSD Sitek Electro-Optics AB one dimensional PSD, area
20 � 3 mm. Part No: S1-0006. Approximate cost: $120.

• Voltage Amplifier Kepco Model BOP1000M.
Approximate cost: $1000.

• Trapping Cell The cell is fabricated in our technical
department to an unknown cost.

• Optics Additional optics. We use two mirrors to direct the
laser and three lenses to focus the laser and to image the
droplet.

Fig. 9. (Color online) Comparison of the behavior of levitated droplets’ position (solid curve) in the over-damped and under-damped regimes for different

time-structures of the applied electrical force (dashed curve). (a) Sinusoidal driving force in air at atmospheric pressure (980 mbar). The damping reduces the

amplitude and causes a phase shift between the two curves. The dotted vertical lines mark the crests of the driving force (dotted vertical line) and the droplet’s

position (dotted line). (b) Sinusoidal driving force at near-vacuum (1� 10�2 mbar air pressure). In near-vacuum, the frictional damping is negligible. The

amplitude is larger than it was at 980 mbar and the phase shift between the curves is close to zero. (c) Pulsed square function driving force in air at atmospheric

pressure. The motion to the new equilibrium position after the driving force is removed follows a decaying exponential function. (d) Sharp delta pulse in near

vacuum (1� 10�2 mbar). The return to equilibrium is oscillatory since damping has been greatly reduced. Additional curves are drawn to show the exponential

decay of the amplitude.
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• Function Generator Leader LFG-1300. Approximate
cost: $150 (used).

• Data Acquisition Device, National Instruments NI BNC-
2110, PCIe-6321 and SHC68-68-EPM cable.
Approximate cost: $1200 (used).
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