
Engineering, 2020, 12, 623-639
https://www.scirp.org/journal/eng

ISSN Online: 1947-394X
ISSN Print: 1947-3931

DOI: 10.4236/eng.2020.129044 Sep. 14, 2020 623 Engineering

Implementation of Control Algorithms in Small
Embedded Systems

Lars Bengtsson

Department of Physics, University of Gothenburg, Gothenburg, Sweden

Abstract
This work describes how a control algorithm can be implemented in a small
(8-bit) microcontroller for the main purpose of merging embedded systems
and control theory in electrical engineering undergraduate classes. Two dif-
ferent methods for discretizing the control expression are compared: Euler
transformation and bilinear transformation. The sampling rate’s impact on
the algorithm is discussed and theoretical results are verified by an applica-
tion to a temperature control system in a heating plant. Four control algo-
rithms are compared: PID and PI algorithms discretized with Euler and bili-
near transformation, respectively. It is shown that for the heating plant used
in this work, a bilinear PI algorithm implemented in a small 8-bit microcon-
troller outperforms a commercial controller from Panasonic. It is also dem-
onstrated that all the derived algorithms can be implemented using integer
calculations only, obviating the need for expensive and time-consuming
floating-point calculations. This work bridges the gap between control theory
equations and the implementation of control systems in small embedded sys-
tems with no inherent floating-point processing power.

Keywords
Bilinear Transformation, Euler Transformation, Microcontroller, Control
System, PID Algorithm, Temperature Sensor, Set Value, Process Value, Plant

1. Introduction

Control theory and embedded systems are typically treated separately in elec-
trical engineering programs and the implementation of control algorithms in
digital computing targets is only “indicated” on a block diagram level. This work
presents the details of the implementation of control algorithms in a small mi-
crocontroller which at the same time offers a challenging application for an em-

How to cite this paper: Bengtsson, L.
(2020) Implementation of Control Algo-
rithms in Small Embedded Systems. Engi-
neering, 12, 623-639.
https://doi.org/10.4236/eng.2020.129044

Received: August 18, 2020
Accepted: September 11, 2020
Published: September 14, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/eng
https://doi.org/10.4236/eng.2020.129044
https://www.scirp.org/
https://orcid.org/0000-0002-9494-9625
https://doi.org/10.4236/eng.2020.129044
http://creativecommons.org/licenses/by/4.0/

L. Bengtsson

DOI: 10.4236/eng.2020.129044 624 Engineering

bedded systems class.
Control systems are one of the most frequently occurring electro-mechanical

systems in process industry [1]. Temperature, gas and liquid flow, liquid levels
and rotation speeds (revolutions) are only some of the physical quantities that
are frequently controlled. “Controlled” refers to the fact that the current process
value is measured (by a sensor) and fed back and compared with the intended
value (the set value) and the control system’s task is to eliminate the difference
between the set value and the process value. This is illustrated in Figure 1.

From Figure 1, we can see that the input to the control algorithm is the error
signale (t), i.e. the difference between the set value and the process value. The
control algorithm is typically a PI- or a PID-system. P is the proportional band;
the smaller P is, the greater is the amplification KP (of e(t)). I represents the in-
tegrating part of the control algorithm. This part is necessary in order to elimi-
nate “remaining errors” (otherwise the set and process values may differ even in
steady state). Finally, D represents the differential part of the algorithm. This
part has two objectives; it makes the system more agile to abrupt changes in the
set value or perturbations, but most of all, it helps to stabilize the system (all
feedback systems run the risk of being instable).

The transfer functions of a PI and a PID system are represented by Equation
(1) and Equation (2), respectively.

() 11P
I

G s K
T s

= × +

 (1)

() 11P D
I

G s K T s
T s

= × + +

 (2)

In Equation (1) and Equation (2), s is the Laplace variable (s = α + jω), KP is
the amplification, TI is the integration time and TD is the derivation time. The
{KP, TI, TD} set is referred to as the PID parameters and they need to be deter-
mined first; they depend on the physical properties of the process.

The “process” can be very simple or extremely complex, but most systems are
approximated with either a first or a second order system and these models are
necessary in order to determine the control parameters. This work is not pri-
marily concerned with finding the PID parameters; the primary concern of this
work is how to implement expressions such as Equation (1) and Equation (2)
into a small embedded system. Having said that, control parameters are typically
derived either by rule of thumb [2], by examining the step response [3] [4] or by
more advanced system identification methods [5].

In this work, Ziegler-Nichols’ step response method was applied in order to
derive the PID parameters [6]. First, the open-loop step response of the process
is registered, see Figure 2.

In a digital solution, y is the output from an ny-bit ADC (Analog-to-Digital
Converter), i.e. an integer in the range 0 and 2 1yn − . Correspondingly, the in-
put step signal u is the output from an nu-bit DAC (Digital-to-Analog Converter):

https://doi.org/10.4236/eng.2020.129044

L. Bengtsson

DOI: 10.4236/eng.2020.129044 625 Engineering

Figure 1. Basic control system.

Figure 2. Open loop step response of second order system.

an integer in the range 0 2 1un − . If a stepwise input change from u0 to u∞ re-
sults in an output change from y0 to y∞, the open-loop gain is

0

0

y y
K

u u
∞

∞

−
=

−
 (3)

L and T in Figure 2 are the inherent deadtime and the time constant of the
process, respectively. These parameters must be measured in a step response ex-
periment and the parameter set {K, L, T} is used to find the appropriate PID pa-
rameters according to Table 1 [6].

Review of Previous/Related Works

Implementation of control algorithms in single-chip microcontrollers has been
reported ever since they were introduced on the market. All ranges and brands
have been used. For example, 8-bit microcontrollers were used in [7]-[12], As-
lam et al. used a 16-bit PIC controller [13] and Krivic et al. [14] and Arzak et al.
[15] used 32-bit ARM controllers. A lot of PID implementations have been re-
ported in FPGAs, either using soft CPUs like Xlinix’s Pico Blaze [16] [17] or Al-
tera’s Nios processor [18]. Direct implementations in embedded hardware, such
as FPGAs [18] [19] and FPAAs [20] have also been reported.

As expected, the most common control implementations are concerned with
temperature [7] [18] [21] and DC engines [8] [9] [10] [13] [16] [17], but water
level [14], DC-DC output voltage [12] and position control of magnetically levi-
tated balls [11] have been reported. One of the most salient works is the imple-
mentation of a microcontroller PID system for controlling the movement of a
wheelchair by EEG waves (for quadriplegic patients) [15].

+ Control
algorithm Process

Sensor

e(t) u(t)

−

x(t)

y(t)

Process value

Set value

https://doi.org/10.4236/eng.2020.129044

L. Bengtsson

DOI: 10.4236/eng.2020.129044 626 Engineering

Table 1. PID parameters from step response.

Controller

PID parameters

KP TI TD

PI 0.9T/KL 3L

PID 1.2T/KL 2L L/2

In all reported works, about half of them implemented a straightforward Eu-

ler-transformed PID (Equation (9) below) [7] [10] [13] [14] [18] [19] [21] and
some used Fuzzy logic algorithms [8] [14]. Kheriji suggested a Model Predicted
Control algorithm which is an extension to the Euler-transformed PID [22].

In spite of an extensive data base search, no works have been found that utilize
bilinear transformation of control algorithms; Euler transformation is apparent-
ly prevalent. This work remediates this gap and demonstrates the advantages of
bilinear transformation. There is also a paucity of implementation details in pre-
vious works; exactly how are control equations translated into C code (without
floating-point support) and exactly how is the hardware details designed. For
example, how are the algorithm details affected by analogue-to-digital and digi-
tal-to-analogue converters? This work will cover all these implementation details.

2. Method and Material
2.1. Theory

The problem addressed in this work is how control equations, such as those
represented by Equation (1) and Equation (2), are best implemented in a small,
8-bit microcontroller (non-digital signal-processing chip). Two methods are
proposed and compared: Euler transformation and bilinear transformation.

2.1.1. Euler Transformation
In Equation (1) and Equation (2), G(s) represents the transfer function from e(t)
to u(t) in Figure 1 (i.e. U(s)/E(s)). Taking the inverse Laplace transform of ex-
pressions (1) and (2) gives us the time domain signals:

() () ()1 dP
I

u t K e t e t t
T

= × +

∫ (4)

() () () ()1 dP D
I

u t K e t e t t T e t
T

′= × + + ×

∫ (5)

In Figure 3, the error signal e(t) has been sampled with a sampling time TS.
From Figure 3, it is obvious that the integral of e(t) can be approximated by

the sum of the indicated rectangles, i.e.

() () ()d S Si ie t t e i T T e i≈ × =∑ ∑∫ . (6)

Correspondingly, in Figure 4, we can see that the derivative of e(t) at some
point may be approximated by the gradient of the straight line between two ad-
jacent samples, i.e.

https://doi.org/10.4236/eng.2020.129044

L. Bengtsson

DOI: 10.4236/eng.2020.129044 627 Engineering

Figure 3. The integral is approximated with the sum of rectangles.

Figure 4. The derivative is approximated by the straight line between two adjacent sam-
ples.

() () () ()1

S

e n e n
e t e n

T
− −

′ ′≈ = . (7)

Hence, when we discretize the control algorithms (4) and (5) using Euler
transformations, we get the following expressions:

() () ()0
nS

P i
I

T
u n K e n e i

T =

= × +

∑ (8)

() () () () ()()0 1nS D
P i

I S

T Tu n K e n e i e n e n
T T=

= × + + − −

∑ (9)

Expressions (8) and (9) are “computer-friendly” expressions that can be rea-
dily implemented in an embedded system. Notice how the sampling time be-
comes a crucial design parameter.

2.1.2. Bilinear Transformation
In the Euler transform, we first apply the inverse (Laplace) transform and then
discretize the time. In the bilinear transformation, we do exactly the opposite; we
first transform the continuous-frequency expressions (1) and (2) to the dis-
crete-frequency domain and then apply the inverse transformation to get the
time-expressions for the computer algorithm.

The discrete-time correspondence to the Laplace transform is the z transform

e(t)

t

e0
e1

e2

e3

TS

e(t)

t

en

en-1

TS

e’n

https://doi.org/10.4236/eng.2020.129044

L. Bengtsson

DOI: 10.4236/eng.2020.129044 628 Engineering

[23]. In the z transform, the frequency variable is the normalized frequency va-
riable Ω (normalized to the sampling rate):

S
S

T
f
ω ωΩ = = × (10)

Since ω is limited to frequencies < 2π × fS/2, due to the sampling theorem [24],
Ω is limited to ±π (z transforms are periodic with period 2π to represent the pe-
riodicity of sampled signals in frequency space).

Hence, a transformation from continuous-time to discrete-time becomes
cumbersome, since only a limited number of frequencies can be carried over to a
discrete-time representation. To overcome this, we have to “squeeze” in all fre-
quencies in the continuous time-domain, from –∞ to +∞, into the ±π interval in
the z domain. The following expression accomplishes this:

()2 arctan kωΩ = × (11)

Equation (11) maps ω to Ω as:
ω = −∞→Ω = −π ;

0 0ω = →Ω = ;
ω = +∞→Ω = +π .
This is illustrated in Figure 5.
In Equation (11), we solve for ω (and multiply both sides by the imaginary

number j):

()
()

()
()

j 2 j 2

j 2 j 2

j 2 j j

jj 2 j

1j sin e e1 1 12 2j j tan
12 cos e e

2 2
e e 11 1 e 1

e 1e e 1

k k k

k k

ω

−

−

−

Ω Ω

Ω Ω

Ω Ω Ω

ΩΩ Ω−

Ω
× −Ω = = × = × Ω +

− −
= × = ×

++

 (12)

For α = 0, s = jω and we can write Equation (12) as

1 1
1

zs
k z

−
= ×

+
 (13)

where ()j je e ess TsTz α ω+ Ω= = = if α = 0. Equation (13) represents the classic bi-
linear transformation that transfers a Laplace transform expression into the cor-
responding z transform expression.

However, we are not quite done yet; we need to determine the constant k in
Equation (13). We determine it so that we get a good mapping for the lowest
frequencies; if Ω is “small” then, tan (Ω/2) ≈ Ω/2 and expression (12) is now

1
2k

ω Ω
= × (14)

Solving for k, and remembering that Ω is the normalized frequency variable,
we get:

2 2 2
S ST T

k
ω

ω ω
Ω

= = = (15)

https://doi.org/10.4236/eng.2020.129044

L. Bengtsson

DOI: 10.4236/eng.2020.129044 629 Engineering

Figure 5. Bilinear transformation compresses the frequency axis.

Combining Equation (13) and Equation (15), we finally get our transforma-

tion expression:

2 1
1S

zs
T z

−
= ×

+
 (16)

This is the substitution we need to do in expressions (1) and (2) to translate
the control frequency functions to discrete-time (sampled) space. We do Equa-
tion (1) first:

()

() ()()

() ()()

() ()()1
1

1 11 1
2 1 2 1

1

2 1 1
2 1 2 1

12 1 1
2 1

12 2
2 1

12 2
2 1

S
P P

I I

S

SI
P

I I

P
I S

I

P
I S I S

I

P
I S I S

I

T zG z K K
T z T z

T z

TT z zK
T z T z

K T z T z
T z

K z T T T T
T z

K T T T T z
T z

−
−

 + = × + = + − −
 +

 − +
= + − −

= − + + ×
−

= + − − ×
−

= + − − ×
−

 (17)

Equation (1) represents the transfer function from e(t) to u(t) in Figure 1.
Hence,

() ()
()

U z
G z

E z
= (18)

() ()() ()()1 12 2 1
2

P
I S I S

I

K E z T T T T z U z z
T

− −+ − − = − (19)

Taking the inverse z transform of Equation (19), and remembering that in the
z transform, z−m represents a time delay of m sample times ([25], p. 345), we get

H(ω)

ω

+Inf−Inf
H(Ω)

Ω
+π−π

https://doi.org/10.4236/eng.2020.129044

L. Bengtsson

DOI: 10.4236/eng.2020.129044 630 Engineering

the difference equation we are looking for:

() ()()1 12 2
2

P
n n I S n I S n

I

Ku u T T e T T e
T− −= + + − − (20)

Notice an important difference between the Euler expression (8) and the bili-
near expression (20); in Equation (20) we need old samples of the control signal
(un−1). This implies poles in the z plane, i.e. the system could become instable (if
the poles are outside the unit circle in the z plane). With the Euler transform, we
always get inherently stable systems (no poles).

Next, we need to do the same substitution in Equation (2). This will give us
the following expression:

(){ ()

() }

2 2
2 1

2
2

2 4 2 8
2

4 2

P
n n I S S I D n S I D n

I S

I D S I S n

Ku u T T T T T e T T T e
T T

T T T T T e

− −

−

= + + + + −

+ + −
 (21)

2.2. Hardware

The hardware setup is illustrated in Figure 6. The heart of the control system is
a microcontroller from Microchip; the 20-pin, 8-bit PIC16F1769 mid-range
controller [26] (list price is $1.92). The process to control (the “plant”) is the
temperature of a power resistor. Its temperature is measured by a temperature
sensor, LM35 [27], and fed back to the control algorithm. The sensor’s sensitivi-
ty is 10 mV/˚C and its signal is amplified 10 times by a non-inverting amplifier
(taking advantage of an op amp embedded into the microcontroller). The output

Figure 6. Microcontroller-based control system.

17

+5 V

AN2
3

AN3

14
OPA1
+

− 13

12

11 +5 V

+VP

PWM

1k

9k

Plant

LM35

PIC16F1769

Relay

https://doi.org/10.4236/eng.2020.129044

L. Bengtsson

DOI: 10.4236/eng.2020.129044 631 Engineering

is connected to one of the analog input channels; this represents the process val-
ue and since the maximum allowed input is +5 volts, the temperature range is
0..50˚C.

The output from the control algorithm is sent to a pulse width modulated
(PWM) output (period = 4.4 seconds). This output is connected to a semicon-
ductor relay [28] that controls the dc power source (Vp) that heats the plant re-
sistor. The VP voltage was adjusted so that a PWM duty cycle of 100% would
correspond to a plant temperature of +50˚C; VP = 8.0 volts. The set value is ad-
justed by a 10-turn potentiometer connected to one of the analog inputs (AN2)
and the plant temperature is registered on analog channel AN3.

2.3. Software

The PWM duty cycle value can only be updated at the end of each period and
hence it makes no sense to read the set and plant temperatures more often than
the PWM period (i.e. the sampling time equals the PWM period). The software
was designed to generate an interrupt at the end of each PWM period and the
control algorithms were implemented in the ISR (interrupt service routine; the
software is background/foreground oriented ([29], pp. 83-84)) and the ISR is il-
lustrated in Figure 7.

The heart of the algorithm is the calculation of the new output value and the
update of the old samples. This part of the C code is illustrated below.

 u_temp = u2 + 5892*e−7154*e1 + 2172*e2; //calculate new
 if (u_temp > 65535) //limit the output to
 u_temp = 65535; //a 16-bit range
 else if (u_temp < 0)
 u_temp = 0;
 u = (unsigned int)u_temp; //type conversion
 PWM6_DutyCycleSet(u);
 PWM6_LoadBufferSet(); //Update output
 e2 = e1; //Update old samples
 e1 = e;
 u2 = u1;
 u1 = u;
The program was developed in Microchip’s MPLABX IDE using the XC8 C

compiler. The microcontroller ran at 16 MHz and the first C code line above
(calculating the new output value), was timed in the simulator to take 52 μs.

2.4. Step Response

The open-loop step response was measured using two analog channels on a
Tektronix MSO2012B oscilloscope. Since the relay that controls the plant is con-
trolled by a PWM signal, an input step corresponds to a step change in the PWM
signal’s duty cycle. The open-loop step response was recorded (on pin 3/14 in
Figure 6) by the oscilloscope and data was transferred to MATLAB via a USB

https://doi.org/10.4236/eng.2020.129044

L. Bengtsson

DOI: 10.4236/eng.2020.129044 632 Engineering

Figure 7. Software flowchart of control system.

memory stick. Graphs were plotted in MATLAB to facilitate a convenient esti-
mation of the K, T and L parameters in Figure 2 and Table 1. The input step
change was generated by changing the PWM duty cycle from 20% to 60%.

2.5. Performance/Verification

The performance of the derived control algorithms was evaluated by registering
the control system’s response to 1) a positive step change in the set value (from
30˚C to 40˚C), 2) a negative step change in the set value (from 40˚C to 30˚C)
and finally, 3) a perturbation test where the plant was subjected to an instant
cooling perturbation (using cold spray). All responses were observed for 17 mi-
nutes.

Also, in order to benchmark our control algorithms, their performance was
compared to that of a commercial temperature controller from Panasonic (KT4)
[30]. The Panasonic controller controlled the temperature of the same power re-
sistor. The only difference in the setup was that the Panasonic controller only

https://doi.org/10.4236/eng.2020.129044

L. Bengtsson

DOI: 10.4236/eng.2020.129044 633 Engineering

accepts thermocouples or Pt-100 temperature sensors as input (a type K ther-
mocouple was used); the thermocouple was attached to the power resistor (but
the LM35 resistor was not removed, it was used to register the temperature on
the oscilloscope). Other than that, the exact same setup was used except that the
relay in Figure 6 was removed; the Panasonic controller also has a PWM output
with an internal relay. The Panasonic controller was first set to “autotuning
mode” where it evaluates the connected systems and finds its own PID parame-
ters (by some built-in rules of thumb).

3. Results
3.1. Control Parameters

Figure 8 illustrates the open-loop step response when the input PWM duty cycle
(u(t)) changes instantly from 20% to 60%. (In Figure 8, the step signal is the
output from an auxiliary I/O pin that only marks the start of the step change in
the PWM signal; its amplitude has been manipulated in MATLAB to fit the
graph).

From Figure 8, we can see that the output changes from 3.03 volts to 3.95
volts. For a 10-bit ADC, with a reference voltage of 5.0 volts, that corresponds to
integers

1023.03 621
5.0

× = and
1023.95 809

5.0
× =

The PWM input signal has a resolution of 16 bits and hence a duty cycle
change from 20% to 60% corresponds to integers

160.2 2 13107× = and 160.6 2 39322× =

From Equation (3), we get the open-loop amplification:

809 621 0.0071
39322 13107

K −
= =

−

Also, from close inspection of Figure 8, we get L = 9 seconds and T = 100
seconds. Finally, combining these parameters with Table 1 and expressions (8),
(9), (20) and (21), we get four different control algorithms according to Table 2.
(Notice that Table 2 indicates that only integer operations are required).

Figure 8. Open-loop step response.

-500 -400 -300 -200 -100 0 100 200 300 400 500

time [s]

2.5

3

3.5

4

4.5

[V
]

Open-loop step response

input step change u(t)

open-loop step response y(t)

https://doi.org/10.4236/eng.2020.129044

L. Bengtsson

DOI: 10.4236/eng.2020.129044 634 Engineering

Table 2. Suggested control algorithms.

Controller un

Euler, PI
0

1395 277 n

n ii
e e

=
+ ×∑

Euler, PID ()10
1860 455 1902n

n i n ni
e e e e −=
+ × + × −∑

Bilinear, PI 1 11509 1281n n nu e e− −+ −

Bilinear, PID 2 1 25892 7154 2172n n n nu e e e− − −+ − +

3.2. Performance, Microcontroller

Figures 9(a)-(d) illustrate the (positive) step responses for each one of the four
controllers presented in Table 2.

Figure 9. (a) The positive step response of Euler PI algorithm; (b) The positive step response
of Euler PID algorithm; (c) The positive step response of bilinear PI algorithm; (d) The posi-
tive step response of bilinear PID algorithm.

https://doi.org/10.4236/eng.2020.129044

L. Bengtsson

DOI: 10.4236/eng.2020.129044 635 Engineering

In the Euler case, the PID algorithm appears to be slightly better than the PI
algorithm; both oscillate a little in the steady state, but the oscillation amplitude
is slightly less in the PID case (≈1˚C).

For the algorithms based on bilinear transformation, the PID algorithm is
outperformed by the PI algorithm. Overall, the bilinear PI algorithm exhibits the
best performance; it has the same steady-state oscillation as the Euler PID algo-
rithm, but much smaller initial overshoot.

Figure 10 below illustrates the negative step response of the bilinear PI algo-
rithm and Figure 11 illustrates the perturbation response.

3.3. Performance, Panasonic Controller

After the autotuning was completed, the Panasonic PID parameters were set to P
= 22.2˚C, I = 34 seconds and D = 8 seconds. Figures 12-14 below illustrate the
positive and negative step responses and the perturbation response of the Pana-
sonic controller.

Figures 12-14 should primarily be compared to Figure 9(c), Figure 10 and
Figure 11, which illustrate the corresponding performance of the bilinear PI al-
gorithm.

4. Discussion

From Figures 9-11, it must be concluded that the bilinear PI algorithm exhibits the
overall best performance of all the four suggestions in Table 2. From Figures 12-14,

Figure 10. The negative step response of the bilinear PI algorithm.

Figure 11. The perturbation response of the bilinear PI algorithm.

-400 -300 -200 -100 0 100 200 300 400 500

time [s]

25

30

35

40

45

D
eg

. C
en

tig
ra

de
s

Negative step response, Bilinear PI

set value

process value

-400 -300 -200 -100 0 100 200 300 400 500

time [s]

0

10

20

30

40

D
eg

. C
en

tig
ra

de
s

Perturbation response, Bilinear PI

set value

process value

https://doi.org/10.4236/eng.2020.129044

L. Bengtsson

DOI: 10.4236/eng.2020.129044 636 Engineering

Figure 12. The positive step response of Panasonic controller.

Figure 13. The negative step response of the Panasonic controller.

Figure 14. The perturbation response of the Panasonic controller.

it is also clear that it performs even better than a commercial temperature con-
troller from Panasonic.

In all controllers, the plant temperature oscillates a little in steady state. In
Figure 9(c), the amplitude of the oscillations seems to increase with time. For
that reason, the output of this controller was carefully monitored for two hours
and the oscillations petered out almost completely.

The first version of this design did not work as expected; the microcontroller
was not able to control the temperature. After extensive debugging, the error was
found in the software; the delay between the sampling of AN2 and AN3 was in-
serted. According to the datasheet ([26], pp. 185-186), there is only one ADC; all
channels use the same sample-and-hold circuit and an analog multiplexer for-
wards the analog channels to the ADC. Hence, the shared sample-and-hold ca-
pacitor must be allowed time to charge/de-charge between channel switching

-500 -400 -300 -200 -100 0 100 200 300 400 500

time [s]

25

30

35

40

45

D
eg

. C
en

tig
ra

de
s

Postive step response, Panasonic KT4

set value

process value

-500 -400 -300 -200 -100 0 100 200 300 400 500

time [s]

25

30

35

40

45

De
g.

 C
en

tig
ra

de
s

Negative step response, Panasonic KT4

set value

process value

-500 -400 -300 -200 -100 0 100 200 300 400 500

time [s]

-10

0

10

20

30

40

D
eg

. C
en

tig
ra

de
s

Perturbation response, Panasonic KT4

set value

process value

https://doi.org/10.4236/eng.2020.129044

L. Bengtsson

DOI: 10.4236/eng.2020.129044 637 Engineering

and for that reason a delay needs to be inserted between readings of different
channels. (10 ms is an overkill but compared to the system’s time constant it is
negligible).

5. Conclusion

This work has presented detailed instructions on how to implement PI and PID
algorithms into small embedded systems and it has been proven that a bilinear
transformation of the control expressions yields a better controller performance
than the general modus operandi of Euler transformations. The reason why a bi-
linear transformation has better performance than the Euler transformation lies
probably in the fact that the bilinear transformation produces algorithms with
feedback; they utilize previous samples of the output signal. Herein lies also the
weakness; control algorithms derived by bilinear transformation may become
inherently unstable (which cannot happen with Euler algorithms). This work has
also demonstrated that a complete controller can be implemented in an in-
expensive, analog/digital hybrid 8-bit microcontroller, costing less than $2.
That will make it less expensive than any other implementations in ARM- or
FPGA-based solution and in terms of performance, it has been demonstrated
that it can outperform a commercial desktop controller. This also makes it rea-
dily available for undergraduate classes in electrical engineering. Here, the ap-
plication was a temperature plant, but the same system has been successfully im-
plemented also on a water level plant and the fact that the arithmetic is based on
integer calculations indicate that it should not be a problem to apply it also to
DC motor control. The fact that only integer calculations are required (see Table
2) eliminates the need for expensive floating-point processors.

Conflicts of Interest

The author has no conflicts of interest to report.

References
[1] Harris, T., Seppala, C. and Desborough, L. (1999) A Review of Performance Moni-

toring and Assessment Techniques for Univariate and Multivariate Control Sys-
tems. Journal of Process Control, 9, 1-17.
https://doi.org/10.1016/S0959-1524(98)00031-6

[2] Ziegler, J. and Nichols, N. (1942) Optical Settings for Automatic Controllers.
Transactions of the American Society of Mechanical Engineers, 64, 759-768.

[3] Ahmed, S., Huang, B. and Shah, S. (2007) Novel Identification Method from Step
Response. Control Engineering Practice, 15, 545-556.
https://doi.org/10.1016/j.conengprac.2006.10.005

[4] Bi, Q., Cai, W.-J., Lee, E.-L., Wang, Q.-G., Hang, C.-C. and Zhang, Y. (1999) Robust
Identification of First-Order plus Dead-Time Model from Step Response. Control
Engineering Practice, 7, 71-77. https://doi.org/10.1016/S0967-0661(98)00166-X

[5] Ljung, L. (1999) System Identification. Prentice-Hell, New Jersey.
https://doi.org/10.1002/047134608X.W1046

[6] Basilo, J. and Matos, S. (2002) Design of PI and PID Controllers with Transient

https://doi.org/10.4236/eng.2020.129044
https://doi.org/10.1016/S0959-1524(98)00031-6
https://doi.org/10.1016/j.conengprac.2006.10.005
https://doi.org/10.1016/S0967-0661(98)00166-X
https://doi.org/10.1002/047134608X.W1046

L. Bengtsson

DOI: 10.4236/eng.2020.129044 638 Engineering

Performance Specification. IEEE Transactions on Education, 45, 364-370.
https://doi.org/10.1109/TE.2002.804399

[7] Chesaru, V., Dan, C. and Bodea, M. (2006) PID Algorithm for Controller Proces-
sors. 2006 International Semiconductor Conference, Sinaia, 27-29 September 2006,
429-432. https://doi.org/10.1109/SMICND.2006.284037

[8] Sarin, S., Hindersah, H. and Prihatmanto, A. (2012) Fuzzy PID Controllers Using
8-Bit Microcontroller for U-Board Speed Control. 2012 International Conference
on System Engineering and Technology, Bandung, 11-12 September 2012, 1-6.
https://doi.org/10.1109/ICSEngT.2012.6339355

[9] Uzunovic, T., Zunic, E., Badnjevic, I., Miokovic, I. and Konjicia, S. (2010) Imple-
mentation of Digital PID Controller. The 33rd International Convention MIPRO,
Opatija, 24-28 May 2010, 1357-1361.

[10] Xu, C., Huang, D.G., Huang, Y.P. and Gong, S.G. (2008) Digital PID Controller for
Brushless DC Motor Based on AVR Microcontroller. 2008 IEEE International Con-
ference on Mechatronics and Automation, Takamatsu, 5-8 August 2008, 247-252.

[11] Kalúz, M., Klauco, M. and Kvasnica, M. (2015) Real-Time Implementation of a
Reference Governor on the Arduino Microcontroller. 2015 20th International Con-
ference on Process Control, Strbske Pleso, 9-12 June 2015, 350-356.
https://doi.org/10.1109/PC.2015.7169988

[12] Boudreaux, R.R., Nelms, R.M. and Hung, J.Y. (1997) Simulation and Modeling of a
DC-DC Converter by an 8-Bit Microcontroller. Proceedings of APEC 97—Applied
Power Electronics Conference, Atlanta, 27 February 1997, 963-969.

[13] Aslam, S., Hannan, S., Sajjad, U. and Zafar, W. (2016) Implementation of PID on
PIC24F Series Microcontroller for Speed Control of a DC Motor Using MPLAB and
Proteus. Advances in Science and Technology Research Journal, 10, 40-50.
https://doi.org/10.12913/22998624/64060

[14] Krivic, S., Hujdur, M., Mrzic, A. and Konjicija, S. (2012) Design and Implementa-
tion of Fuzzy Controller on Embedded Computer for Water Level Control. 2012
Proceedings of the 35th Convention MIPRO, Opatija, 21-25 May 2012, 1747-1751.

[15] Arzak, M., Sunarya, U. and Hadiyoso, S. (2016) Design and Implementation of
Wheelchair Controller Based on Electroencephalogram Sinal Using Micronctroller.
International Journal of Electrical and Computer Engineering, 6, 2878-2886.

[16] Das, A. and Banerjee, K. (2009) Fast Prototyping of a Digital PID Controller on a
FPGA Based Soft-Core Microcontroller for Precision Control of a Brushed DC Ser-
vo Motor. 2009 35th Annual Conference on IEEE Industrial Electronics, Porto, 3-5
November 2009, 2825-2830. https://doi.org/10.1109/IECON.2009.5415406

[17] Youness, H., Moness, M. and Khaled, M. (2014) MPSoCs and Multicore Microcon-
trollers for Embedded PID Control: A Detailed Study. IEEE Transactions on Indus-
trial Informatics, 10, 2122-2133. https://doi.org/10.1109/TII.2014.2355036

[18] Chan, Y., Moallem, M. and Wang, W. (2007) Design and Implementation of Mod-
ular FPGA-Based PID Controllers. IEEE Transactions on Industrial Electronics, 54,
1898-1906. https://doi.org/10.1109/TIE.2007.898283

[19] Gosh, S., Barai, R., Bhattarcharya, S., Bhattarcharya, P., Rudra, S., Dutta, A. and
Pyne, R. (2013) An FPGA Based Implementation of a Flexible Digital PID Control-
ler for Motion Control System. 2013 International Conference on Computer Com-
munication and Informatics, Coimbatore, 4-6 January 2013, 1-6.
https://doi.org/10.1109/ICCCI.2013.6466277

[20] Lita, I., Visan, A. and Cioc, I. (2009) FPAA Based PID Controller with Application

https://doi.org/10.4236/eng.2020.129044
https://doi.org/10.1109/TE.2002.804399
https://doi.org/10.1109/SMICND.2006.284037
https://doi.org/10.1109/ICSEngT.2012.6339355
https://doi.org/10.1109/PC.2015.7169988
https://doi.org/10.12913/22998624/64060
https://doi.org/10.1109/IECON.2009.5415406
https://doi.org/10.1109/TII.2014.2355036
https://doi.org/10.1109/TIE.2007.898283
https://doi.org/10.1109/ICCCI.2013.6466277

L. Bengtsson

DOI: 10.4236/eng.2020.129044 639 Engineering

in the Nuclear Domain. 2009 32nd International Spring Seminar of Electronics
Technology, Brno, 13-17 May 2009, 1-4.
https://doi.org/10.1109/ISSE.2009.5206979

[21] Moallem, M. (2004) A Laboratory Testbed for Embedded Computer Control. IEEE
Transactions on Education, 47, 340-347. https://doi.org/10.1109/TE.2004.825054

[22] Kheriji, A., Bouani, F., Ksouri, M. and Ahmed, M. (2011) A Microcontroller Im-
plementation of Model Predictive Control. International Journal of Electrical,
Computer, Energetic, Electronic and Communication Engineering, 5, 600-606.

[23] Bohner, M. and Peterson, A. (2002) Laplace Transform and Z-Transform: Unifica-
tion and Extension. Methods and Applications of Analysis, 9, 151-158.
https://doi.org/10.4310/MAA.2002.v9.n1.a6

[24] Shannon, C. (1949) Communication in the Presence of Noise. Proceedings of the
Institute of Radio Engineers, 37, 10-21.
https://doi.org/10.1109/JRPROC.1949.232969

[25] Proakis, J. and Manoakis, D. (2004) Digital Signal Processing. 2nd Edition, Macmil-
lan Publishing Company, New York.

[26] Microchip Technology Inc. (2018) PIC16(L)F1764/5/8/9. Microchip Tech. Inc.,
Tucson.

[27] Analog Devices (2015) TMP35/TMP36/TMP37 Low Voltage Temperature Sensors.
Rev. H ed., Norwood, Maine.

[28] Panasonic, S. (2017) Relays—Polarized Power Relays. ASCTB207E ed., Osaka.

[29] Laplante, P. (2004) Real-Time Systems Design and Analysis. John Wiley & Sons,
Inc., Hoboken. https://doi.org/10.1002/0471648299

[30] Panasonic (2020) Panasonic Industrial Automation.
https://www3.panasonic.biz/ac/na_download/fasys/component/temperature_contro
ller/manual/kt4_manual_e.pdf?f_cd=3614

https://doi.org/10.4236/eng.2020.129044
https://doi.org/10.1109/ISSE.2009.5206979
https://doi.org/10.1109/TE.2004.825054
https://doi.org/10.4310/MAA.2002.v9.n1.a6
https://doi.org/10.1109/JRPROC.1949.232969
https://doi.org/10.1002/0471648299
https://www3.panasonic.biz/ac/na_download/fasys/component/temperature_controller/manual/kt4_manual_e.pdf?f_cd=3614
https://www3.panasonic.biz/ac/na_download/fasys/component/temperature_controller/manual/kt4_manual_e.pdf?f_cd=3614

	Implementation of Control Algorithms in Small Embedded Systems
	Abstract
	Keywords
	1. Introduction
	Review of Previous/Related Works

	2. Method and Material
	2.1. Theory
	2.1.1. Euler Transformation
	2.1.2. Bilinear Transformation

	2.2. Hardware
	2.3. Software
	2.4. Step Response
	2.5. Performance/Verification

	3. Results
	3.1. Control Parameters
	3.2. Performance, Microcontroller
	3.3. Performance, Panasonic Controller

	4. Discussion
	5. Conclusion
	Conflicts of Interest
	References

