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Abstract

From theoretical linguistic and cognitive
perspectives, situated dialogue systems are
interesting as they provide ideal test-beds
for investigating the interaction between
language and perception. To date, how-
ever much of the work on situated dia-
logue has focused resolving anaphoric or
exophoric references. This paper opens
up the question of how perceptual mem-
ory and linguistic references interact, and
the challenges that this poses to computa-
tional models of perceptually grounded di-
alogue.

1 Introduction

Situated language is spoken from a particular point
of view within a shared perceptual context (By-
ron, 2003). In an era where we are witnessing
a proliferation of sensors that enable computer
systems to perceive the world, effective compu-
tational models of situated dialogue have a grow-
ing number of practical applications, consider ap-
plications in human-robot interaction in personal
assistants, driverless car interfaces that allow in-
teraction with a passenger in language, and so
on. From a more fundamental science perspective,
computational models of situated dialogue provide
a test-bed for theories of cognition and language,
in particular those dealing with the binding/fusion
of language and perception in interactive settings
involving human conversational partners and an
ever-changing environment.

The history of computational models of situ-
ated dialogue can be traced back to systems in the
1970’s such as SHRDLU which enabled a user
to control a robot arm to move objects around a
simple simulated blocks micro-world (Winograd,
1973). Since these early beginnings there has

been consistent research on computational mod-
els of the interface between language and vision,
examples of such research spanning the decades
include (McKevitt, 1995; Kelleher et al., 2000;
Kelleher, 2003; Gorniak and Roy, 2004; Kelleher
and Kruijff, 2005a; Kruijff et al., 2006a; Dobnik,
2009; Tellex, 2010; Sjöö, 2011; Kelleher, 2011;
Hawes et al., 2012; Dobnik and Kelleher, 2016;
Schütte et al., 2017; Larsson, 2018). A commonal-
ity across many of these systems is that they have a
primary focus on grounding1 the references within
a single utterance against the current perceptual
context. For example, many of these systems
are concerned with grounding spatial references.2

Some of these systems do maintain a model of the
evolving linguistic discourse. However, many of
these systems assume a fixed view of the world,
and hence the question of how to store perceptions
of entities that have not yet been mentioned does
not arise as the necessary perceptual information
relating to these entities is always present through
direct perception of the situation. Consequently,
these systems have no perceptual memory, and so
cannot handle reference to entities that have been

1In the sense of Harnad (1990) rather than Clark et al.
(1991)

2Herskovits (1986) provides an excellent overview of the
challenges posed by spatial language. Many computational
models of spatial language are based on the spatial template
concept (Logan and Sadler, 1996); see Gapp (1995a), Kelle-
her and Kruijff (2005b), Costello and Kelleher (2006), and
Kelleher and Costello (2009) for examples of spatial template
based computational models of the semantics of topological
prepositions, and Gapp (1995b), Kelleher and van Genabith
(2006), and Brenner et al. (2007) for computational models
of projective prepositions. More recently models based on
the concept of an attentional vector sum (Regier and Carl-
son, 2001; Kelleher et al., 2011), and the functional geomet-
ric framework (Coventry and Garrod, 2004) have been pro-
posed. Another stream of research on spatial language deals
with the question of frame of reference modelling and am-
biguity (Carlson-Radvansky and Logan, 1997; Kelleher and
Costello, 2005; Dobnik et al., 2014, 2015; Schultheis and
Carlson, 2017)
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perceived but are no longer visible. Within this
context, this paper highlights the challenges posed
to computational models of situated dialogue in
designing models that are capable of resolving ref-
erences to previously perceived entities.

Paper structure: Section 2 frames the paper’s fo-
cus on reference, and highlights the role that mem-
ory plays in reference within dialogue; Section 3
overviews some of the main cognitive theories and
models of human memory; Section 4 expands the
focus to include models of reference in situated
dialogue, including models of data fusion from
multiple modalities; Section 5 compares two dif-
ferent approaches to designing computational data
structures of perceptual memory (one approach is
discrete/local/episodic in nature, the other is an
evolving monolithic model of context); Section 6
concludes the paper, where we argue that a blend
of these approaches is necessary to do justice to
the richness and complexity of situated dialogue.

2 Reference in Dialogue

Referring expressions can take a variety of sur-
face forms, including: definite descriptions (“the
red chair”, indefinites (“a chair”), pronouns (“it”),
demonstratives (“that”). The form of referring ex-
pression used by a speaker signals their belief with
respect to the status the referent occupies within
the hearer’s set of beliefs (Ariel, 1988; Gundel
et al., 1993). For example, a pronominal reference
signals that the intended referent has a high de-
gree of salience within the hearer’s current mental
model of the discourse context.

The term “mutual knowledge” describes a set of
mutually shared propositions that a particular set
of things are in the joint focus of attention of the
interlocutors, and hence are available as referents
within the discourse (McCawley, 1993). In a situ-
ated dialogue, an interlocutor may consider an en-
tity to be available as a potential referent: (i) they
consider it to be part of the cultural or biographical
knowledge they share with their dialogue partner,
or (i) it is in the shared perception of the situation
the dialogue occurs within.

The term discourse context (DC) is often used
in linguistically focused research on dialogue to
describe the set of entities available for reference
due to the fact that they have previously been men-
tioned in the dialogue:

“The DC has traditionally been thought
of as a discourse history, and most com-

putational processes accumulate items
into this set only using linguistic events
as input” (Byron, 2003, pg. 3).

In this paper, we will often distinguish between
the mutual knowledge set and the discourse con-
text, where the mutual knowledge set contains
the set of entities that are available for reference
but which have not been mentioned previously in
the discourse, and the discourse context being a
record of the entities that have been mentioned
previously. Given this distinction between mutual
knowledge and the discourse context, the process
of resolving a referring expression can be charac-
terized as follows: a referring expression in an ut-
terance introduces a representation into the seman-
tics of that utterance and this representation must
be bound to an entity in the mutual knowledge set
(in the case of evoking or exophoric references) or
in the discourse context (in the case of anaphoric
references) for the utterance to be resolved.

This process of resolving a referring expression
against the mutual knowledge set or the discourse
context means that we can distinguish at least three
types of referring expressions based on the infor-
mation source they draw their referent from (as
opposed to their surface form), namely: evoking,
exophoric and anaphoric references. An evoking
reference refers to an entity that is known to the in-
terpreter through their conceptual knowledge but
which has not previously been mentioned in the di-
alogue. Consequently, the referent of an evoking
reference is found in the mutual knowledge set,
and the process of resolving this reference intro-
duces a representation of the referent into the dis-
course context. An exophoric reference denotes
an entity that is known to the interpreter through
their perception of the situation of the dialogue
but which has not previously been mentioned in
the dialog. Similar to an evoking reference, the
process of resolving an exophoric reference intro-
duces a representation of the referent into the dis-
course context. An anaphoric reference refers to
an entity that has already been mentioned in the
dialogue and hence a representation of its referent
is already in the discourse context. Figure 1 illus-
trates the relationships between the data structures
and categories of reference described above.

All of these forms of reference draw upon hu-
man memory. Mutual knowledge and the mainte-
nance of a discourse context are both ‘stored’ in
memory. Therefore in order for a computational
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Figure 1: The relationship between mutual knowl-
edge, the discourse context, and evoking, ex-
ophoric, and anaphoric references.

system to be able to resolve exophoric references
it must include, and maintain, data structures that
represent the memory component that maintains
the mutual knowledge element of shared percep-
tual experience. To inform the design of this mem-
ory data structure in the next section we will re-
view cognitive theories of memory.

3 Cognitive Theories of Memory

Cognitive psychology3 distinguishes between a
number of different types of memory including:

sensory memory which persists for several hun-
dred milliseconds and is modality specific

working memory which persists for up to thirty
seconds and has limited capacity

long-term memory which persists from thirty
minutes up to the end of a person’s lifetime,
and has potentially unlimited capacity.

Figure 2 illustrates the (Atkinson and Shiffrin,
1968) model of how these different types of mem-
ory interact. External inputs are initially stored in
modality specific sensory memory buffers. There
is an attentional filter between these sensory spe-
cific memories and working memory. Information
that is attended to passes through to working mem-
ory, and unattended information is lost. Informa-
tion in the working memory that is frequently re-
hearsed is transferred to long-term memory and
may be retrieved later. Information in working
memory that is not rehearsed is displaced as new
information arrives.

3See, for example Eysenck and Keane (2013).

Figure 2: Atkinson and Shiffrin’s Multi-store
Model of Memory, based on a figure from
https://en.wikipedia.org/wiki/
Atkinson?Shiffrin_memory_model

Evoking references draw on long-term memory
and exophoric references draw on working mem-
ory.4 Furthermore, it is reasonable that the dis-
course context model should be considered a part
of working memory. These observations point to
a partial mapping between components of Figure
1 and Figure 2. Working memory is where the
part of mutual knowledge that is based on percep-
tion of the situation and also the discourse context
model are stored and maintained; whereas, long-
term memory is where the information used to re-
solve evoking references is stored. The mapping
indicates that working memory is at the centre of
handing exophoric references.

According to Baddeley (2002) working mem-
ory has four major systems, see Figure 3, these
are:

central executive is modality independent and is
responsible for supervising the integration of
information, directing attention, and coordi-
nating the other systems

phonological loop holds speech based informa-
tion and can maintain this information over
short periods by continuous rehearsal

visual-spatial sketchpad stores visual and spa-
tial information and can construct visual im-
ages and mental maps

episodic buffer a limited capacity buffer that
temporarily stores and integrates information
from the phonological loop and the visuo-
spatial sketchpad, and can also link to long-
term memory, and perhaps other modules
dedicated to smell, taste, and so on. The
information sources that the episodic buffer
draws upon use different encoding schemes,
however the episodic buffer integrates these

4Exophoric references can also affect the attention filter
between sensory memory and working memory, see Dobnik
and Kelleher (2016) for more discussion on this point.
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Figure 3: Baddeley’s Model of Working Memory,
figure inspired by Figure 3 of (Baddeley, 2002)

disparate encodings into a unitary represen-
tation of chronologically ordered episodes.

4 Grounding Language in Vision

Grosz (1977) highlighted that attention processes
can affect how references are resolved during a di-
alogue. In particular, Grosz observed the inter-
action between the shared focus of attention and
the use of exophoric definite descriptions. Specif-
ically, if an object is in the mutual focus of atten-
tion it can be denoted by means of a definite de-
scription even though other entities fulfilling the
description are present in the mutual knowledge
set. Grosz and Sidner (1986) extended this work
and developed a focus stack model of global dis-
course attentional state. Other models of global
discourse structure and processing have since been
proposed, for example Hobbs (1985); Mann and
Thompson (1987); Kempson (1988); Kempson
et al. (2000); Asher and Lascarides (2003); Kamp
et al. (2011). However, whichever model of global
discourse structure is assumed the question of how
the focus of attention and reference interact within
a local discourse context must also be addressed,
and a number of approaches to this question have
been proposed, for example Alshawi (1987), Haji-
cová (1993), Lappin and Leass (1994), and Grosz
et al. (1995).5 However, none of these models ex-
plicitly accommodate multimodal contexts.

Harnad (1990) addresses the question of
grounding language in perception. More recently,
Coradeschi and Saffiotti (2003) has addressed this
in terms of the symbol anchoring framework, Roy
(2005) has proposed semantic schemas, and Krui-
jff et al. (2006b) proposed an ontology-based me-
diation between content in different modalities.
Generally, these works focus on exophoric refer-

5See (Kruijff-Korbayová and Hajicová, 1997) for a com-
parison of these approaches.

ences but assume that the referent is still percep-
tually available. An interesting, and understudied,
category of reference are exophoric references to
entities that are not perceptually available at the
time of the reference. For example, consider an
entity that was seen by two interlocutors just prior
to either of them referring to it, but which is no
longer visible to either of them, perhaps because
they (or it) has changed location. The fact that
the entity is no longer accessible through direct
perception highlights the need for a memory of
perception to be maintained to handle these refer-
ences, and we will refer to these types of exophoric
references as references to perceptual memories.
These types of references are interesting for two
reasons. First, in general, (as noted above) to date
exophoric references have been studied under the
assumption that the referent is still perceptually
available to the interlocutors’. Second, enabling
a computational model to handle exophoric ref-
erents to entities that are no longer perceptually
available requires the design of a perceptual mem-
ory data structure. This perceptual memory data
structure stores the mutual knowledge information
related to the interlocutors shared perceptual ex-
perience of the situation (see Section 2). Further-
more, this perceptual memory data can be under-
stood as part of working memory (see Section 3).

5 Perceptual memory

The design of a perceptual memory data-structure
opens up a number of significant research ques-
tions, for example: should all entities that are per-
ceived be entered into this data structure or is there
a filtering process (e.g. an attentional filter); once
an entity enters the perceptual memory is it there
indefinitely or can it be removed (forgotten); how
does the perceptual memory interact with the lin-
guistic discourse history (are they separate); how
is the perceptual memory structured, for example,
is it episodic or monolithic, does it have a chrono-
logical order; and so on.

There are examples of computational models
that can function as perceptual memories in the lit-
erature. For example, in Robotics there is a long
tradition of research on the problem known as Si-
multaneous Localisation and Mapping (SLAM),
Thrun et al. (2005) provides an introduction and
overview of SLAM research. SLAM algorithms
integrate sensor information received over a period
of time as a robot moves around an environment
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into a single map representation. Once constructed
this map enables a robot to navigate through the
environment without colliding with fixed obsta-
cles, such as walls. However, at least in the stan-
dard versions of SLAM these maps have no se-
mantic information about what things are, rather
the focus is on mapping there are things. So, in
some ways, SLAM models can be understood as
akin to the visuo-spatial scratchpad in Baddeley’s
model of working memory. Although undoubtably
useful for robot navigation, SLAM models, and
the encodings they use, are not designed to fa-
cilitate linguistic reference. For this, we need a
model that integrates both visuo-spatial informa-
tion and linguistic information, something akin to
the episodic buffer in Baddeley’s model.

5.1 A Local/Episodic Architecture

The LIVE system (Kelleher et al., 2005), is a can-
didate architecture for this episodic buffer mod-
ule. The LIVE system is designed as a natural lan-
guage interface to a virtual town, similar in spirit
to Winograd’s SHRDLU system discussed earlier.
A distinctive characteristic of the LIVE system,
is that the user is able to move around the envi-
ronment, and the system has a perceptual memory
module that enables the user to refer to off-screen
objects that have been seen recently. The LIVE
system uses a false colouring visual salience al-
gorithm to process each frame (visual scene) gen-
erated as the user moved through the virtual envi-
ronment (Kelleher and van Genabith, 2003, 2004),
there are 28 such frames generated per second.
This visual salience algorithm identifies each ob-
ject instance visible in a frame, and associates a
normalised visual salience score to each object,
based on its size and location within the frame. For
each object in a scene the system also retrieves the
object type (e.g. house, tree, etc.) and colour in-
formation from the scene graph. Consequently, for
each frame a list of the visible objects along with
their type and colour information and a salience
score is created. This frame information is then
used to populate a data structure, known as a refer-
ence domain. There is a separate reference domain
created for each frame. In a sense a reference do-
main can be understood as a representation of the
perceptual information in a frame that is designed
to facilitate the grounding of exophoric references.

A reference domain is composed of a number
of lists, known as partitions, and the elements of

each partition is ordered, in descending order, by
their visual salience. The function of these parti-
tions is to predict the different ways a user may
refer to an object in the scene. Every reference
domain contains a general object partition which
lists all the objects in the scene ordered by their
salience, there is also a partition for each object
type in the scene (e.g., if there are trees visible in
a frame then the corresponding reference domain
includes a tree partition listing all the trees visi-
ble ordered by their salience), and for each object
colour (e.g., if there are red objects in the scene
then there is a red partition listing all the red ob-
jects ordered by colour). The set of potential parti-
tions that could be included in a reference domain
is huge, for example there could be a partition for
red houses, or green trees, and other combinations
of features. In the design of the LIVE system the
decision was taken to limit the initial set of parti-
tions to categories that are reasonably likely to be
preattentively available, namely, object, type, and
colour. Partitions modelling more complex crite-
ria may be created within a reference domain in
response to a linguistic utterances, the reasoning
being that the act of a referring expression spec-
ifying a set of selection restrictions draws atten-
tion to the set of objects fulfilling the criteria and
therefore creating a partition to explicitly model
this set is cognitively plausible at this point. The
feature structure below illustrates the reference do-
main for the frame shown in Figure 4.
2

66666666666666666666666666664

p1

2

4
criterion ‘object’

elements
h
H1,1.0; H3,0.2;H2,0.1

i

3

5

p2

2

4
criterion ‘house’

elements
h
H1,1.0; H3,0.2;H2,0.1

i

3

5

p3

2

4
criterion ‘red’

elements
h
H1,1.0

i

3

5

p4

2

4
criterion ‘blue’

elements
h
H3,0.2

i

3

5

p4

2

4
criterion ‘green’

elements
h
H2,0.1

i

3

5

3

77777777777777777777777777775

The LIVE system stores these reference do-
mains in a chronologically ordered data structure
with a capacity to hold 3,000 reference domains
and using a first-in-first-out policy; i.e., when the
data structure is full the oldest reference domain
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Figure 4: A frame from the LIVE System. Note:
the H1, H2, and H3 labels were added to the image
to help readers cross-reference with the reference
domain feature structure listed in the paper.

is deleted to make space for the new reference do-
main. This gives the system a perceptual memory
of 3,000

28 = 108 seconds.
The LIVE system also maintains a discourse

context model. This model is similar in struc-
ture to the perceptual memory, it consists of up to
3,000 chronologically ordered reference domain
data structures and uses a first-in-first-out policy
when the buffer is full. New reference domains
are added to this discourse context model as a re-
sult of resolving a referring expression. The LIVE
system defines different algorithms for resolving
referring different forms (i.e. surface forms) of
references (i.e, there are separate resolution al-
gorithms for demonstratives, indefinite, definite,
pronominal, one anaphora, and other anaphora ref-
erences). The high-level processing of all of these
algorithms is: (i) select a reference domain from
either the perceptual memory or the discourse con-
text that contains at least one representation of en-
tity whose features match the selection restrictions
in the reference (the selection process also consid-
ers the recency and internal structure of the ref-
erence domain), (ii) make a copy of the selected
reference domain, (iii) restructure the reference
domain (potentially by adding new partitions) to
mark the entity selected as the reference, and (iv)
add the restructured reference domain to the head
of the discourse context list. The restructuring and
augmentation of reference domains in response to
a referring expression is dependent on the selec-
tion restrictions specified in the reference and is
designed to facilitate the processing of potential

subsequent anaphoric references.
In summary, the LIVE system maintains a sep-

arate perceptual memory and discourse context
model, although both of these data structures
have similar internal structures (chronologically
ordered lists of reference domains). The struc-
ture of these components is somewhat similar to
the episodic buffer in Baddeley’s model: limited
capacity, chronologically ordered, and integrating
visual perceptual information with semantic infor-
mation. Furthermore, the similarity in the encod-
ings in the perceptual memory and discourse con-
text model facilitates reference resolution, which
entails copying, restructuring, and inserting of a
reference domain. Indeed, the approach to re-
solving a reference taken by the LIVE system can
be understood as searching memory for a suitable
episodic memory, using this episode as local con-
text within which the reference is resolved, and
updating the episode to mark the fact that the ref-
erence has occurred. Such a model is capable of
handling exophoric references to entities that were
recently seen but are no longer on-screen. How-
ever, using a reference domain representation of a
frame/episode as defining the (local) context for
a reference makes it extremely difficult to han-
dle references to refer to two or more entities that
never appeared in the same frame. Handling these
forms of references requires the system to be able
to integrate multiple reference domains, and this is
non-trivial; e.g., it is not clear how salience scores
from different frames, and hence different times,
should be updated during this merger.

5.2 A Global/Monolithic Architecture

An approach to the design of a perceptual mem-
ory, that naturally answers the question of how
to integrate information from perceptions received
across distinct times, is to use an evolving global
structure where all referents are stored in a single
data structure that is continuously updated to re-
flect the current state.

Koller et al. (2004) describes an interface for
playing textual computer games, based on descrip-
tion logics and theorem proving. This model does
not have a visual component, instead the informa-
tion relating to the physical environment of the
game world is provided via textual descriptions.
However, the game world is never fully observ-
able, and therefore a player’s knowledge of the
game world increases as they move through the
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game. The context model proposed in this work
is based on Description Logics, and uses a data
structure known as the T-Box to encode axioms re-
lated to concepts and roles (in a sense the ontology
of the world), and another data structure known as
the A-Box to encode the entities (instances of con-
cepts) in the world. Interestingly, the system main-
tains two A-Box data structures: (i) the game A-
Box representing the full current game world state,
and (ii) the player’s A-Box representing what the
player knows about the game world (this A-Box is
typically a sub-part of the world A-Box). As the
player moves through the game environment and
explores new locations new instances are added
to the player’s A-Box. As a result, the player’s
A-Box represents a perceptual memory of what
they have experienced in the world. Entities in
the player’s A-Box are marked with the property
of here when they share the same location as the
player (i.e., the player and the entity are both in
the same room in the world), visible if the entity
is deemed to be currently visible to the player,
and accessible if the player can currently manip-
ulate the entity. Consequently, the system has the
ability to distinguish between entities that are cur-
rently visible and entities that are known about but
which are not visible. However, the design of the
reference resolution algorithms used by the sys-
tem presupposes that: players will typically only
refer to objects which they can “see” in the vir-
tual environment, as modelled by the concept ‘vis-
ible’ (Koller et al., 2004, page. 12). This assump-
tion allows the resolution algorithm to ignore en-
tities in the world which are known to the player
(and, hence are in the player’s A-Box) but which
are not currently visible when resolving a refer-
ring expression. This assumption means that the
system cannot handle exophoric references to re-
cently seen entities that are no longer visible, as
they are deliberately excluded from the context
used to resolve references. It should be noted that
this is not a simple assumption to remove from
the system. The system has no model of percep-
tual salience (although it does have a model of
linguistic salience). As a result it must use this
strict visible/invisible criterion to exclude poten-
tial distractor entities (that are in the model of the
player’s knowledge of the world but which are not
currently in the perceptual focus), which if not ex-
cluded would make a reference appear unspecified
and ambiguous to the system.

Kelleher (2006) is another natural language in-
terface to a virtual world. It is similar to (Kelleher
et al., 2005) in that it uses the same visual salience
algorithm to analysis the visual frames the user
sees as they navigate through the environment.
However, the data structure used to store percep-
tual memories and discourse structure is very dif-
ferent. This system maintains a single global con-
text model throughout a user’s session. Once an
entity has been rendered on screen a representation
of that entity is introduced in this global context
model. There is only ever a single representation
of an entity in the global context model. This rep-
resentation of an entity stores the physical infor-
mation of the entity (e.g., type, colour, size, and so
on) and also stores a visual salience and a linguis-
tic salience score for the entity. The visual salience
score is updated after each frame is processed. The
visual salience of an entity that is not in the current
frame is halved when the frame is processed. As
a result the visual salience of an entity drops off
once it goes out of (visual) focus (i.e., off-screen),
and continues to reduce the longer out of focus it
remains. The linguistic salience scoring is based
on the assumption that entities that have been men-
tioned recently are more salient than entities that
have not. The particular function used to calculate
and update the linguistic salience scores is in the
spirit of Centering Theory (Grosz et al., 1995) and
is similar to the model proposed by (Krahmer and
Theune, 2002). The linguistic salience of an en-
tity is updated after each utterance has been pro-
cessed. The linguistic salience of any entity not
mentioned in an utterance is halved when the ut-
terance is processed. Consequently, similar to the
visual salience of an entity, the linguistic salience
of an entity drops once it leaves the (linguistic) fo-
cus, and continues to drop the longer out of fo-
cus it remains. As the above description indicates
the representation of an entity in the global con-
text model is a relatively complex feature struc-
ture. However, the structure of the global context
model itself is minimal, it is simply an unordered
set of these entity representations. The fact that
the linguistic and visual salience scores are up-
dated based on recency of being visible or men-
tion means that the context model does not need
to explicitly model recency.

Reference resolution in this system is done by
calculating an integrated salience score for each
entity in the context model, and then selecting the
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entity with the highest integrated score as the ref-
erent. The integrated salience score of an entity
is recalculated each time a referring expression is
processed. The integrated salience score is calcu-
lated in three steps: (i) a reference relative visual
salience score is calculated by scaling the stan-
dard visual salience score to reflect the fit of the
entity with the selection restrictions specified in
the expression (e.g., in the simplest case the ref-
erence relative visual salience score is set to zero
if the entity is of the wrong type to be the refer-
ent of the reference); (ii) a reference relative lin-
guistic salience score is calculated in a similar way
to the reference relative visual salience score; and
(iii) the integrated salience score is calculated as a
weighted sum of the reference relative visual and
linguistic salience scores, where the weighting is
dependent on the form of the expression (e.g., for
pronominal references the system weights linguis-
tic salience more then visual salience).

The fact that this monolithic global context
model does not encode an episodic (frame based)
structure means that the integration of information
from different scenes is straightforward. As a re-
sult, this system can handle references to entities
that do not appear on screen together. However,
this flexibility is at a cost. The loss of the episodic
chronological order means that a system using this
context model would not be able to handle ex-
ophoric references based on chronology (such as
the first blue house we saw), or co-occurrence
within a local temporal context (such as the car
that was in front of the house when the man fell).

6 Discussion

The two approaches to perceptual memory de-
scribed in Sections 5.1 and 5.2 are exemplars at
opposing ends of a design spectrum: one focuses
on identifying a local context and resolving the
reference within that context, the other on creating
and continuously evolving a global context model.
These approaches have complementary strengths
and weaknesses. Consequently, it is likely that a
blend of these approaches is necessary. This is
not surprising as there are many examples in lan-
guage processing6 where there is a need to be able
to switch from a local focus to a global perspec-
tive, and back again, as the context requires.

6Switching between local and global representations, sim-
ilar to the challenge of modelling long-distance dependencies
in sequential data (Mahalunkar and Kelleher, 2018)
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