
Inductive learning of lexical semantics with

typed unification grammars

Dimitar Kazakov1 and Simon Dobnik2⋆

1 Department of Computer Science, University of York
Heslington, York YO10 5DD
kazakov@cs.york.ac.uk,

Web: http://www.cs.york.ac.uk/~kazakov/
2 Computational linguistics, Oxford University

Centre for Linguistics and Philology
Walton Street, Oxford OX1 2HG
simon.dobnik@clg.ox.ac.uk,

Web: http://www.clg.ox.ac.uk/people/sd.htm

Abstract. In the last decade machine learning techniques based on logic
such as Inductive Logic Programming (ILP) have started being used in
learning grammars from corpora. While the first approaches were based
on the translation of grammar into first-order predicate logic, an attempt
has been made recently to adapt the ILP learning schema to the feature
constraint logic of typed-unification grammars. In this framework, the
learner applies in turn generalisation and specialisation to the typed fea-
ture structures representing the grammar in order to improve its coverage
of the training corpus provided. In this paper we demonstrate how the
lexical resource WordNet could be incorporated into an existing gram-
mar learning tool and show how lexical semantic constraints could be
learned on the basis of the ontology information.

1 Introduction

In the last decade machine learning techniques based on logic such as Induc-
tive Logic Programming (ILP) (Muggleton and De Raedt, 1994) have started
being used in learning grammars from corpora (Cussens and Džeroski, 2000).
Ciortuz (2002) implements and documents a system known as ilpLight which
combines a logic-based learning approach with typed feature structure unification
grammars to modify the initial grammar provided and adjust its coverage to the
training corpus.

Typed Feature Structure Grammars (TFSG) present both grammar rules
and lexical items as symbols or attribute-value matrices (which are also called
feature structures), and thus lexical semantic information can be represented
in an identical way, alongside the syntactic constraints. Furthermore, Feature
Structures (FSs) are organised into hierarchies of types (represented as directed

⋆ The second author’s work has been funded by the EPSRC ROPA grant Machine

Learning of Natural Language in a Computational Logic Framework.

2

acyclic graphs) where each type inherits the feature specifications of those types
higher in the hierarchy. This is a very concise and convenient way of representing
both lexical entries and grammar rules.

The present work complements and extends the work of Ciortuz (2002) by
outlining a technique of incorporating lexical semantic information within the
existing typed feature structure grammar and describes how to use his learning
tool ilpLight to induce lexical semantic generalisations for verbal predicates.
The approach demonstrates that TFSGs are well suited for incorporating lexi-
cal information available in online ontologies such as WordNet since there the
semantic information is organised in hierarchical structures that could be suc-
cessfully incorporated within a FS hierarchy and referenced by the grammar
rules. The approach also discusses the possibilities of reducing the ambiguity
of grammars as additional lexical semantic constraints will make the parsing
process (more) deterministic. While the present stage of research only offers a
descriptive account, the future work will concentrate on its practical implemen-
tation within the ilpLight system.

The article proceeds as follows: we start by giving a brief outline of the
typed unification grammar formalism (Section 2) together with the details of
the ilpLight system (Section 3). We provide a short description of WordNet a
large-scale resource of lexical semantic information (Section 4), and outline our
proposal for interfacing the two (Section 6).

2 Typed feature structure grammars

The TFSG is a logic framework first studied by Carpenter (1992) and Smolka
(1992), which is widely used in computational linguistics. Several formalisms
have been developed: Lexical Functional Grammar (LFG) (Kaplan and Bres-
nan, 1982), Categorial Unification Grammar (Uszkoreit, 1986), and Head-Driven
Phrase Structure Grammar (HPSG) (Pollard and Sag, 1994; Sag and Wasow,
1999). Finally, the Linguistic Knowledge Building (LKB) system described by
Copestake (2002) is an open source TFSG development environment.

The linguistic objects (or signs) of TFSGs are represented as typed attribute
value matrices (AVMs) or feature structures (FSs). For example, the simple
grammar included with ilpLight system includes the following information for
the lexical item girl specified as a matrix of attributes or features and their
values.3

girl:phrase_or_word

[PHON <!’’girl’’!>,

CAT noun,

SUBCAT <det>]

One of the most important properties of the formalism is that it allows
context-free grammar rules to be represented in an identical way: as constraints

3 The following examples are taken from Ciortuz (2001a).

3

inside FSs in the form of indices (or tags) which indicate structure sharing. For
example, ilpLight has been used with a FS which encodes the following HPSG
rules: the Head Feature Principle, the Subcategorisation Principle, and the Satu-
ration Principle. The Head Feature Principle specifies the category of the phrase
be token-identical (thus not simply share the same feature specifications) with
the category of the head. The Subcategorisation Principles specifies the first
member of the SUBCAT list to be identical with the category of the complement
phrase. Finally, the Saturation Principle specifies that the value of COMP.SUBCAT
is nil.

satisfy_HPSG_principles

[PHON diff_list,

CAT #1:categ,

SUBCAT #2:categ_list,

HEAD #4:phrase_or_word

[CAT #1

SUBCAT #3|#2],

COMP #5:phrase_or_word

[CAT #3,

SUBCAT nil],

ARGS <#4, #5>]

The FSs are typed or sorted (the types of the above feature structures
are phrase or word and satisfy HPSG principles respectively) by the grammar
which means that the grammar contains specifications or appropriateness con-
ditions about which features are appropriate for each typed feature structure or
type/sort and what are the possible values of these features.

Types can be atomic or non-atomic. A non-atomic type is one that has more
specific instances. These are represented in a hierarchical relation to a more
general non-atomic type, as a directed acyclic graph. The grammar used by
ilpLight is based on the sort hierarchy in Figure 1 (the origins of which can
be traced back to Shieber (1986)), and is a simplified version of the HPSG sort
hierarchy found in Sag and Wasow’s book (1999), p.386.

A more specific type contains more information in terms of the number and
the value of features and thus constraints that apply for more than one type need
only to be stated once for a parent type and are then inherited by its descendants.
Stating this differently: the types higher in the type hierarchy subsume those
below. This property enables the grammar to be constructed in a very concise
way (see Figure 3). For example, the sample type hierarchy specifies that the type
lH phrase is more specific than satisfy HPSG principles. It adds the following
constraint:4

4 The ! notation is used to represent difference lists. The constraint specifies that the
head of the phrase is its leftmost element. rH phrase specifies the opposite and is
required to represent subjects as complements of right-headed phrases.

4

top

phrase

satisfy_HPSG_principles

rH_phrase

noun adjectivedet verb

diff_listcategphrase_or_wordstringstart list

cons nil

categ_cons

categ_list

word

noun_ledet_le adjective_le

mary girlthe

iverb_le

verb_le

is

tverb_le pnoun_le
cnoun_le

embarrasses embarrassed
pretty
met
kissed

lH_phrase

nicethinks kisseslaughs

meets
john

Fig. 1. A sample type/sort hierarchy

lH_phrase

[PHON #1!#3,

HEAD.PHON #1!#2,

COMP.PHON #2!#3]

Thus the knowledge specified in the type lH phrase is as follows:

lH_phrase

[PHON #6!#8,

CAT #1:categ,

SUBCAT #2:categ_list,

HEAD #4:phrase_or_word

[PHON #6!#7,

CAT #1,

SUBCAT #3|#2],

COMP #5:phrase_or_word

[PHON #7!#8,

CAT #3,

SUBCAT nil],

ARGS <#4, #5>]

Additional types present in the grammar allow further expansion of the lH phrase
type until all the relevant features specified in the type hierarchy are present and

5

their values are maximal or atomic types. Such feature structures are said to be
totally well typed and sort resolved and as such are representations of linguistic
signs. On the other hand, types can be partial and thus relating to a series of
linguistic signs.

Finally, the grammar must allow two constraints (typed FSs) to be combined
or unified. For example, the COMP feature in the lH phrase must combine with
the type phrase or word while satisfying certain constraints regarding the values
of features CAT and SUBCAT. A unification of two feature structures F and F

′

is the greatest lower bound of F and F
′ in the collection of feature structures

ordered by subsumption (Copestake, 2000). Thus, the result of the unification
is the most general typed feature structure that is compatible with both input
F and F

′ which is identical to the logical conjunction F ∧ F
′. If no greatest

lower bound of F and F
′ exists, i.e. the information specified in both feature

structures is incompatible, the unification fails.

The ilpLight system uses a somewhat different logic than typed feature
structure theory (Carpenter, 1992; Copestake, 2000; Copestake, 2002). Instead,
it is based on Order-Sorted Feature (OSF) logic common in Constraint Logic
Programming (CLP) and elaborated by Aı̈t-Kaci et al. (1994). These authors
define the notion of OSF-theory unification on order consistent OSF-theories
as more general than well-typed feature structure unification. Ciortuz (2001a;
2001b) complements the OSF notion of order consistency with type consistency
and requires both conditions to be satisfied by the OSF theories used in his tool.
The reader is referred to Ciortuz (2001b) for a detailed discussion on the scopes
of each of these approaches and the benefits they bring in.

3 Inductive learning of typed unification grammars with

ilpLIGHT

Inductive logic programming (ILP) (Muggleton and De Raedt, 1994) is a machine
learning approach where the goal is to induce hypotheses starting from sample
data (examples of one or more concepts) and background knowledge. In its most
common form, ILP uses the representation formalism of logic programming, i.e.,
a subset of first-order logic.

Given two sets of positive examples E
+ and negative examples E

− and a
background theory H, the following conditions have to hold for the hypothesis
H:

Prior Satisfiability B ∧ E
− 6|= 2 (1)

Posterior Satisfiability B ∧ H ∧ E
− 6|= 2 (2)

Prior Necessity B 6|= E
+ (3)

Posterior Sufficiency B ∧ H |= E
+ (4)

When 4 holds, H is said to be complete, and when 2—consistent.

6

The ilpLight system (Ciortuz, 2002) consists of three components: the Ex-
pander, the ABC Light

5 parser, which is a combination of a head corner parser
(ABC), Light, the OSF abstract machine for feature structure unification, and
the ilp Learner component.

Note that the OSF formalism used by ILP Learner to represent the grammar
is different from first order logic, traditionally used in ILP. In ilpLight the
inductive learning methods are adapted to typed unification grammars which
are represented in the feature constraint logic. The architecture of the system is
summarised in Figure 2.

Parser ILP/learner

Expander

output

grammarsentences

input

input grammar

examples (parses)

Fig. 2. The ilpLight system for learning typed feature structure grammars

The framework can be used to process large-scale HPSG grammars such
as LinGO (Copestake, Flickinger, and Sag, 1999) developed by the Center for
Studies of Language and Information (CSLI) at the University of Stanford.6 For
the purposes of this article we will only be concerned with a small subset of
this grammar described by Ciortuz (2002) which is given in Figure 3. The type
hierarchy is as in Figure 1.

The grammar is fed to the Expander which expands the types with the
features inherited from their ancestors in the type hierarchy. The expanded types
are sent to the Parser which uses them to analyse the input sentences. Since
the grammar may be incomplete, parsing may produce partial parses which are
evaluated by the ILP learner module. This module suggests improved grammar
rules that provide a better coverage of the input sentences, that is, to generate or
succeed only on positive examples from the set of input sentences and to exclude
the negative examples. Alternatively, the learning data may consist of a set of
sentences which are only marked for the number of possible parses or of pairs of
sentences and parses.

5 ABC stands for Active Bottom-up Chart-based parser. Light stands for Logic, In-
heritance, Grammars, Heads and Types. It was developed at the Language Tech-
nology Lab of the German Research Centre for Artificial Intelligence (DFKI),
Saarbrücken.

6 Online resources are available at http://lingo.stanford.edu.

7

The parser and the expander operate bidirectionally as shown by the arrows.
For example, the parser can take as input a parse7 and then attempt to build
a feature structure associated with that parse. If the process fails the grammar
is incorrect and the information on failure is passed back to the learner in order
to augment the grammar to accept the parse. The expander, on the other hand,
can accept as an input an expanded type and a feature path inside this type
and returns information on the unexpanded type which introduced that feature
path/constraint.

Learning in the ilpLight set up is implemented as search through the space
of possible generalisations and specialisations of one of the elements of the OSF
theory encoding the grammar. Generalisation can be achieved through (1) re-
placing a sort (unexpanded type) with a more general one, (2) removing an
equation unifying two variables (indices) in the OSF type or (3) removing a fea-
ture from that type. Specialisation is based on four refinement operators, which
are to a large extent complementary to the generalisation steps. One can (1) re-
place a sort with another, subsumed by the former, (2) introduce a new equation
unifying two indices or (3) unfold a sort, i.e., replace it with the corresponding
OSF type and propagate the relevant constraints through the root features of
this type. The remaining, fourth refinement operator merges two independently
produced refinements of the same term if they are unifiable. In the present im-
plementation, the generalisation step considers all elements of the grammar in
turn, whereas the specialisation step has to be provided with the grammar item
that is to be refined (Ciortuz, 2002).

4 WordNet

WordNet is an on-line lexical database which contains various syntactic and se-
mantic information for a large number of words and idioms. Originally developed
for English (Miller et al., 1993), WordNet is also implemented for a number of
other languages as EuroWordNet, BalkanWordNet, etc.8 The central building
element of WordNet is called a synset, or lexicographer’s entry. A synset is a set
of words or idioms which share a common meaning. For instance: {(to) shut, (to)
close}. To simplify the internal representation, each synset is assigned a large
integer used as a unique identifier. For instance, {monetary resources, funds}
is Synset 109616555 in WordNet1.6. WordNet uses a set of rules and lists of
exceptions to map word-forms to all relevant lexical entries. Figure 4 shows the
word-form ‘funds’ which is recognised by WordNet as corresponding to two lex-
ical entries, ‘fund’ and ‘funds’. The lexical entry ‘fund’ appears in three synsets:
{store, fund}, {fund, monetary fund}, and {investment company, fund}, respec-
tively. The lexical entry ‘funds’ only appears in the synset {monetary resource,
funds}. WordNet describes several semantic relations between synsets, such as

7 Complete parses are of the form (rH phrase 0 2 (john 0 1 ("john" 0 1))

(laughs 1 2 ("laughs" 1 2))).
8 Information on these resources is available at http://www.globalwordnet.org.

8

cons iverb_le

[FIRST top, [CAT verb,

REST list] SUBCAT <noun>]

diff_list tverb_le

[FIRST_LIST list, [CAT verb,

REST_LIST list] SUBCAT <noun, noun>]

categ_cons lH_phrase

[FIRST categ, [PHON #1!#3,

REST categ_list] HEAD.PHON #1!#2,

COMP.PHON #2!#3]

phrase_or_word

[PHON diff_list rH_phrase

CAT categ, [PHON #1!#3,

SUBCAT categ_list] HEAD.PHON #2!#3,

COMP.PHON #1!#2]

phrase

[HEAD #1:phrase_or_word, the [PHON <!’’the’’!>]

COMP #2:phrase_or_word, girl [PHON <!’’girl’’!>]

ARGS <#1, #2>] john [PHON <!’’john’’!>]

mary [PHON <!’’mary’’!>]

satisfy_HPSG_principles nice [PHON <!’’nice’’!>]

[CAT #1, fed [PHON<!’’fed’’!>]

SUBCAT #2, pretty [PHON <!’’pretty’’!>]

HEAD top met [PHON <!’’met’’!>]

[CAT #1, kissed [PHON <!’’kissed!’’>]

SUBCAT #3|#2], is [PHON <!’’is’’!>,

COMP top CAT verb,

[CAT #3, SUBCAT <adjective, noun>]

SUBCAT nil]] laughs [PHON <!’’laughs’’!>]

kisses [PHON <!’’kisses’’!>]

det_le thinks [PHON <!’’thinks’’!>,

[CAT det, CAT verb,

SUBCAT nil] SUBCAT <verb, noun>]

meets [PHON <!’’meets’’!>]

noun_le feeds [PHON <!’’feeds’’!>]

[CAT noun]

pnoun_le

[SUBCAT nil]

cnoun_le

[SUBCAT <det>]

adjective_le

[CAT adjective,

SUBCAT nil]

Fig. 3. A sample typed feature structure grammar

9

medium of
exchange

funds
resource,
monetary

fund
monetary

nondepository
financial institution

Word−formLegend:

fundsfund

net income, profit

accumulation

financial gain

income

gain

sum, amount of money

asset

possession

money

store, fund
fund,

group, grouping

social group

organisation

institution, establishment

financial institution

investment company,
fund

funds

Lexical entry

Synset

Fig. 4. Mapping from word-forms and lexical entries to synsets and their hypernyms
in WordNet

meronymy (part-of), hypernymy or hyponymy. The latter are shown in Figure
4.

5 Related Work

There are a number of related approaches where grammars or the equivalent
parsers have been automatically modified to best represent the properties of a
corpus.

Learning Fast LR Parsers Samuelsson (1994) describes a technique for the
development of an efficient LR parser based on Explanation-Based Learning
(EBL) (Mitchell, 1997) and entropy-related information measures. The method
is based on partial lexicalisation of grammar rules and expansion of RHS non-
terminals. The new rules do not cover parts of the grammar, which are only
marginally represented in the treebank. As a result, the grammar is less ambigu-
ous at the price of a certain loss of coverage. Using that grammar also results in
considerably faster parsing.

Zelle and Mooney (1993) have developed a method for learning semantic gram-
mars from a treebank containing syntactic trees with semantically tagged non-
terminal nodes. The treebank is used to construct an over-general shift-reduce
parser covering the sentences in the treebank. The parser is then specialised
and made deterministic by using ILP. When the semantic tags assigned to non-
terminals are not sufficient to remove the ambiguity from the grammar, lexical
semantic classes are automatically defined in order to achieve deterministic pars-
ing.

10

Lapis (Kazakov, 1999) is a system which builds on Zelle and Mooney’s research
on the induction of shift-reduce parsers and extends it to learning LR parsers,
while changing at the same time the focus of the learning task. The existence
of sources of lexical semantic knowledge such as WordNet (Miller et al., 1993)
makes the learning of lexical semantic classes done by Zelle and Mooney less at-
tractive. Also, treebanks annotated with phrasal semantic tags are not commonly
available. Instead, the system Lapis constructs LR parsers from treebanks anno-
tated with lexical semantic tags. Lapis aims at the reduction of nondeterminism
in the parsers it creates by the means of lexicalisation and partial unfolding of
the underlying grammar rules, in combination with the use of lexical semantic
constraints.

Cussens and Pulman (2000) combine ILP with a chart parser to find the missing
rules in a grammar that would allow parsing all training sentences provided.
When a sentence cannot be parsed, the parser suggests ‘needed edges’, i.e., those
necessary to complete a parse. Examples of these are stored and used to learn
a more general pattern corresponding to a grammar rule; additional linguistic
constraints may be provided to prune the search for new grammar rules and
ensure their plausibility.

6 Learning lexical semantics

This section describes methods of incorporating lexical semantic information
from WordNet into type hierarchy and grammar rules.

6.1 Extending the type hierarchy

A type hierarchy is a finite bounded complete partial order (Copestake, 2000).
This is also the case for the WordNet hierarchy of synsets, if a dummy bottom (⊥)
synset that is subsumed by all others is added. Figure 5 represents a simplified
WordNet hierarchy for some common and proper nouns.

Remember that WordNet distinguishes between words and lexical entries.
Words are strictly not a part of the hierarchy but there exists a function which
maps them to the hierarchy members. To distinguish the two we represent words
below a dashed line.

The type hierarchy in Figure 1 and the WordNet hierarchy have to be merged
so that the types are properly expanded and the lexical information is properly
propagated within the same framework.

The lexical information in Figure 5 further restricts the categorial information
for a given class of grammatical objects, nouns in our case. For example, most
generally, the lexical item ‘book’ belongs to the category of nouns, but also to
a number of its lexical sub-categories: it is an entity, an object, an artefact, and
a creation. These semantic classes are gradual refinements of the two extremes:
the grammatical category and the lexical item itself. Thus, the simplest solution
to incorporate the lexical hierarchy into the existing type hierarchy is to embed

11

object

organism

male female

personanimal

canine

plant

flowering
plant

plant_partmusicpublication

creation

artefact

fruit− baked dairy dish

food

substance−matter

entity

animate_being

article

dog boy
John

girl

vegetables
cheese pizza

tableware

flower
songbook

Fido

apple
tomato

bread

fruit
chopsticks

Mary

Fig. 5. A simplified WordNet hierarchy of synsets

the lexical top node entity in Figure 5 underneath the noun node of Figure 1.
The noun node and thus all its daughters are now subsumed by the categ node
(which is subsumed by the top node). This means that the system will now not
only allow to infer that a certain lexical item is a noun but also that it is a
‘creation-kind-of-noun’.

6.2 Adding lexical semantic types to the grammar

The categ type and the types that it subsumes do not introduce any new features
that would interact with the existing grammatical constraints. Examining the
sample grammar in Figure 3 the categorial information on the noun words is
introduced in the type noun le. However, restricting this category with a more
specific subtype such as organism is of no use since this would mean that our
grammar would only be able to deal with ‘organism’ noun phrases. In our gram-
mar, lexical information is as specific as phonological information and thus must
be restricted at the same level (which is also the lowest level). Thus, the ‘lexical
types’ in Figure 3 will be extended to the following unexpanded representation:

girl [PHON <!’’girl’’!>,

CAT female]

flower [PHON <!’’flower!’’!>,

CAT flowering-plant]

Note that now the specification of the feature CAT in the type noun le is not
necessary and can be removed. Its presence does not affect type expansion since
a unification of CAT noun and CAT flowering-plant will always result in CAT

flowering-plant.

12

6.3 Lexically enriched grammar: what can be done with it?

We shall discuss some of the possible benefits of introducing a lexically enriched
grammar as shown in the examples below.

Learning the semantic restrictions of verbal predicates. Allowing a sufficiently
large set of positive and negative data and a sufficiently fine-grained hierarchy
of lexical relations it is theoretically possible to use ilpLight to learn the lexical
semantic restrictions of individual verbal predicates. Presently, the verbal pred-
icates of the grammar in Figure 3 are only restricted in the most general way:
they are specified for categorial information:

kisses [PHON <!’’kisses’’!>,

CAT verb,

SUBCAT <noun, noun>]

Let our training corpus for ilpLight consist of the following sentences.

John kissed Mary.

Fido kissed John.

The girl kissed the boy.

*Mary kissed the flower.

*The book kissed the castle.

*Mary kissed the book.

It is possible for the learner component of ilpLight to find that the verbal
predicate kisses requires both arguments to belong to the lexical class animate
being through a number of specialisation steps.

kisses

[PHON <!’’kisses’’!>,

CAT verb,

SUBCAT <animate_being, animate_being>]

Lexical semantic ambiguity Words that correspond to more than one meaning
(synset) can be handled in this framework by adding separate lexical entries for
each of their meanings to the grammar. Similarly, separate entries may have
to be learned to cover the various semantic roles of a word where the gram-
mar originally contained one lexical entry only specifying syntactic categorial
information. To our knowledge, ilpLight cannot handle this without a further
modification.

Reducing ambiguity in parsing Lexically enriched grammars can be used to re-
duce non-determinism in the output of parsers. The grammar in Figure 3 does
not distinguish between complements of verb and noun phrases and adjuncts
which here are optional phrases modifying the verb phrase as a whole. The fol-
lowing is a typical set of sentences that introduces parsing ambiguity to any
grammar which distinguishes the two.

13

John eats pizza with cheese.

John eats pizza with chopsticks.

The prepositional phrase with cheese is a complement of the noun pizza (it
further specifies the pizza)9 and thus should be analysed as its argument. On the
other hand, with chopsticks is an adjunct of the entire verb phrase eats pizza.
Because both phrases belong to the same grammatical category the parser would
give two parses for each sentence, but only one of which is correct. The choice
of the parse depends on the lexical semantics of the complement noun inside
the prepositional phrase and important generalisations can be made to reduce
the ambiguity. If the noun belongs to the lexical semantic class food the entire
prepositional phrase is unambiguously analysed as the complement of the noun
pizza which also belongs to this lexical category (or is subsumed by this type),
otherwise the prepositional phrase is an adjunct of the verb phrase. In this case
it is an instrument further specifying the pizza eating event.

Before setting up a learning task, the grammar in Figure 3 needs a modifi-
cation since it does not recognise prepositional phrases, nor does it distinguish
between complements and adjuncts.

Adding a new grammatical category is straightforward: a new node/type
such as prep can be added to the type hierarchy so that it is subsumed by the
categ node. The category of prepositions takes a noun phrase as its complement.
We add this constraint in the form of a prep le type subsumed by the word node.

prep_le

[CAT prep,

SUBCAT <noun>]

To accommodate noun phrases with prepositional complements we create a
new type cnoun-compl le which is subsumed by the noun le node. The cnoun-
compl le adds the following constraints:

cnoun-comp_le

[SUBCAT <prep>]

We treat prepositional adjuncts of verbs as parts of their subcategorisation
frame.10 We add another type tverb-pp le which is subsumed by the verb le node
and is specified for the following features:

tverb-pp_le

[CAT verb,

SUBCAT <noun, prep, noun>]

The learning task here is significantly more complex than the previous one
since here the learner is trying to specialise phrasal templates rather than words.

9 Notionally there is a very strong distinction between complements and adjuncts, yet
no formal definition exists.

10 This is the standard HPSG treatment (Sag and Wasow, 1999).

14

For example, to learn that a prepositional phrase is a complement of the noun
rather than the verb phrase (in which case it is an adjunct), a relation must
be established between the head noun (pizza) and the complement (cheese) of
its complement (with) which leads to a specialisation of the categ value of pizza
and cheese from noun to food. In the present design of the grammar, which
distinguishes between words and phrases, words only contain information stated
in the SUBCAT feature on the category of their immediate complements but not
their internal structures. For example, an expanded type that constrains nouns
that take prepositional complements cnoun-comp le is as follows:

cnoun-comp_le

[PHON diff_list,

CAT noun,

SUBCAT <prep>]

Therefore, the specialisation must be done at the level of expanded phrases
lH phrase and rH phrase where cnoun-comp le is the head of the phrase.11 The
learner should look for phrasal templates such as the following:

food-with-food

[PHON #8!#10,

CAT #1:food,

SUBCAT #2:nil,

HEAD #4:cnoun-comp_le

[PHON #8!#9,

CAT #1:food,

SUBCAT #3:with|#2:nil],

COMP #5:prep_le

[PHON #9!#10,

CAT #3:with,

SUBCAT nil

COMP #6:cnoun_le,

[CAT #7:food]],

ARGS <#4, #5>]

The template is a specialisation of the lH phrase. It adds the following con-
straints to the expanded lH phrase:

food-with-food

[HEAD cnoun-comp_le

[CAT #1:food],

COMP prep_le

11 Another apparent solution would be to merge the types phrase or word and phrase

into a single type. This would result in a grammar which only accounts for phrases
which is incorrect. Nouns such as cheese in pizza with cheese would be left unac-
counted for.

15

[CAT with,

COMP cnoun_le,

[CAT #1:food]]

It follows that this new specialised type, a partially unfolded and lexicalised
template, is added to the type hierarchy so that it is subsumed by the lH phrase.

A similar specialisation is needed for the case where the prepositional phrase
is an adjunct.

verb-food-with-tableware

[PHON #11!#13,

CAT #1:verb,

SUBCAT #2:noun,

HEAD #4:tverb-pp_le

[PHON #11!#12,

CAT #1:verb,

SUBCAT #3:prep|#2:noun,

HEAD #6: tverb-pp_le

[CAT #1:verb,

SUBCAT #7:food|#8:prep,noun,

COMP #9:cnoun_le,

[CAT #7:food]],

COMP #5:prep_le

[PHON #12!#13,

CAT #3:with,

COMP #10:cnoun_le

[CAT tableware]]]

ARGS <#4,#5>

The previous examples show two implications of this approach for the learn-
ing procedures. Firstly, due to an increased level of depth at which the search
operates (HEAD.HEAD.COMP.CAT food) the search space or the time to find a so-
lution will be considerably increased. Secondly, learning does not only specialise
or generalise over the existing types but creates new types which must be added
to the type hierarchy.

7 Discussion and Future Work

We have described how WordNet, a standard resource of lexical semantic infor-
mation, could be incorporated in a TFSG without any extension of the formalism
used, and how an existing inductive grammar learner may use this information
to add semantic constraints to a grammar in order to optimise its coverage of
a training corpus. Further work should focus on implementing the approach
outlined here in ilpLight and testing its performance, and independently, on
extending the initial grammar to include additional linguistic phenomena. In a
study combining these two dimensions, the issue of pruning the search space of

16

the ILP learner will become central. Here the research should concentrate on a
systematic enumeration of the range of possible modifications of the grammar
and the elimination of those constraints that are linguistically implausible, cf.
(Cussens and Pulman, 2000).

References

Aı̈t-Kaci, Hassan, Andreas Podelski, and Seth Copen Goldstein. 1994. Order-
sorted feature theory unification. The journal of logic programming,
19(20):1–25.

Carpenter, Bob. 1992. The logic of typed feature structures: with applications to
unification grammars, logic programs and constraint resolution. Number 32
in Cambridge tracts in theoretical computer science. Cambridge University
Press.

Ciortuz, Liviu. 2001a. Expanding feature-based constraint grammars: Ex-
perience on a large-scale HPSG grammar for English. In Proc. of the
Workshop on modelling and solving problems with constraints, Seattle, USA.
www.lirmm.fr/∼bessiere/proc wsijcai01.html.

Ciortuz, Liviu. 2001b. Light AM - another abstract machine for FS unification.
In Stephan Oepen, Daniel Flickinger, Jun-Chi Tsujii, and Hans Uszkoreit,
editors, Efficiency in Unification-Based Processing. CSLI Publications, Stan-
ford, pages 1–27.

Ciortuz, Liviu. 2002. Towards inductive learning of typed-unification grammars.
In the (electronic) Proceedings of the 17th Workshop on Logic Programming.
Dresden Technical University, Germany, 11–13 December.

Copestake, Ann. 2000. Definitions of typed feature structures. Natural Lan-
guage Engineering, 1(6). Appendix to special issue on efficient processing
with HPSG.

Copestake, Ann. 2002. Implementing typed feature structure grammar. Number
110 in CSLI Lecture notes. CSLI Publications, Stanford.

Copestake, Ann, Daniel Flickinger, and Ivan Sag. 1999. A grammar of English
in HPSG: Design and implementation. CSLI Publications, Stanford.

Cussens, James and Sašo Džeroski, editors. 2000. Learning Language in Logic.
Lecture Notes in Artificial Intelligence. Springer-Verlag.

Cussens, James and Stephen Pulman. 2000. Experiments in inductive chart
parsing. In James Cussens and Sašo Džeroski, editors, Learning Language in
Logic, Lecture Notes in Artificial Intelligence. Springer-Verlag.

Kaplan, Ronald M. and Joan Bresnan. 1982. Lexical-functional grammar: A
formal system for grammatical representation. In Joan Bresnan, editor,
The mental representation of grammatical relations. Cambridge, Mass.: MIT
Press, pages 173–381.

Kazakov, Dimitar. 1999. Combining lapis and sc wordnet for the learning of
LR parsers with optimal semantic constraints. In Sašo Džeroski and Peter
Flach, editors, 9th International Workshop on Inductive Logic Programming
ILP-99, number 1634 in Lecture Notes in Artificial Intelligence, pages 140–
151, Bled, Slovenia. Springer-Verlag.

17

Miller, George A., Richard Beckwith, Christiane Fellbaum, Derek Gross,
and Katherine Miller. 1993. Introduction to WordNet: An on-
line lexical database. Technical report, University of Princeton.
ftp://ftp.cogsci.princeton.edu/wordnet.

Mitchell, Tom M. 1997. Machine Learning. McGraw-Hill.
Muggleton, S. and L. De Raedt. 1994. Inductive logic programming. Theory

and methods. Journal of Logic Programming, 19(20):629–679.
Pollard, Carl and Ivan A. Sag. 1994. Head-Driven Phrase Structure Grammar.

Chicago: Chicago University Press.
Sag, Ivan A. and Tom Wasow. 1999. Syntactic theory: a formal introduction.

Number 92 in CSLI Lecture notes. CSLI Publications, Stanford.
Samuelsson, Ch. 1994. Fast Natural–Language Parsing Using Explanation–

Based Learning. Ph.D. thesis, The Royal Institute of Technology and Stock-
holm University.

Shieber, Stuart M. 1986. An introduction to unification-based approaches to
grammar. Number 4 in CSLI Lecture notes. CSLI Publications, Stanford.

Smolka, Gert. 1992. Feature-constraint logics for unification grammars. Journal
of Logic Programming, 12:51–87.

Uszkoreit, Hans. 1986. Categorial unification grammar. In International con-
ference on computational linguistics (COLING-92), pages 440–446, Nantes,
France.

Zelle, John M. and Raymond J. Mooney. 1993. Learning semantic grammars
with constructive inductive logic programming. In Proceedings of AAAI-93,
pages 817–822. AAI Press/MIT Press.

