
A Coordination Protocol Language for Power Grid Operation ControlI

Yehia Abd Alrahmana, Hugo Torres Vieirab

aUniversity of Gothenburg, Chalmers University of Technology, Gothenburg, Sweden
bIMT School for Advanced Studies Lucca, Lucca, Italy

Abstract

Future power distribution grids will comprise a large number of components, each potentially able to carry
out operations autonomously. Clearly, in order to ensure safe operation of the grid, individual operations
must be coordinated among the different components. Since operation safety is a global property, modelling
component coordination typically involves reasoning about systems at a global level. In this paper, we
propose a language for specifying grid operation control protocols from a global point of view. In our
model, operation control is yielded in communications driven by both the grid topology and by state-based
information, features captured by novel language principles previously unexplored. We show how the global
specifications can be used to automatically generate local controllers of individual components, and that the
distributed implementation yielded by such controllers operationally corresponds to the global specification.
We showcase our development by modelling a fault management scenario in power grids.

Keywords: Power Grids, Interaction Protocols, Process Calculus

1. Introduction

Modern power grids comprise a large number of geographically dispersed components. For example, the
transmission lines of the North American power grid link all electricity generation and distribution in the
continent [1]. Moreover, technologically challenging features such as distributed generation are uprising, for
instance due to the integration of renewable energy sources (cf. [2]). Clearly, relying on centralised control5

and protection systems cannot cope with the level of dynamicity and demands of such large and complex
distributed systems. In particular to what concerns mechanisms that support error recovery and power flow
management, it is crucial to equip power grids with decentralised operation (cf. [3, 4, 5, 6]).

The key idea is to consider the power grid as a collection of independent and autonomous substations,
collaborating to achieve a desired global goal. It is then necessary to equip each substation with an independent10

controller that is able to communicate and cooperate with others, forming a large distributed computing
system. Each controller must be connected to sensors associated with its own substation so that it can assess
its own status and report them to its neighbouring controllers via communication paths. The communication
paths of the controllers should follow the electrical connection paths. In this way, each substation can have
(at least) a local view of the grid, represented by the connections to its neighbours.15

Such distinguishing features of power grids call for new methods and tools to address the posed technological
challenges, considering system reliability is of utmost concern given the critical nature of such systems. In
the literature we may find a number of research efforts that have addressed power grids in particular, apart
from approaches that address cyber-physical systems in a more general way. Recent proposals build on a
variety of techniques, for instance (without exhausting the broadness of the literature): multi-agent systems20

IYehia Abd Alrahman is funded by the ERC consolidator grant D-SynMA under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 772459).

Email addresses: yehia.abd.alrahman@gu.se (Yehia Abd Alrahman), hugotvieira@imtlucca.it (Hugo Torres
Vieira)

Preprint submitted to Elsevier September 11, 2019

(e.g., [7, 8]); simulation and testing (e.g., [9, 10, 11]); game theory (e.g., [12, 13]); optimisation decomposition
methods [14, 15]; and control systems (e.g., [16, 17, 18]). However, to the best of our knowledge, there
are no proposals that provide programming language support for the development of power grid operation
control (with the noticeable exception of [19]), in particular to what concerns techniques that address the
coordination of the operation of the distributed controllers in a certifiably reliable way.25

In this paper, we propose a specification language for designing coordination protocols that support
decentralised power grid operation control. Our development targets the specific features mentioned above,
namely considering that substations can communicate with neighbours (in particular the ones related by
a power supply relation), and where communication is driven by the substation local status (capturing
sensor information). For the purpose of operation coordination, we consider that control is delegated in30

communications, hence substations are activated by receiving messages and yield control by sending messages.
We build on proposals for communication-centred systems that consider coordination protocols are specified
in a global perspective (e.g., [20, 21]), i.e., considering the set of interactions as a whole, and tailor our
language so as to embed the identified distinguishing features. As a result, our language presents novel
principles that are specially fit for power grids and other cyber-physical systems with common characteristics.35

In order to support the rigorous validation of protocol specifications, we show how the protocol specifica-
tions can be combined with a specification of the power grid configuration so as to yield an operational model
that captures system evolutions in a rigorous way. Moreover, since the protocol language serves the purpose
of specifying the overall operation control it is crucial to provide mechanisms that relate the global protocol
with the distributed substations controller code. For this purpose, we show how the protocol specifications40

can be used to synthesise the controller code in an automatic way. Noticeably, the controller code is based
on reactive definitions that are continuously able to react to message reception, provided that the state
conditions enable both the reception and the reaction, and where reactions consist in message emission.

We also show how the controller code can be combined with a specification of the power grid configuration
(exactly like the one used for global protocols specifications) so as to yield a distributed operational model. We45

then validate the developed automatic controller code synthesis, by means of an operational correspondence
result that establishes a one-to-one correspondence between evolutions in the global model and in the
distributed model. This result provides support for verification techniques that reason at the level of the
global specification, which is more amenable to verify (global) system-level properties, since we can ensure
that any property that holds for the global specification also holds for the distributed implementation.50

We illustrate how this work may be exploited by means of the illustration in Fig. 1 that shows the
development stages we are considering. On the left hand side, we find the code development pipeline, starting
by the protocols specifications that must be provided. In contrast, controller code is automatically generated
by the synthesis process. On the right hand side, we see how the two artefacts can be used, namely the
protocol specifications can be used for the purpose of validation and verification, considering that the network55

configuration and properties to be verified are provided. The automatically generated controller code can be
used in the deployment phase, left underspecified. The operational correspondence result allows to relate the
validation and verification carried out using the global model and the actual deployed implementation.

We remark that our model does not address all the relevant dimensions of the communication infrastructure
of power grids (for instance, we do not handle communication failures nor security concerns) that may60

possibly be integrated as a separate layer (which is often the case for the two mentioned dimensions). We
also do not aim at a full-fledged model of power grids, and we abstract away from the physical infrastructure
by considering a minimal logical interface given by means of substation local state information. Our goal here
is to provide a language that allows for the high-level specification of the power grid operation control logic
that addresses specific features in a central way. We recognise that even directly at the level of the operation65

control logic other dimensions may be necessary, for instance when the coordination requires accounting for
failures (as explored in [19] relying on the protocol language introduced in [22]), but we nevertheless believe
that our language principles can be exploited in combination with other approaches.

In the remainder of this section, we informally introduce and motivate our design choices by pointing to
a fault management scenario for the sake of a more intuitive reading. In Sect. 2 we present the syntax and70

semantics of the global language. In Sect. 3, we return to the fault management scenario so as to show the
programming flavour considering a case study from the realm of power grids. In Sect. 4 we introduce the

2

Figure 1: Development Stages

Protocol Specification

Controller synthesis

Controller Code

Validation
and

Verification

Deployment

Operational Correspondence

Network Configuration Properties

distributed model, used as the target language in Sect. 5 where we show how to automatically synthesise the
behaviour of individual controllers of substations given the global specification of the protocol. The operational
correspondence between global and distributed models is attested in our main result (Theorem 5.10). Finally,75

in Sect. 6, we comment on research directions and present related work.

1.1. Operation Control Protocols, Informally

We consider a scenario involving a power distribution grid where a fault occurs in one of the transmission
power lines, and a recovery protocol that locates and isolates the fault by means of interactions among the
nodes (substations) in the grid.80

A central notion in our proposal is that nodes involved in such a protocol yield control by means of
synchronisation actions. For example, consider a node that is willing to Locate the fault and another one
that can react and continue the task of locating the fault. The two nodes may synchronise on action Locate
and the enabling node yields the control to the reacting one. We therefore consider that active nodes enable
synchronisations and, as a consequence of a synchronisation, transfer the active role to the reacting node. So,85

for example, after some node 1 synchronises with some node 2 on Locate, node 2 may enable the following
interaction, e.g., a synchronisation with some node 3 also on Locate.

We may therefore specify protocols as a (structured) set of interactions without identifying the actual
nodes involved a priori, since these are determined operationally due to the transference of the active role
in synchronisations. We write [Locate] P to specify a protocol stating that a synchronisation on Locate90

is to take place first, after which the protocol proceeds as specified by P (for now we abstract from the
remaining elements using). Also, we write (1)P ′ to specify that node 1 is active on protocol P ′. So, by
(1)[Locate] P we represent that node 1 may enable the synchronisation on Locate. Furthermore, we may
write (1)[Locate] P −→ [Locate] (2)P to represent such a synchronisation step (−→) between nodes 1 and 2,
where node 1 yields the control and node 2 is activated to carry out the continuation protocol P . This allows95

to capture the transference of the active role in the different stages of the protocol.
Interaction in our model is driven by the network communication topology that accounts for radial power

supply configurations (i.e, tree-like structures where root nodes provide power to the respective subtrees),
and for a notion of proximity (so as to capture, e.g., backup links and address network reconfigurations). We
therefore consider that nodes can interact if they are in a provide/receive power relation or in a neighbouring100

relation. To this end, synchronisation specifications include a direction to determine the target of the

3

synchronisation. For example, by [Locate?] we represent that Locate targets all (child) nodes (?) that receive
power from the enabling node, used in the scenario by the root(s) to search for the fault in the power supply
(sub)tree. Also, by [RecoverN] we specify that Recover targets the power provider (N) of the enabling node
(i.e., the parent node), used in the scenario to signal when the fault has been found. Finally, by [PowerI] we105

represent that Power targets a neighbouring node (I), used in the scenario for capturing power restoration
and associated network reconfiguration.

Combining two of the above example synchronisations by means of recursion and summation (+), we
may then write a simplified fault management protocol

Simple , rec X.([Locate?]c1c1∨c2X + [RecoverN]c2tt 0) (1)

which specifies an alternative between Locate and Recover synchronisations, where in the former case the
protocol starts over and in the latter case terminates. Also, to support a more fine grained description of
protocols, the synchronisation actions specify conditions (omitted previously with) that must hold for both110

enabling and reacting nodes in order for a synchronisation to take place. For example, only nodes that are
at the root of a (sub)tree that has a fault may enable a synchronisation on Locate, which is captured in
condition c1 (left unspecified here). Also, only nodes that satisfy such condition (c1) or that are without
power supply (which is captured in condition c2) can react to Locate. For Recover, the specification says that
only nodes that are without power supply (c2) can enable the synchronisation, while any node can react to it115

(captured by condition true tt). The general idea is that the Locate synchronisations propagate throughout
the power supply tree, one level per synchronisation, up to the point the fault is located and synchronisation
Recover leads to termination.

The combination of the summation and of synchronisation conditions thus allows for a fine-grained
specification of the operation control protocol. Furthermore, the conditions specified for synchronisations are120

checked against the state of nodes, so state information is accounted for in our model. This implies that a
node that is active to carry out a protocol might actually not be enabled by the conditions. For instance,
if 1 is not a root of a (sub)tree with a fault (hence does not satisfy c1), and is not without power supply
(hence does not satisfy c2) then the configuration (1)Simple where 1 is active to carry our Simple has no
possible synchronisations (since 1 does not satisfy the conditions associated to Locate and Recover). Notice125

however that a state change (e.g., due to the occurrence of a fault) may trigger the synchronisations, so we
may consider 1 is actively waiting to carry out Simple once the prescribed conditions hold.

To represent the dynamics of systems, the state of nodes may evolve throughout the stages of the operation
protocol. We therefore consider that synchronisation actions may have side-effects on the state of the nodes
that synchronise. This allows to avoid introducing specialised primitives and simplifies reasoning on protocols,130

given the atomicity of the synchronisation and side-effect in one step.
The general principles described above, identified in the context of a fault management scenario, guided

the design of the language presented in the next section. Although this is not the case for a single fault, we
remark that our language addresses scenarios where several nodes may be active simultaneously in possibly
different stages of the protocol. A detailed account of the fault management scenario is presented in Sect. 3,135

including a protocol designed to account for configurations with several faults.

2. A Model for Operation Control Protocols

The syntax of the language is given in Table 1, where we assume a set of node identifiers (id , . . .),
synchronisation action labels (f, . . .), and logical conditions (c, i, o, . . .). Protocols (P,Q, . . .) combine static
specifications and the active node construct. The latter is denoted by (id)P , representing that node id140

is active to carry out the protocol P . Static specifications include termination 0, fork P |Q which says
that both P and Q are to be carried out, and infinite behaviour defined in terms of the recursion rec X.P
and recursion variable X, with the usual meaning. Finally, static specifications include synchronisation
summations (S, . . .), where S1 + S2 says that either S1 is to be carried out or S2 (exclusively), and where
[fd]oiP represents a synchronisation action: a node active on [fd]oiP that satisfies condition o may synchronise145

on f with the node(s) identified by the direction d for which condition i holds, leading to the activation of

4

Table 1: Global Language Syntax

(Protocol) P ::= 0 | P |P | rec X.P | X | S | (id)P

(Summation) S ::= [fd]oiP | S + S

(Direction) d ::= ? | N | I | •

the latter node(s) on protocol P . Intuitively, the node active on [fd]oiP enables the synchronisation, which
results in the reaction of the targeted nodes that are activated to carry out the continuation protocol P .

A direction d specifies the target(s) of a synchronisation action, that may be of four kinds: ? targets all
(children) nodes to which the enabling node provides power to; N targets the power provider (i.e., the parent)150

of the enabler; I targets a neighbour of the enabler; and • targets the enabler itself, used to capture local
computation steps. We remark on the ? direction given its particular nature: since one node can supply
power to several others, synchronisations with ? direction may actually involve several reacting nodes, up to
the respective condition. We interpret ? synchronisations as broadcasts, in the sense that we take ? to target
all (direct) child nodes that satisfy the reacting condition, which hence comprises the empty set (in case the155

node has no children or none of them satisfy the condition). The interpretation of binary interaction differs,
as synchronisation is only possible if the identified target node satisfies the condition.

Example 2.1. Consider the following protocol, assuming definitions for Recovery, Isolation and
Restoration

(id)([Locate?]o1i1 Recovery + [End•]o2i2 (Isolation |Restoration))

which specifies node id is active to synchronise on Locate or End, exclusively.160

Example 2.1 already hints on the two ways of introducing concurrency in our model. On the one hand,
broadcast can lead to the activation of several nodes: in the example, each one of the nodes reacting to
Locate will carry out the Recovery protocol. On the other hand, the fork construct allows for a single
node to carry out two subprotocols, possibly activating different nodes in the continuation: in the example, a
node active to carry out (Isolation |Restoration) may synchronise with different nodes in each one of165

the branches.
In order to define the semantics of the language, we introduce structural congruence that, in particular,

captures the relation between the active node construct (id)P and protocol specifications (including the
active node construct itself and the fork construct). Structural congruence is the least congruence relation
on protocols that satisfies the rules given in Table 2. The first set of rules captures expected principles,170

namely that fork and summation are associative and commutative, and that fork has identity element 0 (we
remark that the syntax excludes 0 as a branch in summations). Rule (id)(P |Q) ≡ (id)P | (id)Q captures
the interpretation of the fork construct: it is equivalent to specify that a node id is active on a fork, and to
specify that a fork has id active on both branches. Rule (id1)(id2)P ≡ (id2)(id1)P says that active nodes
can be permuted and rule (id)0 ≡ 0 says that a node active to carry out termination is equivalent to the175

termination itself. Structural congruence together with reduction define the operational semantics of the
model. Intuitively, structural congruence rewriting allows active nodes to “float” in the term towards the
synchronisation actions.

Example 2.2. Considering the active node distribution in a fork, we have that

[Locate?]o1i1 Recovery + [End•]o2i2 (id)(Isolation |Restoration)180

is structural congruent to

[Locate?]o1i1 Recovery + [End•]o2i2 ((id)Isolation | (id)Restoration)

The definition of reduction depends on the network topology and on the fact that nodes satisfy certain
logical conditions. We consider state information for each node so as to capture both “local” information

5

Table 2: Structural Congruence

P |0 ≡ P P1 | (P2 |P3) ≡ (P1 |P2) |P3 P1 |P2 ≡ P2 |P1

rec X.P ≡ P [rec X.P/X] S1 + (S2 + S3) ≡ (S1 + S2) + S3 S1 + S2 ≡ S2 + S1

(id)(P |Q) ≡ (id)P | (id)Q (id1)(id2)P ≡ (id2)(id1)P (id)0 ≡ 0

about the topology (such as the identities of the power provider and of the set of neighbours) and other185

information relevant for condition assessment (such as the status of the power supply). The network state,
denoted by ∆, is a mapping from node identifiers to states, where a state, denoted by s, is a register
id [id ′, t, n, k, a, e] containing the following information: id is the node identifier; id ′ identifies the power
provider; t captures the status of the input power connection; n is the set of identifiers of neighbouring nodes;
k is the power supply capacity of the node; a is the number of active power supply links (i.e., the number of190

nodes that receive power from this one); and e is the number of power supply links that are in a faulty state.
As mentioned in Section 1.1, we check conditions against states for the purpose of allowing synchronisations.

Given a state s we denote by s |= c that state s satisfies condition c, where we leave the underlying logic
unspecified. For example, we may say that s |= (k > 0) to check that s has capacity greater than 0.

Also mentioned in Section 1.1 is the notion of side-effects, in the sense that synchronisation actions may195

result in state changes so as to model system evolution. We use the following operations to apply side-effects:

fd!(s, id): is an operation that modifies state s of the active node according to the side-effects of enabling fd

and considering id is the identity of the reactive node.

fd?(s, id): is an operation that modifies state s of the reactive node according to the side-effects of enabling
fd and considering id is the identity of the active node.200

upd(id , id ′, fd,∆) : is an operation that yields the network state obtained by updating ∆ considering
that node id synchronises on f with node id ′, hence the update regards the side-effects of f in the
involved nodes. Namely, given ∆ = (∆′, id 7→ s, id ′ 7→ s′) we have that upd(id , id ′, fd,∆) is defined as
(∆′, id 7→ fd!(s, id ′), id ′ 7→ fd?(s′, id)).

We consider side-effects only for binary synchronisations (for d ∈ {I,N}), but state changes could also205

be considered for other directions in similar lines.
The definition of reduction relies on an auxiliary operation, denoted d(∆, id), that yields the recipient(s)

of a synchronisation action, given the direction d, the network state ∆, and the enabler of the action id . The
operation, defined as follows, thus yields the power provider of the node in case the direction is N, (any)
one of the neighbours in case the direction is I, all the nodes that have as parent the enabler in case the210

direction is ?, and is undefined for direction •.
N(∆, id) , id ′ (if ∆(id) = id [id ′, t, n, k, a, e])

I (∆, id) , id ′ (if ∆(id) = id [id ′′, t, n, k, a, e] and id ′ ∈ n)

?(∆, id) , {id ′ | N(∆, id ′) = id}
•(∆, id) , undefined

The reduction relation is given in terms of configurations consisting of a protocol P and a mapping ∆,
for which we use ∆;P to denote the combination. By ∆;P −→ ∆′;P ′ we represent that configuration ∆;P
evolves in one step to configuration ∆′;P ′, potentially involving state changes (∆ and ∆′ may differ) and
(necessarily) involving a step in the protocol from P to P ′.215

Reduction is defined as the least relation that satisfies the rules shown in Table 3, briefly described
next. Rule Bin captures the case of binary interaction, hence when the direction (d) of the synchronisation
action targets either the parent (N) or a neighbour (I). Protocol (id)([fd]oiP) says that node id is active for
synchronisation on [fd]oiP , so id can enable a synchronisation on f provided that the state of id satisfies
condition o, as specified in premise ∆(id) |= o. Furthermore, the reacting node id ′, specified in the premise220

d(∆, id) = id ′, is required to satisfy condition i. In such circumstances, the configuration can evolve and the

6

Table 3: Reduction Rules

d ∈ {N,I} ∆(id) |= o d(∆, id) = id ′ ∆(id ′) |= i ∆′ = upd(id , id ′, fd,∆)

∆; (id)([fd]oiP) −→ ∆′; [fd]oi ((id
′)P)

(Bin)

∆(id) |= o ? (∆, id) = I ′ I = {id ′ | id ′ ∈ I ′ ∧∆(id ′) |= i}
∆; (id)([f?]oiP) −→ ∆; [f?]oi ((Ĩ)P)

(Brd)

∆(id) |= o ∆(id) |= i

∆; (id)([f•]oiP) −→ ∆; [f•]oi ((id)P)
(Loc)

∆; (id)S1 −→ ∆′;S′1
∆; (id)(S1 + S2) −→ ∆′;S′1 + S2

(IdSum)

∆;P −→ ∆′;P ′

∆; [fd]oiP −→ ∆′; [fd]oiP
′ (Synch)

∆;P1 −→ ∆′;P ′1
∆;P1 + P2 −→ ∆′;P ′1 + P2

(Sum)
∆;P1 −→ ∆′;P ′1

∆;P1 |P2 −→ ∆′;P ′1 |P2
(Par)

∆;P −→ ∆′;P ′

∆; (id)P −→ ∆′; (id)P ′
(Id)

P ≡ P ′ ∆;P ′ −→ ∆′;Q′ Q′ ≡ Q
∆;P −→ ∆′;Q

(Struct)

resulting state is obtained by updating the states of the involved nodes considering the side-effects of the
synchronisation, and where the resulting protocol [fd]oi ((id

′)P) specifies that id ′ is active on the continuation
protocol P . Notice that the synchronisation action itself is preserved (we return to this point when addressing
the language closure rules).225

Rule Brd captures the case of broadcast interaction (?), following lines similar to Bin. Apart from
the absence of state update, the main difference is that now a set of potential reacting nodes is identified
(I ′ denotes a set of node identifiers), out of which all those satisfying condition i are singled out (I). The
latter are activated in the continuation protocol, to represent which we use (Ĩ) to abbreviate (id1) . . . (idm)
considering I = id1, . . . , idm. We remark that the set of actual reacting nodes may be empty (e.g., if none230

of the potential ones satisfies condition i), in which case (∅̃)P is defined as P . The fact that the reduction
step nevertheless takes place, even without actual reacting nodes, motivates the choice of the broadcast
terminology, and differs from the binary interaction which is blocked while the targeted reacting node does
not satisfy the condition.

Example 2.3. Let us assume that node id1 satisfies conditions o1 and nodes id2 and id3 satisfy condition i1
in ∆ and both have node id1 as power provider. In such case we may derive, using rule Brd, the reduction:

∆; (id1)[Locate?]o1i1 P1 −→ ∆; [Locate?]o1i1 (id2)(id3)P1

where nodes id2 and id3 react to the Locate action enabled by id1. Note that if id2 and id3 do not satisfy i1
(or their power provider is not id1) then the reduction step can nevertheless take place:

∆; (id1)[Locate?]o1i1 P1 −→ ∆; [Locate?]o1i1 P1

so it suffices for the enabling node to satisfy the output condition (o1) for the broadcast to take place.235

Rule Loc captures the case of local computation steps (•). For the sake of uniformity we keep (both)
output and input conditions that must be met by the state of the active node. Notice that the node that
carries out the f step retains control, i.e., the same id is active before and after the synchronisation on f .
Like for broadcast, we consider local steps do not involve any state update.

Rule IdSum states that an (id) operator active over a summation protocol can be considered for a240

reduction of (exclusively) one of the branches of the summation, provided that the id actually triggers the
reduction, while preserving the summation. Notice that the final configuration in the premise is a summation
(S′1) and hence cannot specify an active node (cf. Table 1), so necessarily the (id) enables a synchronisation

7

(via rules Bin, Brd or Loc). Notice also that this rule is needed because the (id) operator does not distribute
over summation like it does for fork (cf. Table 2).245

The previous semantic rules suggest that the structure of a protocol is preserved under reduction, while
accounting to state changes and declaring the active node(s) in the next reduction step. However, as a
protocol progresses different nodes might be active at different stages of that protocol and thus reduction
is required to take place at any stage. To capture this intuition, rules for protocol language closure are
introduced. Namely, a reduction may take place after a synchronisation action (rule Synch), within a250

summation (rule Sum), within a fork (rule Par), and after an id operator (rule Id). Thus, preserving
the structure of the protocol allows for nodes to be active on (exactly) the same stage of the protocol
simultaneously and/or at different moments in time.

Rule Struct closes reduction under structural congruence, so as to allow the reduction rules to focus on
the case of an active node that immediately scopes over a synchronisation action summation.255

Example 2.4. Assuming that node id2 satisfies conditions i2 and o2 in ∆, we may derive, relying on rules
Loc, rule IdSum, rule Struct, and rule Id, the reduction:

∆(id2) |= o2 ∆(id2) |= i2

∆; (id2)[End•]o2i2 P2 −→ ∆; [End•]o2i2 (id2)P2
Loc

∆; (id2)([End•]o2i2 P2 + ([Locate?]o1i1 P1) −→ ∆; [End•]o2i2 (id2)P2 + [Locate?]o1i1 P1
(IdSum)

∆; (id2)([Locate?]o1i1 P1 + [End•]o2i2 P2) −→ ∆; [Locate?]o1i1 P1 + [End•]o2i2 (id2)P2
(Struct)

∆; (id1)(id2)([Locate?]o1i1 P1 + [End•]o2i2 P2) −→ ∆; (id1)([Locate?]o1i1 P1 + [End•]o2i2 (id2)P2)
(Id)

where node id2 carries out the End local action. Note that node id1 is still active on the summation protocol,
and synchronisations on both branches of the summation are possible. Thus, both nodes id1 and id2 are
active simultaneously on different stages of the protocol and a reduction may be triggered by id1 or id2.

In order to make precise the notion that reduction may take place at any level of the protocol, we introduce
active contexts that include all language constructs except for recursion. We may show that reduction is260

closed under such contexts.

Definition 2.5 (Active Contexts). We denote by C [·] a global language term with one hole defined as follows

C [·] ::= P |C [·] | (id)C [·] | [fd]oiC [·] | S + C [·] | ·

Lemma 2.6 (Reduction Closed Under Active Contexts). If ∆;P −→ ∆′;Q then ∆; C [P] −→ ∆′; C [Q].

Proof. By induction on the structure of C [·] following expected lines as for each possible active context there
is a corresponding reduction rule.

Since we are interested in developing protocols that may be used in different networks, we consider such265

development to be carried out using what we call static protocols, i.e., protocols that do not include the active
node construct. Then, to represent a concrete operating system, active nodes may be added at “top-level” to
the static specification (e.g., (id)Recovery where Recovery does not include any active nodes), together
with the network state. Also, for the purpose of simplifying protocol design, we consider that action labels
are unique (up to recursion unfolding). As usual, we exclude protocols where recursion appears unguarded270

by at least one synchronisation action (e.g., rec X.X).
Such notions allow us to streamline the distributed implementation presented in the next section. From now

on, we only consider well-formed protocols that follow the above guidelines, i.e., originate from specifications
where the active node construct only appears top-level, all action labels are distinct, and recursion is guarded.

Definition 2.7 (Static Protocols). We call static protocols the set of terms in the (id)-free fragment of the275

language given in Table 1.

8

Figure 2: Power Distribution Grid

Definition 2.8 (Well-formed Protocol). We say protocol P is well-formed if there are P ′, I, ∆, and ∆′

such that ∆; (Ĩ)P ′ −→? ∆′;P , where −→? denotes the reflexive transitive closure of −→ and where P ′ is a static
protocol that does not contain action label repetition and unguarded recursion.

We finish this section by reporting on a result that informs on the global model, showing that protocols280

can be described as a parallel composition of (active node scoped) synchronisation action summations.

Proposition 2.9 (Protocol Normal Form). Let P be a protocol where recursion is guarded. We have that
P ≡ (Ĩ1)S1 | . . . | (Ĩk)Sk, where k ≥ 0.

Proof. By induction on the structure of P .

Case P is [fd]oiQ: Immediate.285

Case P is (id)Q: By the induction hypothesis Q ≡ (Ĩ1)S1 | . . . | (Ĩk)Sk, and

hence (id)Q ≡ (id)(Ĩ1)S1 | . . . | (id)(Ĩk)Sk.

Case P is 0: Immediate.

Case P is X: Does not apply since recursion is guarded in P .

Case P is rec X.Q: By the induction hypothesis we have that Q ≡ (Ĩ1)S1 | . . . | (Ĩk)Sk, hence we have that290

rec X.Q ≡ (Ĩ1)(S1[rec X.Q/X]) | . . . | (Ĩk)(Sk[rec X.Q/X]).

Case P is Q1 |Q2: By the induction hypothesis Q1 ≡ (Ĩ1)S1 | . . . | (Ĩk)Sk and Q2 ≡ (Ĩ ′1)S′1 | . . . | (Ĩ ′k)S′k,

hence Q1 |Q2 ≡ (Ĩ1)S1 | . . . | (Ĩk)Sk | (Ĩ ′1)S′1 | . . . | (Ĩ ′k)S′k.

Case P is S1 + S2: Immediate.

295

3. Fault Management in Power Distribution Grids

In this section, we model a non trivial fault management protocol that handles error detection, localisation,
and isolation in power grids. Furthermore, we model autonomous network reconfiguration and power
restoration. We specify the behaviour of our protocol from a global point of view (i.e., using the global
language) which is more natural and less error-prone with respect to considering the local viewpoints. The300

scenario we present here is inspired in related literature in a broad sense, but we nevertheless point to the
coordination algorithms presented in [23] for a concrete reference of the sort of specifications we are targeting.

We consider a cross section of a power grid’s network as reported in Fig. 2. The cross section shows
a radial power grid’s network with a primary power substation PS, a backup power substation BS, and
seven secondary power substations, numbered from 1 to 7. The type of this network is called radial because305

9

every substation has only one incoming power input and possibly multiple power outputs. In some sense, the
substation can be viewed as a power router.

Primary and backup substations have circuit breakers × that open up when a fault occurs in their domain,
e.g., a transmission power line breaks. Each secondary substation has fault indicators (fault • and no fault ◦),
line switches (closed | and open ‖), and an embedded controller that implements the substation’s behaviour310

and manages interactions with others. Fig. 2 illustrates a configuration where the secondary substations
1-5 are energised by the primary substation PS, while secondary substations 6 and 7 are energised by the
backup substation BS. Secondary substations cannot operate the switches or exchange information without
authorisation from the primary substation which supplies the power.

Let us consider that a fault occurs in the domain of the primary substation PS, e.g., the transmission315

power line between substations 3 and 4 breaks. The primary substation can sense the existence of a fault
because its circuit breaker × opens up, but it cannot determine the location of the fault. Hence, the substation
PS initiates the fault recovery protocol by synchronising with its directly connected secondary substations and
delegates them to activate the local fault recovery protocol. The delegation between secondary substations
propagates in the direction given by their fault indicators.320

A secondary substation first validates the error signal by measuring its voltage level. If the voltage
is zero, the secondary substation activates the fault recovery protocol, otherwise the signal is discarded.
Once a secondary substation activates the fault recovery protocol, it inspects its own fault indicators and
determines whether the fault is on its input or output power lines. If the fault is on its output, it delegates
the substations connected to its output power lines to collaborate to locate the fault. If the fault is on its325

input power line, the substation (in our case, substation 4) takes control and initiates both isolation and
power restoration. The former consists of isolating the faulty line and restoring the power to the network’s
segment located before the fault, while the latter consists of restoring the power to the network’s segment
located after the fault.

For isolation, substation 4 opens its switches to the faulty line segment and collaborates with 3 to open330

its affected line switches as well. Notice that now the domain of the primary substation PS is segmented
into two islands: {PS,1,2,3,5} and {4}. The control is transferred back to the primary substation in a
step by step fashion and the power is restored to the first island. For power restoration, substation 4 asks
for power supply from one of its neighbours that is capable of supplying an additional substation (in our
case, substation 6). Once substation 6 supplies power to 4, the latter changes its power source to 6 and now335

substation 4 belongs to the domain of the backup substation BS.
We now show how to provide a simple and intuitive global specification for our scenario using the linguistic

primitives of the global language. In what follows, we use the following terminology: the state of a source
link t can be 0 (to indicate a faulty link) or 1 otherwise. We will use z in place of the source id when a
substation is not connected to a power supply. The initial state of each substation follows from Fig. 2. For340

instance, substations 3, 4, and 6 have the following initial states 3[2, 1, {2, 4}, 1, 1, 1], 4[3, 0, {3, 6}, 1, 0, 0],
and 6[7, 1, {4, 5, 7}, 2, 0, 0], respectively. The recovery protocol is reported below.

Recovery , rec X.([Locate?]o1i1X + [End•]o2i2 Islanding)

Islanding , IsolationStart |Restoration

The protocol states that either Locate is broadcasted to the children of the enabling substation, after
which the protocol starts over, or End is carried out and the node retains control. In case End is carried out,
the enabling substation proceeds by activating the Islanding protocol. The latter specifies a fork between345

IsolationStart and the Restoration protocols.
A substation enabled on Recovery can broadcast Locate only when it has at least one faulty output,

i.e., o1 = (e > 0). Furthermore, receiving substations can synchronise on Locate only if they have fault on
their output or their input, i.e., i1 = (e > 0) ∨ (t = 0). On the other hand, End can be carried out when the
enabling substation has a fault on its input, i.e., o2 = (t = 0) and i2 = tt. Both actions have no side-effects350

on states.
The Isolation and the Restoration protocols are reported below:

10

IsolationStart , [RecoverN]o3i3 0 + [RecoverDoneN]o3i4 Isolation

Isolation , rec X.([IsolateN]o5i3 0 + [IsolateDoneN]o5i4X + [Stop•]o6i2 0))

Restoration , [PowerI]o7i7 0

The IsolationStart protocol states that a synchronisation between the enabling substation and its
parent on the Recover or RecoverDone actions may happen only if the enabling substation has a fault on its
input, i.e., o3 = (t = 0). The parent reacts on Recover if the number of faults on its output is greater than355

one, i.e., i3 = (e > 1). In this case the parent does not proceed, since there are still more faulty links to
be handled. Instead, the RecoverDone synchronisation captures the case for the handling of the last faulty
link, i.e., i4 = (e = 1), in which case the parent takes control and proceeds to Isolation. In both cases, the
enabling station disconnects itself from the faulty line (setting parent to z) and the parent decrements its
output faults (e), its active outputs (a), and also its capacity (k). Furthermore, both enabling and parent360

node remove each other from the list of neighbours, thus isolating the faulty link.
When the parent is enabled on Isolation then three synchronisation branches on the Isolate, the

IsolateDone and the Stop actions can be carried out. An enabling substation can synchronise with its parent
on an Isolate or IsolateDone actions if it is not the primary station, i.e., o5 = (i 6= ∞). As a side-effect on
the state of the parent, the number of faults is decremented (e). Notice that the interpretation of the two365

branches on Isolate and IsolateDone is similar to the one on Recover and RecoverDone. Only the primary
station (o6 = (i =∞)) can execute the Stop action, ending the Isolation protocol. As mentioned before,
local actions have no side-effects.

Finally, the Restoration protocol states that a disconnected substation, i.e., o7 = (i = z), can
synchronise with one of its neighbours (I) on the Power action as a request for a power supply. Only370

a neighbour that has enough power and is fully functional (i7 = (k > a ∧ e = 0)) can engage in the
synchronisation. By doing so, the neighbour increments its active outputs (a) and the enabling substation
marks its neighbour as its power source. The protocol then terminates after the network reconfiguration.
Note that although the IsolationStart and the Restoration protocols are specified in parallel, a specific
order is actually induced by the synchronisation conditions. Thanks to the output condition o7 = (i = z)375

of the Power action, we are sure that the power supply can be reestablished only after the faulty link is
disconnected, which is a side-effect of either Recover or RecoverDone actions. Thus, the synchronisation on
Power can only happen after the synchronisation on either Recover or RecoverDone.

The static protocol Recovery abstracts from the concrete network configuration. To represent a concrete
grid network, active substations must be added at “top-level” to the Recovery protocol, together with the380

network state, i.e., ∆; (PS)Recovery where ∆ is a mapping from a substation identifiers to states. Notice
that the primary station, PS, is initially active because, according to our scenario, it is the only station that
has rights to initiate protocols.

Example 3.1. We show some of the reduction steps of the recovery protocol. For the sake of clarity, we label
the reduction relation with the performed action and its direction and we index it with last applied rule. Also,
since recursion in the recovery protocol is at the level of summation, every time a locate action is enabled the
recovery protocol is unfolded inside a summation. We consider active contexts to simplify the presentation of

11

Table 4: The Syntax of the Distributed Language

(Definition) D ::= 〈c〉fd?.R | R | D |D
(Reaction) R ::= C | 0 | R |R
(Choice) C ::= 〈c〉fd! | C + C

(Network) N ::= s : D | N ‖N

(Action) α ::= 〈c〉fd? | 〈c〉fd! | 〈c〉f
(Label) λ ::= Lf | τ

(Link) L ::= id → id | id ← id | id ! ? | id??

the unfoldings, namely C [·] = [Locate?]o1i1 ·+[End•]o2i2 Islanding. We may then write:

∆; (PS)Recovery

Locate?−−−−→Id ∆; C [(1)Recovery]

Locate?−−−−→Sum ∆; C [C [(2)Recovery]]

Locate?−−−−→Sum ∆; C [C [C [(3)Recovery]]]

Locate?−−−−→Sum ∆; C [C [C [C [(4)Recovery]]]]

End•−−−→Sum ∆′; C [C [C [C [[Locate?]o1i1 Recovery + [End•]o2i2 (4)Islanding]]]]

≡ (C ′[·] = C [C [C [C [[Locate?]o1i1 Recovery + [End•]o2i2 ·]]]])
∆′; C ′[(4)IsolationStart | (4)Restoration]

RecoverDoneN−−−−−−−−→Sum ∆′′; C ′[[RecoverN]o3i3 0 + [RecoverDoneN]o3i4 ((3)Isolation) | (4)Restoration]

...

Initially, the primary station PS broadcasts Locate to its children, in our scenario it is substation 1. Thus
substation 1 is active in the next step which is actually the recursive protocol itself. Note that reductions385

involve expanding the protocol term as carried out actions are preserved (e.g., each time the Locate action is
carried out a copy of context C [·] is required). Note also that in the third step where substation 2 broadcasts
Locate to its children 3 and 5, only 3 is activated in the next step because substation 3 satisfies the input
condition of Locate while 5 does not. Once the Locate signal reaches substation 4, the control is retained
by substation 4 by executing End and now substation 4 is active simultaneously on IsolationStart and390

Restoration protocols. Substation 4 executes RecoverDone and in the next step substation 3 is active on
Isolation while substation 4 is still active on Restoration.

We remark that the protocol is able to handle configurations with multiple faults, where several nodes
may be active simultaneously, e.g., Locate albeit belonging to different parts (subtrees) of the network.

4. A Distributed Model for Operation Control395

In this section, we present the target model that will be used to carry out the global protocol descriptions
in a distributed way. We consider a network of nodes where each node has a state s (previously introduced)
and a behaviour given in terms of definitions, reactions and choices. Intuitively, definitions allow nodes to
synchronise on actions, after which proceeding as specified in reactions. The latter are defined as alternative
behaviours specified in choices. The syntax of behaviours and networks is shown in Table 4, reusing syntactic400

elements given in the global language (namely action labels f , directions d, and conditions c).

12

Table 5: Semantics of Definitions

〈c〉fd?.R 〈c〉fd?−−−−→ R | 〈c〉fd?.R Inp 〈c〉fd! 〈c〉f
d!−−−−→ 0 Out

C1
α−→ C ′1

C1 + C2
α−→ C ′1

Sum
D1

α−→ D′1

D1 |D2
α−→ D′1 |D2

Int
D1

〈c1〉f•!−−−−→ D′1 D2
〈c2〉f•?−−−−−→ D′2

D1 |D2
〈c1∧c2〉f−−−−−−→ D′1 |D′2

Self

A definition D may either be a pair of simultaneously active (sub)definitions D1 |D2, a reaction R, or
the (persistent) input 〈c〉fd?.R. The latter allows a node to react to a synchronisation on f (according to
direction d), provided that the node satisfies condition c, leading to the activation of reaction R. A reaction
R can either be a pair of simultaneously active (sub)reactions R1 |R2 (that can be specified as continuation405

of an input), the inaction 0 or a choice C. The latter is either a pair of (sub)choices C1 + C2 or the output
〈c〉fd! that allows a node to enable a synchronisation on f (targeting the nodes specified by direction d),
provided that the node satisfies condition c.

A network N is either a pair of (sub)networks N1 ‖N2 or a node s : D which comprises a behaviour
given by a definition (D) and a state (s). We recall that a state is a register of the form id [id ′, t, n, k, a, e].410

The operational semantics of networks is defined by a labelled transition system (LTS), which relies on

the operational semantics of definitions, also defined by an LTS. We denote by D1
α−→ D2 that definition

D1 exhibits action α and evolves to D2. The actions ranged over by α are 〈c〉fd?, 〈c〉fd!, and 〈c〉f . Action
〈c〉fd? represents the ability to react to a synchronisation on f , provided that the node satisfies condition c,
and according to direction d. Similarly, 〈c〉fd! represents the ability to enable a synchronisation on f , also415

considering the condition c and the targeting direction d. A local computation step is captured by 〈c〉f ,
which also specifies the label of the action f and a condition c. The rules that define the LTS of definitions,
briefly explained next, are shown in Table 5.

Rule Inp states that an input can exhibit the corresponding reactive transition, comprising synchronisation
action label f , condition c, and direction d. The input results in the activation of the respective reaction420

R, while the input itself is preserved, which means that all inputs are persistently available. Likewise, rule
Out states that an output can exhibit the corresponding synchronisation enabling transition, after which it
terminates. Rules Sum and Int are standard, specifying alternative and interleaving behaviour, respectively.
Rule Self captures local computation steps, which are actually the result of a synchronisation between an
output (reaction) and an input (definition) which specify direction •. We remark that both conditions are425

registered in the action label of the conclusion (by means of a conjunction), so the node must satisfy them in
order for the computation step to be carried out. For the sake of brevity, we omit the symmetrical rules of
Sum, Int, and Self.

The operational semantics that defines the LTS of networks is shown in Table 6, where we denote by

N1
λ−→ N2 that network N1 exhibits label λ and evolves to network N2. The transition labels ranged over430

by λ are Lf and τ , capturing network interactions and local computation steps. The label Lf comprises
the action label f and the communication link L which represents either binary (id → id and id ← id) or
broadcast (id !? and id??) interaction.

The binary link id1 → id2 specifies that node id1 is willing to enable a synchronisation with node id2

while id1 ← id2 specifies that node id1 is willing to react to a synchronisation from node id2. Furthermore,435

the broadcast link id !? specifies that node id is willing to enable a synchronisation with all of its direct
children, while id?? specifies that a node is willing to react to a broadcast from node id . We use id(s)
and i(s) to denote the identities of the node itself and of the parent (i.e., if s = id1[id2, t, n, k, a, e] then
id(s) = id1 and i(s) = id2).

We consider short-range broadcast in the sense that only direct children of the node id can be the target440

of the synchronisation on id !?f (i.e., only nodes that satisfy condition i(s) = id). Moreover, a node can accept
a synchronisation from its parent only: (1) if its local definitions are able to react to the synchronisation

action (i.e., D
〈c〉f??−−−−→ D′ is defined); also, (2) if the current state of the node satisfies the condition of the

13

Table 6: Semantics of Networks

D
〈c〉f−−→ D′ s |= c

s : D
τ−→ s : D′

Loc

D
〈c〉fN!−−−−→ D′ s |= c s′ = fN!(s, i(s))

s : D
id(s)→i(s)f−−−−−−−−→ s′ : D′

oBinU

D
〈c〉fI!−−−−→ D′ s |= c s′ = fI!(s, id) id ∈ n(s)

s : D
id(s)→idf

−−−−−−−→ s′ : D′
oBinR

d ∈ {N,I} D
〈c〉fd?−−−−→ D′ s |= c s′ = fd?(s, id)

s : D
id(s)←idf

−−−−−−−→ s′ : D′
iBin

D
〈c〉f?!−−−−→ D′ s |= c

s : D
id(s)!?f−−−−−→ s : D′

oBrd
D
〈c〉f??−−−−→ D′ s |= c

s : D
i(s)??f−−−−→ s : D′

iBrd
discard(s : D, id??f)

s : D
id??f−−−→ s : D

dBrd

N1
λ1−→ N ′

1 N2
λ2−→ N ′

2

N1 ‖N2
γ(λ1,λ2)−−−−−→ N ′

1 ‖N ′
2

Com
N1

λ−→ N ′
1 λ 6∈ {id !?f , id??f}

N1 ‖N2
λ−→ N ′

1 ‖N2

Par

defined reaction (i.e., D
〈c〉f??−−−−→ D′ and s |= c). We define a predicate discard(s : D, id??f) that takes as

parameters a node s : D and a network label id??f . This predicate is used to identify the case when nodes445

may discard broadcasts, i.e., when any of the above conditions is not satisfied.
We briefly describe the rules given in Table 6, which address individual nodes and networks. The former,

roughly, lift the LTS of definitions to the level of nodes taking into account conditions and side-effects of
synchronisation actions.

Rule Loc states that a node can evolve silently with a τ transition when its definitions exhibit a local450

computation step 〈c〉f , provided that the state of the node satisfies the condition of the computation step
s |= c. Rule oBinU is used to synchronise with the parent node, rule oBinR is used to synchronise with a
neighbour and rule iBin is used to react to a synchronisation from either a child or a neighbour node. More
precisely, rules oBinU/oBinR and iBinU express that nodes can respectively exhibit enabling/reactive
transitions provided that local definitions in D exhibit the corresponding transitions, with synchronisation455

action label f , direction N or I and condition c. Also, the condition c is checked against the state s, and the
latter is updated according to the side-effects of the synchronisation (for both enabling and reacting nodes,
as described previously for the global language semantics). We remark that the rules for binary interaction
register in the communication link the identities of the interacting parties.

Rule oBrd states that a node can enable a broadcast synchronisation on action f if local definitions in460

D can exhibit the corresponding enabling transition D
〈c〉f?!−−−−→ D′, and condition c is satisfied by the local

state s |= c. Similarly, rule iBrd states that a node can react to a broadcast synchronisation from its parent

only when local definitions in D can exhibit the corresponding transition D
〈c〉f??−−−−→ D′ and the condition is

satisfied by the local state s |= c. Otherwise, rule dBrd may be applied, capturing the case when the node
discards the synchronisation and remains unaltered.465

Rule Par (and its omitted symmetric) governs the interleaving of networks when binary and local actions
are observed, i.e, λ 6∈ {id !?f , id??f}. Rule Com governs the synchronisation of networks when either binary
or broadcast actions are observed. The function γ(λ1, λ2) identifies the resulting label, and is defined as
follows.

14

Table 7: Structural Congruence - Definitions and Networks

D |0 ≡ D D1 | (D2 |D3) ≡ (D1 |D2) |D3 D1 |D2 ≡ D2 |D1

〈c〉fd?.R | 〈c〉fd?.R ≡ 〈c〉fd?.R D1 + (D2 +D3) ≡ (D1 +D2) +D3 D1 +D2 ≡ D2 +D1

D1 ≡ D2 ⇒ s : D1 ≡ s : D2 N1 ‖ (N2 ‖N3) ≡ (N1 ‖N2) ‖N3 N1 ‖N2 ≡ N2 ‖N1

γ(λ1, λ2) =

τ if λ1 = id1 → id2
f & λ2 = id2 ← id1

f

τ if λ1 = id1 ← id2
f & λ2 = id2 → id1

f

λ1 if λ1 = id !?f & λ2 = id??f

λ2 if λ1 = id??f & λ2 = id !?f

λ if λ1 = λ2 = λ = id??f

⊥ otherwise

The function returns τ when synchronisation on a binary action is possible and the enabling label when a470

synchronisation on a broadcast action is possible, as reported in the first four cases respectively. The fifth
case states that both networks can react simultaneously to the same broadcast, otherwise the function is
undefined as reported in the last case. We remark that the semantics of broadcasts is presented in a standard
way (cf. [24, 25]).

For the purpose of the operational correspondence result (Theorem 5.10), we consider structural congruence475

of networks and of behaviours defined by the rules shown in Table 7. The rules capture expected principles
(namely, that operators ‖ , | , and + are associative and commutative, and that | has identity element 0)
and an absorbing principle for persistent inputs (i.e., 〈i〉fd?.R | 〈i〉fd?.R ≡ 〈i〉fd?.R), which allows to reason
about persistent inputs as if they are unique. We may show that structurally equivalent networks have

equivalent behaviours as follows, where we denote by D1
λ−→≡ D2 (resp. N1

λ−→≡ N2) that there exists D′480

(resp. N ′) such that D1
λ−→ D′ and D′ ≡ D2 (resp. N1

λ−→ N ′ and N ′ ≡ N2).

Lemma 4.1 (Definition and Network LTS Closure Under Structural Congruence). We have that:

1. If D1
α−→ D′1 and D1 ≡ D2 then D2

α−→≡ D′1.

2. If N1
λ−→ N ′

1 and N1 ≡ N2 then N2
λ−→≡ N ′

1 .

Proof. The proof follows by induction on the shape of the derivation of D1 ≡ D2 and N1 ≡ N2 in expected485

lines, where 2 relies on 1 .

We finish this section by informing on the general structure of definitions as stated in the following result,
namely that any choice can be described as a summation of outputs, that reactions are a parallel composition
of choices, and that definitions are a parallel composition of input prefixed reactions in parallel with a
reaction. In the following we use Πi∈IDi to abbreviate D1 | . . . |Dk, and Σi∈IDi to abbreviate D1 + . . .+Dk,490

when I = 1, . . . , k (if I = ∅ then Πi∈IDi denotes 0).

Proposition 4.2 (Definition Normal Form). For any choice C, reaction R, and definition D we have that

C ≡ Σl∈L〈cl〉fdll ! R ≡ Πj∈JCj D ≡ (Πi∈I〈ci〉fdii ?.Ri) |R′

Proof. By induction of the structure of C, R, and D, following expected lines. In case C is 〈c〉fd! the result
is direct, and in case C is C1 + C2 the result follows by gathering the summations obtained by induction
hypothesis. In case R is C or 0 the result is direct, and in case R is R1 |R2 the result follows by gathering the
products obtained by induction hypothesis. In case D is 〈c〉fd?.R or R the result is direct (since D |0 ≡ D),495

and in case D is D1 |D2 the result follows by gathering the products and reactions obtained by induction
hypothesis.

15

Table 8: Projection

[[[fd]oiP]]?σ , 〈i〉fd?.[[P]]!σ | [[P]]?σ iSynch

[[[fd]oiP]]!σ , 〈o〉fd! oSynch

[[[fd]oiP]]idσ , [[P]]idσ idSynch

[[(id)P]]idσ , [[P]]idσ | [[P]]!σ idNode

[[(id)P]]rσ , [[P]]rσ (r 6= id) pNode

[[0]]rσ , 0 pNil

[[X]]rσ , 0 (r 6= !) pVar

[[X]]!σ , [[P]]!σ (σ(X) = P) oVar

[[rec X.P]]rσ , [[P]]rσ[X 7→P] pRec

[[P |Q]]rσ , [[P]]rσ | [[Q]]rσ pPar

[[S1 + S2]]!σ , [[S1]]!σ + [[S2]]!σ oSum

[[S1 + S2]]rσ , [[S1]]rσ | [[S2]]rσ (r 6= !) pSum

[[∆;P]] , Π∀id∈dom(∆)(∆(id) : [[P]]?∅ | [[P]]id∅) Proj

5. Local Controller Synthesis

In this section, we present the automatic translation of the global specifications into the target distributed
model. Namely, we synthesise the controllers that operate locally in each node from the global specification,500

and ensure the correctness of the translation by means of an operational correspondence result. The
development presented here can therefore be seen as a proof of concept that global descriptions may
be automatically compiled to provably correct distributed implementations. In Sect. 5.1 we present the
translation which is given in terms of a projection function, characterised by properties reported in Sect. 5.2.
Then, in Sect. 5.3, we state the operational correspondence result (Theorem 5.10).505

5.1. Automatic Translation

We now present the projection function. Intuitively, for each synchronisation action specified in the
source protocol, there will be a corresponding reactive definition in every node. This way, we ensure that all
nodes are equipped to react to any synchronisation. Also, in every active node in the global specification
there will be a corresponding enabling behaviour. Since the global model prescribes the transference of the510

active role in synchronisations, the distributed implementation will also specify that reactions of definitions
lead to the activation of enabling behaviour.

The projection function, defined by the cases reported in Table 8, realises the above principles, in
particular in the three types of projection (ranged over by r). Reactive projection, denoted by ?, is used to
generate the persistent inputs that capture reactive behaviour; active projection, denoted by id (for some id),515

is used to identify and generate the enabling behaviours of node id ; and enabling projection, denoted by !, is
used to generate the outputs that capture enabling behaviour. We then denote by [[P]]rσ the projection of the
protocol P according to parameters r and σ. The latter is a mapping from recursion variables to protocols,
used to memorise recursive protocols and abstract from their unfolding.

We briefly explain the cases in Table 8. Case iSynch shows the reactive projection of the synchronisation520

action, yielding a persistent input with the respective condition i, label f , and direction d. The continuation
of the input is obtained by the enabling projection (!) of the continuation of the synchronisation action (P).
Hence, the reaction leads to the enabling of the continuation which captures the transference of the active
role in synchronisations. The result of the projection also specifies the (simultaneously active |) reactive
projection of the continuation protocol, so as to generate the corresponding persistent inputs. Case oSynch525

shows the enabling projection of the synchronisation action, yielding the output considering the respective

16

condition o, label f , and direction d. Notice that the fact that outputs do not specify continuations is aligned
with the idea that a node yields the active role after enabling a synchronisation.

Case idSynch shows the active projection of the synchronisation action, yielding the active projection of
the continuation. The idea is that active projection inspects the structure of the protocol, and introduces530

enabling behaviour whenever an active node construct specifying the respective id is found (i.e., (id)P). This
is made precise in case idNode, where the projection yields both the enabling projection of the protocol P
together with its the active projection, so as to address configurations in which the same node is active in
different stages of the protocol. Case pNode instead shows that the other types of projection of the active
node construct result in the respective projection of the continuation.535

Case pNil says that the terminated protocol is projected (in all types of projection) to inaction (0).
Case pVar says that the active/reactive projections of the recursion variable also yield inaction, hence do
not require reasoning on the unfolding. Instead, case oVar shows the enabling projection of the recursion
variable, yielding the enabling projection of the variable mapping, which allows to account for the unfolding.
This is made precise in case pRec where the mapping is updated with the association of the variable maps540

to the recursion body.
We remark that well-formed protocols do not specify active node constructs in the body of a recursion,

since they originate from protocols where all active node constructs are top-level, hence the active projection
of any recursive protocol necessarily yields inaction (nevertheless captured in the general case).

Case pPar says that (all types of) projection of the fork protocol yields the (simultaneously active)545

respective projections of the branches of the fork. Cases oSum and pSum address the summation protocol:
on the one hand, the enabling projection yields the choice between the projections of the branches; on the
other hand, reactive/active projection yield the simultaneously active projections of the branches. Notice that
choices may only specify outputs, hence only enabling projection may yield alternative (output) behaviour.
Reactive projection yields a collection of persistent inputs (one per synchronisation action) which are550

simultaneously active. Active projection generates the enabling behaviour of active nodes, so if such active
nodes are found in (continuations of) the branches of the summation, their enabling behaviour is taken as
simultaneously active.

The projection of a configuration, denoted [[∆;P]] and defined in the Proj case, specifies a parallel
composition of all nodes of the network (i.e., all those comprised in the network state). Each node is obtained555

by considering the state yielded by the respective network state mapping, and considering the behaviour
is yielded by a combination of the reactive and the active projections of the protocol P . Notice that the
active projection is carried out considering the node identifier, hence the result potentially differs between
distinct nodes, while the reactive projection is exactly the same for all nodes. Intuitively, consider the
reactive projection as the static collection of reactive definitions, and the active projection as the runtime560

(immediately available) enabling behaviour.

Example 5.1. The Simple protocol previously described in Sect. 1.1, reported below, is a simplified version
of the Recovery protocol in Sect. 3. The primary substation is initially active on Simple.

(PS)Simple , (PS)(rec X.([Locate?]o1

i1
X + [End•]o2

i2
0))

We can use Table 8 to generate the distributed implementation of the network in Fig. 2. The network
state ∆ is defined in Section 3 and follows directly form Fig. 2. Every node has the following projection sid :
[[(PS)Simple]]?∅ | [[(PS)Simple]]id∅ . By Table 8, we have that when id 6= PS the projection is sid : [[Simple]]?∅;

otherwise the projection is sPS : [[Simple]]?∅ | [[(PS)Simple]]PS
∅ . Thus the id-projection is equivalent to 0 for565

all nodes that are not currently active on the protocol and the ?-projection is the same for all nodes. The
generated code is as follows:

[[Simple]]?∅ , 〈i1〉Locate??. (〈o1〉Locate?! + 〈o2〉End•!) | 〈i2〉End•?.0
[[(PS)Simple]]PS

∅ , 〈o1〉Locate?! + 〈o2〉End•!

Clearly, only the primary station is initially active and can enable synchronisation on either Locate or
End, provided that its state sPS satisfies o1 or o2 respectively. Recalling that o1 regards faulty output links

17

and o2 regards faulty input link, we have that PS satisfies o1 but not o2. Hence the conditions can resolve the570

nondeterministic choice and thus Locate is broadcasted. Since substation 1 is the only child of PS, it can
react by exhibiting the persistent input PS??Locate, considering that s1 |= i1, leading to the activation of the
respective output summation. This evolution can be captured as follows

sPS : 〈i1〉Locate??. (〈o1〉Locate?! + 〈o2〉End•!) | 〈i2〉End | 〈o1〉Locate?! + 〈o2〉End•!
‖
s1 : 〈i1〉Locate??. (〈o1〉Locate?! + 〈o2〉End•!) | 〈i2〉End
‖
. . .

PS!?Locate−−−−−−→
sPS : 〈i1〉Locate??. (〈o1〉Locate?! + 〈o2〉End•!) | 〈i2〉End
‖
s1 : 〈i1〉Locate??. (〈o1〉Locate?! + 〈o2〉End•!) | 〈i2〉End | 〈o1〉Locate?! + 〈o2〉End•!
‖
. . .

where we abstract away from the rest of the network not involved in the interaction. Notice that the transition
label is PS!?Locate so as to ensure that all children of PS can receive the message (while other nodes simply
discard it). Notice also that there is a 1-to-1 correspondence between the evolution in the global and the
distributed models in the sense that considering the appropriate ∆ we have that

∆; (PS)Simple −→ ∆; [Locate?]o1i1 ((1)Simple) + [End•]o2

i2
0

and the projection of the final configuration matches the final configuration of the network above.

5.2. Characterisation of the Projection Function575

We now present fundamental properties that provide a general characterisation of the projection function.
We start by characterising the processes that result from the different types of projection. Namely, we
show that !-projection yields a reaction, corresponding to the behaviours that are to be activated upon a
synchronisation. To prove this property, we require an auxiliary one ensuring that the !-projection of recursion
guarded processes yields a reaction regardless of the mapping considered in the projection. Then, we show580

that id -projection yields a reaction, corresponding to the enabling behaviours associated to active nodes.
Finally, we show that ?-projection yields a parallel composition of input prefixed reactions, corresponding to
the collection of synchronisation actions present in the global protocol.

Lemma 5.2 (Projection Normal Form). Let P be any protocol and σ be any mapping such that the following
holds: for all X ∈ fv(P) and for any σ′′ it is the case that [[σ(X)]]!σ′′ ≡ R′′′. We have that585

1. If recursion is guarded in P then [[P]]!σ′ ≡ R for any σ′.

2. [[P]]!σ ≡ R′.
3. [[P]]?σ ≡ Πi∈I〈ci〉fdii ?.Ri.

4. [[P]]idσ ≡ R′′.

Proof. By induction on the structure of P, where each item relies on previous ones (except for 3. and 4. that590

are independent between them).

Case P is [fd]oiQ:

1. Direct since [[[fd]oiQ]]!σ′ is defined as 〈o〉fd!.
2. Likewise.

18

3. We have that [[[fd]oiQ]]?σ by definition is 〈i〉fd?.[[Q]]!σ | [[Q]]?σ. By induction hypothesis we have595

that [[Q]]?σ ≡ Πi∈I〈ci〉fdii ?.Ri and by 2. we have that [[Q]]!σ ≡ R′, hence we conclude [[[fd]oiQ]]?σ ≡
〈i〉fd?.R′ |Πi∈I〈ci〉fdii ?.Ri.

4. We have that [[[fd]oiQ]]idσ by definition is [[Q]]idσ hence the result follows directly from the induction
hypothesis.

Case P is (id ′)Q:600

1. We have that [[(id ′)Q]]!σ′ by definition is [[Q]]!σ′ hence the result follows directly from the induction
hypothesis.

2-3. Likewise.

4. We have that [[(id ′)Q]]idσ by definition is [[Q]]idσ if id 6= id ′ in which case the result follows directly
from the induction hypothesis. In case id = id ′ we have that [[(id ′)Q]]idσ is defined as [[Q]]idσ | [[Q]]!σ.605

By 2. we have that [[Q]]!σ ≡ R′ and by induction hypothesis we have that [[Q]]idσ ≡ R′′ hence
[[(id ′)Q]]idσ ≡ R′′ |R′.

Case P is 0:

1. Direct since [[0]]!σ′ is defined as 0.

2-4. Likewise.610

Case P is X:

1. Does not apply.

2. We have that [[X]]!σ by definition is [[σ(X)]]!σ and by hypothesis we have that [[σ(X)]]!σ′′ ≡ R′′′ for
any σ′′.

3. Direct since [[X]]?σ by definition is 0.615

4. Likewise.

Case P is rec X.Q:

1. We have that [[rec X.Q]]!σ′ is defined as [[Q]]!σ′[X 7→Q]. By induction hypothesis we have that

[[Q]]!σ′′ ≡ R for any σ′′, hence [[rec X.Q]]!σ′ ≡ R for any σ′.

2. We have that [[rec X.Q]]!σ is defined as [[Q]]!σ[X 7→Q]. By 1. we conclude that [[Q]]!σ′′ ≡ R for any620

σ′′. Then, by induction hypothesis we have that [[Q]]!σ[X 7→Q] ≡ R
′ and hence [[rec X.Q]]!σ ≡ R′.

3-4. Likewise.

Case P is Q1 |Q2:

1. We have that [[Q1 |Q2]]!σ′ by definition is [[Q1]]!σ′ | [[Q2]]!σ′ hence the result follows from the induction
hypothesis.625

2-4. Likewise.

Case P is S1 + S2:

1. We have that [[S1 +S2]]!σ′ by definition is [[S1]]!σ′+[[S2]]!σ′ hence the result follows from the induction
hypothesis.

2. Likewise.630

3. We have that [[S1 + S2]]?σ by definition is [[S1]]?σ | [[S2]]?σ hence the result follows from the induction
hypothesis.

4. Likewise.

We may also inform on a specific case of the id -projection, namely regarding static protocols that do not635

include any occurrence of the (id)-construct (cf. Definition 2.7). Since id -projection captures the enabling
behaviours of active nodes specified in the protocol, we have that if there are no active nodes in the protocol
then the id -projection yields inaction.

Lemma 5.3 (Static Protocol id -Projection). If P is a static protocol then [[P]]idσ ≡ 0.

19

Proof. By induction on the structure of P following expected lines.640

The id -projection targets the enabling behaviours associated with active nodes, and the following result
allows for a more precise characterisation of this notion. Intuitively, we have that for each active node
construct in the protocol, the id -projection yields the reaction obtained by the respective !-projection in
parallel with the projection of the rest of the protocol.

Lemma 5.4 (Active Node Projection). If P = C [(id)Q] then [[P]]id∅ ≡ [[C [Q]]]id∅ | [[Q]]!∅ and [[P]]r∅ ≡ [[C [Q]]]r∅645

when r 6= id.

Proof. By induction on the structure of C [·].

Case C [·] is ·
We have that P = (id)Q and by definition [[(id)Q]]id∅ = [[Q]]id∅ | [[Q]]!∅ and [[(id)Q]]r∅ = [[Q]]r∅ when r 6= id .

Case C [·] is P ′ |C ′[·]650

We have that P = P ′ |C ′[(id)Q] and by definition

[[P ′ |C ′[(id)Q]]]r∅ = [[P ′]]r∅ | [[C
′[(id)Q]]]r∅ (1)

both when r = id and otherwise. By induction hypothesis we have that

[[C ′[(id)Q]]]id∅ ≡ [[C ′[Q]]]id∅ | [[Q]]!∅ (2)

and that
[[C ′[(id)Q]]]r∅ ≡ [[C ′[Q]]]r∅ for r 6= id (3)

From (1) and (2) and also by definition of projection we conclude

[[P ′ |C ′[(id)Q]]]id∅ ≡ [[P ′]]id∅ | [[C
′[Q]]]id∅ | [[Q]]!∅ ≡ [[P ′ |C ′[Q]]]id∅ | [[Q]]!∅

and from (1) and (3) and also by definition of projection we conclude

[[P ′ |C ′[(id)Q]]]r∅ ≡ [[P ′]]r∅ | [[C
′[Q]]]r∅ ≡ [[P ′ |C ′[Q]]]r∅ for r 6= id

Case C [·] is S + C ′[·]
Follows similar lines.

Case C [·] is (id ′)C ′[·]
We have that P = (id ′)C ′[(id)Q] and by definition

[[(id ′)C ′[(id)Q]]]r∅ is [[C ′[(id)Q]]]r∅ | [[C
′[(id)Q]]]!∅ in case r = id ′ (4)

and
[[(id ′)C ′[(id)Q]]]r∅ is [[C ′[(id)Q]]]r∅ in case r 6= id ′

regardless if id = id ′ or id 6= id ′.

Case r 6= id ′: The result follows directly from the induction hypothesis, where in particular we have

[[C ′[(id)Q]]]!∅ ≡ [[C ′[Q]]]!∅ (5)

20

Case r = id ′: By induction hypothesis we have that

[[C ′[(id)Q]]]id
′

∅ ≡ [[C ′[Q]]]id
′

∅ | [[Q]]!∅ when id = id ′ (6)

and that
[[C ′[(id)Q]]]id

′

∅ ≡ [[C ′[Q]]]id
′

∅ when id 6= id ′

When id = id ′ from (4) and (6), and also by (5) and by definition of projection, we conclude

[[(id ′)C ′[(id)Q]]]id
′

∅ ≡ [[C ′[Q]]]id
′

∅ | [[Q]]!∅ | [[C
′[(id)Q]]]!∅

≡ [[C ′[Q]]]id
′

∅ | [[Q]]!∅ | [[C
′[Q]]]!∅ ≡ [[(id ′)C ′[Q]]]id

′

∅ | [[Q]]!∅

When id 6= id ′ from (6) and by definition of projection we conclude

[[(id ′)C ′[(id)Q]]]id
′

∅ ≡ [[C ′[Q]]]id
′

∅ | [[C
′[(id)Q]]]!∅ ≡ [[C ′[Q]]]id

′

∅ | [[C
′[Q]]]!∅ ≡ [[(id ′)C ′[Q]]]id

′

∅

Case C [·] is [fd]oiC
′[·]655

The case for id projection follows directly from induction hypothesis since by definition

[[[fd]oiC
′[(id)Q]]]idσ = [[C ′[(id)Q]]]idσ

and likewise for id ′ projection (id 6= id ′). The case for ! projection is direct since by definition both
[[[fd]oiC

′[(id)Q]]]!σ and [[[fd]oiC
′[Q]]]!σ are 〈o〉fd!. The case for ? projection follows from the induction

hypothesis in expected lines.

The following result captures a fundamental property of (any type of) projection, namely that it is660

preserved under structural congruence.

Lemma 5.5 (Preservation of Projection Under Structural Congruence). If P ≡ Q then [[P]]r∅ ≡ [[Q]]r∅ for
any r.

Proof. The proof proceeds by induction on the shape of the derivation of P ≡ Q.

Case P is Q |0: We need to prove that [[Q |0]]r∅ ≡ [[Q]]r∅ for any r. We have three cases depending on r.665

Case r =?: By definition of the projection function, we have that

[[Q |0]]?∅ = [[Q]]?∅ | [[0]]?∅

By the definition again, we know that [[0]]?∅ = 0 and now we have that [[Q |0]]?∅ ≡ [[Q]]?∅ |0 ≡ [[Q]]?∅
as required.

Case r =!: By definition of the projection function, we have that

[[Q |0]]!∅ = [[Q]]!∅ | [[0]]!∅

By the definition again, we know that [[0]]!∅ = 0 and now we have that [[Q |0]]!∅ ≡ [[Q]]!∅ |0 ≡ [[Q]]!∅
as required.

Case r = id : By definition of the projection function, we have that

[[Q |0]]id∅ = [[Q]]id∅ | [[0]]id∅

By the definition again, we know that [[0]]id∅ = 0 and now we have that [[Q |0]]id∅ ≡ [[Q]]id∅ |0 ≡ [[Q]]id∅670

as required.

21

Case P is Q1 | (Q2 |Q3): We need to prove that [[Q1 | (Q2 |Q3)]]r∅ ≡ [[(Q1 |Q2) |Q3]]r∅ for any r. We have
three cases depending on r.

Case r =?: By definition of the projection function, we have that

[[Q1 | (Q2 |Q3)]]?∅ = [[Q1]]?∅ | [[Q2 |Q3]]?∅ = [[Q1]]?∅ | [[Q2]]?∅ | [[Q3]]?∅

and

[[(Q1 |Q2) |Q3]]?∅ = [[Q1 |Q2]]?∅ | [[Q3]]?∅ = [[Q1]]?∅ | [[Q2]]?∅ | [[Q3]]?∅ as required.

Case r ∈ {!, id}: Similar to the case of “?”.675

Case P is Q1 + (Q2 +Q3) or Q1 +Q2 or Q1 |Q2 or (id)0: follow directly by the definition.

Case P is (id)(Q1 |Q2): We need to prove that [[(id)(Q1 |Q2)]]r∅ ≡ [[(id)Q1]]r∅ | [[(id)Q2]]r∅ for any r. We have
three cases depending on r.

Case r =?: By definition of the projection function, we have that

[[(id)(Q1 |Q2)]]?∅ = [[Q1 |Q2]]?∅ = [[Q1]]?∅ | [[Q2]]?∅

[[(id)Q1]]?∅ | [[(id)Q2]]?∅ = [[Q1]]?∅ | [[Q2]]?∅ as required.

Case r =!: Similar to the case of “?”.

Case r = id : We have two cases: r 6= id or r = id . The former case is similar to {?, !} while the latter680

case can be proved as follows;

[[(id)(Q1 |Q2)]]id∅ = [[Q1 |Q2]]id∅ | [[Q1 |Q2]]!∅ = [[Q1]]id∅ | [[Q2]]id∅ | [[Q1]]!∅ | [[Q2]]!∅

[[(id)Q1]]id∅ | [[(id)Q2]]id∅ = [[Q1]]id∅ | [[Q1]]!∅ | [[Q2]]id∅ | [[Q2]]!∅

And we have that [[Q1]]id∅ | [[Q2]]id∅ | [[Q1]]!∅ | [[Q2]]!∅ ≡ [[Q1]]id∅ | [[Q1]]!∅ | [[Q2]]id∅ | [[Q2]]!∅ as required.

Case P is (id1)(id2)Q: We need to prove that [[(id1)(id2)Q]]r∅ ≡ [[(id2)(id1)Q]]r∅ for any r. We have three
cases depending on r.

Cases r ∈ {?, !}: By definition [[(id1)(id2)Q]]?∅ ≡ [[(id2)(id1)Q]]?∅ = [[(id1)(id2)Q]]!∅ ≡ [[(id2)(id1)Q]]!∅ =685

[[Q]]?∅ = [[Q]]!∅

Case r = id : We have three cases:

1) id 6= id1 ∧ id 6= id2: By definition we have that [[(id1)(id2)Q]]id∅ ≡ [[(id2)(id1)Q]]id∅ = [[Q]]id∅ .

2) id = id1: By definition we have that:

[[(id1)(id2)Q]]id1

∅ = [[(id2)Q]]id1

∅ | [[(id2)Q]]!∅ = [[Q]]id1

∅ | [[Q]]!∅

[[(id2)(id1)Q]]id1

∅ = [[(id1)Q]]id1

∅ = [[Q]]id1

∅ | [[Q]]!∅ as required.

3) id = id2: Similar to case (2).

Case P is rec X.Q: To prove that [[rec X.Q]]r∅ ≡ [[Q[rec X.Q/X]]]r∅ for any r we rely on an auxiliary result690

(see Appendix A, Lemma A.7), which builds on the fact that [[P]]?σ | [[P]]?σ ≡ [[P]]?σ (see Appendix A,
Lemma A.5) relying on structural congruence axiom 〈c〉fd?.R | 〈c〉fd?.R ≡ 〈c〉fd?.R.

22

As previously mentioned the id -projection disregards static protocols and exclusively targets the runtime
behaviour, addressing protocol evolution so that whenever the protocol evolves so does the result of the695

id -projection. In contrast, the other types of projection (! and ?) exclusively target static protocols, ignoring
the active node construct, and are hence invariant under protocol evolution as stated in the following result.

Lemma 5.6 (Preservation of !/?-Projections Under Reduction). If ∆;P −→ ∆′;Q then [[P]]r∅ ≡ [[Q]]r∅ where
r ∈ {!, ?}.

Proof. By induction on the shape of the derivation of ∆;P −→ ∆′;Q.700

Case rule Bin is applied: We have that ∆; (id)([fd]oiP) −→ ∆′; [fd]oi ((id
′)P) and we need to prove that

[[(id)([fd]oiP)]]r∅ ≡ [[[fd]oi ((id
′)P)]]r∅. We have different cases:

Case r =?: By definition of the projection function, we have that

[[(id)([fd]oiP)]]?∅ = 〈i〉fd?.[[P]]!∅ | [[P]]?∅

[[[fd]oi ((id
′)P)]]?∅ = 〈i〉fd?.[[(id′)P]]!∅ | [[(id

′)P]]?∅

By definition again, we know that [[(id′)P]]!∅ = [[P]]!∅ and [[(id′)P]]?∅ = [[P]]?∅ and we have that

[[(id)([fd]oiP)]]?∅ ≡ [[[fd]oi ((id
′)P)]]?∅ as required.

Case r =!: By definition of the projection function, we have that705

[[(id)([fd]oiP)]]!∅ = 〈o〉fd!

By definition again, we know that [[[fd]oi ((id
′)P)]]!∅ = 〈o〉fd! as required.

Case rules Brd and Loc are applied: can be proved in a similar manner.

Case rules IdSum is applied: We need to prove that if ∆; (id)(S1 + S2) −→ ∆′;S′1 + S2 then [[(id)(S1 +
S2)]]r∅ ≡ [[S′1 + S2]]r∅. We have different cases:

Case r =?: By definition of the projection function, we have that

[[(id)(S1 + S2)]]?∅ = [[S1]]?∅ | [[S2]]?∅

[[S′1 + S2]]?∅ = [[S′1]]?∅ | [[S2]]?∅

By the induction hypothesis, we have that [[S′]]?∅ = [[S]]?∅ and we have that [[(id)(S1 + S2)]]?∅ ≡710

[[S′1 + S2]]?∅ as required.

Case r =!: By definition of the projection function, we have that

[[(id)(S1 + S2)]]!∅ = [[(S1 + S2)]]!∅ = [[S1]]!∅ + [[S2]]!∅

[[S′1 + S2]]!∅ = [[S′1]]!∅ + [[S2]]!∅

By the induction hypothesis, we have that [[S′]]!∅ = [[S]]!∅ and we have that [[(id)(S1 + S2)]]!∅ ≡
[[S′1 + S2]]!∅ as required.

Case rule Synch is applied: We need to prove that if ∆; [fd]oiP −→ ∆′; [fd]oiP
′ then [[[fd]oiP]]r∅ ≡ [[[fd]oiP

′]]r∅.715

We have different cases:

Case r =?: By definition of the projection function, we have that

[[[fd]oiP]]?∅ = 〈i〉fd?.[[P]]!∅ | [[P]]?∅

[[[fd]oiP
′)]]?∅ = 〈i〉fd?.[[P ′]]!∅ | [[P

′]]?∅

By the induction hypothesis, we have that [[P ′]]!∅ = [[P]]!∅ and [[P ′]]?∅ = [[P]]?∅ and we have that

[[[fd]oiP]]?∅ ≡ [[[fd]oiP
′]]?∅ as required.

23

Case r =!: By definition of the projection function, we have that

[[[fd]oiP]]!∅ = [[[fd]oiP
′]]!∅ = 〈o〉fd!

and we have that [[[fd]oiP]]!∅ ≡ [[[fd]oiP
′]]!∅ as required.720

Case Rule Id is applied: We need to prove that if ∆; (id)P −→ ∆′; (id)P ′ then [[(id)P]]r∅ ≡ [[(id)P ′]]r∅. We
have different cases:

Case r =?: By definition of the projection function, we have that

[[(id)P]]?∅ = [[P]]?∅ and [[(id)P ′)]]?∅ = [[P ′]]?∅

By the induction hypothesis, we have that [[P ′]]?∅ = [[P]]?∅ and we have that [[(id)P]]?∅ ≡ [[(id)P ′]]?∅
as required.

Case r =!: By definition of the projection function, we have that

[[(id)P]]!∅ = [[P]]!∅ and [[(id)P ′)]]!∅ = [[P ′]]!∅

By the induction hypothesis, we have that [[P ′]]!∅ = [[P]]!∅ and we have that [[(id)P]]!∅ ≡ [[(id)P ′]]!∅725

as required.

Case rule Sum is applied: We need to prove that if ∆;P1 + P2 −→ ∆′;P ′1 + P2 then [[P1 + P2]]r∅ ≡
[[P ′1 + P2]]r∅. We have different cases:

Case r =?: By definition of the projection function, we have that

[[P1 + P2]]?∅ = [[P1]]?∅ | [[P2]]?∅

[[P ′1 + P2]]?∅ = [[P ′1]]?∅ | [[P2]]?∅

By the induction hypothesis, we have that [[P ′1]]?∅ = [[P1]]?∅ and we have that [[P1 + P2]]?∅ ≡ [[P ′1 + P2]]?∅
as required.730

Case r =!: By definition of the projection function, we have that

[[P1 + P2]]!∅ = [[P1]]!∅ + [[P2]]!∅

[[P ′1 + P2]]!∅ = [[P ′1]]!∅ + [[P2]]!∅

By the induction hypothesis, we have that [[P ′1]]!∅ = [[P1]]!∅ and we have that [[P1 + P2]]!∅ ≡ [[P ′1 + P2]]!∅
as required.

Case rule Par is applied: We need to prove that if ∆;P1 |P2 −→ ∆′;P ′1 |P2 then [[P1 |P2]]r∅ ≡ [[P ′1 |P2]]r∅.
This case can be proved in a similar manner to the previous case but by using rule Par instead of rule
Sum.735

Case rule Struct is applied: We need to prove that if ∆;P −→ ∆′;Q then [[P]]r∅ ≡ [[Q]]r∅.

From rule Struct, we have that ∆;P −→ ∆′;Q if ∆;P ′ −→ ∆′;Q′ where P ′ ≡ P and Q′ ≡ Q. By the
induction hypothesis we have that [[P ′]]r∅ ≡ [[Q′]]r∅. But P ′ ≡ P and Q′ ≡ Q, so we apply Lemma 5.5
and conclude the proof.

740

The next result captures that that for each enabling behaviour present in the result of an id -projection
there is a correspondent active node scoping over the synchronisation (summation) in the source protocol.

24

Lemma 5.7 (Projection Inversion). Let P be a well-formed protocol such that [[P]]id∅ ≡ R |C. We have that

P ≡ C [(id)S] and [[S]]!∅ ≡ C.

Proof. By induction on the structure of P .745

Case P is [fd]oiQ: By definition we have that [[[fd]oiQ]]id∅ is [[Q]]id∅ . By induction hypothesis we have that

Q ≡ C [(id)S] and [[S]]!∅ ≡ C. Hence we have P ≡ [fd]oiC [(id)S].

Case P is (id ′)Q: In case id 6= id ′ the proof follows from the induction hypothesis. In case id = id ′ we have
that [[(id)Q]]id∅ ≡ R |C. By definition we have that [[(id)Q]]id∅ is [[Q]]id∅ | [[Q]]!∅, hence [[Q]]id∅ | [[Q]]!∅ ≡ R |C.

We have two separate cases: either [[Q]]id∅ ≡ R
′ |C and [[Q]]!∅ ≡ R

′′ or [[Q]]id∅ ≡ R
′ and [[Q]]!∅ ≡ R

′′ |C.750

Case [[Q]]id∅ ≡ R
′ |C and [[Q]]!∅ ≡ R

′′: The proof follows from the induction hypothesis.

Case [[Q]]id∅ ≡ R
′ and [[Q]]!∅ ≡ R

′′ |C: Since P is well-formed we have that recursion is guarded in

(id)Q, hence from Proposition 2.9 we conclude Q ≡ (Ĩ1)S1 | . . . | (Ĩk)Sk. We have that k is greater
than 0 since C is a (non empty) choice. By definition we have that [[Q]]!∅ is [[S1]]!∅ | . . . | [[Sk]]!∅, hence

[[S1]]!∅ | . . . | [[Sk]]!∅ ≡ R′′ |C. Thus there is i ∈ 1, . . . , k such that [[Si]]
!
∅ ≡ C. Finally we conclude755

(id)Q ≡ (id)(Ĩ1)S1 | . . . | (Ĩi)(id)Si | . . . | (id)(Ĩk)Sk.

Case P is 0: Impossible since C is a (non empty) choice.

Case P is X: Impossible since C is a (non empty) choice ([[X]]id∅ is 0).

Case P is rec X.Q: Impossible since P is a well-formed protocol ([[rec X.Q]]id∅ is 0).

Case P is Q1 |Q2: Follows from the induction hypothesis.760

Case P is S1 + S2: Follows from the induction hypothesis.

It is non-surprising that the properties above are crucial for the proof of operational correspondence
addressed in the next section.

5.3. Operational Correspondence765

In this section we present our operational correspondence result, where we match the evolutions of
protocols with those of the obtained distributed implementation. For the purpose of matching reductions in
the protocols we focus on the correspondent actions of the distributed implementation, hence on τ and on
id !?f transition labels, which are ranged over by λ̂. We remark that the correspondence matches each step in
the global model with a single step in the distributed model and inversely.770

Lemma 5.8 (Completeness) shows that the behaviour exhibited by the yielded distributed implementation
is complete with respect to the global model, by proving that every possible evolution in the global model is
matched by a correspondent one in the distributed implementation. We informally sketch the structure of
the proof, which follows by induction on the shape of the derivation of ∆;P −→ ∆;Q. For the base cases,
the proof relies on the definition of projection and on Lemma 4.1, which shows that structurally equivalent775

language terms in the target implementation have equivalent behaviours. The proof for the language closure
rules, namely Synch, Id, Sum and Par, does not follow directly from the induction hypotheses, and relies
on Lemma 5.6 which ensures !/? projections are preserved under reduction. This is the case since both !/?
projections work on the static structure of the protocol that is preserved by reduction. More precisely, only
(id) operators float in the structure due to reduction, and that is why the id -projection is not preserved780

under reduction. Notice also that by the definition of the !/? projections, the presence of (id) operators
has no effects on the result of the !/? projections (as shown by Lemma 5.4). Another result used in the
proof of the closure rules shows that the parallel composition operator at the level of definitions in the target
implementation is merely interleaving operator, and installing a new definition in a node only adds new

25

possible behaviour but it does not forbid already existing behaviours (see Appendix A, Lemma A.1). To785

conclude the proof of the completeness we also need to address the case of rule Struct in the global model,
which relies on Lemma 5.5 that shows structurally equivalent protocols have also structurally equivalent
projections (lifted to consider configurations in Appendix A, Lemma A.8).

Lemma 5.8 (Completeness). If ∆;P −→ ∆′;Q then [[∆;P]]
λ̂−→≡ [[∆′;Q]].

Proof. The proof proceeds by induction on the shape of the derivation of ∆;P −→ ∆′;Q.790

Case rule Bin is applied: We have that ∆; (id)([fd]oiP) −→ ∆′; [fd]oi ((id
′)P) and we need to prove that

[[∆; (id)([fd]oiP)]]
λ̂−→≡ [[∆′; [fd]oi ((id

′)P)]].

Since a binary interaction happened in the global model, we know that there must be a sender
id with ∆(id) = s1 and a receiver id ′ with ∆(id ′) = s2 such that for some d ∈ {N,I} we have
that d(∆, id) = id′, s1 |= o and s2 |= i. As a result of synchronisation on f , we have also that795

s′1 = fd!(s1, id
′) and s′2 = fd?(s2, id). This can be concluded from the definition of upd(id , id ′, fd,∆)

and thus ∆′ = ∆[id 7→ fd!(s1, id
′), id ′ 7→ fd?(s2, id)].

From the definition of the main projection rule in Table 8, we have that:

[[∆;Q]] = N ‖ s1 : [[Q]]?∅ | [[Q]]id∅ ‖ s2 : [[Q]]?∅ | [[Q]]id∅

Where Q = (id)([fd]oiP) and N is the rest of the nodes in the network. We do not expand N because
it does not contribute to the transition. By Table 8, we have that

s1 : [[Q]]?∅ | [[Q]]id∅ , s1 : 〈i〉fd?.[[P]]!∅ | [[P]]?∅ | | [[P]]id∅ | (〈o〉f
d!)800

s2 : [[Q]]?∅ | [[Q]]id∅ , s2 : 〈i〉fd?.[[P]]!∅ | [[P]]?∅ | [[P]]id
′

∅

The overall network evolves by rule Com where s1 : D1 applies either rule oBinU or rule oBinR and
s2 : D2 applies rule iBin, we have that:

N ‖ s1 : [[Q]]?∅ | [[Q]]id∅ ‖ s2 : [[Q]]?∅ | [[Q]]id
′

∅
τ−→ N ‖ s1 : D′1 ‖ s2 : D′2

D′1 = 〈i〉fd?.[[P]]!∅ | [[P]]?∅ | | [[P]]id∅

D′2 = 〈i〉fd?.[[P]]!∅ | [[P]]!∅ | [[P]]?∅ | [[P]]id
′

∅

Now, we need to show that [[∆′; [fd]oi ((id
′)P)]] ≡ N ‖ s1 : D′1 ‖ s2 : D′2. By Table 8, we have that

[[∆′;

Q′︷ ︸︸ ︷
[fd]oi ((id

′)P)]] = N ‖ s′1 : [[Q′]]?∅ | [[Q
′]]id∅ ‖ s

′
2 : [[Q′]]?∅ | [[Q

′]]id∅

By applying the projection function, we have that D′1 ≡ [[Q′]]?∅ | [[Q
′]]id∅ and D′2 ≡ [[Q′]]?∅ | [[Q

′]]id
′

∅ as805

required.

Case rules Brd and Loc are applied: can be proved in a similar manner.

Case rule IdSum is applied: We need to prove that if ∆; (id)(S1 + S2) −→ ∆′;S′1 + S2 then

[[∆; (id)(S1 + S2)]]
λ̂−→≡ [[∆′; (S′1 + S2)]]. From rule IdSum, we know that ∆; (id)(S1 + S2) −→ ∆′;S′1 + S2

if ∆; (id)S1 −→ ∆′;S′1. By the induction hypothesis, we have that [[∆; (id)S1]]
λ̂−→≡ [[∆′;S′1]].810

By the definition of the projection function, we can rewrite the projection with respect to a single node
id ′ with ∆(id ′) = s1 as follows: [[∆; (id)(S1 + S2)]] = N ‖ ∆(id ′) : [[(id)(S1 + S2)]]?∅ | [[(id)(S1 + S2)]]id

′

∅

26

where N is the rest of the nodes. By the projection function [[(id)S1]]?∅ = [[S1]]?∅ and thus the induction
hypothesis can be written as:

N ‖ ∆(id ′) : [[S1]]?∅ | [[(id)S1]]id
′

∅
λ̂−→≡ N ′ ‖ ∆′(id ′) : [[S′1]]?∅ | [[S

′
1]]id

′

∅

For a node id ′, we have two cases for the projection of [[∆; (id)(S1 + S2)]]:815

Case id ′ 6= id : The projection of [[∆′;S′1 + S2]] proceeds as follows:

[[∆′;S′1 + S2]] = N ′ ‖ ∆′(id ′) : [[S′1]]?∅ | [[S
′
1]]id

′

∅ | [[S2]]?∅ | [[S2]]id
′

∅

and
[[∆; (id)(S1 + S2)]] = N ‖ ∆(id ′) : [[S1]]?∅ | [[S1]]id

′

∅ | [[S2]]?∅ | [[S2]]id
′

∅

By the induction hypothesis, by the closure of LTS under definition context (see Appendix A,
Lemma A.1), and finally by applying rule Com, we have that

N ‖ ∆(id ′) : [[S1]]?∅ | [[S1]]id
′

∅ | [[S2]]?∅ | [[S2]]id
′

∅
λ̂−→≡ N ′ ‖ ∆′(id ′) : [[S′1]]?∅ | [[S

′
1]]id

′

∅ | [[S2]]?∅ | [[S2]]id
′

∅

and N ′ ‖ ∆′(id ′) : [[S′1]]?∅ | [[S
′
1]]id

′

∅ | [[S2]]?∅ | [[S2]]id
′

∅ is exactly the projection of ∆′;S′1 + S2 as required.

Case id ′ = id : This case follows in a similar way.820

Case rule Synch is applied: We need to prove that if ∆; [fd]oiP −→ ∆′; [fd]oiP
′ then [[∆; [fd]oiP]]

λ̂−→
≡ [[∆′; [fd]oiP

′]]. From rule Synch, we know that ∆; [fd]oiP −→ ∆′; [fd]oiP
′ if ∆;P −→ ∆′;P ′. By the

induction hypothesis, we have that [[∆;P]]
λ̂−→≡ [[∆′;P ′]]. By relying on the definition of the projection

function, we have that:

[[∆;P]]︷ ︸︸ ︷
Π∀id∈dom(∆)(∆(id) : [[P]]?∅ | [[P]]id∅)

λ̂−→≡

[[∆′;P ′]]︷ ︸︸ ︷
Π∀id∈dom(∆′)(∆

′(id) : [[P ′]]?∅ | [[P
′]]id∅)

We also know by definition that

[[∆; [fd]oiP]] = Π∀id∈dom(∆)(∆(id) : 〈i〉fd?.[[P]]!∅ | [[P]]?∅ | [[P]]id∅)

and
[[∆′; [fd]oiP

′]] = Π∀id∈dom(∆′)(∆
′(id) : 〈i〉fd?.[[P ′]]!∅ | [[P

′]]?∅ | [[P
′]]id∅)

By Lemma 5.6, we have that [[P]]!∅ ≡ [[P ′]]!∅ and thus we conclude the proof by the induction hypothesis,825

by closure of LTS under definition context (see Appendix A, Lemma A.1) and by applying rule Com.

Case rule Id is applied: We need to prove that if ∆; (id)P −→ ∆′; (id)P ′ then [[∆; (id)P]]
λ̂−→≡ [[∆′; (id)P ′]].

From rule Id, we know that ∆; (id)P −→ ∆′; (id)P ′ if ∆;P −→ ∆′;P ′. By the induction hypothesis, we

have that [[∆;P]]
λ̂−→≡ [[∆′;P ′]].

By the definition of the projection function, we can rewrite the projection with respect to a single node830

id ′ with ∆(id ′) = s1 as follows: [[∆; (id)P]] = N ‖ ∆(id ′) : [[(id)P]]?∅ | [[(id)P]]id
′

∅ where N is the rest of
the nodes. By the induction hypothesis we have that:

N ‖ ∆(id ′) : [[P]]?∅ | [[P]]id
′

∅
λ̂−→ N ′ ‖ ∆′(id ′) : [[P ′]]?∅ | [[P

′]]id
′

∅

We have two cases for the projection of [[∆; (id)P]]:

27

Case id ′ 6= id :
[[∆; (id)P]] = N ‖ ∆(id ′) : [[P]]?∅ | [[P]]id

′

∅

and
[[∆′; (id)P ′]] = N ′ ‖ ∆′(id ′) : [[P ′]]?∅ | [[P

′]]id
′

∅

Clearly, this case follows directly by the induction hypothesis.

Case id ′ = id : the projection proceeds as follows:835

[[∆; (id)P]] = N ‖ ∆(id ′) : [[P]]?∅ | [[P]]!∅ | [[P]]id
′

∅

and
[[∆′; (id)P ′]] = N ′ ‖ ∆′(id ′) : [[P ′]]?∅ | [[P

′]]!∅ | [[P
′]]id

′

∅

By Lemma 5.6, we have that [[P]]!∅ ≡ [[P ′]]!∅ and thus we conclude the proof by the induction
hypothesis, by closure of LTS under definition context (see Appendix A, Lemma A.1) and by
applying rule Com.

Case rule Sum is applied: We need to prove that if ∆;P1 + P2 −→ ∆′;P ′1 + P2 then [[∆;P1 + P2]]
λ̂−→

≡ [[∆′;P ′1 + P2]]. From rule Sum, we know that ∆;P1 + P2 −→ ∆′;P ′1 + P2 if ∆;P1 −→ ∆′;P ′1. By the840

induction hypothesis, we have that [[∆;P1]]
λ̂−→≡ [[∆′;P ′1]].

By the definition of the projection function, we can rewrite the projection with respect to a single node
id ′ with ∆(id ′) = s1 as follows: [[∆;P1 + P2]] = N ‖ ∆(id ′) : [[P1 + P2]]?∅ | [[P1 + P2]]id

′

∅ where N is the
rest of the nodes. By the induction hypothesis we have that:

N ‖ ∆(id ′) : [[P1]]?∅ | [[P1]]id
′

∅
λ̂−→ N ′ ‖ ∆′(id ′) : [[P ′1]]?∅ | [[P

′
1]]id

′

∅

The projection of [[∆;P1 + P2]] proceeds as follows:845

[[∆;P1 + P2]] = N ‖ ∆(id ′) : [[P1]]?∅ | [[P1]]id
′

∅ | [[P2]]?∅ | [[P2]]id
′

∅

and
[[∆′;P ′1 + P2]] = N ′ ‖ ∆′(id ′) : [[P ′1]]?∅ | [[P

′
1]]id

′

∅ | [[P2]]?∅ | [[P2]]id
′

∅

We conclude the proof by the induction hypothesis, by closure of LTS under definition context (see
Appendix A, Lemma A.1) and by applying rule Com.

Case rule Par is applied: We need to prove that if ∆;P1 |P2 −→ ∆′;P ′1 |P2 then it is the case that

[[∆;P1 |P2]]
λ̂−→≡ [[∆′;P ′1 |P2]]. This case can be proved in a similar manner to the previous case but by

using rule Par instead of rule Sum.850

Case rule Struct is applied: We need to prove that if ∆;P −→ ∆′;Q then [[∆;P]]
λ̂−→≡ [[∆′;Q]].

From rule Struct, we have that ∆;P −→ ∆′;Q if ∆;P ′ −→ ∆′;Q′ where P ′ ≡ P and Q′ ≡ Q. By relying
on Lemma 5.5 (lifted to configurations in Appendix A, Lemma A.8), we have that [[∆;P]] ≡ [[∆;P ′]]

and [[∆;Q]] ≡ [[∆;Q′]] and by the induction hypothesis we have that [[∆;P]]
λ̂−→≡ [[∆′;Q]] as required.

855

28

Lemma 5.9 (Soundness) says that each behaviour exhibited by the yielded projection has a correspondent
step in the source configuration. The structure of the proof is as follows: first we use inversion results (see
Appendix A, Lemma A.11 up to Lemma A.18) that allow us to characterise the structure of the definitions
yielded by the projection, namely to identify the interacting input/output definitions. Then, we relate the
output (choice) to a synchronisation action in the protocol (Projection Inversion, Lemma 5.7). We also860

have that the identified synchronisation action in the protocol must have a unique input counterpart in the
projection (see Appendix A, Lemma A.9 and Lemma A.10), hence we may then relate the synchronisation
action with the input involved in the interaction. Having identified the related synchronisation action we are
able to derive the reduction, at which point we proceed to prove the relation between the arrival configuration
with the network resulting from the interaction step. Crucial to this part of the proof is the characterisation865

of the Active Node Projection (Lemma 5.4) since reduction in configurations, as previously mentioned, is a
change of active nodes: first the enabling node is active then the reacting nodes are activated. By means
of Lemma 5.4 we are able to pinpoint that the projection of the enabling node differs only in the presence
of the output (choice) before interaction, absent after interaction. We are also able to pinpoint that the
projection of the reacting node differs only in the activation of the reaction in the continuation of the input870

after interaction, not active before interaction. Lemma 5.4 also allows to conclude that nodes not involved in
the interaction have identical projections before and after the interaction. The precise characterisation allows
us to relate the network resulting from the interaction step to the projection of the arrival configuration.

Lemma 5.9 (Soundness). If [[∆;P]]
λ̂−→ N then ∆;P −→ ∆′;Q and N ≡ [[∆′;Q]].

Proof. (Sketch) We detail the proof for the case λ̂ = τ (in particular for child to parent binary interaction),875

remaining cases follow similar lines (namely for broadcast interaction when λ̂ = id !?f which proof builds on
Lemma A.17 and Lemma A.18).

Case λ̂ = τ : By inversion on [[∆;P]]
τ−→ N (Lemma A.11) we have that

[[∆;P]] ≡ N1 ‖N2 and N1
id1→id2

f

−−−−−−→ N ′
1 , N2

id2←id1
f

−−−−−−→ N ′
2 , and N ≡ N ′

1 ‖N ′
2 (1)

or
[[∆;P]] ≡ s : D ‖N ′′ and s : D

τ−→ s : D′ and N ≡ s : D′ ‖N ′′ (2)

or
[[∆;P]] ≡ s : D and s : D

τ−→ s : D′ and N ≡ s : D′ (3)

We detail the proof for (1) and remark that the proof of (2) and (3) follow similar lines (inversion on
Loc and the use of Lemma A.16 are the main differences).

Case (1): By inversion on N1
id1→id2

f

−−−−−−→ N ′
1 (Lemma A.13) we have that

N1 ≡ s1 : D1 | 〈o〉fd! + C ‖N ′′
1 and N ′

1 ≡ s′1 : D1 ‖N ′′
1

or
N1 ≡ s1 : D1 | 〈o〉fd! + C and N ′

1 ≡ s′1 : D1

and in both cases s′1 = fd!(s1, id2), s1 |= o and id(s1) = id1. Furthermore if d = I then id2 ∈ n(s1)880

and if d = N then id2 = i(s1). We consider the case when N1 ≡ s1 : D1 | 〈o〉fd! + C ‖N ′′
1 and

N ′
1 ≡ s′1 : D1 ‖N ′′

1 and when d = N hence id2 = i(s1).

By definition of projection, we have that

[[P]]?∅ | [[P]]id1

∅ ≡ D1 | 〈o〉fN! + C (4)

Considering Lemma 5.2 we have that there are D′1 and R1 such that

D1 ≡ D′1 |R1 and [[P]]?∅ ≡ D
′
1 and [[P]]id1

∅ ≡ R1 | 〈o〉fN! + C (5)

29

From Lemma 5.7 we conclude

P ≡ C [(id1)S] and [[S]]!∅ ≡ 〈o〉f
N! + C, hence S ≡ [fN]oiP

′ + S′ (6)

By inversion on N2
id2←id1

f

−−−−−−→ N ′
2 (Lemma A.15) we have that

N2 ≡ s2 : D2 | 〈i′〉fd
′
?.R ‖N ′′

2 and N ′
2 ≡ s′2 : D2 | 〈i′〉fd

′
?.R |R ‖N ′′

2

or
N2 ≡ s2 : D2 | 〈i′〉fd

′
?.R and N ′

2 ≡ s′2 : D2 | 〈i′〉fd
′
?.R |R

and in both cases s′2 = fd
′
?(s2, id1), s2 |= i′, and id(s2) = id2. We consider the case when

N2 ≡ s2 : D2 | 〈i′〉fd
′
?.R ‖N ′′

2 and N ′
2 ≡ s′2 : D2 | 〈i′〉fd

′
?.R |R ‖N ′′

2 .

By definition of projection, we have that

[[P]]?∅ | [[P]]id2

∅ ≡ D2 | 〈i′〉fd
′
?.R (7)

Considering Lemma 5.2 we have that there are D′2 and R2 such that

D2 ≡ D′2 |R2 and [[P]]?∅ ≡ D
′
2 | 〈i′〉fd

′
?.R and [[P]]id2

∅ ≡ R2 (8)

From (6) and considering an auxiliary result (Lemma A.9) we conclude [[P]]?∅ ≡ D
′ | 〈i〉fN?.R′ and885

[[P ′]]!∅ ≡ R
′. From input uniqueness (Lemma A.10) we conclude i = i′, d′ = N and R ≡ R′, hence

[[P ′]]!∅ ≡ R.

We then have that s1 |= o, id2 = i(s1), s2 |= i and we may obtain ∆′ by considering s′1 = fN!(s1, id2)
and s′2 = fN?(s2, id1). Considering Lemma 2.6 and by rules Bin and IdSum we conclude

∆; C [(id1)[fN]oiP
′ + S′] −→ ∆′; C [[fN]oi ((id2)P ′) + S′]

which proves there exists a reduction in the global model, hence completing the first part of the
proof.

We now turn to proving it is a matching reduction. From N ≡ N ′
1 ‖N ′

2 we conclude

N ≡ s′1 : D1 ‖N ′′
1 ‖ s′2 : D2 | 〈i〉fN?.R |R ‖N ′′

2 (9)

From (4), (5) and (6) by Lemma 5.4 we conclude that

[[P]]id1

∅ ≡ [[C [[fN]oiP
′ + S′]]]id1

∅ | [[[f
N]oiP

′ + S′]]!∅ (10)

and also that
[[P]]?∅ ≡ [[C [[fN]oiP

′ + S′]]]?∅ (11)

Again by Lemma 5.4 and considering id2 6= id1 (and ? 6= id2) we conclude

[[C [[fN]oiP
′ + S′]]]id1

∅ ≡ [[C [[fN]oi ((id2)P ′) + S′]]]id1

∅

and
[[C [[fN]oiP

′ + S′]]]?∅ ≡ [[C [[fN]oi ((id2)P ′) + S′]]]?∅

From the latter and considering (5), in particular [[P]]?∅ ≡ D
′
1, and considering (11) we conclude

[[C [[fN]oi ((id2)P ′) + S′]]]?∅ ≡ D
′
1 (12)

From (5), in particular [[P]]id1

∅ ≡ R1 | 〈o〉fN! + C, and (10) and considering [[[fN]oiP
′ + S′]]!∅ ≡

〈o〉fN! + C from (6) we conclude [[C [[fN]oiP
′ + S′]]]id1

∅ ≡ R1. Then, by Lemma 5.4 we conclude

[[C [[fN]oi ((id2)P ′) + S′]]]id1

∅ ≡ R1 (13)

30

since id2 6= id1. From (12) and (13) and considering D1 ≡ D′1 |R1, we conclude

s′1 : D1 ≡ s′1 : [[C [[fN]oi ((id2)P ′) + S′]]]?∅ | [[C [[fN]oi ((id2)P ′) + S′]]]id1

∅ (14)

From (7) and (8), considering that i = i′ and d′ = N, and (6), by Lemma 5.4, since ? 6= id1 and
? 6= id2, we conclude

[[C [(id1)[fN]oiP
′ + S′]]]?∅ ≡ [[C [[fN]oiP

′ + S′]]]?∅ ≡ [[C [[fN]oi ((id2)P ′) + S′]]]?∅

and hence we have that

[[C [[fN]oi ((id2)P ′) + S′]]]?∅ ≡ D
′
2 | 〈i〉fN?.R

From Lemma 5.4 we conclude

[[C [[fN]oi ((id2)P ′) + S′]]]id2

∅ ≡ [[C [[fN]oiP
′ + S′]]]id2

∅ | [[P
′]]!∅

Since [[P ′]]!∅ ≡ R we conclude

[[C [[fN]oi ((id2)P ′) + S′]]]id2

∅ ≡ [[C [[fN]oiP
′ + S′]]]id2

∅ |R

and since id1 6= id2, again considering Lemma 5.4, we conclude

[[C [[fN]oi ((id2)P ′) + S′]]]id2

∅ ≡ [[C [(id1)[fN]oiP
′ + S′]]]id2

∅ |R

Since [[P]]id2

∅ ≡ R2 we conclude

[[C [[fN]oi ((id2)P ′) + S′]]]id2

∅ ≡ R2 |R

We then have that

[[C [[fN]oi ((id2)P ′) + S′]]]?∅ ≡ D
′
2 | 〈i〉fN?.R and [[C [[fN]oi ((id2)P ′) + S′]]]id2

∅ ≡ R2 |R

and hence, considering D2 ≡ D′2 |R2 we conclude

s′2 : D2 | 〈i〉fN?.R |R ≡ s′2 : [[C [[fN]oi ((id2)P ′) + S′]]]?∅ | [[C [[fN]oi ((id2)P ′) + S′]]]id2

∅ (15)

Considering Lemma 5.4, for any id ′ such that id ′ 6= id1 and id ′ 6= id2, we conclude

[[P]]?∅ | [[P]]id
′

∅ ≡ [[C [[fN]oi ((id2)P ′) + S′]]]?∅ | [[C [[fN]oi ((id2)P ′) + S′]]]id
′

∅

Since also the changes in ∆′ are localised to s′1 and s′2 we may show that N ′′
1 and N ′′

2 may be
obtained correspondingly. Considering (9), (14) and (15) we may then conclude

N ≡ [[∆′; C [[fN]oi ((id2)P ′) + S′]]]

890

We may now state our operational correspondence result which follows directly from Lemma 5.8 and
Lemma 5.9. Theorem 5.10 states a one-to-one correspondence in the behaviours of global specifications and
their translations. Notice that the possible transition labels (λ̂) exclusively refer to synchronisations, either

broadcast or binary, and local actions (hence λ̂ = τ or λ̂ = id !?f).

Theorem 5.10 (Operational Correspondence). We have that:895

1. If ∆;P −→ ∆′;Q then [[∆;P]]
λ̂−→≡ [[∆′;Q]].

2. If [[∆;P]]
λ̂−→ N then ∆;P −→ ∆′;Q and N ≡ [[∆′;Q]].

The operational correspondence result is key to allow for the development of protocols to be carried
out in the global language, as any reasoning for the global model can be conveyed to the (automatically
generated) implementation.900

31

6. Concluding Remarks

In this paper we propose a language for specifying the coordination of operation control for power
distribution grids. More precisely, we show how to program operation control protocols governing the
behaviour of a power gird as a whole from a global perspective. Our language embeds the notion of yielding
control in synchronisations and of communication driven by topological and state based-information by means905

of novel constructs. We formalise how global model specifications can be used to automatically synthesise
individual controllers of the grid substations, yielding an operationally correct distributed implementation.
Noticeably, the generated controller code is based on reactive definitions that are continuously able to react
to incoming messages, up to state conditions. This suggests that the code running in a controller can be
updated on-the-fly (e.g., to support a new protocol) by adding more definitions without modifying the already910

active code. Furthermore, the projection of static protocol specifications may be considered for any node
since it is not node-specific, contrarily to network state and active projection. This suggests that nodes may
be added on-the-fly to the concrete network, by installing the previously generated controller code for the
static protocol while retaining the operation safety. We also present a non-trivial fault management scenario
from the realm of power girds so as to illustrate the programming flavour of our global language.915

We remark that the design principles of our model target power distribution grids specifically, namely
considering that interaction is confined to closely follow the network topology. However, the principles
showcased by our development can be used when considering different sorts of topologies. Conceivably, our
principles can also be conveyed to other settings where operation protocols involve yielding control as a
consequence of synchronisations. The notion of yielding control in communications is not new (e.g., token920

ring), but protocol languages based on this idea are lacking. We believe that our protocol language can be
useful to program network behaviours in highly decentralised settings, such as wireless sensor and actuator
networks (cf. [26]), where events trigger behaviours that involve network coordination.

We conclude this paper by discussing related approaches, focusing on formal models in particular, and
by mentioning some directions for future work. Global protocol specifications can be found in the session925

type literature, spawning from the work of Honda et al. [27]. Such specifications are typically used to verify
programs or guide their development. Other proposals enrich the global protocol specifications so as to allow
programming to be carried out directly in the global language (e.g., [20, 21]). We insert our development in
this latter context, since we also provide a global specification language where operation control protocols
can be programmed. The distinguishing features of our approach naturally stem from the targeted setting.930

In particular, we consider that protocol specifications are role-agnostic and that the interacting parties
are established operationally in the following sense: emitting/enabling parties correspond to active nodes
and potential receiving/reacting parties are the ones that have a communication link with the active node,
determined exclusively by the message direction and by the network configuration, and where message
reception causes activation. We are unaware of related approaches that encompass this notion of yielding935

control in synchronisations, i.e., where the activated receiver is dynamically selected by the combination of
who is the sender, the message direction and the network configuration.

In order to provide some intuition on this distinction, consider the following protocol:

rec X.[PingI]ttttX

that can be used to capture a “pingpong” like interaction between two (neighbouring) parties that exchange
sender and receiver roles at each moment in time: consider a state ∆ that specifies ∆(1) = 1[z, 1, {2}, 0, 0, 0]
and ∆(2) = 2[z, 1, {1}, 0, 0, 0] and the evolution of configuration ∆; (1)(rec X.[PingI]ttttX) to the configuration940

∆; [PingI]tttt(2)(rec X.[PingI]ttttX). Notice that initially node 1 has the capability to send Ping and node 2
to receive, while after the evolution the association is switched (2 can send Ping and 1 can receive). Hence,
the protocol does not statically specify which node is activated by the communication, instead the activation
results from the capability of receiving a message (determined by the I direction and by the fact that node 2
is a neighbour of 1 according to ∆(1)). Notice also that the exact same protocol can be used to capture the945

interaction between three parties by considering a different network configuration (e.g., adding a node 3 to ∆
such that ∆(3) = 3[z, 1, {1, 2}, 0, 0, 0] and updating the neighbours of 2 and 3 accordingly, at which point if
a node is initially active then either one of its neighbours can receive and become active and so forth).

32

In the realm of approaches that can also be placed in the context of [20, 21], we identify two proposals
that are more closely related to our work, namely [19, 28]. The approach presented in [19] is related to950

ours both in goal and in approach, targeting power distribution grids in particular and relying on a global
choreographic model (introduced in [22]). The focus is on specifying the operation control logic accounting
for failures by means of specialised language principles. In contrast to our work, the association between
processes and roles, once established, is fixed and cannot dynamically evolve. Hence, we do not see how to
model the Ping protocol scenario above (both for two participants or for three). We believe accounting for955

failures is an interesting aspect to consider in the specification of the operation control logic, so integrating
the language principles exploited in [19] in our work can prove to be worthwhile.

The language proposal presented in [28] supports the on-the-fly instantiation of roles by processes upon
(choreographic-)procedure call. So, the Ping protocol above capturing the interaction of two participants can
be modelled by considering the appropriate parameter switching (e.g., by means of a procedure defined along960

the lines of Ping(p, q) = p→ q;Ping(q, p) where the order of the parameters in the recursive call is switched).
However, notice that such an implementation cannot capture the interaction between three participants
like in our case. Noticeably, the primitive that allows to introduce participants proposed in [28] allows for
dynamic reconfiguration of the communication topology without channel passing, and we believe adopting a
related primitive is an interesting direction to extend our work.965

In contrast with protocol specification languages such as session types [29], that give support for static
verification/specification purposes, our approach is intended to serve as a programming mechanism. We
nevertheless distinguish our language with respect to previous session-type based approaches following lines
similar to the comparison above. Protocols specified in session types typically include role annotations that
are impersonated by parties at runtime when agreeing to collaborate on a protocol. This yields a one-to-one970

correspondence between communication capabilities and parties, since only one role can send/receive a
specific message (potentially an infinite number of times). Other approaches handle roles differently but
retain a fixed (not subject to change at runtime) association between communication capabilities and parties:
conversation types [30] are role-agnostic specifications like our (static) protocols; the approach presented
in [31] includes role annotations where the association between roles and parties is not one-to-one; the975

approach presented in [32] allows for several parties to impersonate a single role. Our approach differs since
communication capabilities are not assigned to nodes in a fixed way and can change at runtime.

With respect to related programming models, we distinguish AbC [25, 33] where communicating partners
are also dynamically identified based on their states (of attributes). We remark that AbC does not
support programming from a global point of view, but rather from a local distributed implementation view.980

Furthermore, in our approach the conditions specified in synchronisation actions refer to the local state of
individual nodes (cf. the distributed implementation), while in AbC conditions refer to the communication
partner. We also remark that the conversation calculus [34] introduces message directions similar to ours,
but are there used to refer to the syntactic structure of processes (capturing, e.g., the caller-callee relation)
and do not refer to the physical communication infrastructure like in our work.985

For future work, we have already identified some language extensions that may prove to be worthwhile
pursuing. One would be to lift the restriction on well-formed protocols that considers the active node
construct may only appear (initially) top-level, in particular by allowing it to appear in (the body of)
recursive protocols. This would allow to model nodes that are persistently active to synchronise on an action,
up to satisfying a specific condition, hence potentially capturing sensor like behaviours that are “waiting” for990

a condition to hold so as to trigger behaviour. This would require extending the target model with persistent
outputs so as to retain operational correspondence. Another extension would be to consider value passing so
as to cope with dynamic reconfigurations that require more information is exchanged between nodes.

More importantly, it is definitely of interest to develop verification techniques for system level safety
properties, and it seems natural to specify and check such properties considering the global model. To reason995

on protocol correctness and certify operation on all possible configurations, such verification techniques
should focus on the static specification and abstract from the concrete network configuration, relying on some
form of abstract interpretation (cf. [35, 36]). Thanks to the operational correspondence result that relates
the global and distributed models, we can ensure that any property that holds for the global specification
also holds for the distributed one. The reactive style of the distributed model suggests an implementation1000

33

based on the actor model [37, 38] (in, e.g., Erlang [39]). Conceivably, such reactive descriptions can be useful
in other realms, in particular when addressing interaction models based on immediate reactions to external
stimulus, such as the wireless sensor and actuator networks mentioned previously.

A. Operational Correspondence - Auxiliary Results

The following Lemma ensures that the parallel composition is merely interleaving and does not influence1005

the behaviour of any of its sub-definitions, namely if a definition is able to take a step when isolated then
this step will be possible also when put in parallel with any other definition.

Lemma A.1 (Closure of LTS Under Definition Context). If s : D1
λ̂−→ s′ : D2 then s : D1 |D3

λ̂−→ s′ : D2 |D3

for any D3.

Proof. By induction on the shape of the derivation of s : D1 |D3
λ̂−→ s′ : D2 |D3.1010

The following results are used in the proof that structural congruence is preserved by projection, in
particular regarding recursion unfolding. We start by addressing properties of the !-projection, namely,
Lemma A.2 shows that it is preserved under any environment and process substitution since only the initial
actions are relevant.

Lemma A.2 (Preservation of !-Projection). Let P be a protocol where recursion is guarded. We have that1015

1. [[P]]!σ ≡ [[P]]!σ′ for any σ, σ′.

2. [[P [Q/X]]]!σ ≡ [[P]]!σ.

Proof. By induction on the structure of P following expected lines. Notice that !-projection addresses only
immediate synchronisation actions, hence neither the mapping σ nor the substitution affect the projection
given that recursion is guarded in P .1020

Lemma A.2 is used directly in the proof of recursion unfolding for the !-projection and also to prove
properties of the ?-projection. Lemma A.3 is also auxiliary to the case of ?-projection, showing the
correspondence between environment and process substitution used in !-projection.

Lemma A.3 (Soundness of Mapping for !-Projection). Let Q be a protocol where recursion in guarded. We
have that [[P]]!σ[X 7→Q] ≡ [[P [Q/X]]]!σ.1025

Proof. By induction on the structure of P following expected lines. Notice that when P is X then we obtain
[[Q]]!σ[X 7→Q] and [[Q]]!σ which may be equated considering Lemma A.2(1).

We now address properties that directly regard the ?-projection, starting by Lemma A.4 that shows that
processes in the environment are interchangeable as long as their !-projection is equivalent.

Lemma A.4 (Preservation of ?-Projection). Let Q1 and Q2 be protocols where recursion is guarded such1030

that [[Q1]]!σ ≡ [[Q2]]!σ. We have that [[P]]?σ[X 7→Q1] ≡ [[P]]?σ[X 7→Q2].

Proof. By induction on the structure of P following expected lines. Notice that when P is X then we obtain
[[Q1]]!σ[X 7→Q1] and [[Q2]]!σ[X 7→Q2] which may be equated considering Lemma A.2(1) and the hypothesis.

The following result (Lemma A.5) is key to the proof of the unfolding, as it shows that two copies of a
?-projection are equivalent to one.1035

Lemma A.5 (Replicability of ?-Projection). We have that [[P]]?σ | [[P]]?σ ≡ [[P]]?σ.

Proof. By induction on the structure of P . The proof follows by induction hypothesis in expected lines for
all cases except for the synchronisation action which also relies on axiom 〈c〉fd?.R | 〈c〉fd?.R ≡ 〈c〉fd?.R.

34

The main auxiliary properties for the case of recursion unfolding regarding ?-projection are given by the
next result. Lemma A.6(1) equates the substitution with the environment, considering the involved process1040

is in context. Lemma A.6(2) equates the substitution with the environment, considering a context with some
(input) residua.

Lemma A.6 (Soundness of Mapping for ?-Projection). Let Q be a protocol where recursion is guarded.

1. We have that [[P]]?σ[X 7→Q] | [[Q]]?σ ≡ [[P [Q/X]]]?σ | [[Q]]?σ.

2. We have that [[P [Q/X]]]?σ ≡ [[P]]?σ[X 7→Q] |Πi∈I〈ci〉fdii ?.Ri.1045

Proof. By induction on the structure of P . We sketch the proof of 1., the proof of 2. follows similar lines.

Case P is 0: We have that 0 | [[Q]]?σ ≡ 0 | [[Q]]?σ.

Case P is X: Since [[X]]?σ[X 7→Q] by definition is 0, we have that 0 | [[Q]]?σ ≡ [[Q]]?σ | [[Q]]?σ and the proof follows
by considering Lemma A.5.

Case P is (id)P ′ or P1 |P2 or S1 + S2: The proof follows from the induction hypothesis in expected lines.1050

Case P is [fd]oiP
′: Since [[[fd]oiP

′]]?σ[X 7→Q] by definition is 〈i〉fd?.[[P ′]]!σ[X 7→Q] | [[P
′]]?σ[X 7→Q] we have that (i)

[[[fd]oiP
′]]?σ[X 7→Q] | [[Q]]?σ ≡ 〈i〉fd?.[[P ′]]!σ[X 7→Q] | [[P

′]]?σ[X 7→Q] | [[Q]]?σ. Considering Lemma A.3 we have

that (ii) 〈i〉fd?.[[P ′]]!σ[X 7→Q] ≡ 〈i〉f
d?.[[P ′[Q/X]]]!σ. By induction hypothesis we conclude that (iii)

[[P ′]]?σ[X 7→Q] | [[Q]]?σ ≡ [[P ′[Q/X]]]?σ | [[Q]]?σ. Considering both (ii) and (iii) we conclude that (iv)

〈i〉fd?.[[P ′]]!σ[X 7→Q] | [[P
′]]?σ[X 7→Q] | [[Q]]?σ ≡ 〈i〉fd?.[[P ′[Q/X]]]!σ | [[P ′[Q/X]]]?σ | [[Q]]?σ

By definition we have that [[[fd]oiP
′[Q/X]]]?σ | [[Q]]?σ ≡ 〈i〉fd?.[[P ′[Q/X]]]!σ | [[P ′[Q/X]]]?σ | [[Q]]?σ which

considering (i) and (iv) completes the proof.

Case P is rec X.P ′: By definition we have that [[rec X.P ′]]?σ[X′ 7→Q] | [[Q]]?σ ≡ [[P ′]]?σ[X′ 7→Q][X 7→P ′] | [[Q]]?σ. By

induction hypothesis we have that [[P ′]]?σ[X′ 7→Q][X 7→P ′] | [[Q]]?σ ≡ [[P ′[Q/X ′]]]?σ[X 7→P ′] | [[Q]]?σ. Considering

Lemma A.2(2) since recursion is guarded in P ′ we have that [[P ′[Q/X ′]]]!σ ≡ [[P ′]]!σ, from which, consider-1055

ing Lemma A.4, we conclude [[P ′[Q/X ′]]]?σ[X 7→P ′] | [[Q]]?σ ≡ [[P ′[Q/X ′]]]?σ[X 7→(P ′[Q/X′])] | [[Q]]?σ. The latter

concludes the proof since by definition [[rec X.P ′[Q/X]]]?σ | [[Q]]?σ ≡ [[P ′[Q/X ′]]]?σ[X 7→(P ′[Q/X′])] | [[Q]]?σ.

We may now prove that projection is preserved under recursion unfolding. This lemma will be used in the
proof of Lemma 5.5, where we want to show that the projection function is invariant to structural congruent1060

protocols.

Lemma A.7 (Preservation of Projection under Unfolding). Let P be a static protocol where recursion is
guarded. We have that [[rec X.P]]r∅ ≡ [[P [rec X.P/X]]]r∅ for any r.

Proof. We prove the three cases separately.

Case r = !: By definition we have [[rec X.P]]!∅ , [[P]]![X 7→P]. Since recursion is guarded in P , from1065

Lemma A.2(2) we conclude [[P]]![X 7→P] ≡ [[P [rec X.P/X]]![X 7→P], and from Lemma A.2(1) we have

[[P [rec X.P/X]]![X 7→P] ≡ [[P [rec X.P/X]]!∅.

Case r = id : Since P is an (id)-absent protocol we have that P [rec X.P/X] is an (id)-absent protocol,
hence the result follows immediately from Lemma 5.3 from which we conclude [[rec X.P]]id∅ ≡ 0 and

[[P [rec X.P/X]]]id∅ ≡ 0.1070

35

Case r = ?: From Lemma A.6(1) we have that

[[P]]?[X 7→rec X.P] | [[rec X.P]]?∅ ≡ [[P [rec X.P/X]]]?∅ | [[rec X.P]]?∅

By definition we have that [[rec X.P]]!∅ ≡ [[P]]![X 7→P] and since recursion is guarded in P from

Lemma A.2(1) we have that [[P]]![X 7→P] ≡ [[P]]!∅ hence [[rec X.P]]!∅ ≡ [[P]]!∅. From this fact, considering
Lemma A.4 we conclude

[[P]]?[X 7→P] | [[rec X.P]]?∅ ≡ [[P [rec X.P/X]]]?∅ | [[rec X.P]]?∅

By definition we have that [[rec X.P]]?∅ ≡ [[P]]?[X 7→P], hence

[[rec X.P]]?∅ | [[rec X.P]]?∅ ≡ [[P [rec X.P/X]]]?∅ | [[rec X.P]]?∅

From Lemma A.5 we have that [[rec X.P]]?∅ | [[rec X.P]]?∅ ≡ [[rec X.P]]?∅, hence (i)

[[rec X.P]]?∅ ≡ [[P [rec X.P/X]]]?∅ | [[rec X.P]]?∅

From Lemma A.6(2) we have that

[[P [rec X.P/X]]]?σ ≡ [[P]]?σ[X 7→rec X.P] |Πl∈L〈cl〉fdll ?.Rl

As before, from [[rec X.P]]!∅ ≡ [[P]]!∅ and considering Lemma A.4 we conclude

[[P [rec X.P/X]]]?σ ≡ [[P]]?σ[X 7→P] |Πl∈L〈cl〉fdll ?.Rl

and, again as before, since by definition [[rec X.P]]?∅ ≡ [[P]]?[X 7→P] we conclude (ii)

[[P [rec X.P/X]]]?σ ≡ [[rec X.P]]?∅ |Πl∈L〈cl〉fdll ?.Rl

which together with (i)
[[rec X.P]]?∅ ≡ [[P [rec X.P/X]]]?∅ | [[rec X.P]]?∅

allows us to conclude

[[rec X.P]]?∅ ≡ [[rec X.P]]?∅ |Πl∈L〈cl〉fdll ?.Rl | [[rec X.P]]?∅

From this fact and considering Lemma A.5 we conclude

[[rec X.P]]?∅ ≡ [[rec X.P]]?∅ |Πl∈L〈cl〉fdll ?.Rl

which together with (ii)

[[P [rec X.P/X]]]?σ ≡ [[rec X.P]]?∅ |Πl∈L〈cl〉fdll ?.Rl

completes the proof.

Lemma A.8 ensures that structurally equivalent protocols have structurally equivalent projections under
any possible network state ∆.

Lemma A.8 (Preservation of Structural Congruence Under Network Projection). If P ≡ Q then [[∆;P]] ≡1075

[[∆;Q]] for any ∆.

36

Proof. The proof proceeds by relying on the definition of the projection function and Lemma 5.5. By
definition we have that:

[[∆;P]] , Π∀id∈dom(∆)(∆(id) : [[P]]?∅ | [[P]]id∅)

[[∆;Q]] , Π∀id∈dom(∆)(∆(id) : [[Q]]?∅ | [[Q]]id∅)

Since P ≡ Q, we have that, by Lemma 5.5 and regardless of ∆, [[P]]?∅ ≡ [[Q]]?∅ and [[P]]id∅ ≡ [[Q]]id∅ . Thus
[[∆;P]] ≡ [[∆;Q]] as required.1080

The following result states that for each synchronisation action in the protocol there is a corresponding
input in the respective ?-projection, and that the continuation of the input is the reaction obtained by
!-projecting the continuation of the synchronisation action.

Lemma A.9 (Synchronisation Action Projection). If P ≡ C [[fd]oiQ] then [[P]]?∅ ≡ D | 〈i〉f
d?.R and [[Q]]!∅ ≡ R.1085

Proof. By induction on the structure of C [·]. Follows expected lines (cf. Lemma 5.4).

The next result says ?-projections can be described as a parallel composition of distinguished inputs.

Lemma A.10 (Input Uniqueness). If P is a well-formed protocol then [[P]]?σ ≡ Πi∈I〈ci〉fdii ?.Ri where fj 6= fl
for all j, l ∈ I such that j 6= l.

Proof. (Sketch) Since well-formed protocol protocols originate from specifications where all action labels are1090

distinct and we have that ? projection is invariant under reduction (Lemma 5.4) we may consider wlog that
all action labels are distinct in P . The proof then follows by induction on the structure of P in expected lines
(cf. Lemma 5.2(3)), by preserving the invariant that the set of labels {fi | i ∈ I} is the set of labels of P .

The following results characterise the structure of networks and definitions given a specific observable
behaviour.1095

Lemma A.11 (Inversion on Network Internal Step). If N
τ−→ N ′ then either

• N ≡ N1 ‖N2 and N1
id1→id2

f

−−−−−−→ N ′
1 , N2

id2←id1
f

−−−−−−→ N ′
2 , and N ′ ≡ N ′

1 ‖N ′
2 .

• N ≡ s : D ‖N ′′ and s : D
τ−→ s : D′ and N ′ ≡ s : D′ ‖N ′′.

• N ≡ s : D and s : D
τ−→ s : D′ and N ′ ≡ s : D′.

Proof. By induction on the shape of the derivation of N
τ−→ N ′ following expected lines.1100

Lemma A.12 (Inversion on Definition Output). If D
〈c〉fd!−−−−→ D′ then D ≡ D′ | 〈c〉fd! + C.

Proof. By induction on the shape of the derivation of D
〈c〉fd!−−−−→ D′ following expected lines.

Lemma A.13 (Inversion on Network Output). If N
id1→id2

f

−−−−−−→ N ′ then N ≡ s : D | 〈o〉fd! + C ‖N ′′

or N ≡ s : D | 〈o〉fd! + C, N ′ ≡ s′ : D ‖N ′′ or N ′ ≡ s′ : D respectively, s′ = fd!(s, id2), s |= o and
id(s) = id. Furthermore if d = I then id2 ∈ n(s) and if d = N then id2 = i(s).1105

Proof. By induction on the shape of the derivation of N
id1→id2

f

−−−−−−→ N ′, where the base case follows by
inversion on oBinR and oBinU and by considering Lemma A.12.

Lemma A.14 (Inversion on Definition Input). If D
〈c〉fd?−−−−→ D′ then D ≡ D′′ | 〈c〉fd?.R and D′ ≡

D′′ | 〈c〉fd?.R |R.

37

Proof. By induction on the shape of the derivation of D
〈c〉fd?−−−−→ D′ following expected lines.1110

Lemma A.15 (Inversion on Network Input). If N
id1←id2

f

−−−−−−→ N ′ then N ≡ s : D | 〈i〉fd?.R ‖N ′′ or N ≡
s : D | 〈i〉fd?.R, N ′ ≡ s′ : D | 〈i〉fd?.R |R ‖N ′′ or N ′ ≡ s′ : D | 〈i〉fd?.R |R respectively, s′ = fd?(s, id2),
s |= i, and id(s) = id1.

Proof. By induction on the shape of the derivation of N
id1→id2

f

−−−−−−→ N ′, where the base case follows by
inversion on iBin and by considering Lemma A.14.1115

Lemma A.16 (Inversion on Definition Internal Step). If D
〈c〉f−−→ D′ then D ≡ 〈i〉f•?.R | 〈o〉f•! + C |D′′

and D′ ≡ 〈i〉f•?.R |R |D′′ and c = i ∧ o.

Proof. By induction on the shape of the derivation of D
〈c〉f−−→ D′ where the base case follows by inversion on

Self and by considering Lemma A.12 and Lemma A.14.

Lemma A.17 (Inversion on Network Broadcast Input). If N
id??f−−−→ N ′ then N ≡ Πj∈J(sj : Dj) and1120

N ′ ≡ Πj∈J(sj : D′j) and ∀j ∈ J it is the case that either (i) Dj ≡ D′′j | 〈i〉f??.Rj and sj |= i and i(sj) = id

and D′j ≡ D′′j | 〈i〉f??.Rj |Rj or (ii) discard(sj : Dj , id??f) and D′j ≡ Dj.

Proof. By induction on the shape of the derivation of N
id??f−−−→ N ′, where the base case follows by inversion

on iBrd and by considering Lemma A.14 or by inversion on dBrd.

Lemma A.18 (Inversion on Network Broadcast Output). If N
id!?f−−−→ N ′ then N ≡ s : D | 〈o〉f?!+C ‖ N11125

or N ≡ s : D | 〈o〉f?! + C, N ′ ≡ s : D ‖ N2 and N1
id??f−−−→ N2 or N ′ ≡ s : D, respectively, s |= o and

id(s) = id.

Proof. By induction on the shape of the derivation of N
id!?f−−−→ N ′, where the base case follows by inversion

on oBrd and by considering Lemma A.12.

References1130

[1] S. M. Amin, B. F. Wollenberg, Toward a smart grid: power delivery for the 21st century, IEEE Power and Energy Magazine
3 (5) (2005) 34–41. doi:10.1109/MPAE.2005.1507024.

[2] F. Andren, T. Strasser, W. Kastner, Towards a common modeling approach for smart grid automation, in: IECON 2013 - 39th
Annual Conference of the IEEE Industrial Electronics Society, 2013, pp. 5340–5346. doi:10.1109/IECON.2013.6700004.

[3] SmartGrids: Vision and strategy for europe’s electricity networks of the future, https://www.etip-snet.eu.1135

[4] IntelliGrid: Smart power for the 21st century, http://smartgrid.epri.com/IntelliGrid.aspx.
[5] X. Han, K. Heussen, O. Gehrke, H. W. Bindner, B. Kroposki, Taxonomy for evaluation of distributed control strategies for

distributed energy resources, IEEE Trans. Smart Grid 9 (5) (2018) 5185–5195. doi:10.1109/TSG.2017.2682924.
[6] T. I. Strasser, F. Andren, J. Kathan, C. Cecati, C. Buccella, P. Siano, P. Leitão, G. Zhabelova, V. Vyatkin, P. Vrba,

V. Maŕık, A review of architectures and concepts for intelligence in future electric energy systems, IEEE Trans. Industrial1140

Electronics 62 (4) (2015) 2424–2438. doi:10.1109/TIE.2014.2361486.
[7] W. Zhang, W. Liu, X. Wang, L. Liu, F. T. Ferrese, Distributed multiple agent system based online optimal reactive power

control for smart grids, IEEE Trans. Smart Grid 5 (5) (2014) 2421–2431. doi:10.1109/TSG.2014.2327478.
[8] P. Vrba, V. Maŕık, P. Siano, P. Leitão, G. Zhabelova, V. Vyatkin, T. I. Strasser, A review of agent and service-

oriented concepts applied to intelligent energy systems, IEEE Trans. Industrial Informatics 10 (3) (2014) 1890–1903.1145

doi:10.1109/TII.2014.2326411.
[9] E. Ciancamerla, M. Minichino, M. C. Falvo, L. Martirano, Active distribution grids: A matlab-simulink tool for energy

performance analysis, in: 2016 AEIT International Annual Conference (AEIT), 2016, pp. 1–5. doi:10.23919/AEIT.
2016.7892749.

[10] C. Steinbrink, S. Lehnhoff, S. Rohjans, T. I. Strasser, E. Widl, C. Moyo, G. Lauss, F. Lehfuss, M. Faschang, P. Palensky,1150

A. A. van der Meer, K. Heussen, O. Gehrke, E. Guillo-Sansano, M. H. Syed, A. Emhemed, R. Brandl, V. H. Nguyen, A. M.
Khavari, Q. T. Tran, P. Kotsampopoulos, N. D. Hatziargyriou, N. Akroud, E. Rikos, M. Z. Degefa, Simulation-based
validation of smart grids - status quo and future research trends, in: Industrial Applications of Holonic and Multi-Agent
Systems - 8th International Conference, HoloMAS 2017, Proceedings, Vol. 10444 of LNCS, Springer, 2017, pp. 171–185.
doi:10.1007/978-3-319-64635-0_13.1155

38

http://dx.doi.org/10.1109/MPAE.2005.1507024
http://dx.doi.org/10.1109/IECON.2013.6700004
https://www.etip-snet.eu
http://smartgrid.epri.com/IntelliGrid.aspx
http://dx.doi.org/10.1109/TSG.2017.2682924
http://dx.doi.org/10.1109/TIE.2014.2361486
http://dx.doi.org/10.1109/TSG.2014.2327478
http://dx.doi.org/10.1109/TII.2014.2326411
http://dx.doi.org/10.23919/AEIT.2016.7892749
http://dx.doi.org/10.23919/AEIT.2016.7892749
http://dx.doi.org/10.23919/AEIT.2016.7892749
http://dx.doi.org/10.1007/978-3-319-64635-0_13

[11] R. Brandl, P. Kotsampopoulos, G. Lauss, M. Maniatopoulos, M. Nuschke, J. Montoya, T. I. Strasser, D. Strauss-Mincu,
Advanced testing chain supporting the validation of smart grid systems and technologies, in: 2018 IEEE Workshop
on Complexity in Engineering, COMPENG 2018, Florence, Italy, October 10-12, 2018, IEEE, 2018, pp. 1–6. doi:
10.1109/CompEng.2018.8536223.

[12] A. Barbato, A. Capone, L. Chen, F. Martignon, S. Paris, A distributed demand-side management framework for the smart1160

grid, Computer Communications 57 (2015) 13–24. doi:10.1016/j.comcom.2014.11.001.
[13] W. Tushar, B. Chai, C. Yuen, D. B. Smith, K. L. Wood, Z. Yang, H. V. Poor, Three-party energy management

with distributed energy resources in smart grid, IEEE Trans. Industrial Electronics 62 (4) (2015) 2487–2498. doi:
10.1109/TIE.2014.2341556.

[14] D. Papadaskalopoulos, D. Pudjianto, G. Strbac, Decentralized coordination of microgrids with flexible demand and energy1165

storage, IEEE Transactions on Sustainable Energy 5 (4) (2014) 1406–1414. doi:10.1109/TSTE.2014.2311499.
[15] E. Dall’Anese, S. V. Dhople, B. B. Johnson, G. B. Giannakis, Decentralized optimal dispatch of photovoltaic inverters in

residential distribution systems, IEEE Transactions on Energy Conversion 29 (4) (2014) 957–967.
[16] M. Yazdanian, A. Mehrizi-Sani, Distributed control techniques in microgrids, IEEE Trans. Smart Grid 5 (6) (2014)

2901–2909. doi:10.1109/TSG.2014.2337838.1170

[17] J. von Appen, T. Stetz, M. Braun, A. Schmiegel, Local voltage control strategies for PV storage systems in distribution
grids, IEEE Trans. Smart Grid 5 (2) (2014) 1002–1009. doi:10.1109/TSG.2013.2291116.

[18] B. M. Eid, N. A. Rahim, J. Selvaraj, A. H. E. Khateb, Control methods and objectives for electronically coupled distributed
energy resources in microgrids: A review, IEEE Systems Journal 10 (2) (2016) 446–458. doi:10.1109/JSYST.2013.
2296075.1175

[19] H. A. López, K. Heussen, Choreographing cyber-physical distributed control systems for the energy sector, in: Proceedings
of the 32nd ACM SIGAPP Symposium on Applied Computing, SAC 2017, ACM, 2017, pp. 437–443. doi:10.1145/
3019612.3019656.

[20] M. Carbone, K. Honda, N. Yoshida, Structured communication-centered programming for web services, ACM Trans.
Program. Lang. Syst. 34 (2) (2012) 8:1–8:78. doi:10.1145/2220365.2220367.1180

[21] M. Carbone, F. Montesi, Deadlock-freedom-by-design: multiparty asynchronous global programming, in: The 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2013, ACM, 2013, pp. 263–274.
doi:10.1145/2429069.2429101.

[22] H. A. López, F. Nielson, H. R. Nielson, Enforcing availability in failure-aware communicating systems, in: Formal Techniques
for Distributed Objects, Components, and Systems - 36th IFIP WG 6.1 International Conference, FORTE 2016, Proceedings,1185

Vol. 9688 of LNCS, Springer, 2016, pp. 195–211. doi:10.1007/978-3-319-39570-8_13.
[23] I. N. Kouveliotis-Lysikatos, D. Koukoula, N. D. Hatziargyriou, A double-layered fully distributed voltage control method

for active distribution networks, IEEE Trans. Smart Grid 10 (2) (2019) 1465–1476. doi:10.1109/TSG.2017.2768239.
[24] M. Hennessy, J. Rathke, Bisimulations for a calculus of broadcasting systems, Theor. Comput. Sci. 200 (1-2) (1998) 225–260.

doi:10.1016/S0304-3975(97)00261-2.1190

[25] Y. A. Alrahman, R. De Nicola, M. Loreti, A calculus for collective-adaptive systems and its behavioural theory, Information
and Computation (2019) 104457doi:10.1016/j.ic.2019.104457.

[26] E. Khamespanah, M. Sirjani, K. Mechitov, G. Agha, Modeling and analyzing real-time wireless sensor and actuator
networks using actors and model checking, STTT 20 (5) (2018) 547–561. doi:10.1007/s10009-017-0480-3.

[27] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session types, J. ACM 63 (1) (2016) 9:1–9:67. doi:1195

10.1145/2827695.
[28] L. Cruz-Filipe, F. Montesi, Procedural choreographic programming, in: Formal Techniques for Distributed Objects,

Components, and Systems - 37th IFIP WG 6.1 International Conference, FORTE 2017, Proceedings, Vol. 10321 of LNCS,
Springer, 2017, pp. 92–107. doi:10.1007/978-3-319-60225-7_7.

[29] H. Hüttel, I. Lanese, V. T. Vasconcelos, L. Caires, M. Carbone, P. Deniélou, D. Mostrous, L. Padovani, A. Ravara,1200

E. Tuosto, H. T. Vieira, G. Zavattaro, Foundations of session types and behavioural contracts, ACM Comput. Surv. 49 (1)
(2016) 3:1–3:36. doi:10.1145/2873052.

[30] L. Caires, H. T. Vieira, Conversation types, Theor. Comput. Sci. 411 (51-52) (2010) 4399–4440. doi:10.1016/j.tcs.
2010.09.010.

[31] P. Baltazar, L. Caires, V. T. Vasconcelos, H. T. Vieira, A type system for flexible role assignment in multiparty1205

communicating systems, in: Trustworthy Global Computing - 7th International Symposium, TGC 2012, Revised Selected
Papers, Vol. 8191 of LNCS, Springer, 2012, pp. 82–96. doi:10.1007/978-3-642-41157-1_6.

[32] P. Deniélou, N. Yoshida, Dynamic multirole session types, in: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2011, ACM, 2011, pp. 435–446. doi:10.1145/1926385.1926435.

[33] Y. A. Alrahman, R. De Nicola, M. Loreti, F. Tiezzi, R. Vigo, A calculus for attribute-based communication, in: Proceedings1210

of the 30th ACM SIGAPP Symposium on Applied Computing, SAC 2015, ACM, 2015, pp. 1840–1845. doi:10.1145/
2695664.2695668.

[34] H. T. Vieira, L. Caires, J. C. Seco, The conversation calculus: A model of service-oriented computation, in: Programming
Languages and Systems, 17th European Symposium on Programming, ESOP 2008, Proceedings, Vol. 4960 of LNCS,
Springer, 2008, pp. 269–283. doi:10.1007/978-3-540-78739-6_21.1215

[35] P. Cousot, R. Cousot, Abstract interpretation: A unified lattice model for static analysis of programs by construction
or approximation of fixpoints, in: Conference Record of the Fourth ACM Symposium on Principles of Programming
Languages, POPL 1977, ACM, 1977, pp. 238–252. doi:10.1145/512950.512973.

[36] P. Cousot, R. Cousot, Systematic design of program analysis frameworks, in: Conference Record of the Sixth Annual
ACM Symposium on Principles of Programming Languages, POPL 1979, ACM Press, 1979, pp. 269–282. doi:10.1145/1220

39

http://dx.doi.org/10.1109/CompEng.2018.8536223
http://dx.doi.org/10.1109/CompEng.2018.8536223
http://dx.doi.org/10.1109/CompEng.2018.8536223
http://dx.doi.org/10.1016/j.comcom.2014.11.001
http://dx.doi.org/10.1109/TIE.2014.2341556
http://dx.doi.org/10.1109/TIE.2014.2341556
http://dx.doi.org/10.1109/TIE.2014.2341556
http://dx.doi.org/10.1109/TSTE.2014.2311499
http://dx.doi.org/10.1109/TSG.2014.2337838
http://dx.doi.org/10.1109/TSG.2013.2291116
http://dx.doi.org/10.1109/JSYST.2013.2296075
http://dx.doi.org/10.1109/JSYST.2013.2296075
http://dx.doi.org/10.1109/JSYST.2013.2296075
http://dx.doi.org/10.1145/3019612.3019656
http://dx.doi.org/10.1145/3019612.3019656
http://dx.doi.org/10.1145/3019612.3019656
http://dx.doi.org/10.1145/2220365.2220367
http://dx.doi.org/10.1145/2429069.2429101
http://dx.doi.org/10.1007/978-3-319-39570-8_13
http://dx.doi.org/10.1109/TSG.2017.2768239
http://dx.doi.org/10.1016/S0304-3975(97)00261-2
http://dx.doi.org/10.1016/j.ic.2019.104457
http://dx.doi.org/10.1007/s10009-017-0480-3
http://dx.doi.org/10.1145/2827695
http://dx.doi.org/10.1145/2827695
http://dx.doi.org/10.1145/2827695
http://dx.doi.org/10.1007/978-3-319-60225-7_7
http://dx.doi.org/10.1145/2873052
http://dx.doi.org/10.1016/j.tcs.2010.09.010
http://dx.doi.org/10.1016/j.tcs.2010.09.010
http://dx.doi.org/10.1016/j.tcs.2010.09.010
http://dx.doi.org/10.1007/978-3-642-41157-1_6
http://dx.doi.org/10.1145/1926385.1926435
http://dx.doi.org/10.1145/2695664.2695668
http://dx.doi.org/10.1145/2695664.2695668
http://dx.doi.org/10.1145/2695664.2695668
http://dx.doi.org/10.1007/978-3-540-78739-6_21
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1145/567752.567778
http://dx.doi.org/10.1145/567752.567778
http://dx.doi.org/10.1145/567752.567778

567752.567778.
[37] G. A. Agha, ACTORS - a model of concurrent computation in distributed systems, MIT Press series in artificial intelligence,

MIT Press, 1990.
[38] C. J. Callsen, G. Agha, Open heterogeneous computing in actor space, J. Parallel Distrib. Comput. 21 (3) (1994) 289–300.

doi:10.1006/jpdc.1994.1060.1225

[39] J. Armstrong, Programming Erlang: Software for a Concurrent World, Pragmatic Bookshelf, 2007.

40

http://dx.doi.org/10.1145/567752.567778
http://dx.doi.org/10.1145/567752.567778
http://dx.doi.org/10.1006/jpdc.1994.1060

	Introduction
	Operation Control Protocols, Informally

	A Model for Operation Control Protocols
	Fault Management in Power Distribution Grids
	A Distributed Model for Operation Control
	Local Controller Synthesis
	Automatic Translation
	Characterisation of the Projection Function
	Operational Correspondence

	Concluding Remarks
	Operational Correspondence - Auxiliary Results

