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Abstract

Collective adaptive systems are new emerging computational systems consisting of a large number of inter-
acting components and featuring complex behaviour. These systems are usually distributed, heterogeneous,
decentralised and interdependent, and are operating in dynamic and possibly unpredictable environments.
Finding ways to understand and design these systems and, most of all, to model the interactions of their
components, is a difficult but important endeavour. In this article we propose a language-based approach for
programming the interactions of collective-adaptive systems by relying on attribute-based communication;
a paradigm that permits a group of partners to communicate by considering their run-time properties and
capabilities. We introduce AbC , a foundational calculus for attribute-based communication and show how
its linguistic primitives can be used to program a sophisticated variant of the well-known problem of Stable
Allocation in Content Delivery Networks. In our variant, content providers are assigned to clients based on
collaboration and by taking into account the preferences of both parties in a fully anonymous and distributed
settings. We also illustrate the expressive power of attribute-based communication by showing the natural
encoding of group-based, publish/subscribe-based and channel-based communication paradigms into AbC .

Keywords: Collective-adaptive systems, Attribute-Based Communication, Process calculus, Operational
semantics, Computing methodologies

1. Introduction

The ever increasing complexity of modern software systems has changed the perspective of software
designers who now have to consider a broad range of new classes of systems, consisting of a large num-
ber of components and featuring complex interaction mechanisms, e.g., Software-Intensive Systems [1],
IoT Systems [2], and Collective Adaptive Systems (CAS) [3, 4, 5]. These systems are usually distributed,5

heterogeneous, decentralised and interdependent, and frequently operate in dynamic and unpredictable envi-
ronments. Historically, as software systems grew larger, the focus shifted from the complexity of developing
efficient algorithms to the complexity of structuring large systems, with the inevitable complications induced
by their distributed and concurrent nature [6]. In [7], the authors mentioned that structuring/reconfiguring
large software systems is difficult, laborious and error-prone due to (i) the lack of concise abstractions and10

(ii) the insufficient automatic support to the reconfiguration process. These two points are crucial for an
engineering approach to succeed, especially when dealing with additional complexities that arise from the
fact that CAS systems operate in and interact with an open and non-deterministic environment.
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Most of the current communication models and programming frameworks still handle interactions be-
tween distributed components by relying on their identities, see e.g., the Actor model [8], or by relying on the15

communication channels on which they are listening, using point-to-point channel-based communication [9],
or multicast with explicit addressing [10], or broadcast communication [11]. These models use entities, such
as names or addresses which are totally independent from the run-time properties and from the capabilities
of the interacting components, to facilitate interactions. This makes it hard to program complex behaviours
and coordination mechanisms, such as reconfiguration, adaptation, opportunistic interactions, etc., that20

depend on components’ status rather than on their identities or addresses.
Indeed, the existing models of concurrent and distributed systems are communication centric; the be-

haviour is defined mainly as a process implementing a specific communication protocol and the programmer
has to manage the channels or the addresses on which components interact. In our view, to deal with CAS,
it is instead important to consider data centric interaction primitives that abstract from the underlying25

communication infrastructure (i.e., they are infrastructure-agnostic) and rely on anonymous one-to-many
interactions to send messages to potential receivers. Data centric interaction primitives provide the illusion
of the existence of a shared global state of the whole system. Thus the programmer can base the interactions
directly on the states of system components using logical formulae without worrying about how messages are
being routed in the actual network. This task is delegated to an underlying communication infrastructure30

that mediates the interactions between system components.
In this article, we study the impact of a new data centric paradigm that permits a group of partners to

interact by considering their properties and capabilities at run-time. Our findings have been triggered by
the work on CAS, and by the recent attempts to define linguistic primitives to deal with such systems, see
e.g. the Helena framework [12], the field calculus [13], Coordinated Actors [14], and the SCEL language [15].35

1.1. Collective-Adaptive Systems

Collective-Adaptive Systems (CAS) [4] consist of a large number of interacting components which com-
bine their behaviours, by forming collectives, to achieve specific goals depending on their attributes, objec-
tives, and functionalities. Decision-making in these systems is complex and components interaction may
lead to unexpected behaviours. CAS are inherently scalable [16] and the boundaries between different CAS40

are fluid in the sense that components may enter or leave the collective at any time and may have different
(potentially conflicting) objectives; so they need to dynamically adapt to their environmental conditions and
contextual data. The need of engineering techniques to address the challenges of developing, integrating,
and deploying CAS is advocated in [17]. Also the development of theoretical foundation for CAS has been
deemed important to understand their distinctive features and operational principles [18].45

As stated before, the existing communication models do not scale with the high level of dynamicity
of CAS, and a change of perspective, that takes into account run-time properties, status, and capabilities
of communicating systems, is on demand; the key concepts of CAS should be the basis for guiding the
development of the new communication modalities. In the following, we summarise these concepts borrowing
from [18, 4, 16, 3]:50

Distribution: components are distributed on a shared environment and evolve independently, without any
centralised control.

Awareness: components are aware of their run-time status (self-awareness) and have some (partial) view
of their surroundings (context-awareness).

Adaptivity : components adapt their behaviours and their interaction policies in response to the changes of55

their contextual conditions and to the collected awareness data. Thus awareness can be considered as
a pre-condition to adaptation.

Interdependence: any change in the shared environment might influence the behaviour of components.

Collaboration: components collaborate and combine their behaviours to achieve system-level goals in re-
sponse to changes in the environment or according to their predefined roles.60
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Anonymity : components communicate and exchange information without knowing the existence and/or
identity of each other; for example, the identity of a service provider is not relevant, only its ability
to provide the desired service is. Notice that existing communication paradigms, which are based
on the idea of knowing the identity of the communication partners, are not adequate because they
fundamentally contradict the idea of “anonymous” interaction.65

Scalability and Open-endedness: components may join or leave a system without perturbing the overall
behaviour of the system; senders emit messages without being aware of the presence of receivers and
receivers do not rely on specific senders.

1.2. AbC: Attribute-based Communication

In order to capture the above mentioned concepts, we have developed attribute-based communication,70

a paradigm that permits a group of partners to communicate by considering propositional predicates over
the attributes they expose. These predicates give the illusion of the existence of a shared global state of
the whole system and communications can be based on the states of communicating partners rather than
on their identities or physical addresses. Thus communication takes place anonymously in an implicit mul-
ticast fashion without a prior agreement among communicating partners. Anonymity of interaction allows75

programmers to secure scalability, dynamicity, and open-endedness more easily. Sending operations are
non-blocking while receiving operations are. This breaks synchronisation dependencies between interact-
ing partners, and permits modelling systems where communicating partners can enter or leave a group at
any time without perturbing the overall behaviour. Attributes make it easy to model awareness by locally
reading the values of the attributes that may represent either the component status (self-awareness) (e.g.,80

the battery level of a robot) or the external environment (context-awareness) (e.g., the external humidity).
Groups are dynamically formed at the time of interaction by considering the interested receiving components
that satisfy sender’s predicates, and any run-time changes of attribute values allow opportunistic interac-
tions between components. By parameterising the interaction predicates with local attributes, groups can
be implicitly changed and adaptation is naturally captured. Security mechanisms can be placed on top of85

the attribute-based framework following standard approaches. Indeed security communities have already
established techniques to deal with such settings, i.e., attribute-based encryption [19] and attribute-based
access control policy languages like XACML 1 and FACPL [20]. What is missing is actually a programming
paradigm that realises these settings and we believe that AbC is such paradigm.

Modeling opportunistic interaction in classical communication paradigms like channel-based communica-90

tion, e.g., π-calculus [21], is definitely more challenging because components have to agree on specific names
or channels to interact. Channels have no connection with the component attributes or characteristics; they
are specified as addresses where the exchange should happen. Names and channels are static and changing
them locally at run-time requires explicit communication and intensive use of scoping mechanisms which do
affect readability and compositionality of programs.95

We would also like to stress that an attribute-based system is more than just the result of the parallel
composition of its interacting components; it also takes into account the environment where components
are executed. Indeed, the environment has a great impact on components behaviours and allows modelling
interdependence, i.e., a situation where components influence each other unintentionally. For example, in
an ant foraging system [22], where an ant disposes pheromone in the shared space to keep track of its way100

back home, the ant influences other ants behaviour as they are programmed to follow traces of pheromone
with higher concentration. In this way, the ant unintentionally influences the behaviour of other ants by
only modifying the environment.

Before we discuss the details of our approach, we want to mention that CAS features can be modelled
in many different mathematical approaches. Here, we would like to distinguish between two closely related105

ones, namely the formal language approach (like ours) and the logical approach. For instance, Process
algebra [23] follows a formal language approach while Multi-Agent Systems (MAS) [24] follow a logical one.

1https://www.oasis-open.org
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In a nutshell, Process Algebra models distributed systems by algebraic means. The word ‘process’ here
refers to the behaviour of a system. A system is anything showing behaviour, such as the execution of a
software system, the actions of a machine or even the actions of a human being. A process is represented110

by a program with algebraic composition operators and thus compositionality is considered as the main
principle in any process algebra. As opposed to Process Algebra, MAS originate as a sub-field of distributed
artificial intelligence and model systems in terms of logical formulas. Thus MAS’ models are represented
in terms of logical formulas that can be used to synthesise correct implementations. Unfortunately the
synthesis approach does not lend itself to compositionally. Indeed, the distributed synthesis problem is115

undecidable in general [25] and is only decidable for a number of fixed communication structures [26].
Logics, however, provide powerful tools to declaratively model the features of complex systems as MAS [24].
Different attempts have been carried out to bridge the gap between MAS and process algebra approaches,
see [27, 28, 29], however this is out the scope of this article. We insert our results in the Process Algebra
approach and we provide an operational and compositional model that precisely describes the step-by-step120

admissible evolutions of the system. Operational models ensure easily that implementations are correct with
respect to their specifications and based on the evolution rules, system properties can be verified [30].

In this article we will introduce AbC , a process calculus comprising a minimal set of primitives that
permits attribute-based communication and it is the outcome of different attempts towards modelling the
interaction of CAS scenarios. From our experience, we learnt that any attribute-based paradigm, tailored125

for modelling the interaction of CAS systems, should at least provide support for the following notions,
which are indeed the key ingredients of AbC :

• Attribute Environment : to provide a collection of attributes whose values represent the status of a
component. These values can be used to control the behaviour of a component at run-time.

• Attribute-based send and receive operations: to establish dynamic communication links between dif-130

ferent components based on the satisfaction of predicates over components attributes.

• Attribute update operation: to change attribute values based on contextual conditions and adapt the
behaviour of a component accordingly.

• Awareness construct : to collect awareness data and take decisions based on the changes in the attribute
environment.135

A system is modelled in AbC as a set of parallel components, each equipped with a set of attributes
whose values can be modified by internal actions. Communication actions (both send and receive) are
decorated with predicates over attributes that partners have to satisfy to make the interaction possible.
Namely, a sender broadcasts a message tagged with a partial view of its attributes and a propositional
predicate specifying the run-time properties of the targeted components. Accordingly, all other components140

that satisfy the sender predicate receive the message only if they are interested in its contents and the
exposed attributes of the sender satisfy their receiving predicates; otherwise they ignore the message. Thus,
communication takes place in an implicit multicast fashion, and communication partners are selected by
relying on predicates over the attributes in their interfaces. The main novelty of the AbC interaction model
is that low-level details of how communication links are established among interacting components are145

abstracted away from the programmer and are delegated to the underlying communication infrastructure
that mediates the interactions between components. Thus the programmer is given the ability to specify the
interactions between communicating components using logical formulae rather than using physical names
or addresses as the case of IP multicast [10]. Note that in IP multicast the reference address of the group
is explicitly included in the message while in AbC components are unaware of the existence of each other150

and they receive messages based on mutual interests. In other words, the primitives of AbC are data
centric and give the programmer the illusion of a shared global state of the system in which she can specify
interactions using logical formulae and thus basing the interactions directly on the states of the different
components without worrying about how messages are routed and delivered. Note that the communication
infrastructure is usually distributed and interacting components can be connected to different server nodes155

in the infrastructure where they send and receive messages. Thus a component needs only to know the
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server to which it is connected so that it participates in interaction. An infrastructure may serve as a mere
message-forwarder (i.e., it does not have knowledge about component states) or it may have knowledge and
is involved in filtering messages. This is a choice that has to be made and evaluated with respect to the
type of the application being developed. For instance, when the frequency of attribute updates is high the160

forwarding infrastructure is more appropriate and this is actually our choice in this article.
AbC has been used as the basis for building high-level and formally verifiable communication APIs

for CAS. For example, we developed APIs for Java [31], for Go [32], and for Erlang [33]. The actual
implementations of these APIs, except for the latter, fully rely on the operational semantics of AbC . The
formal correspondence between the AbC primitives and the programming constructs of the above mentioned165

APIs is instrumental to increase the confidence on the behaviour of programs by analysing the operational
semantics of the original AbC specifications. This would also permit exploiting these primitives to program
the interaction of CAS applications in different host languages as required by the application domain.

Contributions. The main contribution of this article is the assessment of a language-based approach to
program the interactions in collective adaptive systems at a reasonable level of abstraction. We present the170

AbC calculus as a candidate language and concentrate on its linguistic primitives and on their use. We show
the expressive power of AbC and how it can be used to naturally model non-trivial CAS. We show how to
program with AbC a sizeable and a sophisticated variant of the well-known problem of Stable Allocation
in Content Delivery Networks [34]. We also show how other well-known communication paradigms can be
naturally encoded in AbC . We present a Go API, named GoAt, and a distributed coordination infrastructure175

to support the interaction primitives of AbC and also to serve as a proof of concept on the feasibility of
our proposal. The choice of the implementation language and the type of the infrastructure is based on our
results in [35, 32] where we investigated other possible implementations and evaluated their performance.
Here we refine these results and present the most efficient and distributed API. Our main focus here is
on programming aspects and other more theoretical ones, concerned with formal semantics, behavioural180

relations, and equational laws, can be found in [36].
Note that this article is an extended and refined version of the conference paper presented in [37]. We

have changed and adapted the syntax (and accordingly the semantics) of [37] to enrich the language and
also to rule out complex constructions without compromising the expressive power. For instance, in the
conference version receivers could not predicate on the attributes of senders. Also received values could not185

be applied instantly to the attributes of receivers and thus some important behaviours like the ones in the
present case studies could not be encoded. Furthermore, scope restriction operators in the early version
were a slight adaptation of the ones in [21] while here we introduce novel operators, specifically designed to
capture specific features of collective adaptive systems and to model systems with fluid boundaries.

Structure of the article. In Section 2 we describe the AbC approach to program CAS interactions and we190

illustrate its expressive power. In Section 3 we present the case study of Stable Allocation and in Section 4
we discuss our approach to programming and its distinctive features. In Section 5 we introduce the Go API
and its distributed infrastructure. In Section 6 we relate our approach to closely related state of arts and
finally in Section 7 we report concluding remarks and future directions.

2. Programming CAS with attributes195

In this section, we introduce the attribute-based primitives of AbC and show how they can be used to
program CAS features. The semantic foundations of these primitives have been studied in [36] where a
behavioural theory for AbC has been presented. For the sake of completeness, a detailed description of AbC
and its operational semantics is reported in the Appendix. To capture the reader’s intuition we will use a
distributed variant of the Graph Colouring Problem [38] as a running example. This variant is designed to200

cover most of CAS features in a single case study with a well-understood system-level goal.

Example 2.1 (Step 1/4: Distributed Graph Colouring (DGC)). Let us consider a distributed variant of
the well known Graph Colouring Problem [38]. This problem can be rendered as a typical CAS scenario
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where a collective of agents, executing the same code, collaborate to achieve a system-level goal without any
centralised control.205

The goal is that of colouring the vertices of a graph in such a way that no two vertices sharing an edge
have the same colour. Formally, we have a set of n vertices, each of which is identified by an id (an integer
in our model). Each vertex i has a colour ci and a set of neighbours Ni such that j ∈ Ni if and only if
i ∈ Nj. We have to guarantee that, on termination, cj 6= ci for each j ∈ Ni.

Components.210

The basic building blocks to program a distributed system via the attribute-based primitives are compo-
nents. A component is a computational entity, denoted by Γ:I P , equipped with:

• an attribute environment Γ that associates attribute identifiers2 a ∈ A to values v ∈ V, whereA∩V = ∅;

• an interface I ⊆ A consisting of a set of public attributes that can be used to control the interactions
with other components (elements in dom(Γ)− I will be referred as private attributes);215

• a process P describing a component behaviour.

The public attribute environment of a component Γ:I P , is denoted by Γ ↓ I and represents the portion
of Γ that can be perceived by the context. It can be obtained from Γ by limiting its domain to the attributes
in the interface I:

(Γ ↓ I)(a) =

{
Γ(a) a ∈ I
⊥ otherwise

Example 2.2 (Step 2/4: DGC Components). Each vertex in DGC consists of a component of the form
Ci = Γi :{id,N}PC . Public attributes id and N are used to represent the vertex id and the set of its neighbours
N , respectively. These attributes, that are part of the public attribute environment, will be used to control
the interactions among partners.220

A group of components can be identified via a predicate Π, i.e., by predicating on the attribute values
in their interfaces. Formally, a predicate is a boolean assertion over attributes of the form:

(Predicates) Π ::= tt | ff | pk(E1, . . . , Ek) | Π1 ∧Π2 | Π1 ∨Π2 | ¬Π

where E is an expression respecting the following syntax:

(Expressions) E ::= v | x | a | this.a | op(Ẽ)

An expression E is built from constant values v ∈ V, variables x, attribute identifiers a, a reference to
the value of a (this.a) in the component that is executing the code, or using standard operators op(Ẽ)3.225

The evaluation of expression E under Γ is denoted by JEKΓ. The definition of J·KΓ is standard, the only
interesting case is Jthis.aKΓ = Γ(a).

A predicate Π is built from the boolean constants tt and ff, from a k-arity predicate pk(E1, . . . , Ek) and
also from standard boolean operators (¬, ∧ and ∨). The precise set of k-arity predicates is not detailed
here; we only assume that each pk can be a basic binary relation like =, >, <, ≤, ≥, and the predicates ∈230

and 6∈. For instance the predicate ∈2 (id,N) is satisfied if and only if id ∈ N for some element id and a set
N. In the rest of the article we will use the infix notation for pk and we will also drop the index k when it
is clear from the context.

Intuitively a predicate Π is interpreted over an attribute environment Γ as indicated by the semantics of
the satisfaction relation |= (Table 1). We comment on the semantics regarding the case of a k-arity predicate235

2In the rest of this article, we shall occasionally use the term “attribute” instead of “attribute identifier”.
3We omit the specific syntax of operators used to build expressions, and use Ẽ to denote sequences of expressions.
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Γ |= tt for all Γ

Γ 6|= ff for all Γ

Γ |= pk(E1, . . . , Ek) iff (JE1KΓ, . . . , JEkKΓ) ∈ JpkK
Γ |= Π1 ∧Π2 iff Γ |= Π1 and Γ |= Π2

Γ |= Π1 ∨Π2 iff Γ |= Π1 or Γ |= Π2

Γ |= ¬Π iff not Γ |= Π

Table 1: The semantics of the satisfaction relation

Γ |= pk(E1, . . . , Ek) and the remaining cases have the standard semantics of propositional formulae. Clearly
any predicate can be understood as a relation and thus this case states that a k-arity predicate pk(E1, . . . , Ek)
is satisfied by an attribute environment Γ if and only if the evaluations of all expressions (E1, . . . , Ek) under
Γ are related by the relation associated with the evaluation of pk (JpkK).

We say that a component Γ :I P satisfies predicate Π whenever its public attribute environment Γ ↓ I240

satisfies Π, i.e. Γ ↓ I |= Π.

Example 2.3 (Step 3/4: DGC Predicates). The following predicate:

(1 ∈ N)

identifies every component that has the identifier 1 in its neighbour set N, i.e., 1 ∈ Γ(N).

Programming components

Processes running at a component, in addition to standard programming constructs, can execute two
kinds of primitives: self-awareness and interaction commands. The former, that allows a process to sus-245

pend its activity until a given condition is satisfied, is used to coordinate processes executed in the same
component. The latter enables interactions among processes located at different components.

Processes running within a component interact with each other locally via the attribute environment Γ
that plays the role of a shared memory. To coordinate activities it is crucial that a process can suspended
its computation until a condition on the attribute environment, expressed via a predicate, is satisfied. This
can be done via the statement

〈Π〉P

A component, with attribute environment Γ and executing 〈Π〉P , would suspend P until Γ |= Π.
Processes on different components, instead, interact via attribute-based output and attribute-based input

actions. Namely, a sender process (executing inside a component with with an interface I and an attribute250

environment Γ) broadcasts a message “Γ ↓ I . Π(ṽ)”, containing a sequence of values ṽ and tagged with
its public attribute environment Γ ↓ I and a predicate Π specifying the run-time properties of the targeted
components. Accordingly, all other components that satisfy the sender predicate (i.e., with some attribute
environment Γ′ and interface I ′ such that Γ′ ↓ I ′ |= Π) receive the message only if they are interested in
its contents and the public attribute environment of the sender satisfy their receiving predicates Π′ (i.e.,255

Γ ↓ I |= Π′); otherwise they ignore the message.
More precisely, an attribute-based output, executed inside a component with some interface I and attribute

environment Γ, is the following:
(Ẽ)@Π

It is used to send a message, consisting of the outcomes of the evaluation of a tuple of expressions Ẽ, i.e.,
JẼKΓ, to all the components satisfying the closure of the predicate Π. The closure of Π, denoted by {Π}Γ,
is the predicate obtained from Π after replacing the occurrences of the expression this.a with their values
Γ(a). Note that the public environment of the sender Γ ↓ I is automatically attached to every sent message.260
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For instance a component, with an attribute environment Γ and an interface I in Example 2.2 that wants
to send a message to all its neighbours, can execute the action:

(E)@(this.id ∈ N)

whose execution induces sending the value JEKΓ to all components satisfying the closure of the predicate
(this.id ∈ N). Let us assume that Γ(id) = 1 then we have that the closure predicate is (1 ∈ N) which targets
the neighbours of component 1, i.e., the components where the identifier 1 occurs in their neighbour set N.
The public attribute environment Γ ↓ I = {(id, 1), (N, {. . . })} is automatically attached to the message so
that the receiver can predicate on it. Note that we did not specify here the set of neighbours (N, {. . . }).265

Attribute-based output is non-blocking. This means that the action is executed without knowing if there
are receivers and their exact number. In this sense the proposed approach implements an asynchronous
interaction where the sender does not know if the message has been received or not. In particular, when
the output predicate Π is equivalent to false, the output action is executed without affecting any other
component in the system.270

To receive messages a component can execute an attribute-based input, denoted by Π(x̃):

Π(x̃)

This statement allows to receive a message sent by a component satisfying predicate Π; the sequence of
variables x̃ acts as a placeholder for the received values.

The predicates used in input actions can also refer to variable names in x̃ and the received values can be
used to check whether specific conditions are satisfied. For instance, the input action

((x = “try”) ∧ (this.id > id) ∧ (this.round = z))(x, y, z)

can be used to receive a “try” message of the form (“try”, c, r) for some colour c received on y and a round r
received on z that is equal to this.round and the value of the interface attribute id of the sending component
is less than this.id. Thus, the predicate can be used to check either the received values or the values in the275

sender public environment.
The interaction operators we have just described can be combined with standard operators borrowed

from process algebras to build processes whose syntax is reported below:

P ::= 0 | Π(x̃).U | (Ẽ)@Π.U | 〈Π〉P | P1 + P2 | P1|P2 | K

U ::= [a := E]U | P

A process P can be the inactive process 0, an action-prefixed process, act.U , where act is an input or
output action and U is a process possibly preceded by an attribute update, a context aware 〈Π〉P process, a
nodeterministic choice between two processes P1 + P2, a parallel composition of two processes P1|P2, or a
process call with a unique identifier K used in process definition K , P . The parallel operator, P |Q, models280

the interleaving between co-located processes, i.e., processes residing within the same component. The choice
operator, P + Q, indicates a nondeterministic choice among P and Q. Notice that after a communication
action is performed a (possibly empty) sequence of updates ([a := E]) can be executed. These updates do
change the attribute environment of a component and their effects appear immediately after the execution
of their associated action.285

Other process operators can be defined as macros, and we will use the following ones:

if Π then P1 else P2 , 〈Π〉P1 + 〈¬Π〉P2 (1)

[a1 := E1, a2 := E2, . . . , an := En]P , [a1 := E1][a2 := E2] . . . [an := En]P (2)

set(a,E)P , ()@ff.[a := E]P (3)

8



The role of the macros in equations (1) and (2) is self-explanatory, and (3) is used to express a local
computational step by a component that wants to evolve independently. Notice that the action ()@ff
models a sending operation on a false predicate which is not satisfied by any communication partner and
thus it is not received by other components. The only side effects of this macro is the attached attribute290

updates; it can be used by components that need to updates their own attribute values.

Building Systems

When the attribute-based paradigm is used, the exact underlying communication infrastructure is ab-
stracted away. Components do not interact with each other via their addresses but by relying on their
public interfaces. Thus the programming constructs (to compose different systems and to allow them to in-295

teract) abstract the low-level details of establishing communication links from the programmer and delegate
this role to the underlying communication infrastructure where these interaction primitives will be based.
As we will see in Section 5 this infrastructure is responsible for routing and ordering messages and also for
establishing communication links among components in a reasonable way while preserving the properties of
the composition primitives as defined by their semantics.300

An AbC system is generated by the following grammar:

(System) C ::= Γ:I P | C1‖C2 | [ C ]/f | [ C ].f

Thus, a system, denoted by C, is basically either a single component Γ:I P , a parallel composition of two
systems, C1‖C2, an in-scoped system [ C ]/f or an out-scoped system [ C ]/f .

Note that within systems, it is important to have mechanisms that can be used to restrict components
interactions, i.e., to facilitate private interactions between selected components. To this purpose, we have305

introduced the restriction operators [ C ].f and [ C ]/f , where f is a function associating a predicate Π to
a tuple of values ṽ ∈ V∗ and an attribute environment Γ.

Let us consider a system C that is composed of different components, one of which has a public attribute
environment Γ and sends ṽ to components satisfying Π. When the message outgoes [ C ].f , the target
predicate is updated to consider also predicate Π′ = f(Γ, ṽ), thus the components satisfying Π ∧ Π′ will
receive the message. To prevent the leak of a secret s outside C, we can use the following function:

fs(Γ, ṽ) =

{
tt s 6∈ ṽ
ff s ∈ ṽ

Similarly, [ C ]/f can be used to limit the ability of C to receive messages. In particular, if a component
with public attribute environment Γ sends a message ṽ to components C satisfying Π, only the components
in C that satisfy Π ∧ f(Γ, ṽ) will be eligible to receive the message.310

The restriction operators in AbC are novel and were designed to capture specific features of collective
adaptive systems. For instance the fact that restriction operators can delimit the scope of targeted com-
ponents by restricting or weakening the predicate of the transmitted message provides an elegant way to
model systems with fluid boundaries. Note this is possible because the restriction function f(Γ, ṽ) is not
only parametric to the message contents ṽ but also to the public environment of the sending component315

Γ, which dynamically evolves at run-time. The dynamic degree of observability of exchanged messages
provides a convenient way to model collective behaviour from a global point of view. This means that local
interactions are hidden from external observers which can only observe the system as if it was a single huge
entity, mimicking a similar notion of superorganism in ecology4 [39].

Example 2.4 (Step 4/4: DGC System). In Example 2.1 we introduced the structure of the components320

modelling the vertices in the considered scenario. Here, we show how the behaviour of our components can

4“superorganism is a collection of the same or similar organisms that are connected in a functional way and behave as a
single organism, working to accomplish a set of global goals.”
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be programmed to assign a colour (an integer) to each of them while avoiding that two neighbours get the
same colour.

The proposed algorithm consists of a sequence of rounds for colour selection that goes on until the specified
goal is reached. At the end of each round at least one component gets assigned a colour.325

Components use messages of the form (“try”, c, r) to inform their neighbours that at round r they want
to select colour c and messages of the form (“done”, c, r) to communicate that colour c has been definitely
chosen at the end of round r. At the beginning of a round, each component i selects a colour and sends
a try-message to all components in Ni. Component i also collects try-messages from its neighbours. The
selected colour is assigned to a component only if it has the greatest id among those that have selected the330

same colour in that round. After the assignment, a done-message (associated with the current round) is sent
to neighbours. A new round starts when a message, associated with a round r such that this.round < r, is
received.

This algorithm can be implemented in AbC by using four processes, F for forwarding try-messages
to neighbours, T for handling try-messages, D for handling done-messages, and A for assigning a final335

colour. Process PC of Example 2.2 is now defined as the parallel composition of these four processes:
PC = F | T | D | A.

The following private attributes, local to each component, are used to control the progress of our al-
gorithm: colour, round, done, assigned, used, counter, send and constraints. The attribute “colour” stores
the value of the selected colour, attribute “round” stores the current round while “constraints” and “used”340

are sets, registering the colours used by neighbours. The attribute “counter” counts the number of mes-
sages collected by a component while “send” is used to enable/disable forwarding of messages to neigh-
bours. The private attributes of each component are all initialised with the following values: colour = ⊥,
counter = round = done = 0, constraints = used = ∅, send = tt, and assigned = ff.

In process F reported below, when the value of attribute send becomes tt, a new colour is selected
(min{i 6∈ this.used}), and a try-message containing this colour and the current round is sent to all the
components having this.id as neighbour. The new colour is the smallest colour that has not yet been se-
lected by neighbours, that is min{i 6∈ this.used}. The guard ¬assigned is used to make sure that components
with assigned colours do not take part in the selection anymore.

F , 〈send ∧ ¬assigned〉
(“try”,min{i 6∈ this.used}, this.round)@(this.id ∈ N).[send := ff, colour := min{i 6∈ this.used}]F

Note that the values of attributes send and colour are updated simultaneously with the emission of the try-345

message. The attribute send is set to false so that this process does not propose a new colour before a decision
is made on the proposed one. The attribute colour records the proposed colour, i.e., min{i 6∈ this.used}.

Process T , reported below, receives messages of the form (“try”, c, r). If r = this.round, as in the first
two branches, then the received message has been originated by another component performing the same
round of the algorithm. The first branch is executed when this.id > id, i.e., the sender has an id smaller350

than the id of the receiver. In this case, the message is ignored (there is no conflict), simply the counter of
received messages (this.counter) is incremented. In the second branch, this.id < id, the received colour is
recorded to check the presence of conflicts. The value of y is added to this.constraints and this.counter is
incremented by 1.

If r > this.round, as in the last two branches, then the received message has been originated by a compo-
nent executing a successive round and two possible alternatives are considered, this.id < id or this.id > id.
In both cases, round is set to r, send and counter are updated accordingly, and this.constraints is set to the
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value of y if this.id < id.

T , ((x = “try”) ∧ (this.id > id) ∧ (this.round = z))(x, y, z).
[counter := counter + 1]T

+ ((x = “try”) ∧ (this.id < id) ∧ (this.round = z))(x, y, z).
[counter := counter + 1, constraints := constraints ∪ {y}]T

+ ((x = “try”) ∧ (this.id > id) ∧ (this.round < z))(x, y, z).
[round := z, send := tt, counter := 1, constraints := ∅]T

+ ((x = “try”) ∧ (this.id < id) ∧ (this.round < z))(x, y, z).
[round := z, send := tt, counter := 1, constraints := {y}]T

Process D, reported below, is used to receive messages of the form (“done”, c, r). These are sent by com-
ponents that have reached a final decision about their colour. When (“done”, c, r) is received, we have that
either this.round ≥ r or this.round < r. In the first case, the used colour is registered and the counter
this.done is incremented. In the second case, private attributes are updated to indicate the startup of a new
round.

D , ((x = “done”) ∧ (this.round ≥ z))(x, y, z).
[done := done + 1, used := used ∪ {y}]D

+ ((x = “done”) ∧ (this.round < z))(x, y, z).
[round := z, done := done + 1, constraints := ∅,
send := tt, counter := 0, used := used ∪ {y}]D

Process A, reported below, is used to manage the definitive selection of a colour and can only be executed
when messages from all “pending” neighbours have been received (this.counter = |this.N|−this.done) and
no conflict has been found (this.colour 6∈ this.used ∪ this.constraints). When the above conditions are
satisfied, message (“done”, this.colour, this.round + 1) is sent to neighbours, the assigned attribute is set to
true, and the process terminates.

A , 〈(this.counter = |this.N|−this.done)∧(this.colour 6= ⊥)∧(this.colour 6∈ this.constraints∪this.used)〉

(“done”, this.colour, this.round + 1)@(this.id ∈ N).[assigned := tt]0

355

Remark. Example 2.4 shows the main advantages of the attribute-based interaction. In essence, components
are infrastructure-agnostic, i.e., they abstract from the underlying communication infrastructure and rely
on anonymous one-to-many interaction pattern to communicate; this simplifies the design of component
behaviours, because there is no need to manage the communication channels or the addresses on which
components interact. The use of communication predicates, to derive the interaction between different360

components, permits programming data centric applications by taking into account the run-time features
of the interacting components.

2.1. Expressiveness of the AbC Calculus

In this section, we do provide some evidence of the expressive power of AbC by showing how different
communication models and interaction patterns can be easily modelled by using its primitives. Indeed, we365

believe that attribute-based communication can be used as a unifying framework to encompass a number
of communication models. Further details regarding the actual implementation of the material presented in

this section can be found in the webpage of Ab
a
CuS5: a Java API for the AbC calculus.

5 http://lazkany.github.io/AbC/

11

http://lazkany.github.io/AbC/


Encoding channel-based interaction. We show how one-to-many channel-based interaction can be encoded
in the AbC calculus. In the former interaction pattern, a process sends a message on a specific channel
name and all processes running in parallel and listening on the same channel should catch the message. A
first idea would be to model channel names as AbC attributes, however this does not work. The reason
is that in channel-based model, channels where the exchange happens are instantly enabled at the time
of interaction and are disabled afterwards. This is not possible in AbC ; attributes are persistent in the
attribute environment and cannot be disabled at any time (i.e., attribute values are always available to be
checked against sender predicates). Instead, the key idea of our encoding is to use structured messages to
select communication partners where the name of the channel is the first element in the message; receivers
only accept messages containing channels that match their receiving channels. Actually, attributes do not
play any role in such interaction so we assume components with empty environments and interfaces i.e.,
∅ :∅P . In what follows, we use [P ] to denote ∅ :∅P. Thus a pair of processes, with one willing to receive on
channel a and the other willing to send on the same channel, can be modelled as follows:

[(x = a)(x, y).P ] ‖ [(a,msg)@(tt).Q]

To show the feasibility of encoding broadcast channel-based calculi into AbC , we have encoded a calculus
inspired by bπ-calculus [40] into AbC . This calculus has been chosen because it uses broadcast instead370

of binary communication as a basic primitive for interaction which makes it a sort of variant of value-
passing CBS [11]. Furthermore, channels in this calculus can be communicated like in the point-to-point
π-calculus [21] which is considered as one of the richest paradigms introduced for concurrency so far.

Based on the separation result of [41] it has been proven that broadcast and binary communication
are incomparable in the sense that there does not exist any uniform, parallel-preserving translation from a375

broadcast into a binary model up to any “reasonable” equivalence. This is because in binary communication
a process can non-deterministically choose the communication partner while in broadcast it cannot. Proving
the existence of a uniform and parallel-preserving encoding of a channel-based broadcast calculus into AbC
up to some reasonable equivalence ensures at least the same separation results between AbC and any binary
calculus like the π-calculus. The full encoding, the formal definition which specifies what properties are380

preserved by this encoding, and a proof of its correctness up to a specific behavioural equivalence can be
found in [36]. There we also argue that encoding AbC in channel-based interaction is not possible simply
because such formalisms do not have explicit local state representation and a process cannot instantly inspect
its local state while reacting to an incoming message. In AbC the behaviour of a process is parametric to
its attribute environment and may send or receive messages based on the run-time values of its attributes.385

Also group-based [42, 43, 10] and publish/subscribe-based [44, 45] interaction patterns can be naturally
rendered in AbC . These interaction patterns, however, do not have formal descriptions and thus below we
proceed by relying on examples. It is worth mentioning that existing group-based (e.g., Actors [42]) and
publish/subscribe (e.g., topic-based [45]) frameworks rely on totally loosely-coupled interaction mechanisms
where the order in which exchanged messages are delivered to interacting components is not unique. Such390

mechanisms are useful when communicating in distributed settings because they fully break the synchronisa-
tion dependencies between interacting components. Unfortunately they cannot cope well when coordination
among behaviours is required which is the norm in collective-behaviour. For instance, implementing coor-
dination protocols like the one in Example 2.1 in these frameworks becomes a very tedious and challenging
task. This is because that the programmer has to manually manage such coordination by implementing395

a total order of message delivery, e.g., in Actors [42] Remote Procedure Call (RPC) is used. However, to
implement such order one must to know at least the number of interacting components, but that contradicts
the open-endedness principle of CAS. In AbC , coordination is a first class entity and it can be enforced
syntactically, e.g., a process of the form (v1)@Π1.(v2)@Π2.P ensures that the value v1 is delivered to all
receivers before v2. Furthermore, if two components are concurrently enabled to send two messages, say m1400

and m2, our interaction model ensures that all receivers equally receive these messages in one of these orders
m1 −→ m2 or m2 −→ m1. Thus the order of message delivery is unique, i.e., if a component receive m1 and
m2 in the order m1 −→ m2 then all other components must receive them in the same order. Note that AbC
primitives are totally oblivious to such details and delegate this role to the infrastructure that mediate the
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interactions between components as we will explain in Section 5. This infrastructure can therefore establish405

a unique order of message delivery without involving the interacting components in the process.

Encoding group-based interaction. In the group-based model, when an agent wants to send a message to all
elements of a group, it attaches the name or a reference to the group in the message and the message is
propagated using this reference.

In the following, we show that when using a group name as an attribute in AbC , the constructs for
joining or leaving a group can be modelled as attribute updates, like in the following example, where we
assume that initially we have Γ1(group) = b, Γ2(group) = a, and Γ7(group) = c:

Γ1 :{group} (msg)@(group = a).0 ‖
Γ2 :{group} (group = this.group)(x).0 | set(this.group, c)0 ‖ . . .
‖ Γ7 :{group} (group = this.group)(x).0 | set(this.group, a)0

Component 1 wants to send the message “msg” to group “a”. Only Component 2 is allowed to receive it410

as it is the only member of group “a”. Component 2 can leave group “a” and join “c” by performing an
attribute update as reported on the right hand side of the interleaving operator | . On the other hand, if
Component 7 joined group “a” before “msg” is emitted then both of Component 2 and Component 7 will
receive the message.

Encoding publish-subscribe. In the publish/subscribe model, there are two types of agents: publishers and
subscribers and there is an exchange server that mediates their interactions. For instance, in topic-based
publish/subscribe models [45], publishers produce messages tagged with topics and send them to the ex-
change server which is responsible for filtering and forwarding these messages to interested subscribers.
Subscribers simply register their interests to the exchange server and receive messages according to their
interests. Publish/subscribe interaction patterns can be considered as special cases of the attribute-based
ones. For instance, a natural modeling of the topic-based publish/subscribe model [45] into AbC can be
obtained by allowing publishers to broadcast messages with true predicates (i.e., satisfied by all subscribers)
and requiring subscribers to check compatibility of the exposed publishers attributes with their subscriptions,
like in the example below:

Γ1 :{topic} (msg)@(tt).0 ‖ Γ2 :{subscription} (topic = this.subscription)(x).P ‖
. . . ‖ Γn :{subscription} (topic = this.subscription)(x).Q

The publisher broadcasts the message “msg” tagged with a specific topic for all subscribers (predicate “tt”415

is satisfied by all); subscribers receive the message if the topic matches their subscription.
We want to stress again that while AbC can be used to encode the group-based and the publish/subscribe-

based paradigms the converse is not possible. The validity of this argument stems from the fact that the
latter paradigms are more concerned with communication rather than coordination as the case with AbC .
Clearly, coordination is more challenging and is concerned with maintaining a total order of message delivery.420

Furthermore, since AbC supports message passing, we can use its primitives to program applications with
communication and coordination objectives.

In the next sections, we present a sizeable case study inspired by an industrial application of CAS.
We focus on the role of the communication primitives and of the external environment in determining
the communication between interacting components. Moreover, we use the case study to motivate the425

new communication primitives of AbC and to show that attribute-based communication is appropriate for
handling CAS interactions. Additional case studies are presented in the technical report in [46]. In [46],
we show how to program a crowd steering scenario and we also show how to program a swarm of robotics,
performing a rescuing mission in a disaster arena.

3. Stable Allocation in Content Delivery Networks430

This case study is based on the distributed stable allocation algorithm adopted by Akamai’s Content
Delivery Network (CDN) [34]. Akamai’s CDN is one of the largest distributed systems in the world. It has
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currently over 170,000 servers located in over 1300 networks in 102 countries and serves 15-30 % of all Web
traffic. To avoid dealing with billions of clients individually, Akamai divides the clients of the global internet
into groups, called map units each having a specific demand, based on their locations and traffic types. Also435

content servers are grouped into clusters, and each cluster is rated according to its capacity, latency, etc.
Map units prefer highly rated clusters while clusters prefer low demand map units. The goal of global load
balancing is to assign map units to clusters such that preferences are accounted for and constraints are met.

The allocation algorithm in [34] is a slight variant of the Stable Marriage Problem (SMP), reported
in [47]. The goal of the original algorithm is to find a stable matching between two equally sized sets of440

elements given an ordering of preferences of each element of the two sets. Each element in one set has to be
paired to an element in the opposite set in such a way that there are no two elements of different pairs which
both would rather have each other than their current partners. When there are no such pairs of elements,
the set of pairs is deemed stable. A natural and straightforward AbC implementation of the original stable
marriage problem can be found in [31].445

The variant considered in [34] allows (i) many map units to be assigned to a single cluster and (ii) map
units to rank only the top dozen, or so, clusters that are likely to provide good performance. The first feature
is a typical generalisation [48] of the original SMP, while the second is a mere simplification of the problem.
Implementing these features in AbC does not pose any challenge, but it would make the example more
verbose. Actually, our implementation of the original problem in [31] needs only to be extended to consider450

an extra attribute, named capacity, necessary for determining when a cluster should stop engaging with more
map units. Moreover, the map units assigned to a cluster should be ordered according to their demands,
so that a dissolve message goes first to the most demanding map units when necessary. Furthermore, these
features do not add much to the original SMP; they still require map units and clusters to have predefined
lists of preferences such that only ranked elements can participate in the algorithm. Obviously, this implies455

that one cannot take advantage of dynamic creation of new clusters.
In this article, we consider a more interesting variant of stable allocation that is better suited for the

dynamicity of CDN. In this variant, the arrival of new clusters is considered, it is not required that elements
know each other, and no predefined preference lists are assumed. Note that in these settings point-to-point
interaction is not possible because elements are not aware of each other and the choice of implicit multicast460

is crucial. Indeed, in our variant, elements express their interests in potential partners by relying on their
attributes rather than on their identities. In essence, an element of one set communicates with elements of
the opposite set using predicates. Two parties that agree on some predicates form a pair, otherwise they
keep looking for better partners. A pair splits only if one of its elements can find a better partner willing to
accept its offer. In this way, preferences are represented as predicates over the values of some attributes of465

the interacting partners.
In this scenario, we consider the values of attributes demand, for a map unit, and rating, for a cluster,

as a means to derive the interaction. To simplify the presentation, these attributes can take two different
values: high (H) and low (L). Note that such setup does not simplify the problem itself as we will explain
later. The reason is that the asymptotic complexity of our proposed solution is insensitive to the number of470

preference attributes and their evaluations. Of course we consider that such attributes assume a reasonably
small number of values. An element in the system can be either a Unit or a Cluster. Units start the protocol
by communicating with clusters in the quest of finding an element that satisfies their highest expectations.
If no cluster accepts the offer, a unit lowers its expectations and proposes again until a partner is found.
Clusters are always willing to accept proposals from any unit that enhances their levels of satisfaction.475

In case of a new arrival, some pairs of elements might dissolve if the new arrival enhances their levels of
satisfaction. This means that not all pairs in the system are required to split on new arrivals; only those
interested will do so. The system level goal (the emergent behaviour) is to construct a set of stable pairs
from elements of different types by combining the behaviour of individual elements in the system through
message passing. Mathematically speaking, the problem consists of computing a function at the system480

level by combining individual element behaviours, without relying on a centralised control. Note that since
map units initiate the interaction and clusters only react, stable allocation is guaranteed and the solution
is a “map-unit-optimal”, as shown in [47], which is a property that fits with the CDN’s goal of maximising
performance for clients.
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Allowing new arrivals is crucial to guarantee scalability and open-endedness while communicating based485

on predicates rather than on identities or ranks is crucial to deal with anonymity. The actual implementation
of this algorithm alongside with experiment results can be found in the Webpage of GoAt6: a Go API for
the AbC calculus.

The system in our attribute-based scenario can be modelled in AbC as the parallel composition of existing
units and clusters (i.e., Uniti ‖ . . . ‖ Unitn ‖ Clusteri ‖ . . . ‖ Clustern). Notice that units and clusters interact490

in a distributed setting without any centralised control. Each element is represented as an AbC component.
A unit, Uniti, has the form ΓI :IPu where Γi represents its attribute environment, I represents its interface
where I = {demand, idi}, and the process Pu represents its behaviour. A cluster, Clusteri, has the form
Γr :I′ Pc where Γr represents its attribute environment, I ′ represents its interface where I ′ = {rating, idr},
and the process Pc represents its behaviour.495

In addition to the attributes demand and rating, mentioned above, the attribute environments of units
and clusters contain the following private attributes:

partner: current partner’s identity; in case they are not engaged, the value is −1;

exPartner: previous partner;

idi and idr: the identity of units and clusters, respectively;500

ref: current preference, 0 for high rating and 1 for low rating, initially ref = 0;

success: a boolean attribute which is set to true when an accept message from a cluster is received, initially
success = ff;

arrival: a boolean attribute which is set to true when an arrival message is received, initially arrival = ff;

dissolve: a boolean attribute which is set to true when a dissolve message is received, initially dissolve = ff;505

rank: an integer attribute used to rank the current partner: 0 for high and 1 for low, initially rank = 2;

bof: an integer attribute used to rank the new arrival: 0 for high and 1 for low. Initially bof = 2;

lock: an integer attribute used to implement a lock within a single component, initially lock = 0;

counter: a counter that is used to implement a monitor inside a component. Initially counter = threshold+1
where threshold is a constant number representing the number of computational steps a process can510

take before a specific event can occur.

The behaviour of a unit component is specified by the process Pu which is the parallel composition of the
processes Pr, Mt, Mh, and Na. Process Pr defines a proposal process, process Mt defines a monitor
process, process Mh defines a message handler process, and process Na defines a negative acknowledgment
process. The behaviour of the proposal process Pr is defined below:

Pr , 〈ref = 0〉(“propose”, this.demand, this.idi, 0)@Πh.[counter := 0, dissolve := ff]Ph

+

〈ref = 1〉(“propose”, this.demand, this.idi, 1)@Πl.[counter := 0, dissolve := ff]Ph

Process Pr sends a proposal message to all components that either satisfy predicate Πh or predicate Πl,
depending on the current value of the ref attribute. The predicate Πh represents high expectations where
Πh = (rating = “H”) while the predicate Πl represents low expectations where Πl = (rating = “L”). Note
that the branches of process Pr encode the preferences of a unit and the selection of any of them depends515

on the run-time value of ref. These branches can be thought of as context-dependent behavioural variations

6https://github.com/giulio-garbi/goat
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in Context-Oriented Programming [49]. Since the initial value of ref is 0, the process proceeds with the first
branch. The proposal message contains a proposal label, “propose”, the values of attributes demand, idi,
and ref of the unit respectively. The sent value of ref will be used later to decide if an accept message from
a cluster is stale (i.e., the received value of ref is different from the current value of ref). By sending a520

proposal message, the counter and the dissolve attributes are reset. After this step, process Pr evolves to
Ph which is a proposal handler process. Reseting the counter attribute will decide when process Pr may
propose again.

The monitor process Mt is reported below:

Mt, 〈counter < threshold〉()@ff.[counter := counter + 1]Mt
+
〈counter = threshold〉()@ff.[counter := counter + 1, ref := (ref + 1)%2, success := ff]Mt

Process Mt may increase the value of the counter attribute autonomously by sending a message on a
false predicate (i.e., ()@ff) as long as its value is less than the constant threshold. As mentioned before these525

messages cannot be received by any components and thus behave as silent moves. By assuming fairness and
a reasonably large value of threshold, we can guarantee that an accept message from a cluster, that satisfies
the sent proposal message (if there is any), is received before the threshold is reached. If the threshold
is reached, the monitor process increments the counter, adjusts the preference of the unit according to
(ref + 1)%2 and resets the value of the success attribute to false. Note that the adjustment (ref + 1)%2 is530

used to account for new arrivals of clusters. Thus if the unit is not yet paired with any cluster after proposing
with its lowest expectation (i.e., ref = 1) the unit is given the opportunity to try again and to propose with
highest expectation (i.e., ref = (1 + 1)%2 = 0) until it finds a matching cluster. This is important because
our algorithm relax the closed world assumption of [34] and thus we cannot assume that the number of units
matches the number of clusters. This way we account for open world requirement of CAS in our solution.535

As we have seen so far, the code of processes is infrastructure-agnostic, i.e., it does not contain addresses
or channel names. It is completely data-centric and relies on the run-time characteristics of the interacting
partners.

In the proposal handler process, reported below, we can understand the role of the awareness construct
〈Π〉 as an environmental parameter used to influence the behaviour of a unit at run-time.540

Ph , 〈lock = 0 ∧ ¬success ∧ counter > threshold〉Pr
+

〈lock = 0 ∧ dissolve〉Pr
+

〈lock = 0 ∧ arrival ∧ (bof ≤ rank− 1)〉
(“dissolve”)@(idr = this.partner).

[arrival := ff, success := ff, ref := bof, bof := 2, rank := 2,
exPartner := partner, partner := −1]Pr

The process blocks executing until one of three events occurs. If no lock is acquired (lock = 0), no accept
message from a cluster is received (¬success), and a threshold is reached (counter > threshold), process Ph
calls the proposal process Pr again by considering the new value of ref modified by the monitor process.
If no lock is acquired and a dissolve message from the current partner is received (dissolve = true), process
Ph calls the proposal process Pr again. Finally, if no lock is acquired and an arrival message is received545

(arrival = true), and the rank of the new arrival is better than the rank of the current partner (bof ≤ rank−1),
the process sends a dissolve message that contains a dissolve label to its partner, sets the value of attribute
exPartner to the value of attribute partner and the value of attribute ref to the value of attribute bof, and
resets the values of attributes arrival, success, bof, rank, and partner to their initial values. Process Ph calls
the proposal process Pr again.550
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The negative acknowledgment process Na is reported below:

Na , (x = “accept”∧((z 6= ref) ∨ success))(x, y, z).

(“ack”, −1)@(idr = y).0 | Na

Na ensures that after a successful reception of a first accept message from a cluster (i.e., success = tt) all
other accept messages to this unit are discarded (i.e., it sends an acknowledgement message with id=-1
which is interpreted by a cluster as a negative acknowledgement). Note that when the interleaving operator
“|” occurs in the scope of a recursive call (e.g., the structure P , a.Q|P for some action a and processes
P and Q) this would be equivalent to a replication process, say a∗.Q. According to the semantics of AbC555

process a∗.Q replicates itself every time action a is executed, i.e., a∗.Q evolves to Q|a∗.Q when action a
is executed. Thus process Na in our scenario replicates itself every time an accept message is received to
ensure that it is always able to catch incoming accept messages; the condition (z 6= ref) is crucial to discard
stale messages.

The message handler process Mh is reported below:

Mh ,

〈¬success〉(x = “accept”∧ z = ref)(x, y, z).

[lock := 1, success := tt, rank := ref, exPartner := partner, counter := threshold + 1]

(“ack”, y)@tt.[lock := 0, partner := y]Mh

+

(x = “dissolve” ∧ idi = partner)(x).

[dissolve := tt, success := ff, ref := 0, rank := 2, partner := −1]Mh

+

〈partner 6= −1〉(x = “arrived” ∧ rating = “H”)(x).[arrival := tt, bof := 0]Mh

+

〈bof 6= 0∧ partner 6= −1〉(x = “arrived” ∧ rating = “L”)(x).[arrival := tt, bof := 1]Mh

Mh can respond to one of three events: if no accept message is received yet (i.e., ¬success) and a new560

one arrives, the process receives the accept message only if the message is not stale (z = ref), acquires a lock
(lock := 1), sets the value of attribute success to true, the value of attribute rank to the value of attribute
ref, the value of attribute exPartner to the value of attribute partner and resets the counter. The process
proceeds by sending an acknowledgement message to the cluster, releasing the lock, setting the value of
attribute partner to the received cluster identity, and then the process continues as Mh. Notice that the565

lock is important to ensure that the handler process Ph does not proceed before all required attributes are
assigned the right values. In this case, the first branch of process Mh is executed atomically with respect
to the co-located processes in the unit component.

If a dissolve message from the current partner is received, the process sets the value of attribute dissolve
to true, resets the values of attributes success, ref, rank, and partner to their initial values and continues as570

Mh. If an arrival message is received, the arrival attribute is set to true and the value of attribute bof is
set to 0 if the attached attribute value is high rating = “H” otherwise the value of attribute bof is set to
1 and the process continues as Mh. Notice that arrivals with low value of attribute rating cannot override
the ones with high values. This is guaranteed by the condition bof 6= 0 on the last branch. Also an arrival
message can have an effect on the behaviour of a unit only if the unit is already engaged otherwise the575

arrival message is just discarded which is ensured by the condition partner 6= −1 in the last two branches of
process Mh.

The coordination among processes running in a single unit is made possible by relying on shared at-
tributes, awareness constructs, and attribute updates to implement proper lock mechanisms.

The behaviour of a cluster component is specified by the process Pc which is the parallel composition
of the processes Ar, Rh and Dh. Process Ar defines an arrival process, process Rh defines a proposal
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reception handler process, and process Dh defines a dissolve handler process. The arrival process Ar is
defined below:

Ar , (“arrived”)@tt.0

This is the first process that takes a step when a cluster component wants to be involved in the allocation580

procedure. It simply sends an arrival message to all components in the system and then terminates. The
arrival message contains an arrival label, “arrived”.

The proposal reception handler is reported below:

Rh , (x = “propose”)(x, y, z, n).R | Rh

The process simply receives a proposal message and evolves to the reception process R. Note that process
Rh replicates itself every time a message is received to ensure that no proposal is lost. The reception process
R reported below, checks if no lock is acquired and the rank of the communicated value of attribute demand585

of the unit is less than the rank of the current partner (rank(y) < rank), the process sends an accept message
to the unit where the proposal message came from, addressing it by its identity and acquires a lock, otherwise
the process R terminates. The function rank(y) takes the value of demand as a parameter and returns 1
if y = “H” and 0 otherwise. The accept message contains an acceptance label, “accept”, the identity of
the current cluster, and the reference of the proposal message. The process then waits to receive either590

acknowledgement message or a negative one from the unit. If an acknowledgement is received, the value of
attribute partner is set to the received identity of the unit, the rank is set to the value returned by rank(y),
the lock is released and process R terminates. Note that a dissolve message is sent to the current partner
before releasing the lock in case a cluster is already engaged. If a negative acknowledgement is received then
the lock is released. The lock is needed to ensure that concurrent proposals are handled sequentially which595

is important to guarantee a consistent state of the attribute environment.

R , 〈lock = 0〉(
if (rank(y) < rank) then {

(“accept”, idr, n)@(idi = z).[lock := 1]
(
if (partner 6= −1) then {

(e = “ack” ∧ f = idr ∧ idi = z)(e, f).
[exPartner := partner, partner := z, rank := rank(y)]
(“dissolve”)@(idi = this.exPartner).[lock := 0]0
} else {
(e = “ack” ∧ f = idr ∧ idi = z)(e, f).
[partner := z, rank := rank(y), lock := 0]0
}

+
(e = “ack” ∧ f 6= idr ∧ idi = z)(e, f).[lock := 0]0

)

} else 0)

The dissolve handler process is reported below:

Dh , (x = “dissolve” ∧ idi = partner)(x).

[rank := 2, exPartner := partner, partner := −1]Dh

When a dissolve message from a cluster’s partner is received, the value of attribute exPartner is set to the
value of attribute partner, the values of attributes rank and partner are reset to their initial values, and the
process calls itself.
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Remark 3.1. In [47], the authors showed that their algorithm terminates with a matching that is stable600

after no more than n2 proposals, where n is the number of proposing elements, i.e., the algorithm has O(n2)
worst-case complexity. In our variant, it should be clear that the worst case complexity is also O(n2) even
after relaxing the assumptions of the original algorithm, i.e., no predefined preference lists and components
are not aware of the existence of each other, so point-to-point communication is not possible. Interestingly,
the complexity is still quadratic even if we consider a blind broadcast mechanism where proposals are sent to605

all components in the system except for the sender unit. In this way, for n-units, n-clusters, and a constant
L related to the preferences of a unit where L is computed based on the number of branches in the proposal
process Pr, we have that each unit can send at most L ∗ (2n− 1) proposals.

The example below shows a possible execution of our variant of the stable allocation problem.

Example 3.1. Let us consider two map units M0 and M1 and two clusters C0 and C1 with attribute610

environments defined as follows: Γm0 = {demand = “H”, idi = m0}, Γm1 = {demand = “L”, idi = m1},
Γc0 = {rating = “H”, idr = c0}, and Γc1 = {rating = “L”, idr = c1}. Below we show the execution of the
stable allocation protocol, presented above, until a stable matching is reached.

• C0 broadcasts an arrival message through process Ar.

• C1 broadcasts an arrival message through process Ar. Because no unit is engaged yet, all arrival615

messages are discarded.

• M0 proposes for a cluster with a high rating and waits for a response.

• C0 receives the proposal because its rating is high.

• M1 proposes for a cluster with a high rating and waits for a response.

• C0 receives the proposal because its rating is high.620

• C0 handles the first proposal by process R. It acquires a lock and sends an accept message to M0. Note
that the second proposal cannot be handled before the lock is released.

• M0 receives the message by process Mh, acquires a lock and sets the attributes success, rank and
exPartner appropriately.

• M0 sends an acknowledgement message to all possible components and includes the identity of C0 in625

the message. It sets its partner to C0 and releases the lock.

• Clearly, all components are potential receivers for this message, however, only C0 receives it because it
is the only component waiting an acknowledgement that contains its identity. By doing so, C0 sets its
partner to M0, its rank to 1 (because rank(“H”) = 1) and releases the lock.

• C0 handles the second proposal by process R again. It acquires a lock and sends an accept message to630

M1 because rank(“L”) = 0 < 1, and waits for an acknowledgement.

• M1 is the only component that can receive the accept message because it satisfies the sending predi-
cate. It receives the message by process Mh, acquires a lock and sets the attributes success, rank and
exPartner appropriately.

• M1 sends an acknowledgement message to all possible components and includes the identity of C0 in635

the message. It sets its partner to C0 and releases the lock.

• C0 receives the acknowledgement, sets its exPartner to current partner, its partner to M1 and its rank
to 0.

• C0 sends a dissolve message to its exPartner (i.e., M0) and releases the lock.
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• M0 receives the dissolve message by the second branch of process Mh which sets the dissolve attribute640

to true and resets the attributes success, ref, rank, and partner to their initial values. By doing so, the
second branch of process Ph will be enabled and M0 is ready to propose again.

• M0 proposes again for a cluster with a high rating and waits for a response.

• C0 receives the proposal because its rating is high.

• C0 drops the proposal by the last branch of process R, because it is satisfied with its current partner,645

i.e., its rank¡1.

• No component can actually respond to the proposal. M0 keeps waiting until a timeout occurs, i.e., the
second branch of process Mt is enabled. The counter is reseted, the ref attribute value is set to 1 and
the success attribute is turned off. M0 can now propose for a cluster with a low rating. In this case,
only C1 accepts the proposal in a similar way as described before. Note that (M0, C1) and (M1, C0)650

are actually stable pairs.

4. Discussion

In this section, we explain how AbC has helped us in dealing with the collective adaptive features that
we introduced in Section 1.1 and also were evident in the previous case studies. We also comment on two
interesting features of AbC code, namely Compositionality and Code Extensibility.655

Distribution is naturally obtained because an AbC system has no centralised control; and it is represented
as the parallel composition of independent components that can mutually influence each other only through
message-exchange. For instance in Section 3, the overall system is defined as the parallel composition of
existing units and clusters.

Awareness is supported by the attribute environment that plays a crucial role in orchestrating the660

behaviour of AbC components. It makes components aware of their own status and provides partial views of
the surrounding environment. Components behave differently under different environmental contexts. This
is possible because the behaviour of AbC processes is parametric with respect to the run-time attribute values
of the component in which they are executed. The awareness construct, 〈Π〉, is used as an environmental
parameter to influence the behaviour of AbC components at run-time. For instance, in Section 3, the665

behaviour of the proposal handler process, Ph, is totally dependent on the values of the attributes lock,
success, counter, dissolve, arrival, bof, and rank. In case the value of just one of these attributes changes, the
process will change its behaviour accordingly.

Adaptivity is obtained by means of the interaction predicates (both for sending and receiving) of AbC
components that can be parametrised with their local attribute values; any run-time changes of these values670

might influence/change the possible set of interaction partners. Note that the target of the dissolve message,
in the third branch of the proposal handler process Ph in Section 3, depends on the identity of the current
partner (this.partner).

Interdependence among co-located processes can be obtained by modifying, with the attribute update
construct, the attribute environment shared by processes within a single component. A branch of process675

Ph, in Section 3, is mainly selected depending on the attribute updates performed by the monitor process
Mt and the message handler Mh.

Collaboration is obtained by combining individual component behaviours, through message exchange,
to achieve a global goal for which a single component would not be sufficient. For instance, in Section 3,
the goal was to construct a set of stable pairs without any centralised control. The goal was achieved by680

allowing different components to collaborate through message passing; each component contributed, and the
combined behaviour of all components was necessary, to reach the overall system goal.

Anonymity is obtained by allowing the interaction primitives (both send and receive) to rely on predicates
over the run-time attribute values of the interacting partners rather than on specific names or addresses.
Thus the qualification needed to receive a message no longer depends on available channels or addresses, but685

on the values of dynamic attributes. For instance, in Section 3, the process Pr sends a proposal to a group
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of clusters whose attributes satisfy a specific predicate (i.e., Πh or Πl). There is no prior agreement between
the units and the other clusters and the set of candidate receivers is specified at the time of interaction in
the sense that any change in the value of attribute ref changes the set of targeted components.

Scalability and Open-endedness are guaranteed by the adoption of multiparty communication instead690

of the binary one. Actually AbC supports an implicit multicast communication in the sense that the
multicast group is not specified in advance, but rather it is specified at the time of interaction by means
of the available set of receivers with attributes satisfying the sender predicate. The non-blocking nature of
the AbC multicast, alongside with the anonymity of interaction, breaks the synchronisation dependencies
between senders and receivers; components can thus join and leave a system without disrupting its overall695

behaviour. For instance, new clusters, as defined by process Ar of Section 3, can join the allocation procedure
at run-time without causing any disruption to the overall system behaviour. Actually, the third branch of
process Ph of a unit is used as an adaptation mechanism to handle new arrival of clusters. Note that the
condition bof ≤ rank− 1 of that branch ensures that a unit responds only to new clusters that enhance its
satisfaction. This means that new arrivals affect only specific components in the system.700

It is worth mentioning that the initial behaviour of all components with the same type (e.g., Unit or
Cluster in Section 3) is exactly the same. However, since this behaviour is parametrised with respect to
the run-time attribute values of each component, components might exhibit different behaviours. Thus the
context where a component is executing has a great impact on its behaviour, in the sense that specific
behaviours can be enabled or disabled in presence of environmental changes. The behaviour of a component705

evolves based on contextual conditions; components do not need to have complex behaviour to achieve
adaptation at system level, those behaviours can be achieved by combining local behaviours of individual
components.

In addition to supporting the above distinguishing features of CAS, we have also that AbC code naturally
supports compositionality and extensibility.710

Compositionality : a component is the basic building block of AbC programs and any program can be
broken down into a set of individual components which can only interact by exchanging messages. This
simplifies verification because components can be analysed individually and their external behaviour can
be assessed by their observable communication capabilities. Actually, we can abstract from the internal
behaviour of an AbC component and only consider its observable behaviour when it interacts with other715

components. Thus, a component can be treated as a blackbox that acts and reacts to its environment. We
refer interested readers to our theoretical results in [36].

Code Extensibility : AbC code can be easily extended in the sense that new alternative behaviours can
be added and removed by modifying the attribute environments and the interfaces of components. Also
component behaviours can be adapted without changing the internal structure of their running processes.720

For instance in Section 3, a unit can reverse the order of its preferences by directly modifying the required
value of attribute ref in the awareness constructs and the following output actions of process Pr. Also if
we add a public attribute to a cluster, say location, the code of a unit can be easily adapted to consider
new possible preferences. One way is to add another alternative/branch, that considers the location of a
cluster, to process Pr. Of course some attribute values have to be adjusted accordingly. As mentioned725

before, these branches can be thought of as context-dependent behavioural variations in Context-Oriented
Programming [49].

Note that all of the above interesting properties of AbC code are only attainable as a result of adopting
data centric interaction primitives. These primitives allow the programmer to base the interaction directly
on the states of components rather than on their fixed addresses or on their low-level details. However, to730

be able to use such flexible primitives in real applications we need to realise them on a high-level program-
ming language and (most importantly) on a coordination infrastructure that respects the properties of the
composition operators of AbC as we will explain in the next section.

5. An Infrastructure supporting Attribute Based Interactions

In this section, we provide a distributed coordination infrastructure that realises the interaction primitives735

presented in Section 2. As mentioned in the introduction, AbC primitives are data centric and abstract from
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(a) component C1 requests a sequence number (b) T2 forwards the request to its parent

(c) T1 replies with a fresh number (d) T2 forwards the reply to C1

(e) C2 sends m with its sequence number to T2 (f) T2 forwards the message since nid2 = 0

Figure 1: The tree coordination infrastructure

the underlying coordination infrastructure that mediates the interaction. Actually, the semantics of AbC
assumes atomic message-exchange and that a message is delivered to all components in a single step. Once
the message is delivered, each component has the responsibility to use or discard the message. This provides
a convenient interface to specify distributed systems from a high-level of abstraction without worrying740

about how these specifications are actually realised when implementing real applications. It is therefore
crucial to design a coordination infrastructure to realise such high-level specifications in a reasonable way.
Such infrastructure must break the atomic message-exchange assumption and allow components to execute
asynchronously while establishing the communication links among them in an efficient way. It must also
respect the properties of the composition operators in our calculus.745

We introduce a distributed tree-based infrastructure in Google Go [50]. The choice of the infrastructure
is based on our results in [35, 32] where we developed different implementations and evaluated their perfor-
mance. Here we refine these results and present the most efficient and distributed API. Our infrastructure
ensures that messages are delivered to components in an order that preserves their causal dependencies.

The approach consists of labelling each message with an id that is uniquely determined at the infras-750
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tructure level. Components work asynchronously while the semantics of the parallel composition operator
is preserved by relying on the unique identities of exchanged messages.

The infrastructure is composed of a set of servers, organised as a logical tree. Each server can be
connected to another server in the tree (its parent) and can interact with others in any part of the tree by
only interacting with its parent or children. Each AbC component is connected to a server (possibly the755

root of the tree) that, in turns, manages multiple components. When a component wants to send a message,
it asks its server for a fresh id. Only the root of the tree is responsible for sequencing messages. Hence, if
it is the root of the tree, it replies with a fresh id, otherwise it forwards the message to its parent in the
tree. Following this approach we are guaranteed that messages are ordered in the infrastructure and that
each component receives messages in the appropriate order. Out of order messages are enqueued in waiting760

queue until the proper order is satisfied.
Fig. 1 illustrates the underlying logic of the tree infrastructure. Note that this figure does not include

all details of the tree structure and is only intended to show its high-level behaviour. For instance input
queues of the different nodes (where exchanged messages are stored and retrieved) are not detailed here
and the examples in the figure assume that exchanged messages are handled immediately. Also tree agents765

that mediate the interaction between AbC components and tree servers are abstracted and components are
assumed to communicate directly with the tree servers. We will explain these details in the rest of the
section. AbC components are represented as circles and tree servers are represented as rectangles; each
server has a counter, named nid, and a waiting queue to store sequenced messages. The waiting queue is
a priority queue and it keeps the message with the least sequence number on top of it. The counter nid770

contains the sequence number of the next message to be handled. Normally the server comes to know the
initial value of nid at the time when it registers to join the infrastructure. The root of the tree includes an
additional counter, named ctr (initially equals to 0), that is used to sequence messages.

The subfigures (a)-(f) show a scenario where component C1 wants to send a message m to other com-
ponents in the tree, e.g., C2. Note that C1 is not aware of the existence of C2 and can only communicate775

with its parent server T2. Thus C1 sends a request message Req, {c1} including its identity c1 to T2 (Fig. 1
(a)). Because T2 is not the root of the tree it adds its identity on top of the list of addresses in the message
and forwards the request Req, {t2 :: c1} to its parent T1 (Fig. 1 (b)). The root T1 sends a reply Rply, {c1}, 0
including the value of its counter ctr to T2 and increments its counter (Fig. 1 (c)). Furthermore T2 forwards
the reply Rply, {}, 0 to C1 accordingly (Fig. 1 (d)). Note that the list of addresses {t2 :: c1}, built during780

the trip of the request message to the root, is used to trace the reply back to C1. Once C1 receives the
sequence number 0 it sends a data message D, c1,m, 0 containing its address, the AbC message and the
sequence number to its parent T2 and T2 stores it accordingly in its waiting queue W2 (Fig. 1 (e)). The
message stays in the waiting queue until it is ordered with respect to nid2, i.e., the sequence number of the
message matches nid2. When this happens T2 removes the message form its waiting queue and forwards it785

to all directly connected AbC components and server nodes and as a result T2 increments its nid2 (Fig. 1
(f)). The message is then propagated in the infrastructure until it reaches all connected components. Note
that C1 and C2 may send messages concurrently and the root decides the order in which these messages are
received by other components, depending on the fact which request of C1 and C2 reached the root before.

Note that since AbC components can be connected to any server in the tree (and yet communicate790

and coordinate their behaviour by only interacting with their directly connected server), the distribution
principle of CAS is preserved. Furthermore, we want to stress that since the main message here is to provide
a proof of concept on the feasibility of our programming approach we only deal with reliable infrastructures
and we leave the reliability issue for a future work, which in anyway can be enforced by replicating the tree
servers using standard approaches.795

We have provided a Go programming API, named GoAt7, that supports this infrastructure. We refer the
reader to [35] for details about formal semantics, the proof of correctness of the proposed infrastructure, and
its performance evaluation. In [35], we also compare the performance of the tree infrastructure with other
kind of infrastructures, namely ring and cloud. The results show that the tree infrastructure outperforms
the others in terms of average message delivery time and throughput.800

7https://giulio-garbi.github.io/goat/
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In what follows we discuss the Go implementation of the tree infrastructure and we also go through the
GoAt programming API.

5.1. A Go Attribute-based Interaction API

GoAt [32] is a distributed programming API for supporting attribute-based interaction directly in Google
Go [50]. Go is a new programming language, developed by Google to handle the complexities of networked805

systems and massive computation clusters, and to make working in these environments more productive.
Go supports concurrency and inter-process communication through a compact set of powerful primitives
and lightweight processes, called goroutines. It has an intuitive and lightweight concurrency model with a
well-understood semantics. It extends the CSP model [51] with mobility by allowing channel-passing, like
in π-calculus [21]. However, channel-passing in Go is possible only locally between goroutines. Go also810

supports buffered channels with a finite size. When the buffer size is 0, goroutines block execution and
can only communicate by means of synchronisation. Otherwise, channels behave like mailboxes in Erlang
which for interaction relies on identities rather than on channels. The generality and the clean concurrency
model of Go make it an appropriate language for programming CAS. Thus, we integrated attribute-based
interaction in Go via the distributed GoAt API to move the mobility of Go concurrency to the next level.815

In this article, we use Go as an implementation language over Erlang (which supports the centralised
AbC implementation AErlang [33]) to explore the capabilities of the Go language under the attribute-based
interaction primitives. Also due to the fact that the concurrency model of Go is expressive enough to
model the supported interactions of the actor model as mentioned above. Furthermore since we are not in a
position to decide which language is better, we may only regard our choice as a good compromise. It would820

be interesting, for a future work, to find out what class of applications each language supports the best.
The projection of a GoAt system with respect to a specific component is reported in Fig. 2. It mainly

consists of three parts: (i) infrastructure, (ii) agent, and (iii) component. The agent provides a standard
interface between a GoAt component and the underlying coordination infrastructure and mediates message-
exchange between them. Actually, this agent hides the details of the infrastructure from a component.825

An agent can be seen as a piece of software that handles the interaction between a component and the
infrastructure server connected to it. In other words the agent decouples the behaviour of the component
from the one of the underlying infrastructure. This way the behaviour of GoAt components is parametric to
the underlying infrastructure that mediates the interaction.

Below we provide a brief description of the implementation details of the tree coordination infrastructure830

and the GoAt API.

The Tree Coordination Infrastructure. Our tree infrastructure is only responsible for forwarding mes-
sages to components and also for message-sequencing. It does not have access to the states of components
and thus is not involved in filtering messages. Components decide to receive or discard messages based on
the run-time values of their attributes. The tree infrastructure consists of a registration node and a set of835

servers organised in a logical tree. The registration node handles the construction of the infrastructure and
the registration of components. When a component registers to the infrastructure through its agent, the
registration node associates the agent to a specific server by assigning it communication ports to manage
interaction with the selected server. The root of the tree is the only server that is responsible for generating
sequence numbers. Each server is responsible for a group of agents and has its own input queue. The agent840

forwards its component messages to the input queue of its parent server. The server gets a message from
its input queue: if it is a request message and the server is the root of the tree, the server assigns it a fresh
id and sends a reply back to the requester, otherwise the server forwards the message to its parent until the
message reaches the root. Every time a request message traverses a server, it records its address in a linked
list to help trace back the reply to the original requester with a minimal number of messages. If the server845

receives a reply message, it will forward it to the address on top of the message’s linked list storing the path.
As a consequence, this address is removed from the linked list. Finally, when a data message is received, it
is forwarded to all connected agents and servers except for the sender.

The method NewTreeAgentRegistration(port, nodeAddresses) is used to create a registration node.
This method takes a port number and a set of node addresses. Furthermore the method NewTreeNode(port,850
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Figure 2: A Component interface to a GoAt system

parentAddress, registrationAddress, childNodesAddresses) is used to created a server node. It takes
a port number, a parent address (it is empty for the root), the address of the registration node and the
addresses of connected children (servers and components). We use the method WorkLoop() to register a
server node to the infrastructure and starts its execution.

Example 5.1. In this example we create a registration node on Machine 1 (Lines 2-6). We also create a855

server node on Machine 2 and register it to the registration node in the former machine (Lines 8-14).

1
2 // Machine 1: creating a registration node on a machine with address ”192.168.2.1”
3
4 port := 17000 // listening port860

5 nodesAddresses := [ ]string{} // initially empty list of server nodes addresses
6 go goat.NewTreeAgentRegistration(port, nodesAddresses).WorkLoop()
7
8 // Machine 2: creating a root server on another machine and register it to the registration node
9865

10 port := 17002 // listening port
11 childNodesAddresses := [ ]string{} // initially empty
12 parentAddress := ”” // this address can be assigned later after registration
13 registrationAddress := ”192.168.2.1:17000”
14 go goat.NewTreeNode(port, parentAddress, registrationAddress, childNodesAddresses).WorkLoop()870

Note that the go keyword (Line 6 and Line 14) is used to create lightweight go routines, assuming the
role of server nodes.

The Component. As reported in Fig. 2, a GoAt component consists of a behavioural part (represented
by its running processes) and an interface (represented by its agent) to deal with the infrastructure’s server
connected to it. The interface consists of three entities: Input handler, Msg dispatcher and Msg ID handler.875

The Input handler is used to collect all incoming messages from the infrastructure’s server and to forward
reply messages to the Msg ID handler.

The Msg dispatcher stores a message in the waiting queue of the component until all messages with
smaller id have been sent/delivered. Once this condition is satisfied, the Msg dispatcher forwards the
message to a process; if the process accepts, the message is considered as delivered, otherwise, the Msg880

dispatcher tries with another process. The procedure continues until either the message is accepted by some
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process or all processes have rejected it. In both cases, the message is considered as delivered and the new
id is notified to the Msg ID handler which updates the id of the next message to receive. It is important to
note that any change to the attributes during the decision of accepting or rejecting the message can be only
committed if the message is accepted, otherwise it will be rolled-back.885

The Msg ID handler deals with requests of processes wanting to send a message, and provides them
with fresh ids. The handler forwards the request to the infrastructure’s server. While the process is waiting
to send its message, dispatched messages are added to the waiting queue of the component. Once a reply
message with a fresh id is received, the Msg ID handler forwards it to the process only when all messages
with smaller id have been processed. The process can now manipulate the attributes environment and send890

a new message to the Msg ID handler which will forward it to the infrastructure’s server. All attribute
updates are committed and the msg dispatcher is notified about the new id.

The method NewTreeAgent(registrationAddress) is used to create a dedicated agent for a component
and register it to the registration node of the infrastructure. Furthermore, method NewComponent(agent,

environment) is used to generate a GoAt component and assign it an agent and an attribute environment.895

The attribute environment is simply a Go map from attribute identifiers to values.

Example 5.2. For instance we can define a graph vertex component from the DGC Example 2.1 and register
it to the registration node in Example 5.1 as follows:

1 environment := map[string]interface{}{”round”: 0, ”used”: {}, ...}
2 agent := goat.NewTreeAgent(”192.168.2.1:17000”) // registration address900

3 vertex := goat.NewComponent(agent, environment)

The method NewProcess(Component).Run(func(proc *goat.Process) is used to assign a behaviour to
a GoAt component and also to start its execution. This method takes a GoAt process and executes it within
the scope of the current component. The code inside the Run method represents the actual behaviour
of a component. The generic behaviour of a GoAt process is implemented via a Go function func(proc905

*goat.Process){body}. This function takes a reference to a GoAt process and executes its body.

Example 5.3. We now assign a behaviour to the graph vertex created in Example 5.1. Note that the
behaviour of a graph vertex is the parallel composition of processes: F, T, D and A as explained early in
Example 2.1. These processes are created inside the vertex (using Spawn) as follows:

1 goat.NewProcess(vertex).Run(910

2 func(proc ∗goat.Process) {
3 proc.Spawn(F)
4 proc.Spawn(T)
5 proc.Spawn(D)
6 proc.Spawn(A)915

7 }
8 )

5.2. The programming Interface

In this section, we briefly introduce the programming constructs of the GoAt API and show how they
relate to the AbC primitives. For a detailed exposition of the GoAt implementation, we refer the reader920

to [32]. There we also provide an eclipse plugin8 that is used to write specification in AbC syntax and
automatically generate the corresponding Go code.
GoAt Components are parametric with respect to the infrastructure that mediates their interactions

and the programmer needs only to know the registration address of components in the infrastructure as
reported in the previous subsection. We provide the programmer with a small and high-level set of pro-925

gramming constructs to manipulate the attribute environments of components and also to specify their
actual behaviours.

8https://github.com/giulio-garbi/goat-plugin
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Components attributes can be retrieved and set via the methods Comp(attribute) and Set(attribute,

value) respectively. The method NewProcess(Component).Run(func(proc *goat.Process) (as explained
before) assigns a behaviour to a GoAt component and also starts its execution. This method takes a GoAt930

process proc and executes it within the current component. Note that a process can also be a parallel
composition of other processes. This is implemented using the Spawn(proc *goat.Process) method which
is used to dynamically create a process and execute it in parallel with the main process at run time. Though
this does not correspond to an explicit AbC command, it is a natural macro in AbC where the interleaving
operator occurs in the scope of a process definition, i.e., P , a.Q|P as we explained in Section 3.935

The behaviour of a GoAt process is implemented via a Go function func(proc *goat.Process)

{proc.Cmd1...proc.Cmdn} that takes a reference to a GoAt process and executes its commands. Note that
beside GoAt commands, which will be explained later, the usual loop and branching statements of Go can
also be used. For instance we implement AbC recursive definitions using infinite loops for{}.

The main interaction actions, send and receive, are implemented via Send(Tuple, Predicate) and940

Receive(accept func(attr *Attributes, msg Tuple) bool) respectively. The rendering of a send com-
mand is obvious while the receive command accepts a message and passes it to a function that checks whether
it satisfies the receiving predicate. We also use a guarded send command with atomic attribute updates,
i.e., GSendUpd(Guard, Tuple, Predicate, updFnc). In addition to the normal send command, this one
is only activated when its guard evaluates to true and as a result of its execution a possible sequence of945

attribute updates may apply.
The command Call(Process) implements a process call while the awareness operator is implemented

via the command WaitUntilTrue(Predicate). Finally, the non-deterministic choice of several guarded
processes are implemented via the command Select(cases ...selectcase). This command takes a finite
number of arguments of type selectcase, each of which is composed of an action guarded by a predicate950

and a continuation process, i.e., Case(Predicate, Action, Process). When the guarding predicate of
one branch is satisfied, the method enables it and terminates the other branches.

AbC predicates are implemented via Equals, And, Belong, and Not which correspond to =, ∧, ∈ and
¬ respectively. Other standard predicates are also supported. We use Receiver(a) in the sender predicate
to indicate that we are evaluating the predicate based on the value of attribute a in the receiver side. For955

instance, the predicate Belong(goat.Comp("id"), goat.Receiver("N")) is equivalent to this.id ∈ N. We
also use Evaluate(expression) to evaluate an expression under the attribute environment of a component.

Example 5.4. Below, we show how to program process F of Example 2.4 in the GoAt API. Despite the
verbosity of the GoAt syntax, the correspondence in terms of syntax with respect to AbC is evident.

1 func F (proc ∗goat.Process) {960

2 for {
3 proc.GSendUpd(
4 goat.And(goat.Equals(goat.Comp(”assigned”), false), goat.Equals(goat.Comp(”send try”), true)),
5 goat.NewTuple(”try”, goat.Evaluate(minColorNot, goat.Comp(”used”)), goat.Comp(”round”), goat.Comp(”id”)),
6 goat.Belong(goat.Comp(”id”), goat.Receiver(”N”)),965

7 func(attr ∗goat.Attributes){
8 attr.Set(”colour”, minColorNot(attr.GetValue(”used”)))
9 attr.Set(”send try”, false)

10 }
11 )970

12 }
13 }

6. Related Work

In this section we touch on related works concerning languages and calculi with primitives that model
either collective interaction, or multiparty interaction. We also report on other approaches to interaction in975

distributed systems and show how they relate to AbC .
Several frameworks have been proposed to target the problem of collective (or ensemble) formation.

These approaches usually differ in the way they represent collectives and in their generality.
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The SCEL language [15], proposed in the ASCENS project [52], is designed to program autonomic com-
puting systems. It combines different mechanisms from different communication paradigms. For instance,980

it combines message passing, pattern matching, tuple spaces and interaction policies. It is actually a meta-
language that can be instantiated to serve different purposes. AbC on the other hand is based on a set of
primitives to model CAS interactions. Furthermore and as opposed to AbC , SCEL’s concurrency model is
complicated and is not equipped with a behavioural theory to be able to reason about the interactions of
collective-adaptive systems.985

DEECo [53] and Helena [54] are component-based frameworks that handle ensemble (or collective) for-
mation, component cooperation and knowledge distribution concerns at the level of software architecture.
They model ensemble as a first class entity. An ensemble determines its member components and their roles
and thus ensembles can be considered as distribution units that centrally control their members. It is very
hard to push this idea into action to develop complex systems where ensembles may overlap, be nested,990

dynamically formed and dismantled in a distributed environment. In AbC these architectural complexities
are avoided by relying on dynamic interpreted predicates and thus providing a clean way to specify nested
and overlapping ensembles at runtime.

Blackboard design pattern [55] is an architecture-based approach that adopts a Linda-like [56] inter-
action pattern. Actually they are being used in various industry tuple-space architectures, such as IBM995

TSpaces [57]. A blackboard architecture consists of different independent agents implementing parts of the
application logic and interact among each other by using the blackboard component. The latter is a data
structure that is used as the general communication and coordination mechanism and is managed by a con-
troller component. Note that an architecture typically has multiple blackboards and agents may move from
one to another at run-time. This overwhelms the controllers that have to shepherd the interaction among1000

agents. Since the interactions among agents is mediated by the blackboard and agents may move between
blackboards while engaging in conversations, these controllers have to keep track of the new locations of
agents to be able to forward them messages (sent to them in previous locations). In AbC we avoid the com-
plexity of managing architectural issues arising as side-effects of mobility, by adopting an architecture-free
interaction model. We assume a flat infrastructure and thanks to predicates we can discipline the interaction1005

dynamically in a straightforward way.
The field calculus [13] relies on a notion of computational fields to describe distributed systems from a

system or an aggregate-level. A computational field can be considered as an aggregate-level distributed data
structure that is maintained by physically distributed components. These components manage a global and
dynamically evolving computational fields by defusing, recombining and composing information injected by1010

one or a few other components. This is done iteratively in asynchronous computational rounds, consisting
of message reception from neighbours, computing the local value of the fields, and spreading messages to
neighbours. The field calculus is useful for implementing self-organising systems that adaptively regulate
their behaviours in response to changes in the surrounding environment. Note, however, that the field
calculus is designed specifically for spatially distributed systems and has assumptions on the distance between1015

devices. While the field calculus approach might not be optimal for sparse physically distributed systems,
it is very useful for dense ones like sensor networks. In AbC we describe systems from the individual point
of view. These individual behaviours are combined to engineer the behaviour at system-level. Furthermore,
AbC assumes no restrictions on the distance between devices or even on their existence.

Other well-known approaches to program distributed systems include: channel-based models [58, 51, 21],1020

group-based models [42, 43, 10], and publish/subscribe models [44, 45]. Below we briefly report the main
features and limitations of such approaches.

Channel-based models rely on explicit naming for establishing communication links in the sense that
communicating partners have to agree on channels or names to exchange messages. This implies that
communicating partners are not anonymous to each other. Actually, communicating partners have static1025

interfaces that determine the target of communication e.g., binary communication CCS [58], multiway
synchronisation CSP [51], and broadcast communication CBS [59]. The π-calculus [21] was developed as
a way to mitigate this problem by allowing the exchange of channel names and thus providing dynamic
interfaces and additional flexibility. However, the dynamicity of interfaces is still limited because even if
generic input or output actions are allowed, they are disabled until they are instantiated with specific channel1030
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names. This means that a process can engage in a communication only when its actions are enabled. The
broadcast bπ-calculus [41, 40] is based on CBS and the π-calculus in that it extends the former with a channel-
passing mechanism. Furthermore, π-calculus and most process calculi rely on synchronous communication
that creates dependencies between senders and receivers and affects the overall scalability of the system.
AbC actions are always enabled with respect to the current attribute values of the component where they1035

are executing. When these values change, the interaction predicates change seamlessly and become available
for other communication partners.

The class of mobile ambient calculi [60, 61] aim to model mobile computing systems both in terms
of process- and device-mobility (in the physical sense). An ambient defines a scope of interactions. A
process can enter/leave an ambient. Also ambients can be nested and dissolved dynamically at run-time.1040

These calculi deal with mobility in terms of physical location, rather than coding it in terms of wiring
as in channel-based calculi. However, the evolution of ambient structures is complicated and is hard to
trace and control when the system gets larger; and thus greatly affects code readability and extensibility.
In AbC we abstract from the physical movement of devices and abstract the surrounding environment by
means of local attributes, i.e, some attributes might get their values from sensors. Since the behaviour1045

of a component is parametric to these attributes, any changes in their values would be reflected in the
component behaviour. Thus physical movement can be accounted for in AbC models while maintaining a
clean structure of localities.

In group-based models, like the one used for IP multicast [10], the group is specified in advance, in fact
the reference address of the group is explicitly included in the message. Groups or spaces in the ActorSpace1050

model [42] are regarded as passive containers of processes (actors) and may be created and deleted with
explicit constructs. Spaces may be nested or overlap and can be created dynamically at run-time. Actually,
the notion of space is a first class entity in the ActorSpace model. AbC extends the ActorSpace pattern-
matching mechanism to select partners by predicates from both sides of the communication, because not
only the sender can select its partner but also the receiver can decide to receive or discard messages. The1055

notion of spaces/collectives in AbC is indeed more abstract and only specified at run-time.
Coordinated Actors [14] is a framework that relies on Actors [8] as the main units of concurrency. As op-

posed to AbC in which we design system goals offline, this framework also relies on run-time techniques [62].
It is based on the idea that a self-adaptive system is realised through a collection of (centralised) feedback
loops (i.e., MAPE-K [63]) to control adaptation of the system. A feedback loop consist of Monitor, Analyze,1060

Plan and Execute components together with a knowledge part. The knowledge consists of information about
both the system and the environment. To guarantee correctness of the overall behaviour this technique is
applied both offline and online. Thus an abstract model of the system and the environment is stored in
the knowledge component and can be updated and analysed periodically to check for correctness and also
to be used for re-planning. The main novelty of this approach is that it provides one solution to construct1065

the MAPE-K loops and models@runtime while providing runtime analysis to detect or predict violation of
system’s goals. Clearly, this is an engineering framework that combines different techniques to deal with
the complexities of collective behaviour. AbC , on the other hand, is a core computational framework that
provides a minimal set of primitives to be used to program such behaviours at design time.

Another Actors-based [8] specification language is bRebecca [64] and it is introduced to model complex1070

interactions among distributed systems. bRebecca actors can interact with each other via asynchronous
anonymous broadcast communication. The focus of bRebecca is more on system specifications than on
system programming. Indeed, specific abstraction mechanisms are introduced to mitigate the state space
explosion problem and to enable the use of model-checking techniques. However, in bRebecca a sender is
not able to select the class of receivers. Differently, in AbC , thanks to the use of predicates, both senders1075

and receivers can identify the counterparts of an interaction. We would like to mention that in general
AbC is closer to Actors than other Process Algebra approaches. In fact, messages can be used in AbC to
communicate components ids and thus use them in the same way of the Actor model.

In the publish/subscribe model, like the one used in NASA Goddard Mission Services Evolution Centre
(GMSEC)9, each component can take the role of a publisher or a subscriber. Message propagation is obtained1080

9http://opensource.gsfc.nasa.gov/projects/GMSEC_API_30/index.php
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by introducing an exchange server that mediates the interaction; it stores the subscriptions of subscribers,
receives messages from publishers, and forwards them to the appropriate subscribers. The result is that
publishers and subscribers are unaware of the existence of each other. Though the anonymity of interaction
is an effective solution to achieve scalability by allowing participants to enter or leave the system at anytime,
scalability issues are moved to the implementation of the exchange server. In fact, since the exchange server1085

is responsible for subscriptions and message filtering, it should be able to face a large number of participants
with evolving subscriptions while maintaining an acceptable level of performance. This is not the case in
our implementation of the underlying infrastructure for AbC . Our infrastructure is completely distributed
and does not filter messages and thus does not have to deal with evolving subscriptions. It only serves
as a forwarding service. The publish/subscribe model can be considered a special case of AbC where1090

publishers can attach attributes to messages and send them with empty predicates (i.e., satisfied by all).
Only subscribers can check the compatibility of the attached publishers attributes with their subscriptions.

AErlang [33] is a middleware enabling attribute-based communication among programs in Erlang, a
concurrent functional programming language originally designed for building telecommunication systems
and recently successfully adapted to broader contexts. AErlang is not, however, a faithful implementation of1095

AbC ; it can be considered more as an extension of Erlang with linguistic abstraction for modelling attribute
based communication. The latter mentioned semantical mismatch is very critical because it hinders the
possibility of taking advantage of the formal semantics of AbC for proving programs properties. As opposed
to GoAt, AErlang only supports a centralised coordination infrastructure while GoAt supports different
distributed coordination infrastructures, i.e., tree-based, ring-based and cluster-based infrastructures. It1100

would be interesting, though, to implement the proposed distributed infrastructure in Erlang and compare
it with GoAt in terms of intuitiveness and performance. The choice to provide a Go implementation as an
alternative to AErlang [33] is due to two main reasons. Firstly, to the expressiveness of the Go concurrency
model and to our confidence that this language will have a substantial impact in future development of
distributed applications. Secondly, we do believe that it is currently essential to experiment with attribute1105

based extension of different full fledged programming languages in order to assess which of them best support
the development of Collective adaptive Systems trough further experiments and to evaluate the performance
of different implementations and approaches.

Programming collective and/or adaptive behaviour has also been studied in different research commu-
nities like those interested in Context-Oriented Programming (COP) [49] and in the Component-Based1110

approach [65]. In Context-Oriented Programming (COP), a set of linguistic constructs is used to define
context-dependent behavioural variations. These variations are expressed as partial definitions of modules
that can be overridden at run-time to adapt to contextual information. They can be grouped via layers
to be activated or deactivated together dynamically. These layers can be also composed according to some
scoping constructs. Our approach is different in that components adapt their behaviour by considering the1115

run-time changes of the values of their attributes which might be triggered by either contextual conditions
or by local interaction. Another approach that considers behavioural variations is adopted in the Helena
framework [12].

The component-based approach, represented by FRACTAL [65] and its Java implementation, JULIA [65],
is an architecture-based approach that achieves adaptation by defining systems that are able to adapt their1120

configurations to the contextual conditions. System components are allowed to manipulate their internal
structure by adding, removing, or modifying connectors. However, in this approach interaction is still based
on explicit connectors. In our approach predefined connections simply do not exist: we do not assume a
specific architecture or containment relations between components. The connectivity is always subject to
change at any time by means of attribute updates. In our view, AbC is definitely more adequate when1125

highly dynamic environments have to be considered.
AbC combines the lessons learnt from the above mentioned languages and calculi, in that it strives

for expressiveness while aiming to preserve minimality and simplicity. The dynamic settings of attributes
and the possibility of manipulating the environment gives AbC greater flexibility and expressiveness while
keeping AbC models as natural as possible.1130
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7. Concluding Remarks

We have proposed a language-based approach for programming the interaction of collective-adaptive
systems by relying on attribute-based communication. We have introduced the programming constructs
of the AbC calculus and we exploited them to show how complex and interesting case studies, from the
realm of collective-adaptive systems, can be programmed in an intuitive way. We illustrated the expressive1135

power of attribute-based communication by showing the natural encoding of other existing communication
paradigms. We argued that the general concept of attribute-based communication can be exploited to
provide a unifying framework to encompass different communication models and interaction patterns. Since
the focus of this article was to show the expressive power of attribute-based communication and their
applicability in the context of CAS systems, we refrained from presenting theoretical results. However, full1140

details about behavioural theory, equational laws, and a formal proof of encoding can be found in [36]. We
also provided an AbC API to enable attribute-based interaction in real programming languages, e.g., the
GoAt programming API in Google Go [32].

For future work, we plan to develop formal tools based on AbC semantics to analyse the generated code
of our AbC APIs for ensuring safety and liveness properties. We want to study the possibility of using static1145

analysis to discipline the interaction in AbC and thus producing a correct by construction programs and
we will also consider the more challenging problem of specifying and verifying collective properties of AbC
programs. The ReCiPe framework [66] (an extension and symbolic representation of AbC specifications) is
the first step in this direction where also the linear-time temporal logic ltl is extended to be able to specify
collective properties.1150
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Appendix A. AbC Operational Semantics1310

The operational semantics of AbC is based on two relations. The transition relation 7−→ that describes
the behaviour of individual components and the transition relation −→ that relies on 7−→ and describes
system behaviours.

Appendix A.1. Operational semantics of components

We use the transition relation 7−→ ⊆ Comp × CLAB × Comp to define the local behaviour of a component
where Comp denotes the set of components and CLAB is the set of transition labels, α, generated by the
following grammar:

α ::= λ | ˜Γ .Π(ṽ) λ ::= Γ .Π(ṽ) | Γ .Π(ṽ)

The λ-labels are used to denote AbC output Γ . Π(ṽ) and input Γ . Π(ṽ) actions. The former contains the1315

sender’s predicate Π, that specifies the expected communication partners, the transmitted values ṽ, and the
portion of the sender attribute environment Γ that can be perceived by receivers. The latter label is just
the complementary label selected among all the possible ones that the receiver may accept.

The α-labels include an additional label ˜Γ .Π(ṽ) to model the case where a component is not able to
receive a message. As it will be seen later, this kind of negative labels is crucial to appropriately handle1320

dynamic operators like choice and awareness. In the following we will use fn(λ) to denote the set of names
occurring in λ.

The transition relation 7−→ is defined in Table A.2 and Table A.3 inductively on the AbC syntax. For
each process operator we have two types of rules: one describing the actions a term can perform, the other
one showing how a component discards undesired input messages.1325

JẼKΓ = ṽ {Π1}Γ = Π

Γ:I (Ẽ)@Π1.U
Γ↓I.Π(ṽ)7−−−−−−→⦃Γ:I U ⦄

Brd

Γ:I (Ẽ)@Π.U
˜Γ′.Π′(ṽ)7−−−−−→Γ:I (Ẽ)@Π.U

FBrd

Γ′ |= {Π1[ṽ/x̃]}Γ1
Γ1 ↓ I |= Π

Γ1 :I Π1(x̃).U
Γ′.Π(ṽ)7−−−−−→⦃Γ1 :I U [ṽ/x̃]⦄

Rcv
Γ′ 6|= {Π[ṽ/x̃]}Γ ∨ Γ1 ↓ I 6|= Π′

Γ1 :I Π(x̃).U
˜Γ′.Π′(ṽ)7−−−−−→Γ1 :I Π(x̃).U

FRcv

Γ |= Π Γ:I P
λ7−→Γ′ :I P

′

Γ:I 〈Π〉P
λ7−→Γ′ :I P

′
Aware

Γ 6|= Π

Γ:I 〈Π〉P
˜Γ′.Π′(ṽ)7−−−−−→Γ:I 〈Π〉P

FAware1

Γ |= Π Γ:I P
˜Γ′.Π′(ṽ)7−−−−−→Γ:I P

Γ:I 〈Π〉P
˜Γ′.Π′(ṽ)7−−−−−→Γ:I 〈Π〉P

FAware2

Table A.2: Operational Semantics of Components (Part 1)

The behaviour of an attribute-based output is defined by rule Brd in Table A.2. This rule states that
when an output is executed, the sequence of expressions Ẽ is evaluated, say to ṽ, and the closure Π of
predicate Π1 under Γ is computed. Hence, these values are sent to other components together with Γ ↓ I.
This represents the portion of the attribute environment that can be perceived by the context and it is
obtained from the local Γ by limiting its domain to the attributes in the interface I as defined below:

(Γ ↓ I)(a) =

{
Γ(a) a ∈ I
⊥ otherwise

34



Γ:I P1
λ7−→Γ′ :I P

′
1

Γ:I P1 + P2
λ7−→Γ′ :I P

′
1

SumL
Γ:I P2

λ7−→Γ′ :I P
′
2

Γ:I P1 + P2
λ7−→Γ′ :I P

′
2

SumR

Γ:I P1

˜Γ′.Π′(ṽ)7−−−−−→Γ:I P1 Γ:I P2

˜Γ′.Π′(ṽ)7−−−−−→Γ:I P2

Γ:I P1 + P2

˜Γ′.Π′(ṽ)7−−−−−→Γ:I P1 + P2

FSum

Γ:I P1
λ7−→Γ′ :I P

′

Γ:I P1 | P2
λ7−→Γ′ :I P

′ | P2

IntL
Γ:I P2

λ7−→Γ′ :I P
′

Γ:I P1 | P2
λ7−→Γ′ :I P1 | P ′

IntR

Γ:I P1

˜Γ′.Π′(ṽ)7−−−−−→Γ:I P1 Γ:I P2

˜Γ′.Π′(ṽ)7−−−−−→Γ:I P2

Γ:I P1 | P2

˜Γ′.Π′(ṽ)7−−−−−→Γ:I P1 | P2

FInt

Γ:I P
λ7−→Γ′ :I P

′ K , P

Γ:IK
λ7−→Γ′ :I P

′
Rec

Γ:I P
˜Γ′.Π′(ṽ)7−−−−−→Γ:I P K , P

Γ:IK
˜Γ′.Π′(ṽ)7−−−−−→Γ:IK

FRec

Γ:I 0
˜Γ′.Π′(ṽ)7−−−−−→Γ:I 0

FZero

Table A.3: Operational Semantics of Components (Part 2)

Afterwards, possible updates U , following the action, are applied. This is expressed in terms of a recursive
function ⦃C⦄ defined below:

⦃C⦄ =

{
⦃ Γ[a 7→ JEKΓ] :I U ⦄ C ≡ Γ:I [a := E]U

Γ:I P C ≡ Γ:I P

where Γ[a 7→ v] denotes an attribute update such that Γ[a 7→ v](a′) = Γ(a′) if a 6= a′ and v otherwise.
Rule Brd is not sufficient to fully describe the behaviour of an output action; we need another rule (FBrd)
to model the fact that all incoming messages are discarded in case only output actions are possible.1330

Rule Rcv governs the execution of input actions. It states that a message can be received when two
communication constraints are satisfied: the local attribute environment restricted to interface I (Γ1 ↓ I)
satisfies Π, the predicate used by the sender to identify potential receivers; the sender environment Γ′ satisfies
the receiving predicate {Π1[ṽ/x̃]}Γ1

. When these two constraints are satisfied the input action is performed
and the update U is applied under the substitution [ṽ/x̃].1335

Rule FRcv states that an input is discarded when the local attribute environment does not satisfy the
sender’s predicate, or the receiving predicate is not satisfied by the sender’s environment.

The behaviour of a component Γ:I 〈Π〉P is the same as of Γ:I P only when Γ |= Π, while the component
is inactive when Γ 6|= Π. This is rendered by rules Aware, FAware1 and FAware2.

Rules SumL, SumR, and FSum describe behaviour of Γ:I P1 + P2. Rules SumL and SumR are standard1340

and just say that Γ :I P1 + P2 behaves nondeterministically either like Γ :I P1 or like Γ :I P2. A message is
discarded by Γ:I P1 + P2 if and only if both P1 and P2 are not able to receive it. We can observe here that the
presence of discarding rules is fundamental to prevent processes that cannot receive messages from evolving
without performing actions. Thus dynamic operators, that are the ones disappearing after a transition like
awareness and choice, persist after a message refusal.1345
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The behaviour of the interleaving operator is described by rules IntL, IntR and FInt. The first two
are standard process algebraic rules for parallel composition while the discarding rule FInt has a similar
interpretation as of rule FSum: a message can be discarded only if both the parallel processes can discard
it.

Finally, rules Rec, FRec and FZero are the standard rules for handling process definition and the1350

inactive process. The latter states that process 0 always discards messages.

Appendix A.2. Operational semantics of systems

The behaviour of an AbC system is described by means of the transition relation −→ ⊆ Comp ×
SLAB × Comp, where Comp denotes the set of components and SLAB is the set of transition labels, λ,
generated by the following grammar:

λ ::= Γ .Π(ṽ) | Γ .Π(ṽ)

The definition of the transition relation −→ is provided in Table A.4.

Γ:I P
λ7−→Γ′ :I P

′

Γ:I P
λ−→ Γ′ :I P

′
Comp

Γ:I P
˜Γ′.Π′(ṽ)7−−−−−→Γ:I P

Γ:I P
Γ′.Π′(ṽ)−−−−−→ Γ:I P

FComp

C1
Γ.Π(ṽ)−−−−→ C ′1 C2

Γ.Π(ṽ)−−−−→ C ′2

C1 ‖ C2
Γ.Π(ṽ)−−−−→ C ′1 ‖ C ′2

Sync

C1
Γ.Π(ṽ)−−−−→ C ′1 C2

Γ.Π(ṽ)−−−−→ C ′2

C1 ‖ C2
Γ.Π(ṽ)−−−−→ C ′1 ‖ C ′2

ComL
C1

Γ.Π(ṽ)−−−−→ C ′1 C2
Γ.Π(ṽ)−−−−→ C ′2

C1 ‖ C2
Γ.Π(ṽ)−−−−→ C ′1 ‖ C ′2

ComR

C
Γ.Π(ṽ)−−−−→ C ′ f(Γ, ṽ) = Π′

[ C ].f
Γ.Π∧Π′(ṽ)−−−−−−−→ [ C ′ ].f

ResO
C

Γ.Π∧Π′(ṽ)−−−−−−−→ C ′ f(Γ, ṽ) = Π′

[ C ]/f
Γ.Π(ṽ)−−−−→ [ C ′ ]/f

ResI

C
Γ.Π(ṽ)−−−−→ C ′

[ C ].f
Γ.Π(ṽ)−−−−→ [ C ′ ].f

ResOPass
C

Γ.Π(ṽ)−−−−→ C ′

[ C ]/f
Γ.Π(ṽ)−−−−→ [ C ′ ]/f

ResIPass

Table A.4: Operational Semantics of Systems

Rules Comp and FComp depends on relation 7−→ and they are used to lift the effect of local behaviour
to the system level. The former rule states that the relations 7−→ and −→ coincide when performing either1355

an input or an output actions, while rule FComp states that a component Γ :I P can discard a message
and remain unchanged. However, we would like to stress that the system level label of FComp coincides
with that of Comp in case of input actions, which means that externally it cannot be observed whether a
message has been accepted or discarded.

Rule Sync states that two parallel components C1 and C2 can receive the same message. Rule ComL1360

and its symmetric variant ComR govern communication between two parallel components C1 and C2.
Rules ResO and ResI show how restriction operators [ C ].f and [ C ]/f limit output and input capa-

bilities of C under function f .
Rule ResO states that if C evolves to C ′ with label Γ .Π(ṽ) and f(Γ, ṽ) = Π′ then [ C ].f evolves with

label Γ .Π ∧Π′(ṽ) to [ C ′ ].f . This means that when C sends messages to all the components satisfying Π,1365

the restriction operator limits the interaction to only those that also satisfy Π′.
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Rule ResI is similar. However, in this case, the restriction operator limits the input capabilities of
C. Indeed, [ C ]/f will receive the message ṽ and evolve to [ C ′ ]/f with a label Γ . Π(ṽ) only when

C
Γ.Π∧Π′(ṽ)−−−−−−−→ C ′ where f(Γ, ṽ) = Π′. Thus, message ṽ is delivered only to those components that satisfy

both Π and Π′. Note that, both [ C ].f and [ C ]/f completely hide input/output capabilities whenever1370

f(Γ, ṽ) ∧Π l ff.
Rule ResOPass (resp. ResIPass) states any input transition (resp. output transition) performed by C

is also done by [ C ].f (resp. [ C ]/f ).
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