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The classical Wigner model is one way to approximate the quantum dynamics of atomic nuclei. Here a new
method is presented for sampling the initial quantum mechanical distribution that is required in the classical
Wigner model. The new method is tested for the position, position-squared, momentum, and momentum-
squared autocorrelation functions for a one-dimensional quartic oscillator and double well potential as well as
a quartic oscillator coupled to harmonic baths of different sizes. Two versions of the new method are tested
and shown to possibly be useful. Both versions always converge toward the classical Wigner limit. For the
one-dimensional cases some results that are essentially converged to the classical Wigner limit are acquired
and others are not far off. For the multi-dimensional systems the convergence is slower, but approximating
the sampling of the harmonic bath with classical mechanics was found to greatly improve the numerical
performance. For the double well the new method is noticeably better than the Feynman-Kleinert linearized
path integral (FK-LPI) method at reproducing the exact classical Wigner results, but they are equally good
at reproducing exact quantum mechanics.
The new method is suggested as being interesting for future tests on other correlation functions and systems.

I. INTRODUCTION

When studying molecular systems computationally a
problem that can arise is how to account for the quan-
tum mechanical behavior of the atomic nuclei without
having to solve the time dependent Schrödinger equation
using wavefunctions and instead work with e.g. trajecto-
ries, which has the potential to be significantly cheaper
computationally for many chemically interesting prob-
lems. Several different methods exist which can be
used to address this problem, such as centroid molec-
ular dynamics (CMD)1 that has been well explained
by Jang and Voth2, ring polymer molecular dynamics
(RPMD)3, semi-classical initial value representation (SC-
IVR)4 that has been well explained by Miller5, Mat-
subara dynamics6, and the classical Wigner method7,8

(also called linearized semi-classical initial value repre-
sentation, LSC-IVR, and linearized path integral, LPI).
A new implementation of the classical Wigner method is
the topic of the present article.
The classical Wigner method starts with a quantum

mechanical phase space distribution, which is propagated
forward in time classically. Finding the initial distribu-
tion is typically problematic. In this work a new way to
sample the initial phase space distribution is presented
and tested for some simple problems.
The classical Wigner method, CMD, and RPMD can

all be seen as approximations to Matsubara dynam-
ics and give worse results than Matsubara dynamics6,9.
However, for large systems Matsubara dynamics would
be too computationally demanding to be practical6.
Comparing CMD and RPMD to the classical Wigner

method one major advantage of the former two is that

a)Electronic mail: jens.poulsen@gu.se
b)Electronic mail: nyman@chem.gu.se

the quantum mechanical ensemble is conserved during
the dynamics while it is not in the classical Wigner
method. On the other hand, for a harmonic oscillator
the classical Wigner method is exact for any correla-
tion function7 while CMD can formally be done for non-
linear operators10, but it is a much more complicated
process than for linear operators, and RPMD is only ex-
act for correlation functions where at least one operator
is linear3.

The classical Wigner method can be seen as an approx-
imation of the semi-classical initial value representation.
In this approximation quantum real time coherence is
however lost, which may not be very important in large
or condensed phase systems since these typically deco-
here rapidly11. An advantage with the approximation is
less oscillatory integrands to handle numerically11.

From the above comparisons it can be seen that one of
the reasons for using the classical Wigner method is that
it may better handle non-linear correlation functions at
a reasonable expense of computational resources, com-
pared to the other available methods.

In the new implementation of the classical Wigner
method that is presented in this paper the initial phase
space distribution is sampled with an imaginary time
path integral polymer similar to those that can be found
in CMD and RPMD, but in those cases these polymers
are closed rings and in the present implementation of
the classical Wigner method the polymer has an open-
ing. The open polymer presented here is more closely
related to those that can be found in the work of Bose
and Makri12 and Bonella et al.13,14.

In what follows first the classical Wigner method is ex-
plained, section II, and a new path integral open polymer
implementation of it is presented, section III. After that
the computational details, section IV, and the results,
section V, are presented and conclusions, section VI, are
drawn.
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II. CLASSICAL WIGNER METHOD

The classical Wigner method was in its first form intro-
duced, but not necessarily recommended, by Heller7. In
its current more general form, that is applicable to cor-
relation functions, it was introduced by Wang, Sun, and
Miller8. The classical Wigner method has as its basis
the Wigner phase space distribution15,16. In one dimen-
sion, easily generalized to any number of dimensions, the
Wigner transform is

(

Ω̂
)

W
[x, p] =

∫

∞

−∞

dη e−iηp/~
〈

x+
η

2

∣

∣

∣
Ω̂
∣

∣

∣
x−

η

2

〉

(1)

where Ω̂ is an arbitrary operator, x is position, p is mo-
mentum, η is a variable with the dimension of length, ~
is the reduced Planck constant, and i is the imaginary
unit. The Wigner function is the Wigner transform of
the probability density operator 1

2π~
|Ψ〉 〈Ψ|, where |Ψ〉 is

the ket of the state of the system. This distribution is an
exact quantum mechanical quasi-probability distribution
and can be used to calculate expectation values

〈

Ω̂
〉

=

∫

∞

−∞

dx

∫

∞

−∞

dp ( 1
2π~

|Ψ〉 〈Ψ|)W [x, p]
(

Ω̂
)

W
[x, p] .

(2)

The classical Wigner method consists of taking the quan-
tum mechanical transformed quantity and propagating it
forward in time with classical mechanics, i.e.

(

e
iĤt
~ Ω̂ e−

iĤt
~

)

W
[x, p] ≃

(

Ω̂
)

W
[x(t), p(t)] (3)

where Ĥ is the Hamiltonian operator and t is time. Thus
the classical Wigner method works by initiating with a
quantum mechanical distribution and then propagating
it classically, thereby taking account of all equilibrium
quantum effects e.g. zero-point energy, but overlooking
e.g. dynamic tunneling and quantum interference within
the dynamics. The method is exact for potentials up to
and including harmonic terms7. For a detailed derivation

of the classical Wigner method the review by Liu17 can
be recommended.
The classical Wigner method has been applied suc-

cessfully to e.g. calculating the kinetic energy and den-
sity fluctuation spectrum in liquid neon18 and vibra-
tional energy relaxation rate constants19,20, but the clas-
sical Wigner method has also been found to have limita-
tions for calculating the self diffusion coefficient of liquid
water21 or handling anisotropic materials22.

III. FEYNMAN PATH INTEGRAL OPEN POLYMER

Let’s assume that the quantity of interest for a system
is the canonical time correlation function

〈

ÂB̂(t)
〉

=
1

Z
Tr
{

Â e−βĤ e
iĤt
~ B̂ e−

iĤt
~

}

(4)

where Â and B̂ are arbitrary operators, β is the inverse
of Boltzmann’s constant times the absolute temperature,
Z is the partition function, and Tr denotes a trace. The
choice of placing the Boltzmann operator after Â, instead
of before, is arbitrary and only determines the sign of the
imaginary part of the correlation function, since we have

1

Z
Tr
{

e−βĤ Â e
iĤt
~ B̂ e−

iĤt
~

}

=
1

Z

(

Tr
{

Â e−βĤ e
iĤt
~ B̂ e−

iĤt
~

})

∗

. (5)

The trace can be written as an integral over the posi-
tion, x1, eigenkets.

〈

ÂB̂(t)
〉

=
1

Z

∫

∞

−∞

dx1

〈

x1

∣

∣

∣
Â e−βĤ e

iĤt
~ B̂ e−

iĤt
~

∣

∣

∣
x1

〉

(6)

By dividing the Boltzmann operator e−βĤ into N

factors e−
β
N

Ĥ and inserting N − 1 identity operators,
1̂ =

∫

∞

−∞
dxj |xj〉 〈xj |, the correlation function can be

written as

〈

ÂB̂(t)
〉

=
1

Z







N
∏

j=1

∫

∞

−∞

dxj







〈

x1

∣

∣

∣
Â e−

β
N

Ĥ
∣

∣

∣
x2

〉〈

x2

∣

∣

∣
e−

β
N

Ĥ
∣

∣

∣
x3

〉

. . .
〈

xN−1

∣

∣

∣
e−

β
N

Ĥ
∣

∣

∣
xN

〉〈

xN

∣

∣

∣
e−

β
N

Ĥ e
iĤt
~ B̂ e−

iĤt
~

∣

∣

∣
x1

〉

(7)

which can be recognized as a Feynman path integral23 in imaginary time (−i~β), and this in turn can be rewritten
as Wigner transforms

〈

ÂB̂(t)
〉

=
1

Z







N
∏

j=1

∫

∞

−∞

∫

∞

−∞

dxj dpj
2π~







e−
i
~

∑N
j=1 pj(xj+1−xj)

(

Â e−
β
N

Ĥ
)

W

[

x1 + x2

2
, p1

]

(

e−
β
N

Ĥ
)

W

[

x2 + x3

2
, p2

]

. . .
(

e−
β
N

Ĥ
)

W

[

xN−1 + xN

2
, pN−1

]

(

e−
β
N

Ĥ e
iĤt
~ B̂ e−

iĤt
~

)

W

[

xN + x1

2
, pN

]

(8)
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where xN+1 = x1, so that the coordinates make a loop.

If β
N is approaching 0 and only finite temperatures are

of interest, i.e. N is approaching infinity, then the Wigner

transform of the Boltzmann operator is simply the classi-
cal Boltzmann factor. In this same limit, the Boltzmann
operators can be separated from the transforms involving
Â and B̂ and thus make up their own Wigner transforms,
without consequence.

〈

ÂB̂(t)
〉

= lim
N→∞

1

Z







N
∏

j=1

∫

∞

−∞

∫

∞

−∞

dxj dpj
2π~







e−
i
~

∑N
j=1 pj(xj+1−xj)

(

Â
)

W
[y1, p1] e

−
β
N

∑N
j=1 H(yj ,pj)

(

e
iĤt
~ B̂ e−

iĤt
~

)

W
[yN , pN ]

(9)

where yj =
xj+xj+1

2 , yN = xN+x1

2 , and H (yj, pj) is the
classical Hamiltonian. Now, assuming that the poten-
tial energy V (yj) is independent of momentum, whereby
most of the momenta only occur in the kinetic energy

term of the classical Hamiltonians,
p2
j

2m , and the sym-

plectic area,
∑N

j=1 pj (xj+1 − xj), it is easy to integrate
those momenta out analytically. The momenta that
occur in other places in equation 9 are p1 and pN .
p1 can occur within the Wigner transform of Â. De-

pending on how
(

Â
)

W
[y1, p1] depends on p1, the in-

tegration over p1 will turn out differently. As long as
∫

∞

−∞
dp1

(

Â
)

W
[y1, p1] e

−
β
N

H(y1,p1) e−
i
~
p1(x2−x1) can be

evaluated analytically, e.g. for
(

Â
)

W
[y1, p1] being any

polynomial of p1 (see appendix A), all momenta except
pN can be integrated out analytically. pN can usually not
be integrated out analytically since if B̂ includes either

position or momentum then
(

e
iĤt
~ B̂ e−

iĤt
~

)

W
[yN , pN ]

will depend on both, unless the potential is constant, and
typically this dependence will be such that the integral
is not easily evaluated analytically. So these integrations
lead to:

〈

ÂB̂(t)
〉

= lim
N→∞

1

Z

(

mN

2πβ

)
N
2

√

β

2πmN
~
−N







N
∏

j=1

∫

∞

−∞

dxj







∫

∞

−∞

dpN e−
i
~
pN (x1−xN ) A′(y1, x2 − x1) e

−
mN

2~2β

∑N−1
j=1 (xj+1−xj)

2

× e−
β
N

∑

N
j=1 V (yj) e−

β
N

p2
N

2m

(

e
iĤt
~ B̂ e−

iĤt
~

)

W
[yN , pN ] (10)

where A′(y1, x2 − x1) is

A′(y1, x2 − x1) =

∫

∞

−∞
dp1

(

Â
)

W
[y1, p1] e

−
β
N

p21
2m e−

i
~
p1(x2−x1)

∫

∞

−∞
dp1 e−

β
N

p2
1

2m e−
i
~
p1(x2−x1)

=

∫

∞

−∞
dp1

(

Â
)

W
[y1, p1] e

−
β
N

p21
2m e−

i
~
p1(x2−x1)

√

2πmN
β e

−
β
N

mN2(x2−x1)2

2~2β2

(11)

and may depend on y1 and/or x2 − x1.

Finally, the Wigner transform of the time-evolved operator B̂ can be very difficult to derive. This

is where the classical Wigner method comes in through the approximation
(

e
iĤt
~ B̂ e−

iĤt
~

)

W
[yN , pN ] ≈

(

B̂
)

W
[x (yN , pN , t) , p (yN , pN , t)] (as in equation 3) giving the final expression

〈

ÂB̂(t)
〉

≈
1

Z

(

mN

2πβ

)
N
2

√

β

2πmN
~
−N







N
∏

j=1

∫

∞

−∞

dxj







∫

∞

−∞

dpN e−
i
~
pN (x1−xN)

× e
−

β
N

(

p2
N

2m +
∑

N
j=1 V (yj)+

mN2

2~2β2

∑N−1
j=1 (xj+1−xj)

2

)

A′(y1, x2 − x1)
(

B̂
)

W
[x (yN , pN , t) , p (yN , pN , t)]

(12)

where x (yN , pN , t) and p (yN , pN , t) are the position and momentum coordinates describing the classical trajec-
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tory starting with yN and pN , and where also for prac-
tical reasons the limit of N → ∞ has been removed,
thereby also making the value of the correlation function
at t = 0 approximate. When referring to this expression

it will be called
〈

ÂB̂(t)
〉

y1

. It is noted that equation

12 is closely related to an expression recently published
by Bose and Makri12 (equation 2.7 in the reference), but
not further explored by them. The main difference is
that they use a Boltzmann operator that is symmetrized

around Â, i.e. e−
β
2 Ĥ Â e−

β
2 Ĥ . Equation 12 is also related

to the L = 1-version of the method published by Bonella
et al.13, more clearly seen in Bonella and Ciccotti14. That
method also handles symmetrized Boltzmann operators,
but uses sum and difference variables for the polymer.

Apart from the asymmetric placement of the Boltz-
mann operator explored in this paper and the symmet-
ric placement explored in the cited papers, another com-
mon handling of the Boltzmann operator is the Kubo
transform24. This will not be further explored here, how-
ever, the Kubo transform of the new method can be found
in appendix B.

It can be noted that in equation 12 the effective equi-

librium Hamiltonian has terms mN2

2~2β2 (xj+1 − xj)
2
. These

look exactly like the potential energy of harmonic springs,
and are therefore called “spring terms”. This kind of
model for a system is usually described as beads on
a necklace, with the beads placed at the positions of
the xj :s and connected by springs. The ends of this
polymer are connected via the imaginary exponential
− i

~
pN (x1 − xN ), thus making it “open” in the sense that

there is no force keeping the ends together, in contrast to
other path integral methods such as path integral molec-
ular dynamics25, ring polymer molecular dynamics3, or
path integral Monte Carlo26. Even such a method as the
open chain imaginary time path integral of Cendagorta
et al.27 would be considered a closed polymer from this
point of view. A graphical representation of the open
polymer in this work can be seen in figure 1. This is the
polymer advertised in the title of this paper.
Looking back at equation 7 it can be seen that if Â

only depends on position then Â can operate to the left

and transform into a function of x1, A(x1) =
〈

x1

∣

∣

∣
Â
∣

∣

∣
x1

〉

,

thereby leaving a matrix element of the Boltzmann oper-
ator. This operation removes the approximation of sep-

arating the Wigner transforms of Â and e−
β
N

Ĥ , making
this derivation less approximate than the previous one.
This means that a new version of equation 12 is

〈

ÂB̂(t)
〉

≈
1

Z

(

mN

2πβ

)
N
2

√

β

2πmN
~
−N







N
∏

j=1

∫

∞

−∞

dxj







∫

∞

−∞

dpN e−
i
~
pN (x1−xN )

× e
−

β
N

(

p2
N

2m +
∑

N
j=1 V (yj)+

mN2

2~2β2

∑N−1
j=1 (xj+1−xj)

2

)

A(x1)
(

B̂
)

W
[x (yN , pN , t) , p (yN , pN , t)] , (13)

where the only change compared to before is that
A′(y1, x2 −x1) has been replaced by A(x1). This expres-

sion will be referred to as
〈

ÂB̂(t)
〉

x1

. If Â depends on

both position and momentum it is in many cases possible
to reorder operators so that all position dependence is to
the left of all momentum dependence, and then let the
position dependent parts operate to the left in equation
7, keeping the momentum dependent parts in the matrix
element. Of course this would lead to a more complicated
expression than A(x1). Operators of both position and
momentum will however not be further discussed in this
article

If Â depends only on momentum then equation 12

will be equivalent to equation 13, so that
〈

ÂB̂(t)
〉

x1

=
〈

ÂB̂(t)
〉

y1

. For this situation the notation
〈

ÂB̂(t)
〉

y1,x1

will be used.

For simplicity of notation the path integral open poly-
mer method will usually be called open polymer classical
Wigner, or OPCW for short, in this paper.

For multidimensional systems the path integral open
polymer method for sampling initial conditions can po-
tentially get a severe sign problem due to the factor

e−
i
~
pN (x1−xN ) appearing in each degree of freedom. The

way this problem will be tackled in this article is to sam-
ple the initial distribution of the most quantum mechan-
ical or most important degrees of freedom by the path
integral open polymer method and the other degrees of
freedom by classical mechanics, coupling each bead in the
quantum mechanical part(s) with the single bead in the
classical parts.

IV. COMPUTATIONAL DETAILS

Equations 12 and 13 were evaluated by Monte
Carlo for the integrals over xj and pN , and with
molecular dynamics for the time propagation of
(

B̂
)

W
[x (yN , pN , t) , p (yN , pN , t)].

The correlation functions studied in this paper are au-
tocorrelation functions of position, position-squared, mo-
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y1

y2

x
2

y3

x
3

y4

x
4

y5

x
5

y6

x
6

y7

x
7

x
1

FIG. 1. A drawing to exemplify a 7-bead open polymer, where
the positions of all the x:s and y:s have been marked. The
springs represent the separations that give a spring-term and
the line is the separation that gives the imaginary exponen-
tial. y1 and y7 (in the circles) are where A′(y1, x2 − x1) and
(

B̂
)

W
[x (y7, p7, t) , p (y7, p7, t)] are evaluated, respectively.

mentum, and momentum-squared for a one-dimensional
quartic potential. Also, a one-dimensional double well
potential and a quartic potential with many-dimensional
harmonic baths were studied for the position and
position-squared autocorrelation functions.

A. Potentials and system parameters

The potentials studied in this work are a quartic po-
tential, a double well potential, and a quartic potential
with various harmonic baths.
The quartic potential was taken as

Vquartic(x) =
m2ω3

4~
x4 (14)

where ω is a unit of angular frequency.
The double well potential was taken as

Vdouble well(x) =
m2ω3

10~
x4 −

1

2
mω2x2. (15)

The multidimensional systems all use the quartic po-
tential together with the types of bath of Caldeira and
Leggett28. These systems thus have one mostly quartic
degree of freedom and several harmonic degrees of free-
dom that forms a bath. The harmonic degrees of freedom
in the bath are bilinearly coupled to the quartic degree
of freedom. The form of the bath is the one suggested
by Craig and Manolopoulos29. The bath is a discretized
version of a bath with a linear spectral density with an
exponential cutoff, and the parameters chosen for the

current work are a cutoff frequency of ω and a system-
bath coupling strength of mω. The complete potential
is

VFD(x1, x2, . . . , xF−1, xF ) =
m2ω3

4~
x4
1

+

F
∑

l=2

1

2
mω2

(

xl ln

(

l− 3
2

F − 1

)

+ x1

√

2

(F − 1)π

)2

(16)

where F is the number of degrees of freedom.

B. Monte Carlo

The maximum stepsize, ∆xmax,l, was individually set
for all degrees of freedom l, with an initial value of

∆xmax,l =

√

√

√

√

√

2 ln 2

Fβ

(

∣

∣

∣

∂2V
∂x2

l

∣

∣

∣

xl=0
+ ml(N−1)N

~2β2

) . (17)

This choice for stepsize is based on a harmonic approx-
imation of the potential energy, assuming the same av-
erage stepsize in xj and yj , and aiming for 50% accep-
tance rate. The change in energy that would give an
acceptance likelihood of 50% for a Monte Carlo step is
N ln 2/β. 1/F of this energy could then be assigned to
each degree of freedom. For each degree of freedom the
maximum stepsize is set so that the total energy change
resulting from a change in position of ∆xmax,l away from
the minimum in the harmonically approximated poten-
tial, weighted by N , and the path integral spring poten-
tial, weighted by N − 1, would give this energy. This
results in equation 17. The above does not work for

a situation where
∣

∣

∣

∂2V
∂x2

l

∣

∣

∣

xl=0
= 0 and at the same time

N = 1, and in such cases the maximun stepsize was set
to the thermal de Broglie wavelength.
The maximal stepsizes were updated as a group every

50 000th step according to the algorithm of Allen and
Tildesley30, in order to keep the acceptance rate close to
50%.
The momentum, pN , was sampled from a Maxwell-

Boltzmann distribution at the temperature N
kBβ , where

kB is Boltzmann’s constant. The pseudo random num-
ber generator used was ran2 of Press et al.31. Data was
collected, i.e. a molecular dynamics trajectory was run,
each 100th Monte Carlo-step.
The Monte Carlo chain begun in a part of phase space

that has a low probability of occurring, i.e. far from the
equilibrium distribution. It was however found that the
number of Monte Carlo steps it takes to come close to
equilibrium for the various simulated systems are negligi-
ble compared to the total length of the Monte Carlo sim-
ulation runs and were therefore not explicitly accounted
for.
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C. Molecular dynamics

The molecular dynamics was conducted using the ve-
locity Verlet algorithm32,33. The timestep was 0.050 ω−1

for the quartic and double well one-dimensional systems,
and 0.035ω−1, 0.025ω−1, and 0.020ω−1 for the quartic
potential with harmonic baths containing 3, 6, and 9 de-
grees of freedom respectively. The total time length of
each molecular dynamics run was 10ω−1.

D. Statistical evaluation of data

The block average method, explained by e.g. Friedberg
and Cameron34 and Flegal, Haran, and Jones35, was used
to calculate the standard deviations of the correlation
functions. The minimum block size used was 106 Monte
Carlo-steps. These standard deviations were used as a
measure of uncertainty and to determine convergence.

E. Exact correlation functions

In order to have exact classical, quantum mechanical,
and classical Wigner results to compare against, numer-
ically exact results were produced for the systems and
correlation functions where this was deemed doable.
For the quartic potential and double well potential the

classical mechanics comparison was obtained by setting
N=1, in the same program as was used to find the clas-
sical Wigner results, using 109 Monte Carlo steps.
The quantum mechanical autocorrelation functions for

the quartic potential were calculated with a numerically
exact program that uses the lowest 2000 particle in-the-

box energy eigenfunctions, with a box length of 40
√

~

mω ,

as basis set to approximate the 40 lowest energy eigen-
functions of the quartic oscillator. These eigenfunctions
are then used to evaluate the necessary matrix elements
and can be propagated in time analytically. The quan-
tum mechanical autocorrelation functions for the double
well potential were calculated in a similar way, but the
basis set was the 12 lowest energy eigenfunctions of the
harmonic oscillator, V (x) = 1

2mω2x2.
For the quartic potential with harmonic bath, just as

without the bath, a classical comparison was calculated
with one bead, N=1, in the classical Wigner routine, us-
ing 109 Monte Carlo steps. The quantum mechanical
comparison at t = 0 for this case was a path integral
Monte Carlo simulation with 80 beads, N=80, run with
the same Monte Carlo parameters as the classical Wigner
runs. 64× 109 Monte Carlo steps were used for 3 degrees
of freedom in the bath and 16 × 109 Monte Carlo steps
for 6 and 9 degrees of freedom in the bath.
The exact classical Wigner data were generated as fol-

lows. First the matrix elements of the Boltzmann opera-
tor were calculated using the numerical matrix multipli-
cation scheme36. In this scheme, N = 50 andN = 14 ma-

trix multiplications of e−
β
N

Ĥ were used for β~ω = 8 and
β~ω = 1, respectively. Afterwards, a numerical Fourier
transform of this data was used for computing the Boltz-
mannWigner transform. Finally, this BoltzmannWigner
function was represented on a grid for doing classical dy-
namics.

F. Feynman-Kleinert classical Wigner method

Many of the methods for acquiring an approximate ini-
tial distribution for a classical Wigner calculation use a
harmonic approximation for the potential19,37,38. How-
ever, for potentials with negative curvature these meth-
ods all encounter problems when the temperature is
too low. For these situations a modified local gaussian
approximation39 can be used instead. This is however
not necessary for the systems and temperatures in this
paper.

The Feynman-Kleinert approximation40 is one of the
harmonic approximation methods and its application to
the classical Wigner method is usually called Feyman-
Kleinert linearized path integral (FK-LPI)37. FK-LPI
will be used as a comparison for OPCW.

G. Ring polymer molecular dynamics

Ring polymer molecular dynamics (RPMD)3 is a popu-
lar method for calculating approximate quantum dynam-
ics. This method was used as a comparison for the clas-
sical Wigner results. The RPMD results were generated
by using 32 and 5 beads for β~ω = 8 and β~ω = 1 respec-
tively, using a time-step of 0.009ω−1 for the quartic os-
cillator and a time-step of 0.0125ω−1 for the double well
and quartic oscillator with harmonic baths. The Kubo-
transformed results acquired from the calculations were
transformed to the asymmetric placement of the Boltz-
mann operator through the method by Braams, Miller,
and Manolopoulos41. The way to calculate momentum-
correlation functions with RPMD is through time deriva-
tives of position correlation functions29,42. This was con-
sidered too complicated for

〈

p̂2p̂2(t)
〉

so that this function
has not been included.

V. RESULTS AND DISCUSSION

In this section the results from the calculations of a
few different autocorrelation functions for a few model
systems are presented. Each correlation function is pre-
sented by three lines. The middle line is the correlation
function itself and the upper and lower ones show the
standard deviation of the result. In most cases presented
here the standard deviations are within the width of the
middle line.
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FIG. 2. The position autocorrelation function for a quartic
potential (β~ω = 8). Comparison between different numbers
of beads for the two versions of OPCW and numerically ex-
act solutions for classical mechanics (CM), classical Wigner
(CW), and quantum mechanics (QM). The number of Monte
Carlo steps used for each number of beads, N , is: 1× 109 for
N = 10 and N = 40, and 16 × 109 for N = 160. The outer
lines of each type show the standard deviations for the results.
If the standard deviation is small enough the outer lines are
not visible. (a) real part of 〈x̂x̂(t)〉

y1
, (b) imaginary part of

〈x̂x̂(t)〉
y1
, (c) real part of 〈x̂x̂(t)〉

x1
, and (d) imaginary part

of 〈x̂x̂(t)〉
x1
.

A. Quartic potential β~ω = 8
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FIG. 3. The position and position-squared autocorrelation
functions for a quartic potential (β~ω = 8). Comparison be-
tween the two versions of OPCW and numerically exact so-
lutions for classical mechanics (CM), classical Wigner (CW),
FK-LPI, RPMD, and quantum mechanics (QM). The num-
ber of beads used in the y1- and x1-calculations is N = 160
and the number of Monte Carlo steps is 16× 109. The outer
lines of each type show the standard deviations for the results.
If the standard deviation is small enough the outer lines are
not visible. (a) real part of

〈

x̂2x̂2(t)
〉

, (b) imaginary part of
〈

x̂2x̂2(t)
〉

.

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
26

18
3



9

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6
(a) Re

〈
p∧

p∧
(t

) 
〉

/ 
(m

− h
ω

)

(�� ��
CM

y1,�1
FK-LPI
RPMD

QM

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10

(c) Re

〈

p∧
2

p∧
2

(t
) 
〉

/ 
(m

2
− h

2
ω

2
)

t / ω
-1

0 1 2 3 4 5 6 7 8 9 10

(d) Im

t / ω
-1

CM
y1,�1

FK-LPI
QM

FIG. 4. The momentum and momentum-squared autocorrela-
tion functions for a quartic potential (β~ω = 8). Comparison
between OPCW (with 〈p̂p̂(t)〉

y1
and

〈

p̂2p̂2(t)
〉

y1
being iden-

tical to 〈p̂p̂(t)〉
x1

and
〈

p̂2p̂2(t)
〉

x1
respectively) and numeri-

cally exact solutions for classical mechanics (CM), FK-LPI,
RPMD, and quantum mechanics (QM). The number of beads
used in the calculations of 〈p̂p̂(t)〉

y1,x1
is N = 160 and the

number of Monte Carlo steps is 64 × 109. The number of
beads used in the calculations of

〈

p̂2p̂2(t)
〉

y1,x1
is N = 80 and

the number of Monte Carlo steps is 128×109 . The outer lines
of each type show the standard deviations for the results. If
the standard deviation is small enough the outer lines are not
visible. (a) real part of 〈p̂p̂(t)〉, (b) imaginary part of 〈p̂p̂(t)〉,
(c) real part of

〈

p̂2p̂2(t)
〉

, and (d) imaginary part of
〈

p̂2p̂2(t)
〉

.
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When looking at the correlation functions for the quar-
tic potential calculated with the new method, figures 2-4,
and numerically exact classical Wigner, figures 2 and 3,
it can be seen that they flatten out and become constant
at long times. This is due to the fact that the classical
Wigner method relies on classical mechanics for propa-
gation forward in time. For all systems with potentials
of higher order than harmonic the classical trajectories
do not give the correct coherence, meaning that the indi-
vidual classical trajectories dephase against each other.
Results for a one-dimensional harmonic oscillator, where
classical propagation is exact, can be found in appendix
C. Analytic expressions for the harmonic oscillator au-
tocorrelation functions have been placed in appendix D.
In figure 2 it can be seen that at time t = 0 the correla-

tion functions calculated with the new method converge
from classical mechanics toward quantum mechanics as
the number of beads is increased. For all times the cor-
relation functions calculated with the new method con-
verge toward the exact classical Wigner method. It can
also be seen that the x1-method converges faster than
the y1-method with respect to number of beads. This is
also the case for the harmonic oscillator, see appendix E,
where an explanation for this is also given.
Looking at the individual versions of the new method

in figures 2 and 3 it can be seen that at least the real parts
of 〈x̂x̂(t)〉x1

and
〈

x̂2x̂2(t)
〉

x1
have converged essentially

within the thickness of the line of the the exact classical
Wigner result for N = 160. 〈x̂x̂(t)〉y1

and
〈

x̂2x̂2(t)
〉

y1

converge quite slowly in comparison and the results for
N = 160 are not entirely converged to the exact classical
Wigner result, even if they are close. 〈p̂p̂(t)〉y1,x1

in figure

4(a,b) has not converged all the way to exact quantum
mechanics at t = 0 for N = 160, but is close.
In figure 4(c,d) it stands out that

〈

p̂2p̂2(t)
〉

y1,x1
is far

from converged to exact quantum mechanics at t = 0, but
this is a complicated correlation function. Even though
the result for N = 80 is not very close to exact quantum
mechanics at time t = 0 the shapes of the curves have
some qualitative agreement.
Correlation functions with p̂n in the first operator can

be expected to be more difficult to converge than correla-
tion functions with x̂n in the first operator, since (p̂n)W
will be integrated into an nth-order polynomial of a dif-
ference between positions while (x̂n)W will just be a po-
sition, or an average of positions, to the power of n, see
appendix A.
In figure 3 it can be seen that FK-LPI gives results very

close to exact classical Wigner for 〈x̂x̂(t)〉 and the imagi-
nary part of

〈

x̂2x̂2(t)
〉

, while the real part of
〈

x̂2x̂2(t)
〉

is
a little bit further off. OPCW gives as good, or slightly
better, results as FK-LPI, except y1 for Im

〈

x̂2x̂2(t)
〉

.
In figure 4(a,b) it can be seen that FK-LPI gives a bet-

ter starting value for 〈p̂p̂(t)〉 than the calculations with
the new method. The oscillations are however qualita-
tively similar. For

〈

p̂2p̂2(t)
〉

in figure 4(c,d) the results
acquired with the new method have a better value at
t = 0 and has more qualitative agreement with the exact

quantum mechanical result than the FK-LPI result.
It can be seen in figures 3 and 4(a,b) that the classical

Wigner method gives worse amplitudes than RPMD for
the linear autocorrelation functions, 〈x̂x̂(t)〉 and 〈p̂p̂(t)〉.
It can, however, also be seen that the classical Wigner
method gives better amplitude at short times and better
phase overall than RPMD does for the non-linear auto-
correlation function

〈

x̂2x̂2(t)
〉

. This is not surprising as
it is known that for RPMD to be exact for the harmonic
oscillator at least one of the operators in a correlation
function has to be linear3.

B. Quartic potential β~ω = 1
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FIG. 5. The position and position-squared autocorrelation
functions for a quartic potential (β~ω = 1). Comparison be-
tween the two versions of OPCW and numerically exact so-
lutions for classical mechanics (CM), classical Wigner (CW),
FK-LPI, RPMD, and quantum mechanics (QM). The num-
ber of beads used in the y1- and x1-calculations of 〈x̂x̂(t)〉 is
N = 80 and the number of Monte Carlo steps is 16 × 109.
The number of beads used in the y1- and x1-calculations of
〈

x̂2x̂2(t)
〉

is N = 80 and the number of Monte Carlo steps

is 64 × 109. The outer lines of each type show the standard
deviations for the results. If the standard deviation is small
enough the outer lines are not visible. (a) real part of 〈x̂x̂(t)〉,
(b) imaginary part of 〈x̂x̂(t)〉, (c) real part of

〈

x̂2x̂2(t)
〉

, and

(d) imaginary part of
〈

x̂2x̂2(t)
〉

.
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FIG. 6. The momentum and momentum-squared autocorrela-
tion functions for a quartic potential (β~ω = 1). Comparison
between OPCW (with 〈p̂p̂(t)〉

y1
and

〈

p̂2p̂2(t)
〉

y1
being iden-

tical to 〈p̂p̂(t)〉
x1

and
〈

p̂2p̂2(t)
〉

x1
respectively) and numeri-

cally exact solutions for classical mechanics (CM), FK-LPI,
RPMD, and quantum mechanics (QM). The number of beads
used in the calculations of 〈p̂p̂(t)〉

y1,x1
is N = 80 and the

number of Monte Carlo steps is 128 × 109. The number of
beads used in the calculations of

〈

p̂2p̂2(t)
〉

y1,x1
is N = 20 and

the number of Monte Carlo steps is 256×109 . The outer lines
of each type show the standard deviations for the results. If
the standard deviation is small enough the outer lines are not
visible. (a) real part of 〈p̂p̂(t)〉

y1,x1
, (b) imaginary part of

〈p̂p̂(t)〉
y1,x1

, (c) real part of
〈

p̂2p̂2(t)
〉

y1,x1
, and (d) imaginary

part of
〈

p̂2p̂2(t)
〉

y1,x1
.
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When, for the quartic potential, the temperature is
raised so that β~ω = 1, instead of β~ω = 8, it can be seen
in figure 5 that 〈x̂x̂(t)〉 and

〈

x̂2x̂2(t)
〉

for both versions
of the new method are almost perfectly converged to the
exact classical Wigner result for N = 80. This is fewer
beads than what seems necessary to achieve a similar
convergence at β~ω = 8. This is hardly surprising as the
classical and quantum mechanical correlation functions
are much more similar at β~ω = 1 than at β~ω = 8.
In figure 6 it can be seen that 〈p̂p̂(t)〉y1,x1

is rather
well converged toward exact quantum mechanics at t =
0.
〈

p̂2p̂2(t)
〉

y1,x1
does not reach the limit of the exact

quantum mechanics for the N = 20 calculation presented
here, but shows a qualitative agreement with quantum
mechanics up to t = 4ω−1

Generally, even for a lower number of beads the conver-
gence with respect to the number of Monte Carlo steps is
worse for β~ω = 1 compared to β~ω = 8. This is however
not a problem in practice as fewer beads are required to
converge the result to the exact classical Wigner result
at the higher temperature.
For 〈x̂x̂(t)〉 and

〈

x̂2x̂2(t)
〉

FK-LPI results are essen-
tially the same as the exact classical Wigner results. For
〈p̂p̂(t)〉 the results from the new method and the FK-
LPI results are very similar. For

〈

p̂2p̂2(t)
〉

, however, the
FK-LPI results are somewhat closer to the quantum me-
chanical result than the results produced with OPCW.
For 〈x̂x̂(t)〉 the classical Wigner method gives worse

amplitudes than RPMD. For
〈

x̂2x̂2(t)
〉

the classical
Wigner method possibly gets a somewhat worse ampli-
tude than RPMD. For 〈p̂p̂(t)〉 it is not obvious if one of
the methods performs better than the other.

C. Double well potential β~ω = 8
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FIG. 7. The position and position-squared autocorrelation
functions for a double well potential (β~ω = 8). Comparison
between the two versions of OPCW and numerically exact so-
lutions for classical mechanics (CM), classical Wigner (CW),
FK-LPI, RPMD, and quantum mechanics (QM). The num-
ber of beads used in the y1- and x1-calculations is N = 160
and the number of Monte Carlo steps is 16× 109. The outer
lines of each type show the standard deviations for the results.
If the standard deviation is small enough the outer lines are
not visible. (a) real part of 〈x̂x̂(t)〉, (b) imaginary part of
〈x̂x̂(t)〉, (c) real part of

〈

x̂2x̂2(t)
〉

, and (d) imaginary part of
〈

x̂2x̂2(t)
〉

.
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In figure 7 it can be seen that all the approximate
methods quite early become very different from exact
quantum mechanics. This is because dynamical tun-
nelling is important for describing the dynamics of a sys-
tem like this, which is not taken into account at all in
the classical Wigner method and not properly in RPMD.
For 〈x̂x̂(t)〉 the y1- and x1-versions of the open polymer
method has converged to the exact classical Wigner re-
sult by using 160 beads. For

〈

x̂2x̂2(t)
〉

the open poly-
mer method has almost converged to the exact classical
Wigner result using 160 beads.
The FK-LPI results can be seen to essentially agree

with the exact classical Wigner result for the real part
of 〈x̂x̂(t)〉 and to be close to it for the imaginary part
of
〈

x̂2x̂2(t)
〉

. For the other cases FK-LPI is further off.

For the real part of
〈

x̂2x̂2(t)
〉

FK-LPI is substantially off
compared to exact classical Wigner. The FK-LPI results
does however stay almost equal to the exact quantum me-
chanical results for as long as the exact classical Wigner
results does.
The classical Wigner method gives significantly better

results than RPMD for the real part of 〈x̂x̂(t)〉 and the
imaginary part of

〈

x̂2x̂2(t)
〉

, and slightly better results

for the real part of
〈

x̂2x̂2(t)
〉

. For the imaginary part of
〈x̂x̂(t)〉 the classical Wigner method and RPMD perform
equally well.

D. Quartic potential in harmonic bath β~ω = 8
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FIG. 8. The position autocorrelation function for a quartic
potential with a harmonic bath with 3 degrees of freedom
(β~ω = 8). Comparison between different numbers of beads
for the two versions of OPCW and numerically exact solu-
tions for classical mechanics (CM), at all times and quantum
mechanics (QM), at time t = 0. The number of Monte Carlo
steps used for each number of beads, N , is: 1×109 for N = 5
and N = 10, 16 × 109 for N = 20, and 64 × 109 for N = 40.
The outer lines of each type show the standard deviations for
the results. If the standard deviation is small enough the outer
lines are not visible. (a) real part of 〈x̂x̂(t)〉

y1
, (b) imaginary

part of 〈x̂x̂(t)〉
y1
, (c) real part of 〈x̂x̂(t)〉

x1
, and (d) imaginary

part of 〈x̂x̂(t)〉
x1
.

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
26

18
3



17

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(a) y1, Re

〈
x∧

2
x∧

2
(t

) 
〉

/ 
(− h

2
m

-2
ω

-2
)

(b) y1, Im CM
N=5

N=10
N=20
N=40

QM

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10

(c) x1, Re

〈
x∧

2
x∧

2
(t

) 
〉

/ 
(− h

2
m

-2
ω

-2
)

t / ω
-1

0 1 2 3 4 5 6 7 8 9 10

(d) x1, Im

t / ω
-1

FIG. 9. The position-squared autocorrelation function for
a quartic potential with a harmonic bath with 3 degrees of
freedom (β~ω = 8). Comparison between different numbers
of beads for the two versions of OPCW and numerically exact
solutions for classical mechanics (CM), at all times and quan-
tum mechanics (QM), at time t = 0. The number of Monte
Carlo steps used for each number of beads, N , is: 1 × 109

for N = 5 and N = 10, 16 × 109 for N = 20, and 64 × 109

for N = 40. The outer lines of each type show the stan-
dard deviations for the results. If the standard deviation is
small enough the outer lines are not visible. The value in each
parenthesis gives the number of Monte Carlo steps. (a) real
part of

〈

x̂2x̂2(t)
〉

y1
, (b) imaginary part of

〈

x̂2x̂2(t)
〉

y1
, (c) real

part of
〈

x̂2x̂2(t)
〉

x1
, and (d) imaginary part of

〈

x̂2x̂2(t)
〉

x1
.
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FIG. 10. The position and position-squared autocorrelation
functions for a quartic potential with a harmonic bath with
3 degrees of freedom (β~ω = 8). Comparison between the
x1-version of OPCW and numerically exact solutions for clas-
sical mechanics (CM), FK-LPI, and RPMD, at all times and
quantum mechanics (QM), at time t = 0. Results for the
x1-version of OPCW with 320 beads in the quartic oscilla-
tor and a classical bath, CB, are also shown. The number of
beads used in the y1- and x1-calculations is N = 40 and the
number of Monte Carlo steps is 64×109. For the calculations
with classical bath the number of Monte Carlo steps used is
16 × 109. The outer lines of each type show the standard
deviations for the results. If the standard deviation is small
enough the outer lines are not visible. (a) real part of 〈x̂x̂(t)〉,
(b) imaginary part of 〈x̂x̂(t)〉, (c) real part of

〈

x̂2x̂2(t)
〉

, and

(d) imaginary part of
〈

x̂2x̂2(t)
〉

.
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FIG. 11. The position and position-squared autocorrelation
functions for a quartic potential with a harmonic bath with
6 degrees of freedom (β~ω = 8). Comparison between the
two versions of OPCW and numerically exact solutions for
classical mechanics (CM), FK-LPI, and RPMD, at all times
and quantum mechanics (QM), at time t = 0. Results for the
x1-version of OPCW with 320 beads in the quartic oscillator
and a classical bath, CB, are also shown. The number of
beads used in the y1- and x1-calculations is N = 10 and the
number of Monte Carlo steps is 64×109. For the calculations
with classical bath the number of Monte Carlo steps used is
16 × 109. The outer lines of each type show the standard
deviations for the results. If the standard deviation is small
enough the outer lines are not visible. (a) real part of 〈x̂x̂(t)〉,
(b) imaginary part of 〈x̂x̂(t)〉, (c) real part of

〈

x̂2x̂2(t)
〉

, and

(d) imaginary part of
〈

x̂2x̂2(t)
〉

.
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FIG. 12. The position and position-squared autocorrelation
functions for a quartic potential with a harmonic bath with
9 degrees of freedom (β~ω = 8). Comparison between the
two versions of OPCW and numerically exact solutions for
classical mechanics (CM), FK-LPI, and RPMD, at all times
and quantum mechanics (QM), at time t = 0. Results for the
x1-version of OPCW with 320 beads in the quartic oscillator
and a classical bath, CB, are also shown. The number of
beads used in the y1- and x1-calculations is N = 5 and the
number of Monte Carlo steps is 16×109. For the calculations
with classical bath the number of Monte Carlo steps used is
16 × 109. The outer lines of each type show the standard
deviations for the results. If the standard deviation is small
enough the outer lines are not visible. (a) real part of 〈x̂x̂(t)〉,
(b) imaginary part of 〈x̂x̂(t)〉, (c) real part of

〈

x̂2x̂2(t)
〉

, and

(d) imaginary part of
〈

x̂2x̂2(t)
〉

.
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In figures 8 and 9 the position and position-squared
autocorrelation functions are shown for the quartic os-
cillator with a harmonic bath of 3 degrees of freedom.
The numerically exact quantum mechanical comparison
is only available for time t = 0 due to the method used for
its calculation, see section IVE. It can in these figures
be seen that the new method converges from classical
mechanics toward quantum mechanics at t = 0 as the
number of beads is increased. The possible exception is
for low numbers of beads for y1, as forN = 5 Re 〈x̂x̂(t)〉y1

is further from the quantum mechanical result than clas-
sical mechanics is.

In figures 10, 11, and 12 the position and position-
squared autocorrelation functions are shown for the quar-
tic oscillator with a harmonic bath of 3, 6, and 9 degrees
of freedom respectively.

In figures 8, 9, 11, and 12 it can be seen that the x1-
results are significantly closer to quantum mechanics at
t = 0 than the y1-results are.

For the case with 3 degrees of freedom in the bath,
results are shown that are not entirely converged with
respect to the number of Monte Carlo steps used, and
it is visible that the x1-version of the method converges
better with respect to number of Monte Carlo steps than
the y1-version.

Overall the calculations for the larger numbers of de-
grees of freedom are fairly computationally intensive and
have therefore not been numerically converged with re-
spect to the number of beads. It can however be seen
in figures 10, 11, and 12 that when the harmonic bath is
sampled from a classical distribution much larger num-
bers of beads can be used in the quartic oscillator degree
of freedom and the number of Monte Carlo steps used is
still the same or smaller than used for a one-dimensional
quartic potential with a lower number of beads. Making
the bath classical thus improves the overall convergence
drastically. The classical bath calculations are so well
converged with regards to both number of beads and
Monte Carlo steps that the difference between y1 and
x1 is almost unnoticeable for the correlation functions
shown here, and therefore only the x1-version is shown.
The difference in numerical performance between the full
OPCW calculations and the calculations with classical
bath can be seen to increase when the size of the bath is
increased.

At time t = 0 the calculations employing a classical
bath give better values than those using the open poly-
mer for all degrees of freedom. However, even if the quar-
tic oscillator part of a classical bath calculation were to
be sampled with an infinite number of beads in the poly-
mer, the classical mechanics of the bath would still mean
that the initial value of the correlation functions would
not necessarily be the exact quantum mechanical value.
The correlation functions for t > 0 for the classical bath
calculations are qualitatively similar to but have higher
amplitudes than the full OPCW calculations. This is
the behavior that would be expected from a full OPCW
calculation with a larger number of beads.

For the real part of
〈

x̂2x̂2(t)
〉

the long time value given
by the classical bath calculations is lower than the corre-
sponding result for the full OPCW calculations, except
y1 for 9 degrees of freedom in the bath. From the full
OPCW results for the quartic oscillator with a harmonic
bath with 3 degrees of freedom, figures 8 and 9, and the
one-dimensional quartic oscillator, figure 2, it can be ex-
pected that for the same number of beads in the open
polymer, x1 will be more converged toward exact classi-
cal Wigner than y1 will be. For the quartic oscillator with
harmonic baths with 6 and 9 degrees of freedom, figure 11
and 12, the results from calculations with classical baths
are closer to the y1-results than to the x1-results. This
indicates that the long time values of Re

〈

x̂2x̂2(t)
〉

may
not be very well described with the classical bath. This
was to be expected as the zero point energy leakage from
the system into the bath should be considerable in this
type of calculation, and the correlation function, even at
long times, is highly dependent on the magnitude of the
oscillation in the system degree of freedom.

It can be seen in figures 10, 11, and 12 that the results
from the classical bath calculations and the FK-LPI re-
sults follow each other closely for the first 2-4 ω−1. At
t = 0 the classical bath results are as good as or slightly
worse than the FK-LPI results.

In figures 10(a,b), 11(a,b), and 12(a,b) it can be
seen that the classical Wigner method with a classical
bath gives slightly worse than or equally good results as
RPMD does for 〈x̂x̂(t)〉 at t = 0. Looking at 10(c,d),
11(c,d), and 12(c,d) it can be seen that the classical
Wigner method with a classical bath gives slightly better
results than RPMD does for

〈

x̂2x̂2(t)
〉

at t = 0. RPMD,
however, goes to higher values at long times for the real
part of

〈

x̂2x̂2(t)
〉

and this may be a better value as it fol-

lows
〈

x̂2x̂2(t)
〉

x1
which should be better converged than

〈

x̂2x̂2(t)
〉

y1
.

E. Summary of results

For all the cases studied here the results of the new
method converge toward exact quantum mechanics at
time t = 0 as the number of beads increases. Addition-
ally, for all cases where the exact classical Wigner result
is available the new method converges toward this result
as the number of beads increases. These convergences are
what should be observed according to the derivation of
the method. Some of the results for the one-dimensional
quartic oscillator and double well have converged essen-
tially to within the thickness of the line of the exact clas-
sical Wigner result.

For the correlation functions where a comparison has
been made the x1-version of the new method converges
faster than the y1-version with respect to the number
of beads used. The x1-version also converges better than
the y1-version with respect to the number of Monte Carlo
steps for these cases. Note also that for almost every
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graph shown it can be seen that for a larger number of
beads more Monte Carlo steps have been used to converge
the results.
The results for the multidimensional systems using

many beads in the polymer for sampling the initial dis-
tribution of the quartic oscillator degree of freedom and
classical mechanics to sample the initial distribution of
the bath show a significant improvement in convergence
toward the exact result at t = 0 compared to the re-
sults of using fewer beads for the full OPCW quartic
oscillator with harmonic bath. The long time values of
Re
〈

x̂2x̂2(t)
〉

may however be significantly different from
the exact classical Wigner result. This is likely to be
a result of increased zero point energy leakage when a
classical bath is used.
If looking at the one-dimensional and multidimensional

potentials, using a classical bath for the multidimensional
cases, the results from the open polymer sampled classi-
cal Wigner method is about as good as the results from
FK-LPI. For the double well potential the new method
clearly reproduces the exact classical Wigner results bet-
ter than FK-LPI, but the new method does not come
closer to exact quantum mechanics than FK-LPI. Com-
paring figures 3, 5, and 7 it can be seen that the OPCW
method works essentially equally well independent of the
potential involved, while in the case of FK-LPI it works
worse for the double well, which contains a region of neg-
ative curvature.
In comparison to RPMD it can be seen that for the

one-dimensional quartic oscillator the classical Wigner
method and thereby also the OPCW method performs
worse than, or in a single case equally well as, RPMD
for autocorrelation functions of linear operators. For the
autocorrelation function

〈

x̂2x̂2(t)
〉

the classical Wigner
method gives better results than RPMD at the lower
temperature employed here and possibly worse results
at the higher temperature. For the one-dimensional dou-
ble well potential, the classical Wigner method is seen
to give better results than RPMD for both 〈x̂x̂(t)〉 and
〈

x̂2x̂2(t)
〉

. Comparing classical Wigner with a classi-
cal bath to RPMD for the multidimensional systems,
the classical bath calculations tend to be as good as or
better than RPMD, apart from the long time values of
〈

x̂2x̂2(t)
〉

.

VI. CONCLUSION

In this article two versions of a new way of sampling the
initial quantum distribution used in the classical Wigner
method for the calculation of correlation functions have
been presented and tested for the one-dimensional quar-
tic oscillator and double well and a quartic oscillator with
linearly coupled harmonic baths. The name used for the
new method is open polymer classical Wigner, OPCW.
The new method will always converge toward the ex-

act classical Wigner result as the number of beads in the
open polymer necklace goes to infinity. For the y1-version

of the new method and the correlation functions and po-
tentials tested here this convergence is mostly slow. For
some cases the x1-version of the new method converges
considerably faster.
Compared to FK-LPI the open polymer sampling for

the classical Wigner method can give better, worse, or
equal results. The double well potential is a case where
the two methods give noticeably different results, with
the ones from OPCW being closer to exact classical
Wigner. Both methods however follow exact quantum
mechanics equally well for the double well potential. For
a well behaved molecular potential OPCW will always
converge toward the exact classical Wigner result as the
calculation gets more refined. A harmonic approximation
method such as FK-LPI will not necessarily converge to-
ward the exact classical Wigner result for all potential
energy surfaces.
The way forward from this study would be to test the

method developed here on other potentials and corre-
lation functions. One set of correlation functions that
are of chemical interest and that possibly could be cal-
culated by the presented method are the ones of Miller,
Schwartz, and Tromp43,44 that can be used to acquire
reaction rate constants. Potential energy surfaces in re-
action rate calculations tend to have barriers, such as the
one in the double well tested here, and this is where the
new method may be an improvement over such methods
as FK-LPI, since OPCW for the double well approximate
the exact classical Wigner result noticeably better than
FK-LPI does.
Systems with many degrees of freedom are seen to be

computationally demanding. Describing the harmonic
baths studied with classical mechanics improves the situ-
ation considerably. It would thus be of interest to try this
out on other multidimensional systems. This should be
particularly useful when the coupling between the system
and the bath is weak. It would also be of interest to try
a less approximate simplification for the less quantum
mechanical degrees of freedom in a system, such as an
open polymer equivalent to the ring polymer contraction
of Markland and Manolopoulos45. Another approach of
interest for handling the more computationally demand-
ing systems would be to try to enhance convergence using
the techniques recently introduced by Bose and Makri12.
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Appendix A: Analytic forms of A′(y1, x2 − x1) for
(

Â
)

W
[y1, p1] being a polynomial in p1

If
(

Â
)

W
[y1, p1] is a polynomial with respect to p1, i.e.

(

Â
)

W
[y1, p1] = knp

n
1 + kn−1p

n−1
1 . . . k2p

2
1 + k1p1 + k0

(A1)

where kn, . . . , k0 are constants, then the solution to equa-
tion 11 is:
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A′(y1, x2 − x1) =

∫

∞

−∞
dp1

(

Â
)

W
[y1, p1] e

−
β
N

p21
2m e−

i
~
p1(x2−x1)

√

2πmN
β e

−
β
N

mN2(x2−x1)2

2~2β2

= kn(−i)n
(

mN

2β

)
n
2

Hn

(
√

mN

2β

x2 − x1

~

)

+ kn−1(−i)n−1

(

mN

2β

)
n−1
2

Hn−1

(
√

mN

2β

x2 − x1

~

)

. . .

+ k2(−i)2
(

mN

2β

)
2
2

H2

(
√

mN

2β

x2 − x1

~

)

+ k1(−i)

(

mN

2β

)
1
2

H1

(
√

mN

2β

x2 − x1

~

)

+ k0

=
n
∑

j=0

kj(−i)j
(

mN

2β

)

j
2

Hj

(
√

mN

2β

x2 − x1

~

)

(A2)

where Hj (χ) is the Hermite polynomial defined by

Hj(χ) = (−1)jeχ
2 d j

dχj
e−χ2

(A3)

where χ is a dummy variable.

Appendix B: Kubo transform

One possible form of the Kubo transform24 of the open
polymer expression presented in this article is

〈

ÂB̂(t)
〉

Kubo
=

1

Z
Tr

{

1

β

∫ β

0

dλ e−λĤ Â e−(β−λ)Ĥ B̂(t)

}

≈
1

Z

(

mN

2πβ

)
N
2

√

β

2πmN
~
−N







N
∏

j=1

∫

∞

−∞

dxj







∫

∞

−∞

dpN e−
i
~
pN (x1−xN )

× e
−

β
N

(

p2
N

2m +
∑N

j=1 V (yj)+
mN2

2~2β2

∑N−1
j=1 (xj+1−xj)

2

)

(

B̂
)

W
[x (yN , pN , t) , p (yN , pN , t)]

×
1

N

(

1

2
A′(y1, x2 − x1) +

N−2
∑

k=1

A′(yk+1, xk+2 − xk+1) +
3

2
A′(yN−1, xN − xN−1)

)

. (B1)

It can be noted that the double counting of
A′(yN−1, xN − xN−1) is due to the approximation
(

Ω̂ e−
β
N

Ĥ
)

W
[x, p] ≈

(

Ω̂
)

W
[x, p]

(

e−
β
N

Ĥ
)

W
[x, p] ≈

(

e−
β
N

Ĥ Ω̂
)

W
[x, p]. This double counting leads to an

asymmetry that means that the resulting correlation
function may have an imaginary part. If using the Kubo
transform, this may be an unwanted property, so the
mean of the above expression and its complex conjugate
may be used instead
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〈

ÂB̂(t)
〉

Kubo

≈
1

Z

(

mN

2πβ

)
N
2

√

β

2πmN
~
−N







N
∏

j=1

∫

∞

−∞

dxj







∫

∞

−∞

dpN e
−

β
N

(

p2
N

2m +
∑

N
j=1 V (yj)+

mN2

2~2β2

∑N−1
j=1 (xj+1−xj)

2

)

×
(

B̂
)

W
[x (yN , pN , t) , p (yN , pN , t)]

×
1

2N

(

e−
i
~
pN (x1−xN )

(

1

2
A′(y1, x2 − x1) +

N−1
∑

k=2

A′(yk, xk+1 − xk) +
3

2
A′(yN−1, xN − xN−1)

)

+e
i
~
pN (x1−xN )

(

1

2
A′(yN−1, xN−1 − xN ) +

N−2
∑

k=1

A′(yk, xk − xk+1) +
3

2
A′(y1, x1 − x2)

))

, (B2)

which should not give an imaginary part. If A′(yj , xj+1 − xj) is either an even or odd function in re-
gards to xj+1 − xj , the expression can be simplified to

〈

ÂB̂(t)
〉

Kubo, even

≈
1

Z
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mN

2πβ

)
N
2

√
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∏
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)
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i
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(B3)

for even A′ and
〈

ÂB̂(t)
〉

Kubo, odd

≈
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(B4)

for odd A′. Appendix C: Results for harmonic potential β~ω = 8

Apart from the calculations shown in the main body of
this article, the four autocorrelation functions position,
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position-squared, momentum, and momentum-squared
were also calculated for a one-dimensional harmonic os-
cillator.
The harmonic potential was taken as

Vharmonic(x) =
1

2
mω2x2 (C1)

where ω is the angular frequency of the harmonic oscil-
lation.
The Monte Carlo procedure and molecular dynamics

were conducted as for the other systems. The timestep
used in the molecular dynamics was 0.050ω−1.
In order to have exact values to compare the calcu-

lated results to, analytic classical and quantum mechan-
ical correlation functions were used. These functions are
collected in appendix D.
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FIG. 13. The position autocorrelation function for a harmonic
potential (β~ω = 8). Comparison between different numbers
of beads for the two versions of OPCW and exact solutions
for classical mechanics (CM), and quantum mechanics (QM).
The number of Monte Carlo steps used for each number of
beads, N , is: 1 × 109 for N = 5, N = 10, and N = 40, and
64×109 for N = 160. The standard deviations are in all cases
small enough not to be visible. (a) real part of 〈x̂x̂(t)〉

y1
, (b)

imaginary part of 〈x̂x̂(t)〉
y1
, (c) real part of 〈x̂x̂(t)〉

x1
, and (d)

imaginary part of 〈x̂x̂(t)〉
x1
.
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FIG. 14. The position-squared autocorrelation function for
a harmonic potential (β~ω = 8). Comparison between dif-
ferent numbers of beads for the two versions of OPCW and
exact solutions for classical mechanics (CM), and quantum
mechanics (QM). The number of Monte Carlo steps used for
each number of beads, N , is: 1× 109 for N = 5 and N = 10,
4×109 for N = 40, and 64×109 for N = 160. The outer lines
of each type show the standard deviations for the results. If
the standard deviation is small enough the outer lines are not
visible. (a) real part of

〈

x̂2x̂2(t)
〉

y1
, (b) imaginary part of

〈

x̂2x̂2(t)
〉

y1
, (c) real part of

〈

x̂2x̂2(t)
〉

x1
, and (d) imaginary

part of
〈

x̂2x̂2(t)
〉

x1
.
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FIG. 15. The position and position-squared autocorrelation
functions for a harmonic potential (β~ω = 8). Comparison
between the two versions of OPCW and numerically exact so-
lutions for classical mechanics (CM), classical Wigner (CW),
RPMD, and quantum mechanics (QM). The number of beads
used in the y1- and x1-calculations is N = 160 and the num-
ber of Monte Carlo steps is 64× 109. The outer lines of each
type show the standard deviations for the results. If the stan-
dard deviation is small enough the outer lines are not visible.
(a) real part of 〈x̂x̂(t)〉, (b) imaginary part of 〈x̂x̂(t)〉, (c) real
part of

〈

x̂2x̂2(t)
〉

, and (d) imaginary part of
〈

x̂2x̂2(t)
〉

.
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FIG. 16. The momentum and momentum-squared autocor-
relation functions for a harmonic potential (β~ω = 8). Com-
parison between different numbers of beads for OPCW (with
〈p̂p̂(t)〉

y1
and

〈

p̂2p̂2(t)
〉

y1
being identical to 〈p̂p̂(t)〉

x1
and

〈

p̂2p̂2(t)
〉

x1
respectively) and exact solutions for classical me-

chanics (CM), and quantum mechanics (QM). The number of
Monte Carlo steps used for each number of beads, N , for the
calculation of 〈p̂p̂(t)〉

y1,x1
is: 1× 109 for N = 5 and N = 10,

4 × 109 for N = 40, and 64 × 109 for N = 160. The number
of Monte Carlo steps used for each number of beads for the
calculation of

〈

p̂2p̂2(t)
〉

y1,x1
is: 1 × 109 for N = 5, 4 × 109

for N = 20, and 128 × 109 for N = 80. The outer lines of
each type show the standard deviations for the results. If
the standard deviation is small enough the outer lines are not
visible. (a) real part of 〈p̂p̂(t)〉

y1,x1
, (b) imaginary part of

〈p̂p̂(t)〉
y1,x1

, (c) real part of
〈

p̂2p̂2(t)
〉

y1,x1
, and (d) imaginary

part of
〈

p̂2p̂2(t)
〉

y1,x1
.
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As can be seen in figure 13 for both versions of the new
method the real and imaginary parts of the position au-
tocorrelation function converges from exact classical me-
chanics toward exact quantum mechanics as the number
of beads increase. 〈x̂x̂(t)〉x1

converges toward quantum
mechanics, with respect to number of beads, noticeably
faster than 〈x̂x̂(t)〉y1

. This ordering of speed of conver-
gence with regard to the number of beads, N , is what
could be expected since 〈x̂x̂(t)〉x1

requires the positions
of neighboring beads to converge to the same value while
〈x̂x̂(t)〉y1

also requires the positions of next neighboring
beads to converge to the same value, see appendix E 1.
In figure 14 the position-squared autocorrelation func-

tion can be seen for both versions of the method studied.
Both versions of the method, just as for the previous cor-
relation function, converge from classical toward quan-
tum mechanics as the number of beads increase. Simi-
lar to the previous correlation function,

〈

x̂2x̂2(t)
〉

x1
con-

verges faster with respect to the number of beads than
〈

x̂2x̂2(t)
〉

y1
, as could be expected, see appendix E 2.

In figure 15 the position and position-squared autocor-
relation functions from the two versions of the open poly-
mer method can be compared to each other, exact clas-
sical mechanics, exact quantum mechanics, and RPMD.
FK-LPI is always exact for a harmonic potential, so it
is equivalent to exact quantum mechanics. As RPMD
is exact for correlation functions with at least one linear
operator in a harmonic potential3 the exact RPMD re-
sult is also equivalent to exact quantum mechanics for
〈x̂x̂(t)〉. For

〈

x̂2x̂2(t)
〉

it can be seen that the classical
Wigner method gives better results than RPMD. This
is to be expected as the classical Wigner method is ex-
act for any correlation function for a harmonic potential
while RPMD is not exact when both operators in the
correlation function are non-linear.
In figure 16 the momentum and momentum-squared

autocorrelation functions are shown. For these correla-
tion functions the two versions of the method are identi-
cal. 〈p̂p̂(t)〉y1,x1

converges in a similar way as 〈x̂x̂(t)〉y1

does with respect to the number of beads.
〈

p̂2p̂2(t)
〉

y1,x1
,

as all the other correlation functions, converges with re-
spect to the number of beads from classical toward quan-
tum mechanics. In this work

〈

p̂2p̂2(t)
〉

y1,x1
is the most

difficult correlation function to converge with respect to
the number of Monte Carlo steps. That is why no results
from calculations with N = 160 are shown and why the
standard deviations are visible in the results for N = 80.

Appendix D: Analytic correlation functions for the harmonic

oscillator

For the harmonic oscillator described in appendix
C correlation functions can be calculated analytically.
〈x̂x̂(t)〉 and 〈p̂p̂(t)〉 are straightforward to derive and

〈

x̂2x̂2(t)
〉

and
〈

p̂2p̂2(t)
〉

can be acquired from the sim-
pler correlation functions by using the cumulant expan-
sion of Cao and Voth46. The correlation functions are,
for classical mechanics,

〈x̂x̂(t)〉 =
1

βmω2
cos (ωt) (D1)

〈

x̂2x̂2(t)
〉

=
1

β2m2ω4

(

1 + 2 cos2 (ωt)
)

(D2)

〈p̂p̂(t)〉 =
m

β
cos (ωt) (D3)

〈

p̂2p̂2(t)
〉

=
m2

β2

(

1 + 2 cos2 (ωt)
)

(D4)

and, for quantum mechanics,

〈x̂x̂(t)〉 =
~

2mω

(

eβ~ω

eβ~ω −1
e−iωt +

1

eβ~ω −1
eiωt

)

(D5)

〈

x̂2x̂2(t)
〉

=
~
2

4m2ω2

(

(

eβ~ω +1

eβ~ω −1

)2

+2

(

eβ~ω

eβ~ω −1
e−iωt +

1

eβ~ω −1
eiωt

)2
)

(D6)

〈p̂p̂(t)〉 =
m~ω

2

(

eβ~ω

eβ~ω −1
e−iωt +

1

eβ~ω −1
eiωt

)

(D7)

〈

p̂2p̂2(t)
〉

=
m2

~
2ω2

4

(

(

eβ~ω +1

eβ~ω −1

)2

+2

(

eβ~ω

eβ~ω −1
e−iωt +

1

eβ~ω −1
eiωt

)2
)

.

(D8)

Appendix E: Comparison of the real and imaginary parts of

correlation functions for the harmonic potential.

For the harmonic oscillator the analytical equations of

motion can be put into
(

B̂
)

W
[x (yN , pN , t) , p (yN , pN , t)]

and
(

B̂
)

W
[x (xN , pN , t) , p (xN , pN , t)] in equations 12

and 13. This appendix shows how some autocorrelation
functions behave for the two versions of the method pre-
sented in this paper.

1. Position autocorrelation function, 〈x̂x̂(t)〉

For the case of 〈x̂x̂(t)〉, entering the analytical equa-
tions of motion into the equations 12 and 13 lead to
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〈x̂x̂(t)〉y1
=

1

Z

(

mN

2πβ

)
N
2

√

β

2πmN
~
−N







N
∏

j=1

∫

∞

−∞

dxj







∫

∞

−∞

dpN e−
i
~
pN (x1−xN )

× e
−

β
N

(

p2
N

2m +
∑

N
j=1 V (yj)+

mN2

2~2β2

∑N−1
j=1 (xj+1−xj)

2

)

y1

(

yN cos (ωt) +
pN
mω

sin (ωt)
)

(E1)

〈x̂x̂(t)〉x1
=

1

Z

(

mN

2πβ

)
N
2

√

β

2πmN
~
−N







N
∏

j=1

∫

∞

−∞

dxj







∫

∞

−∞

dpN e−
i
~
pN (x1−xN )

× e
−

β
N

(

p2
N

2m +
∑N

j=1 V (yj)+
mN2

2~2β2

∑N−1
j=1 (xj+1−xj)

2

)

x1

(

yN cos (ωt) +
pN
mω

sin (ωt)
)

. (E2)

To simplify, pN can be integrated out and all constants that are identical in both cases can be collected into a single
constant, C.

〈x̂x̂(t)〉y1
=C







N
∏

j=1

∫

∞

−∞

dxj







e
−

β
N

(

∑

N
j=1 V (yj)+

mN2

2~2β2

∑

N
j=1(xj+1−xj)

2
)

y1

(

yN cos (ωt)−
iN

β~ω
(x1 − xN ) sin (ωt)

)

(E3)

〈x̂x̂(t)〉x1
=C







N
∏

j=1

∫

∞

−∞

dxj







e
−

β
N

(

∑N
j=1 V (yj)+

mN2

2~2β2

∑N
j=1(xj+1−xj)

2
)

x1

(

yN cos (ωt)−
iN

β~ω
(x1 − xN ) sin (ωt)

)

.

(E4)

These correlation functions are Boltzmann-weighted averages, which can be simplified to

〈x̂x̂(t)〉y1
=

〈

y1

(

yN cos (ωt)−
iN

β~ω
(x1 − xN ) sin (ωt)

)〉

(E5)

〈x̂x̂(t)〉x1
=

〈

x1

(

yN cos (ωt)−
iN

β~ω
(x1 − xN ) sin (ωt)

)〉

. (E6)

Now the correlation functions can be separated into
the real parts,

Re 〈x̂x̂(t)〉y1
= cos (ωt) 〈y1yN 〉

=
cos (ωt)

4

(〈

x2
1

〉

+ 〈x1xN 〉+ 〈x1x2〉

+ 〈x2xN 〉)

=
cos (ωt)

4

(〈

x2
1

〉

+ 2 〈x1xN 〉+ 〈x2xN 〉
)

(E7)

Re 〈x̂x̂(t)〉x1
= cos (ωt) 〈x1yN〉

=
cos (ωt)

2

(〈

x2
1

〉

+ 〈x1xN 〉
)

, (E8)

and the imaginary parts,

Im 〈x̂x̂(t)〉y1
= −

N

β~ω
sin (ωt) 〈y1 (x1 − xN )〉

= −
N

2β~ω
sin (ωt)

(〈

x2
1

〉

+ 〈x1x2〉 − 〈x1xN 〉

− 〈x2xN 〉)

= −
N

2β~ω
sin (ωt)

(〈

x2
1

〉

− 〈x2xN 〉
)

(E9)

Im 〈x̂x̂(t)〉x1
= −

N

β~ω
sin (ωt) 〈x1 (x1 − xN )〉

= −
N

β~ω
sin (ωt)

(〈

x2
1

〉

− 〈x1xN 〉
)

, (E10)

where it has been used that all beads are equivalent after
the last momentum was integrated out, so e.g.

〈

x2
N

〉

=
〈

x2
1

〉

and 〈x1xN 〉 = 〈x1x2〉.

For the real part
〈

x2
1

〉

cos (ωt) is the exact quantum
mechanics, apart from that the Boltzmann weighting fac-
tor in the average is approximate as long as N is finite.
Re 〈x̂x̂(t)〉x1

consists to a larger degree of
〈

x2
1

〉

cos (ωt)
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than Re 〈x̂x̂(t)〉y1
does. When N → ∞ and the distance

between beads becomes smaller both 〈x1xN 〉 and 〈x2xN 〉
will converge toward

〈

x2
1

〉

. 〈x2xN 〉 will most likely con-
verge more slowly than 〈x1xN 〉 as it depends on next
neighboring beads instead of immediately neighboring
beads. This means that Re 〈x̂x̂(t)〉x1

could be expected
to convergence toward exact quantum mechanics faster
than Re 〈x̂x̂(t)〉y1

with respect to number of beads. With

the same kind of reasoning, Im 〈x̂x̂(t)〉x1
could be ex-

pected to converge faster with respect to number of beads

than Im 〈x̂x̂(t)〉y1
, since the former depends on 〈x1xN 〉

and the latter depends on 〈x2xN 〉.

2. Comparison of real and imaginary parts of
〈

x̂2x̂2(t)
〉

for

the harmonic potential

For
〈

x̂2x̂2(t)
〉

the equivalent of equations E5 and E6
are

〈

x̂2x̂2(t)
〉

y1
=

〈

y21

(

y2N cos2 (ωt)−
iN

β~ω
(x1 − xN ) yN sin (ωt) cos (ωt)−

N2

β2~2ω2
(x1 − xN )

2
sin2 (ωt) +

N

βω2m
sin2 (ωt)

)〉

(E11)

〈

x̂2x̂2(t)
〉

x1
=

〈

x2
1

(

y2N cos2 (ωt)−
iN

β~ω
(x1 − xN ) yN sin (ωt) cos (ωt)−

N2

β2~2ω2
(x1 − xN )

2
sin2 (ωt) +

N

βω2m
sin2 (ωt)

)〉

.

(E12)

Separating into real parts

Re
〈

x̂2x̂2(t)
〉

y1
=

〈

y21y
2
N cos2 (ωt)− y21

N2

β2~2ω2
(x1 − xN )

2
sin2 (ωt) + y21

N

βω2m
sin2 (ωt)

〉

=
cos2 (ωt)

16

〈
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1 + 2x3

1x2 + 2x3
1xN + x2
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2
2 + 4x2

1x2xN + x2
1x

2
N + 2x1x
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2xN + 2x1x2x
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N + x2
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2
N

〉
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2x
2
N

〉

+
N sin2 (ωt)
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〈

x2
1 + 2x1x2 + x2

2

〉

=
cos2 (ωt)

16

(〈
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1

〉

+ 4
〈
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〉
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〈
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1x

2
N

〉
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〈
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1x2xN

〉

+ 4
〈
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〉

+
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−
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− 4
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+
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1

〉

+ 〈x1xN 〉
)

(E13)

Re
〈

x̂2x̂2(t)
〉

x1
=

〈

x2
1y

2
N cos2 (ωt)− x2

1

N2

β2~2ω2
(x1 − xN )

2
sin2 (ωt) + x2
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N

βω2m
sin2 (ωt)

〉

=
cos2 (ωt)
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N sin2 (ωt)

βω2m

〈

x2
1

〉

(E14)

and imaginary parts

Im
〈

x̂2x̂2(t)
〉
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= −

N
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sin (ωt) cos (ωt)

〈

y21 (x1 − xN ) yN
〉
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sin (ωt) cos (ωt)

(〈

x4
1

〉

+ 2
〈

x3
1x2

〉

+
〈

x2
1x

2
2

〉

−
〈

x2
1x

2
N

〉

− 2
〈

x1x2x
2
N

〉

−
〈

x2
2x

2
N

〉)

= −
N

8β~ω
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2
N

〉

−
〈

x2
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2
N

〉)

(E15)

Im
〈

x̂2x̂2(t)
〉

x1
= −

N

β~ω
sin (ωt) cos (ωt)

〈

x2
1 (x1 − xN ) yN

〉

= −
N

2β~ω
sin (ωt) cos (ωt)

(〈

x4
1

〉

−
〈

x2
1x

2
N

〉)

. (E16)
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From these expressions it can be seen that
〈

x̂2x̂2(t)
〉

x1

for both the real and imaginary part is a combination of
fewer and less complex averages than

〈

x̂2x̂2(t)
〉

y1
. Less

complex in this case means averages of fewer different
positions and of positions closer to each other. Thus it
can be expected that

〈

x̂2x̂2(t)
〉

x1
converges faster with

regard to the number of beads than
〈

x̂2x̂2(t)
〉

y1
does.
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