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ABSTRACT
The classical Wigner model is one way to approximate the quantum dynamics of atomic nuclei. Here, a new method is presented for sampling
the initial quantum mechanical distribution that is required in the classical Wigner model. The new method is tested for the position, position-
squared, momentum, and momentum-squared autocorrelation functions for a one-dimensional quartic oscillator and double well potential
as well as a quartic oscillator coupled to harmonic baths of different sizes. Two versions of the new method are tested and shown to possibly
be useful. Both versions always converge toward the classical Wigner limit. For the one-dimensional cases, some results that are essentially
converged to the classical Wigner limit are acquired and others are not far off. For the multi-dimensional systems, the convergence is slower,
but approximating the sampling of the harmonic bath with classical mechanics was found to greatly improve the numerical performance.
For the double well, the new method is noticeably better than the Feynman–Kleinert linearized path integral method at reproducing the exact
classical Wigner results, but they are equally good at reproducing exact quantum mechanics. The new method is suggested as being interesting
for future tests on other correlation functions and systems.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5126183., s

I. INTRODUCTION

When studying molecular systems computationally, a prob-
lem that can arise is how to account for the quantum mechani-
cal behavior of the atomic nuclei without having to solve the time
dependent Schrödinger equation using wavefunctions and, instead,
work with, e.g., trajectories, which has the potential to be signif-
icantly cheaper computationally for many chemically interesting
problems. Several different methods exist, which can be used to
address this problem, such as centroid molecular dynamics (CMD)1

that has been well explained by Jang and Voth,2 ring polymer molec-
ular dynamics (RPMD),3 semi-classical initial value representation
(SC-IVR)4 that has been well explained by Miller,5 Matsubara
dynamics,6 and the classical Wigner (CW) method7,8 [also called
linearized semi-classical initial value representation (LSC-IVR), and
linearized path integral (LPI)]. A new implementation of the classi-
cal Wigner method is the topic of the present article.

The classical Wigner method starts with a quantum mechan-
ical phase space distribution, which is propagated forward in time
classically. Finding the initial distribution is typically problematic. In

this work, a new way to sample the initial phase space distribution is
presented and tested for some simple problems.

The classical Wigner method, CMD, and RPMD can all be seen
as approximations to Matsubara dynamics and give worse results
than Matsubara dynamics.6,9 However, for large systems, Mat-
subara dynamics would be too computationally demanding to be
practical.6

Comparing CMD and RPMD to the classical Wigner method,
one major advantage of the former two is that the quantum mechan-
ical ensemble is conserved during the dynamics, while it is not in
the classical Wigner method. On the other hand, for a harmonic
oscillator, the classical Wigner method is exact for any correlation
function,7 while CMD can formally be done for non-linear oper-
ators,10 but it is a much more complicated process than for linear
operators, and RPMD is only exact for correlation functions where
at least one operator is linear.3

The classical Wigner method can be seen as an approximation
of the semi-classical initial value representation. In this approxima-
tion, quantum real time coherence is, however, lost, which may not
be very important in large or condensed phase systems since these

J. Chem. Phys. 152, 094111 (2020); doi: 10.1063/1.5126183 152, 094111-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5126183
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5126183
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5126183&domain=pdf&date_stamp=2020-March-5
https://doi.org/10.1063/1.5126183
https://orcid.org/0000-0002-7895-6876
https://orcid.org/0000-0002-9527-3890
mailto:jens.poulsen@gu.se
mailto:nyman@chem.gu.se
https://doi.org/10.1063/1.5126183


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

typically decohere rapidly.11 An advantage with the approximation
is less oscillatory integrands to handle numerically.11

From the above comparisons, it can be seen that one of the
reasons for using the classical Wigner method is that it may better
handle non-linear correlation functions at a reasonable expense of
computational resources, compared to the other available methods.

In the new implementation of the classical Wigner method that
is presented in this paper, the initial phase space distribution is sam-
pled with an imaginary time path integral polymer similar to those
that can be found in CMD and RPMD, but in those cases, these
polymers are closed rings and in the present implementation of the
classical Wigner method, the polymer has an opening. The open
polymer presented here is more closely related to those that can be
found in the work of Bose and Makri12 and Bonella et al.13,14

In what follows, first, the classical Wigner method is explained
(Sec. II), and a new path integral open polymer implementation of it
is presented (Sec. III). After that, the computational details (Sec. IV)
and the results (Sec. V) are presented, and conclusions (Sec. VI) are
drawn.

II. CLASSICAL WIGNER METHOD
The classical Wigner method was in its first form introduced,

but not necessarily recommended by Heller.7 In its current more
general form, which is applicable to correlation functions, it was
introduced by Wang, Sun, and Miller.8 The classical Wigner method
has as its basis the Wigner phase space distribution.15,16 In one
dimension, easily generalized to any number of dimensions, the
Wigner transform is

(Ω̂)
W
[x, p] = ∫

∞

−∞
dη e−iηp/h̵

⟨x +
η
2
∣Ω̂∣x −

η
2
⟩, (1)

where Ω̂ is an arbitrary operator, x is the position, p is the momen-
tum, η is a variable with the dimension of the length, h̵ is the reduced
Planck constant, and i is the imaginary unit. The Wigner function is
the Wigner transform of the probability density operator 1

2πh̵ ∣Ψ⟩⟨Ψ∣,
where ∣Ψ⟩ is the ket of the state of the system. This distribution is an
exact quantum mechanical quasi-probability distribution and can be
used to calculate expectation values,

⟨Ω̂⟩ = ∫
∞

−∞
dx ∫

∞

−∞
dp ( 1

2πh̵ ∣Ψ⟩⟨Ψ∣)W
[x, p](Ω̂)

W
[x, p]. (2)

The classical Wigner method consists of taking the quantum
mechanical transformed quantity and propagating it forward in time
with classical mechanics (CM), i.e.,

( e
iĤt
h̵ Ω̂ e−

iĤt
h̵ )

W
[x, p] ≃ (Ω̂)

W
[x(t), p(t)], (3)

where Ĥ is the Hamiltonian operator and t is time. Thus, the classical
Wigner method works by initiating with a quantum mechanical dis-
tribution and then propagating it classically, thereby taking account
of all equilibrium quantum effects e.g., zero-point energy, but over-
looking e.g., dynamic tunneling and quantum interference within
the dynamics. The method is exact for potentials up to and including
harmonic terms.7 For a detailed derivation of the classical Wigner
method, the review by Liu17 can be recommended.

The classical Wigner method has been applied successfully to,
e.g., calculating the kinetic energy and density fluctuation spectrum
in liquid neon18 and vibrational energy relaxation rate constants,19,20

but the classical Wigner method has also been found to have limita-
tions for calculating the self-diffusion coefficient of liquid water21 or
handling anisotropic materials.22

III. FEYNMAN PATH INTEGRAL OPEN POLYMER
Let us assume that the quantity of interest for a system is the

canonical time correlation function,

⟨ÂB̂(t)⟩ =
1
Z

Tr{Â e−βĤ e
iĤt
h̵ B̂ e−

iĤt
h̵ }, (4)

where Â and B̂ are arbitrary operators, β is the inverse of Boltz-
mann’s constant times the absolute temperature, Z is the partition
function, and Tr denotes a trace. The choice of placing the Boltz-
mann operator after Â, instead of before, is arbitrary and only deter-
mines the sign of the imaginary part of the correlation function,
since we have,

1
Z

Tr{ e−βĤÂ e
iĤt
h̵ B̂ e−

iĤt
h̵ } =

1
Z
( Tr{Â e−βĤ e

iĤt
h̵ B̂ e−

iĤt
h̵ })

∗

. (5)

The trace can be written as an integral over the position, x1,
eigenkets,

⟨ÂB̂(t)⟩ =
1
Z ∫

∞

−∞
dx1 ⟨x1∣Â e−βĤ e

iĤt
h̵ B̂ e−

iĤt
h̵ ∣x1⟩. (6)

By dividing the Boltzmann operator e−βĤ into N factors e−
β
N Ĥ

and inserting N − 1 identity operators, 1̂ = ∫∞−∞dxj ∣xj⟩⟨xj∣, the
correlation function can be written as

⟨ÂB̂(t)⟩ =
1
Z

⎧⎪⎪
⎨
⎪⎪⎩

N

∏
j=1
∫

∞

−∞
dxj

⎫⎪⎪
⎬
⎪⎪⎭

⟨x1∣Â e−
β
N Ĥ
∣x2⟩

× ⟨x2∣ e−
β
N Ĥ
∣x3⟩ . . . ⟨xN−1∣ e−

β
N Ĥ
∣xN⟩

× ⟨xN ∣ e−
β
N Ĥ e

iĤt
h̵ B̂ e−

iĤt
h̵ ∣x1⟩, (7)

which can be recognized as a Feynman path integral23 in imag-
inary time (−ih̵β), and this in turn can be rewritten as Wigner
transforms,

⟨ÂB̂(t)⟩ =
1
Z

⎧⎪⎪
⎨
⎪⎪⎩

N

∏
j=1
∫

∞

−∞
∫

∞

−∞

dxj dpj

2πh̵

⎫⎪⎪
⎬
⎪⎪⎭

e−
i
h̵ ∑

N
j=1 pj(xj+1−xj)

×(Â e−
β
N Ĥ
)

W
[

x1 + x2

2
, p1]( e−

β
N Ĥ
)

W
[

x2 + x3

2
, p2]

. . .( e−
β
N Ĥ
)

W
[

xN−1 + xN

2
, pN−1]

×( e−
β
N Ĥ e

iĤt
h̵ B̂ e−

iĤt
h̵ )

W
[

xN + x1

2
, pN], (8)

where xN +1 = x1 so that the coordinates make a loop.
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If β
N is approaching 0 and only finite temperatures are of inter-

est, i.e., N is approaching infinity, then the Wigner transform of
the Boltzmann operator is simply the classical Boltzmann factor. In
this same limit, the Boltzmann operators can be separated from the
transforms involving Â and B̂ and thus make up their own Wigner
transforms, without consequence,

⟨ÂB̂(t)⟩ = lim
N→∞

1
Z

⎧⎪⎪
⎨
⎪⎪⎩

N

∏
j=1
∫

∞

−∞
∫

∞

−∞

dxj dpj

2πh̵

⎫⎪⎪
⎬
⎪⎪⎭

× e−
i
h̵ ∑

N
j=1 pj(xj+1−xj)(Â)

W
[y1, p1]

× e−
β
N ∑

N
j=1 H(yj ,pj)( e

iĤt
h̵ B̂ e−

iĤt
h̵ )

W
[yN , pN], (9)

where yj =
xj+xj+1

2 , yN =
xN +x1

2 , and H(yj, pj) is the classical
Hamiltonian. Now, assuming that the potential energy V(yj) is
independent of momentum, whereby most of the momenta only
occur in the kinetic energy term of the classical Hamiltonians,
p2

j

2m , and the symplectic area, ∑N
j=1 pj(xj+1 − xj), it is easy to inte-

grate those momenta out analytically. The momenta that occur in
other places in Eq. (9) are p1 and pN . p1 can occur within the
Wigner transform of Â. Depending on how (Â)

W
[y1, p1] depends

on p1, the integration over p1 will turn out differently. As long as

∫
∞
−∞dp1 (Â)W

[y1, p1] e−
β
N H(y1 ,p1) e−

i
h̵ p1(x2−x1) can be evaluated ana-

lytically, e.g., for (Â)
W
[y1, p1] being any polynomial of p1 (see

Appendix A), all momenta except pN can be integrated out ana-
lytically. pN can usually not be integrated out analytically since if B̂
includes either position or momentum, then ( e

iĤt
h̵ B̂ e−

iĤt
h̵ )

W
[yN , pN]

will depend on both, unless the potential is constant, and typically
this dependence will be such that the integral is not easily evaluated
analytically. Hence, these integrations lead to

⟨ÂB̂(t)⟩ = lim
N→∞

1
Z
(

mN
2πβ
)

N
2
√

β
2πmN

h̵−N
⎧⎪⎪
⎨
⎪⎪⎩

N

∏
j=1
∫

∞

−∞
dxj

⎫⎪⎪
⎬
⎪⎪⎭

× ∫

∞

−∞
dpN e−

i
h̵ pN(x1−xN)A′(y1, x2 − x1)

× e−
mN

2h̵2β ∑
N−1
j=1 (xj+1−xj)

2

e−
β
N ∑

N
j=1 V(yj)

× e−
β
N

p2
N

2m ( e
iĤt
h̵ B̂ e−

iĤt
h̵ )

W
[yN , pN], (10)

where A′(y1, x2 − x1) is

A′(y1, x2 − x1) =
∫
∞

−∞
dp1 (Â)W

[y1, p1] e−
β
N

p2
1

2m e−
i
h̵ p1(x2−x1)

∫
∞

−∞
dp1 e−

β
N

p2
1

2m e−
i
h̵ p1(x2−x1)

=
∫
∞

−∞
dp1 (Â)W

[y1, p1] e−
β
N

p2
1

2m e−
i
h̵ p1(x2−x1)

√
2πmN

β e−
β
N

mN2(x2−x1)
2

2h̵2β2

(11)

and may depend on y1 and/or x2 − x1.

Finally, the Wigner transform of the time-evolved oper-
ator B̂ can be very difficult to derive. This is where the
classical Wigner method comes in through the approximation
( e

iĤt
h̵ B̂ e−

iĤt
h̵ )

W
[yN , pN] ≈ (B̂)W

[x(yN , pN , t), p(yN , pN , t)] [as in
Eq. (3)] giving the final expression,

⟨ÂB̂(t)⟩ ≈
1
Z
(

mN
2πβ
)

N
2
√

β
2πmN

h̵−N
⎧⎪⎪
⎨
⎪⎪⎩

N

∏
j=1
∫

∞

−∞
dxj

⎫⎪⎪
⎬
⎪⎪⎭

× ∫

∞

−∞
dpN e−

i
h̵ pN(x1−xN)

× e
−

β
N (

p2
N

2m +∑N
j=1 V(yj)+ mN2

2h̵2β2 ∑
N−1
j=1 (xj+1−xj)

2
)

×A′(y1, x2 − x1)(B̂)W
[x(yN , pN , t), p(yN , pN , t)], (12)

where x(yN , pN , t) and p(yN , pN , t) are the position and momen-
tum coordinates describing the classical trajectory starting with yN
and pN , and where also for practical reasons the limit of N → ∞
has been removed, thereby also making the value of the correlation
function at t = 0 approximate. When referring to this expression, it
will be called ⟨ÂB̂(t)⟩

y1
. It is noted that Eq. (12) is closely related

to an expression recently published by Bose and Makri12 [Eq. (2.7)
in the reference], but not further explored by them. The main dif-
ference is that they use a Boltzmann operator that is symmetrized
around Â, i.e., e−

β
2 ĤÂ e−

β
2 Ĥ . Equation (12) is also related to the L = 1

version of the method published by Bonella et al.,13 more clearly
seen in the paper by Bonella and Ciccotti.14 This method also han-
dles symmetrized Boltzmann operators but uses sum and difference
variables for the polymer.

Apart from the asymmetric placement of the Boltzmann opera-
tor explored in this paper and the symmetric placement explored in
the cited papers, another common handling of the Boltzmann oper-
ator is the Kubo transform.24 This will not be further explored here;
however, the Kubo transform of the new method can be found in
Appendix B.

It can be noted that in Eq. (12), the effective equilibrium Hamil-
tonian has terms mN2

2h̵2β2 (xj+1 − xj)
2. These look exactly like the poten-

tial energy of harmonic springs and are, therefore, called “spring
terms.” This kind of model for a system is usually described as beads
on a necklace, with the beads placed at the positions of the xj:s and
connected by springs. The ends of this polymer are connected via the
imaginary exponential − i

h̵ pN(x1 − xN), thus making it “open” in the
sense that there is no force keeping the ends together, in contrast to
other path integral methods such as path integral molecular dynam-
ics,25 ring polymer molecular dynamics,3 or path integral Monte
Carlo.26 Even such a method as the open chain imaginary time path
integral of Cendagorta et al.27 would be considered a closed polymer
from this point of view. A graphical representation of the open poly-
mer in this work is shown in Fig. 1. This is the polymer advertised in
the title of this paper.

Looking back at Eq. (7), it can be seen that if Â only depends on
the position, then Â can operate to the left and transform into a func-
tion of x1, A(x1), thereby leaving a matrix element of the Boltzmann
operator. This operation removes the approximation of separating
the Wigner transforms of Â and e−

β
N Ĥ , making this derivation less

approximate than the previous one. This means that a new version
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FIG. 1. A drawing to exemplify a 7-bead open polymer, where the positions of
all the x:s and y:s have been marked. The springs represent the separations
that give a spring-term, and the line is the separation that gives the imagi-
nary exponential. y1 and y7 (in the circles) are where A′(y1, x2 − x1) and
(B̂)

W
[x(y7, p7, t), p(y7, p7, t)] are evaluated, respectively.

of Eq. (12) is

⟨ÂB̂(t)⟩ ≈
1
Z
(

mN
2πβ
)

N
2
√

β
2πmN

h̵−N
⎧⎪⎪
⎨
⎪⎪⎩

N

∏
j=1
∫

∞

−∞
dxj

⎫⎪⎪
⎬
⎪⎪⎭

× ∫

∞

−∞
dpN e−

i
h̵ pN(x1−xN)

× e
−

β
N (

p2
N

2m +∑N
j=1 V(yj)+ mN2

2h̵2β2 ∑
N−1
j=1 (xj+1−xj)

2
)

×A(x1)(B̂)W
[x(yN , pN , t), p(yN , pN , t)], (13)

where the only change compared to before is that A′(y1, x2 − x1)
has been replaced by A(x1). This expression will be referred to as
⟨ÂB̂(t)⟩

x1
. If Â depends on both position and momentum, it is in

many cases possible to reorder operators so that all position depen-
dence is to the left of all momentum dependence, and then let the
position dependent parts operate to the left in Eq. (7), keeping the
momentum dependent parts in the matrix element. Of course this
would lead to a more complicated expression than A(x1). Opera-
tors of both position and momentum will, however, not be further
discussed in this article

If Â depends only on momentum, then Eq. (12) will be equiva-
lent to Eq. (13) so that ⟨ÂB̂(t)⟩

x1
= ⟨ÂB̂(t)⟩

y1
. For this situation, the

notation ⟨ÂB̂(t)⟩
y1 ,x1

will be used.
For simplicity of notation, the path integral open polymer

method will usually be called Open Polymer Classical Wigner, or
OPCW for short, in this paper.

For multidimensional systems, the path integral open polymer
method for sampling initial conditions can potentially get a severe
sign problem due to the factor e−

i
h̵ pN(x1−xN) appearing in each degree

of freedom. The way this problem will be tackled in this article is to
sample the initial distribution of the most quantum mechanical or
most important degrees of freedom by the path integral open poly-
mer method and the other degrees of freedom by classical mechan-
ics, coupling each bead in the quantum mechanical part(s) with the
single bead in the classical parts.

IV. COMPUTATIONAL DETAILS
Equations (12) and (13) were evaluated by Monte Carlo for the

integrals over xj and pN and with molecular dynamics for the time
propagation of (B̂)

W
[x(yN , pN , t), p(yN , pN , t)].

The correlation functions studied in this paper are autocor-
relation functions of position, position-squared, momentum, and
momentum-squared for a one-dimensional quartic potential. In
addition, a one-dimensional double well potential and a quartic
potential with many-dimensional harmonic baths were studied for
the position and position-squared autocorrelation functions.

A. Potentials and system parameters
The potentials studied in this work are a quartic potential, a

double well potential, and a quartic potential with various harmonic
baths.

The quartic potential was taken as

Vquartic(x) =
m2ω3

4h̵
x4, (14)

where ω is a unit of angular frequency.
The double well potential was taken as

Vdouble well(x) =
m2ω3

10h̵
x4
−

1
2

mω2x2. (15)

The multidimensional systems all use the quartic potential
together with the types of baths of Caldeira and Leggett.28 These
systems, thus, have one mostly quartic degree of freedom and sev-
eral harmonic degrees of freedom that form a bath. The harmonic
degrees of freedom in the bath are bilinearly coupled to the quar-
tic degree of freedom. The form of the bath is the one suggested
by Craig and Manolopoulos.29 The bath is a discretized version of
a bath with a linear spectral density with an exponential cutoff, and
the parameters chosen for the current work are a cutoff frequency
of ω and a system–bath coupling strength of mω. The complete
potential is

VFD(x1, x2, . . . , xF−1, xF) =
m2ω3

4h̵
x4

1

+
F

∑
l=2

1
2

mω2
(xl ln(

l − 3
2

F − 1
) + x1

√
2

(F − 1)π
)

2

, (16)

where F is the number of degrees of freedom.

B. Monte Carlo
The maximum stepsize, Δxmax, l, was individually set for all

degrees of freedom l, with an initial value of

Δxmax,l =

¿
Á
Á
Á
ÁÀ

2 ln 2

Fβ(∣∂2V
∂x2

l
∣
xl=0

+ ml(N−1)N
h̵2β2 )

. (17)

This choice for stepsize is based on a harmonic approximation of
the potential energy, assuming the same average stepsize in xj and
yj, and aiming for 50% acceptance rate. The change in energy that
would give an acceptance likelihood of 50% for a Monte Carlo step
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is N ln 2/β. 1/F of this energy could then be assigned to each degree
of freedom. For each degree of freedom, the maximum stepsize is set
so that the total energy change resulting from a change in position of
Δxmax, l away from the minimum in the harmonically approximated
potential, weighted by N, and the path integral spring potential,
weighted by N − 1, would give this energy. This results in Eq. (17).

The above does not work for a situation where ∣∂
2V

∂x2
l
∣
xl=0
= 0 and at

the same time N = 1, and in such cases, the maximum stepsize was
set to the thermal de Broglie wavelength.

The maximal stepsizes were updated as a group every 50 000th
step according to the algorithm of Allen and Tildesley30 in order to
keep the acceptance rate close to 50%.

The momentum, pN , was sampled from a Maxwell–Boltzmann
distribution at the temperature N

kBβ
, where kB is Boltzmann’s con-

stant. The pseudo-random number generator used was ran2 of Press
et al.31 Data were collected, i.e., a molecular dynamics trajectory was
run, each 100th Monte Carlo-step.

The Monte Carlo chain begun in a part of phase space that has
a low probability of occurring, i.e., far from the equilibrium distribu-
tion. It was, however, found that the number of Monte Carlo steps
it takes to come close to equilibrium for the various simulated sys-
tems is negligible compared to the total length of the Monte Carlo
simulation runs and was, therefore, not explicitly accounted for.

C. Molecular dynamics
The molecular dynamics was conducted using the velocity Ver-

let algorithm.32,33 The time step was 0.050 ω−1 for the quartic and
double well one-dimensional systems, and 0.035ω−1, 0.025ω−1, and
0.020ω−1 for the quartic potential with harmonic baths containing
3, 6, and 9 degrees of freedom, respectively. The total time length of
each molecular dynamics run was 10ω−1.

D. Statistical evaluation of data
The block average method, explained by, e.g., Friedberg and

Cameron34 and Flegal, Haran, and Jones,35 was used to calculate
the standard deviations of the correlation functions. The minimum
block size used was 106 Monte Carlo-steps. These standard devi-
ations were used as a measure of uncertainty and to determine
convergence.

E. Exact correlation functions
In order to have exact classical, quantum mechanical, and clas-

sical Wigner results to compare against, numerically exact results
were produced for the systems and correlation functions where this
was deemed doable.

For the quartic potential and double well potential, the classical
mechanics comparison was obtained by setting N = 1, in the same
program as was used to find the classical Wigner results, using 109

Monte Carlo steps.
The quantum mechanical autocorrelation functions for the

quartic potential were calculated with a numerically exact program
that uses the lowest 2000 particle in-the-box energy eigenfunc-

tions, with a box length of 40
√

h̵
mω , as a basis set to approximate

the 40 lowest energy eigenfunctions of the quartic oscillator. These

eigenfunctions were then used to evaluate the necessary matrix ele-
ments and could be propagated in time analytically. The quantum
mechanical autocorrelation functions for the double well potential
were calculated in a similar way, but the basis set was the 12 lowest
energy eigenfunctions of the harmonic oscillator, V(x) = 1

2 mω2x2.
For the quartic potential with harmonic bath, just as without

the bath, a classical comparison was calculated with one bead, N = 1,
in the classical Wigner routine, using 109 Monte Carlo steps. The
quantum mechanical comparison at t = 0 for this case was a path
integral Monte Carlo simulation with 80 beads, N = 80, run with
the same Monte Carlo parameters as the classical Wigner runs.
64 × 109 Monte Carlo steps were used for 3 degrees of freedom in the
bath and 16 × 109 Monte Carlo steps for 6 and 9 degrees of freedom
in the bath.

The exact classical Wigner data were generated as follows: First,
the matrix elements of the Boltzmann operator were calculated
using the numerical matrix multiplication scheme.36 In this scheme,
N = 50 and N = 14 matrix multiplications of e−

β
N Ĥ were used for

βh̵ω = 8 and βh̵ω = 1, respectively. Afterward, a numerical Fourier
transform of these data was used for computing the Boltzmann
Wigner transform. Finally, this Boltzmann Wigner function was
represented on a grid for doing classical dynamics.

F. Feynman–Kleinert classical Wigner method
Many of the methods for acquiring an approximate initial dis-

tribution for a classical Wigner calculation use a harmonic approxi-
mation for the potential.19,37,38 However, for potentials with negative
curvature, these methods all encounter problems when the tem-
perature is too low. For these situations, a modified local Gaussian
approximation39 can be used instead. This is, however, not necessary
for the systems and temperatures in this paper.

The Feynman–Kleinert approximation40 is one of the harmonic
approximation methods, and its application to the classical Wigner
method is usually called Feynman–Kleinert linearized path integral
(FK-LPI).37 FK-LPI will be used as a comparison for OPCW.

G. Ring polymer molecular dynamics
Ring polymer molecular dynamics (RPMD)3 is a popu-

lar method for calculating approximate quantum dynamics. This
method was used as a comparison for the classical Wigner results.
The RPMD results were generated by using 32 and 5 beads for
βh̵ω = 8 and βh̵ω = 1, respectively, using a time step of 0.009ω−1 for
the quartic oscillator and a time step of 0.0125ω−1 for the double well
and quartic oscillator with harmonic baths. The Kubo-transformed
results acquired from the calculations were transformed into the
asymmetric placement of the Boltzmann operator through the
method by Braams, Miller, and Manolopoulos.41 The way to calcu-
late momentum-correlation functions with RPMD is through time
derivatives of position correlation functions.29,42 This was consid-
ered too complicated for ⟨p̂2p̂2

(t)⟩ so that this function has not been
included.

V. RESULTS AND DISCUSSION
In this section, the results from the calculations of a few differ-

ent autocorrelation functions for a few model systems are presented.
Each correlation function is presented by three lines. The middle
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FIG. 2. The position autocorrelation func-
tion for a quartic potential (βh̵ω = 8).
Comparison between different numbers
of beads for the two versions of OPCW
and numerically exact solutions for clas-
sical mechanics (CM), classical Wigner
(CW), and quantum mechanics (QM).
The number of Monte Carlo steps used
for each number of beads, N, is 1 × 109

for N = 10 and N = 40, and 16× 109 for N
= 160. The outer lines of each type show
the standard deviations for the results. If
the standard deviation is small enough,
the outer lines are not visible. (a) Real
part of ⟨x̂x̂(t)⟩y1

, (b) imaginary part of
⟨x̂x̂(t)⟩y1

, (c) real part of ⟨x̂x̂(t)⟩x1
,

and (d) imaginary part of ⟨x̂x̂(t)⟩x1
.

line is the correlation function itself, and the upper and lower ones
show the standard deviation of the result. In most cases presented
here, the standard deviations are within the width of the middle
line.

A. Quartic potential βh̵ω = 8
When looking at the correlation functions for the quartic

potential calculated with the new method (Figs. 2–4) and numer-
ically exact classical Wigner (Figs. 2 and 3), it can be seen that
they flatten out and become constant at long times. This is due

to the fact that the classical Wigner method relies on classical
mechanics for propagation forward in time. For all systems with
potentials of higher order than harmonic, the classical trajecto-
ries do not give the correct coherence, meaning that the individ-
ual classical trajectories dephase against each other. Results for a
one-dimensional harmonic oscillator, where classical propagation
is exact, can be found in Appendix C. Analytic expressions for the
harmonic oscillator autocorrelation functions have been placed in
Appendix D.

In Fig. 2, it can be seen that at time t = 0, the correlation
functions calculated with the new method converge from classical

FIG. 3. The position and position-
squared autocorrelation functions for a
quartic potential (βh̵ω = 8). Comparison
between the two versions of OPCW and
numerically exact solutions for classical
mechanics (CM), classical Wigner (CW),
FK-LPI, RPMD, and quantum mechan-
ics (QM). The number of beads used in
the y1- and x1-calculations is N = 160,
and the number of Monte Carlo steps is
16 × 109. The outer lines of each type
show the standard deviations for the
results. If the standard deviation is small
enough, the outer lines are not visi-
ble. (a) Real part of ⟨x̂x̂(t)⟩, (b) imag-
inary part of ⟨x̂x̂(t)⟩, (c) real part of
⟨x̂2x̂2(t)⟩, and (d) imaginary part of
⟨x̂2x̂2(t)⟩.
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FIG. 4. The momentum and momentum-squared autocorrelation functions for a quartic potential (βh̵ω = 8). Comparison between OPCW [with ⟨p̂p̂(t)⟩y1
and ⟨p̂2p̂2(t)⟩

y1

being identical to ⟨p̂p̂(t)⟩x1
and ⟨p̂2p̂2(t)⟩

x1
, respectively] and numerically exact solutions for classical mechanics (CM), FK-LPI, RPMD, and quantum mechanics (QM).

The number of beads used in the calculations of ⟨p̂p̂(t)⟩y1 ,x1
is N = 160, and the number of Monte Carlo steps is 64 × 109. The number of beads used in the calculations of

⟨p̂2p̂2(t)⟩
y1 ,x1

is N = 80, and the number of Monte Carlo steps is 128 × 109. The outer lines of each type show the standard deviations for the results. If the standard deviation

is small enough, the outer lines are not visible. (a) Real part of ⟨p̂p̂(t)⟩, (b) imaginary part of ⟨p̂p̂(t)⟩, (c) real part of ⟨p̂2p̂2(t)⟩, and (d) imaginary part of ⟨p̂2p̂2(t)⟩.

FIG. 5. The position and position-
squared autocorrelation functions for a
quartic potential (βh̵ω = 1). Comparison
between the two versions of OPCW and
numerically exact solutions for classical
mechanics (CM), classical Wigner (CW),
FK-LPI, RPMD, and quantum mechan-
ics (QM). The number of beads used in
the y1- and x1-calculations of ⟨x̂x̂(t)⟩ is
N = 80, and the number of Monte Carlo
steps is 16 × 109. The number of beads
used in the y1- and x1-calculations of
⟨x̂2x̂2(t)⟩ is N = 80, and the number of
Monte Carlo steps is 64 × 109. The outer
lines of each type show the standard
deviations for the results. If the standard
deviation is small enough, the outer lines
are not visible. (a) Real part of ⟨x̂x̂(t)⟩,
(b) imaginary part of ⟨x̂x̂(t)⟩, (c) real
part of ⟨x̂2x̂2(t)⟩, and (d) imaginary part
of ⟨x̂2x̂2(t)⟩.
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FIG. 6. The momentum and momentum-squared autocorrelation functions for a quartic potential (βh̵ω = 1). Comparison between OPCW [with ⟨p̂p̂(t)⟩y1
and ⟨p̂2p̂2(t)⟩

y1

being identical to ⟨p̂p̂(t)⟩x1
and ⟨p̂2p̂2(t)⟩

x1
, respectively] and numerically exact solutions for classical mechanics (CM), FK-LPI, RPMD, and quantum mechanics (QM).

The number of beads used in the calculations of ⟨p̂p̂(t)⟩y1 ,x1
is N = 80, and the number of Monte Carlo steps is 128 × 109. The number of beads used in the calculations

of ⟨p̂2p̂2(t)⟩
y1 ,x1

is N = 20, and the number of Monte Carlo steps is 256 × 109. The outer lines of each type show the standard deviations for the results. If the standard

deviation is small enough, the outer lines are not visible. (a) Real part of ⟨p̂p̂(t)⟩y1 ,x1
, (b) imaginary part of ⟨p̂p̂(t)⟩y1 ,x1

, (c) real part of ⟨p̂2p̂2(t)⟩
y1 ,x1

, and (d) imaginary

part of ⟨p̂2p̂2(t)⟩
y1 ,x1

.

FIG. 7. The position and position-
squared autocorrelation functions for a
double well potential (βh̵ω = 8). Com-
parison between the two versions of
OPCW and numerically exact solutions
for classical mechanics (CM), classical
Wigner (CW), FK-LPI, RPMD, and quan-
tum mechanics (QM). The number of
beads used in the y1- and x1-calculations
is N = 160, and the number of Monte
Carlo steps is 16 × 109. The outer lines
of each type show the standard devia-
tions for the results. If the standard devi-
ation is small enough, the outer lines are
not visible. (a) Real part of ⟨x̂x̂(t)⟩, (b)
imaginary part of ⟨x̂x̂(t)⟩, (c) real part
of ⟨x̂2x̂2(t)⟩, and (d) imaginary part of
⟨x̂2x̂2(t)⟩.
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mechanics toward quantum mechanics as the number of beads is
increased. For all times, the correlation functions calculated with the
new method converge toward the exact classical Wigner method. It
can also be seen that the x1-method converges faster than the y1-
method with respect to the number of beads. This is also the case for
the harmonic oscillator, see Appendix E, where an explanation for
this is also given.

Looking at the individual versions of the new method in Figs. 2
and 3, it can be seen that at least the real parts of ⟨x̂x̂(t)⟩x1

and
⟨x̂2x̂2

(t)⟩
x1

have converged essentially to within the thickness of the
line of the exact classical Wigner result for N = 160. ⟨x̂x̂(t)⟩y1

and
⟨x̂2x̂2

(t)⟩
y1

converge quite slowly in comparison, and the results for
N = 160 are not entirely converged to the exact classical Wigner
result, even if they are close. ⟨p̂p̂(t)⟩y1 ,x1

in Figs. 4(a) and 4(b) has
not converged all the way to exact quantum mechanics at t = 0 for
N = 160 but is close.

In Figs. 4(c) and 4(d), it stands out that ⟨p̂2p̂2
(t)⟩

y1 ,x1
is far from

converged to exact quantum mechanics at t = 0, but this is a compli-
cated correlation function. Even though the result for N = 80 is not
very close to exact quantum mechanics at time t = 0, the shapes of
the curves have some qualitative agreement.

Correlation functions with p̂n in the first operator can be
expected to be more difficult to converge than correlation functions
with x̂n in the first operator, since (p̂n

)W will be integrated into an
nth-order polynomial of a difference between positions, while (x̂n

)W
will just be a position, or an average of positions, to the power of n
(see Appendix A).

In Fig. 3, it can be seen that FK-LPI gives results very close
to exact classical Wigner for ⟨x̂x̂(t)⟩ and the imaginary part of
⟨x̂2x̂2

(t)⟩, while the real part of ⟨x̂2x̂2
(t)⟩ is a little bit further off.

OPCW gives as good, or slightly better, results as FK-LPI, except y1
for Im⟨x̂2x̂2

(t)⟩.

In Figs. 4(a) and 4(b), it can be seen that FK-LPI gives a bet-
ter starting value for ⟨p̂p̂(t)⟩ than the calculations with the new
method. The oscillations are, however, qualitatively similar. For
⟨p̂2p̂2

(t)⟩ in Figs. 4(c) and 4(d), the results acquired with the new
method have a better value at t = 0 and has more qualitative agree-
ment with the exact quantum mechanical result than the FK-LPI
result.

It is shown in Figs. 3, 4(a), and 4(b) that the classical Wigner
method gives worse amplitudes than RPMD for the linear auto-
correlation functions, ⟨x̂x̂(t)⟩ and ⟨p̂p̂(t)⟩. It can, however, also
be seen that the classical Wigner method gives better amplitude
at short times and better phase overall than RPMD does for the
non-linear autocorrelation function ⟨x̂2x̂2

(t)⟩. This is not surpris-
ing as it is known that for RPMD to be exact for the harmonic
oscillator at least one of the operators in a correlation function has
to be linear.3

B. Quartic potential βh̵ω = 1
When, for the quartic potential, the temperature is increased so

that βh̵ω = 1, instead of βh̵ω = 8, it is shown in Fig. 5 that ⟨x̂x̂(t)⟩
and ⟨x̂2x̂2

(t)⟩ for both versions of the new method are almost per-
fectly converged to the exact classical Wigner result for N = 80. This
is fewer beads than what seems necessary to achieve a similar con-
vergence at βh̵ω = 8. This is hardly surprising as the classical and
quantum mechanical correlation functions are much more similar
at βh̵ω = 1 than at βh̵ω = 8.

In Fig. 6, it can be seen that ⟨p̂p̂(t)⟩y1 ,x1
is rather well con-

verged toward exact quantum mechanics at t = 0. ⟨p̂2p̂2
(t)⟩

y1 ,x1
does

not reach the limit of the exact quantum mechanics for the N = 20
calculation presented here but shows a qualitative agreement with
quantum mechanics up to t = 4ω−1

FIG. 8. The position autocorrelation func-
tion for a quartic potential with a har-
monic bath with 3 degrees of freedom
(βh̵ω = 8). Comparison between differ-
ent numbers of beads for the two ver-
sions of OPCW and numerically exact
solutions for classical mechanics (CM),
at all times and quantum mechanics
(QM), at time t = 0. The number of Monte
Carlo steps used for each number of
beads, N, is 1× 109 for N = 5 and N = 10,
16 × 109 for N = 20, and 64 × 109 for N
= 40. The outer lines of each type show
the standard deviations for the results. If
the standard deviation is small enough,
the outer lines are not visible. (a) Real
part of ⟨x̂x̂(t)⟩y1

, (b) imaginary part of
⟨x̂x̂(t)⟩y1

, (c) real part of ⟨x̂x̂(t)⟩x1
,

and (d) imaginary part of ⟨x̂x̂(t)⟩x1
.
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Generally, even for a lower number of beads the convergence
with respect to the number of Monte Carlo steps is worse for βh̵ω = 1
compared to βh̵ω = 8. This is, however, not a problem in practice as
fewer beads are required to converge the result to the exact classical
Wigner result at the higher temperature.

For ⟨x̂x̂(t)⟩ and ⟨x̂2x̂2
(t)⟩, FK-LPI results are essentially the

same as the exact classical Wigner results. For ⟨p̂p̂(t)⟩, the results
from the new method and the FK-LPI results are very similar.
However, for ⟨p̂2p̂2

(t)⟩, the FK-LPI results are somewhat closer
to the quantum mechanical result than the results produced with
OPCW.

For ⟨x̂x̂(t)⟩, the classical Wigner method gives worse ampli-
tudes than RPMD. For ⟨x̂2x̂2

(t)⟩, the classical Wigner method pos-
sibly gets a somewhat worse amplitude than RPMD. For ⟨p̂p̂(t)⟩,
it is not obvious if one of the methods performs better than the
other.

C. Double well potential βh̵ω = 8
In Fig. 7, it can be seen that all the approximate methods quite

early become very different from exact quantum mechanics. This is
because dynamical tunneling is important for describing the dynam-
ics of a system like this, which is not taken into account at all in the
classical Wigner method and not properly in RPMD. For ⟨x̂x̂(t)⟩,
the y1- and x1-versions of the open polymer method have converged
to the exact classical Wigner result by using 160 beads. For ⟨x̂2x̂2

(t)⟩,

the open polymer method has almost converged to the exact classical
Wigner result using 160 beads.

The FK-LPI results can be seen to essentially agree with the
exact classical Wigner result for the real part of ⟨x̂x̂(t)⟩ and to
be close to it for the imaginary part of ⟨x̂2x̂2

(t)⟩. For the other
cases, FK-LPI is further off. For the real part of ⟨x̂2x̂2

(t)⟩, FK-LPI
is substantially off compared to exact classical Wigner. The FK-LPI
results do, however, stay almost equal to the exact quantum
mechanical results for as long as the exact classical Wigner
results do.

The classical Wigner method gives significantly better results
than RPMD for the real part of ⟨x̂x̂(t)⟩ and the imaginary part of
⟨x̂2x̂2

(t)⟩, and slightly better results for the real part of ⟨x̂2x̂2
(t)⟩.

For the imaginary part of ⟨x̂x̂(t)⟩, the classical Wigner method and
RPMD perform equally well.

D. Quartic potential in harmonic bath βh̵ω = 8
In Figs. 8 and 9, the position and position-squared autocor-

relation functions are shown for the quartic oscillator with a har-
monic bath of 3 degrees of freedom. The numerically exact quan-
tum mechanical comparison is only available for time t = 0 due
to the method used for its calculation (see Sec. IV E). It can,
in these figures, be seen that the new method converges from
classical mechanics toward quantum mechanics at t = 0 as the
number of beads is increased. The possible exception is for low

FIG. 9. The position-squared autocorrelation function for a quartic potential with a harmonic bath with 3 degrees of freedom (βh̵ω = 8). Comparison between different numbers
of beads for the two versions of OPCW and numerically exact solutions for classical mechanics (CM), at all times and quantum mechanics (QM), at time t = 0. The number of
Monte Carlo steps used for each number of beads, N, is 1 × 109 for N = 5 and N = 10, 16 × 109 for N = 20, and 64 × 109 for N = 40. The outer lines of each type show the
standard deviations for the results. If the standard deviation is small enough, the outer lines are not visible. The value in parentheses gives the number of Monte Carlo steps.
(a) Real part of ⟨x̂2x̂2(t)⟩

y1
, (b) imaginary part of ⟨x̂2x̂2(t)⟩

y1
, (c) real part of ⟨x̂2x̂2(t)⟩

x1
, and (d) imaginary part of ⟨x̂2x̂2(t)⟩

x1
.
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numbers of beads for y1, as for N = 5 Re⟨x̂x̂(t)⟩y1
is further from the

quantum mechanical result than classical mechanics is.
In Figs. 10–12, the position and position-squared autocorrela-

tion functions are shown for the quartic oscillator with a harmonic
bath of 3, 6, and 9 degrees of freedom, respectively.

In Figs. 8, 9, 11, and 12, it can be seen that the x1-results are
significantly closer to quantum mechanics at t = 0 than the y1-results
are.

For the case with 3 degrees of freedom in the bath, results are
shown that are not entirely converged with respect to the number of
Monte Carlo steps used, and it is visible that the x1-version of the
method converges better with respect to the number of Monte Carlo
steps than the y1-version.

Overall, the calculations for the larger numbers of degrees of
freedom are fairly computationally intensive and have, therefore, not
been numerically converged with respect to the number of beads.
However, it is shown in Figs. 10–12 that when the harmonic bath
is sampled from a classical distribution, much larger numbers of
beads can be used in the quartic oscillator degree of freedom and
the number of Monte Carlo steps used is still the same or smaller
than used for a one-dimensional quartic potential with a lower num-
ber of beads. Making the bath classical, thus, improves the overall
convergence drastically. The classical bath calculations are so well
converged with regard to both numbers of beads and Monte Carlo
steps that the difference between y1 and x1 is almost unnoticeable
for the correlation functions shown here, and therefore, only the
x1-version is shown. The difference in numerical performance

between the full OPCW calculations and the calculations with clas-
sical bath can be seen to increase when the size of the bath is
increased.

At time t = 0, the calculations employing a classical bath give
better values than those using the open polymer for all degrees
of freedom. However, even if the quartic oscillator part of a clas-
sical bath calculation were to be sampled with an infinite num-
ber of beads in the polymer, the classical mechanics of the bath
would still mean that the initial value of the correlation func-
tions would not necessarily be the exact quantum mechanical value.
The correlation functions for t > 0 for the classical bath calcula-
tions are qualitatively similar to but have higher amplitudes than
the full OPCW calculations. This is the behavior that would be
expected from a full OPCW calculation with a larger number of
beads.

For the real part of ⟨x̂2x̂2
(t)⟩, the long time value given by the

classical bath calculations is lower than the corresponding result for
the full OPCW calculations, except y1 for 9 degrees of freedom in
the bath. From the full OPCW results for the quartic oscillator with a
harmonic bath with 3 degrees of freedom (Figs. 8 and 9) and the one-
dimensional quartic oscillator (Fig. 2), it can be expected that for the
same number of beads in the open polymer, x1 will be more con-
verged toward exact classical Wigner than y1 will be. For the quartic
oscillator with harmonic baths with 6 and 9 degrees of freedom,
Figs. 11 and 12, the results from calculations with classical baths
are closer to the y1-results than to the x1-results. This indicates that
the long time values of Re⟨x̂2x̂2

(t)⟩ may not be very well described

FIG. 10. The position and position-squared autocorrelation functions for a quartic potential with a harmonic bath with 3 degrees of freedom (βh̵ω = 8). Comparison between
the x1-version of OPCW and numerically exact solutions for classical mechanics (CM), FK-LPI, and RPMD, at all times and quantum mechanics (QM), at time t = 0. Results
for the x1-version of OPCW with 320 beads in the quartic oscillator and a classical bath, CB, are also shown. The number of beads used in the y1- and x1-calculations is N =
40, and the number of Monte Carlo steps is 64 × 109. For the calculations with classical bath, the number of Monte Carlo steps used is 16 × 109. The outer lines of each type
show the standard deviations for the results. If the standard deviation is small enough, the outer lines are not visible. (a) Real part of ⟨x̂x̂(t)⟩, (b) imaginary part of ⟨x̂x̂(t)⟩,
(c) real part of ⟨x̂2x̂2(t)⟩, and (d) imaginary part of ⟨x̂2x̂2(t)⟩.
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FIG. 11. The position and position-squared autocorrelation functions for a quartic potential with a harmonic bath with 6 degrees of freedom (βh̵ω = 8). Comparison between
the two versions of OPCW and numerically exact solutions for classical mechanics (CM), FK-LPI, and RPMD, at all times and quantum mechanics (QM), at time t = 0. Results
for the x1-version of OPCW with 320 beads in the quartic oscillator and a classical bath, CB, are also shown. The number of beads used in the y1- and x1-calculations is N =
10, and the number of Monte Carlo steps is 64 × 109. For the calculations with classical bath, the number of Monte Carlo steps used is 16 × 109. The outer lines of each type
show the standard deviations for the results. If the standard deviation is small enough, the outer lines are not visible. (a) Real part of ⟨x̂x̂(t)⟩, (b) imaginary part of ⟨x̂x̂(t)⟩,
(c) real part of ⟨x̂2x̂2(t)⟩, and (d) imaginary part of ⟨x̂2x̂2(t)⟩.

with the classical bath. This was to be expected as the zero point
energy leakage from the system into the bath should be consider-
able in this type of calculation, and the correlation function, even at
long times, is highly dependent on the magnitude of the oscillation
in the system degree of freedom.

It can be seen in Figs. 10–12 that the results from the classical
bath calculations and the FK-LPI results follow each other closely for
the first 2–4 ω−1. At t = 0, the classical bath results are as good as or
slightly worse than the FK-LPI results.

In Figs. 10(a), 10(b), 11(a), 11(b), 12(a), and 12(b), it can be seen
that the classical Wigner method with a classical bath gives slightly
worse than or equally good results as RPMD does for ⟨x̂x̂(t)⟩ at
t = 0. Looking at Figs. 10(c), 10(d), 11(c), 11(d), 12(c), and 12(d),
it can be seen that the classical Wigner method with a classical bath
gives slightly better results than RPMD does for ⟨x̂2x̂2

(t)⟩ at t = 0.
RPMD, however, goes to higher values at long times for the real part
of ⟨x̂2x̂2

(t)⟩, and this may be a better value as it follows ⟨x̂2x̂2
(t)⟩

x1
,

which should be better converged than ⟨x̂2x̂2
(t)⟩

y1
.

E. Summary of results
For all the cases studied here, the results of the new method

converge toward exact quantum mechanics at time t = 0 as the num-
ber of beads increases. Additionally, for all cases where the exact clas-
sical Wigner result is available, the new method converges toward
this result as the number of beads increases. These convergences are
what should be observed according to the derivation of the method.

Some of the results for the one-dimensional quartic oscillator and
double well have converged essentially to within the thickness of the
line of the exact classical Wigner result.

For the correlation functions where a comparison has been
made, the x1-version of the new method converges faster than the
y1-version with respect to the number of beads used. The x1-version
also converges better than the y1-version with respect to the num-
ber of Monte Carlo steps for these cases. Note also that for almost
every graph shown, it can be seen that for a larger number of
beads, more Monte Carlo steps have been used to converge the
results.

The results for the multidimensional systems using many beads
in the polymer for sampling the initial distribution of the quartic
oscillator degree of freedom and classical mechanics to sample the
initial distribution of the bath show a significant improvement in
convergence toward the exact result at t = 0 compared to the results
of using fewer beads for the full OPCW quartic oscillator with har-
monic bath. The long time values of Re⟨x̂2x̂2

(t)⟩ may, however, be
significantly different from the exact classical Wigner result. This is
likely to be a result of increased zero point energy leakage when a
classical bath is used.

If looking at the one-dimensional and multidimensional poten-
tials, using a classical bath for the multidimensional cases, the results
from the open polymer sampled classical Wigner method is about
as good as the results from FK-LPI. For the double well potential,
the new method clearly reproduces the exact classical Wigner results
better than FK-LPI, but the new method does not come closer to
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FIG. 12. The position and position-squared autocorrelation functions for a quartic potential with a harmonic bath with 9 degrees of freedom (βh̵ω = 8). Comparison between
the two versions of OPCW and numerically exact solutions for classical mechanics (CM), FK-LPI, and RPMD, at all times and quantum mechanics (QM), at time t = 0. Results
for the x1-version of OPCW with 320 beads in the quartic oscillator and a classical bath, CB, are also shown. The number of beads used in the y1- and x1-calculations is N =
5, and the number of Monte Carlo steps is 16 × 109. For the calculations with classical bath, the number of Monte Carlo steps used is 16 × 109. The outer lines of each type
show the standard deviations for the results. If the standard deviation is small enough, the outer lines are not visible. (a) Real part of ⟨x̂x̂(t)⟩, (b) imaginary part of ⟨x̂x̂(t)⟩,
(c) real part of ⟨x̂2x̂2(t)⟩, and (d) imaginary part of ⟨x̂2x̂2(t)⟩.

exact quantum mechanics than FK-LPI. Comparing Figs. 3, 5, and 7,
it can be seen that the OPCW method works essentially equally well
independent of the potential involved, while in the case of FK-LPI, it
works worse for the double well, which contains a region of negative
curvature.

In comparison to RPMD, it can be seen that for the one-
dimensional quartic oscillator, the classical Wigner method and
thereby also the OPCW method perform worse than, or in a single
case equally well as, RPMD for autocorrelation functions of linear
operators. For the autocorrelation function ⟨x̂2x̂2

(t)⟩, the classical
Wigner method gives better results than RPMD at the lower temper-
ature employed here and possibly worse results at the higher temper-
ature. For the one-dimensional double well potential, the classical
Wigner method is seen to give better results than RPMD for both
⟨x̂x̂(t)⟩ and ⟨x̂2x̂2

(t)⟩. Comparing classical Wigner with a classical
bath to RPMD for the multidimensional systems, the classical bath
calculations tend to be as good as or better than RPMD, apart from
the long time values of ⟨x̂2x̂2

(t)⟩.

VI. CONCLUSION
In this article, two versions of a new way of sampling the ini-

tial quantum distribution used in the classical Wigner method for
the calculation of correlation functions have been presented and
tested for the one-dimensional quartic oscillator and double well

and a quartic oscillator with linearly coupled harmonic baths. The
name used for the new method is Open Polymer Classical Wigner
(OPCW).

The new method will always converge toward the exact classical
Wigner result as the number of beads in the open polymer neck-
lace goes to infinity. For the y1-version of the new method and the
correlation functions and potentials tested here, this convergence
is mostly slow. For some cases, the x1-version of the new method
converges considerably faster.

Compared to FK-LPI, the open polymer sampling for the clas-
sical Wigner method can give better, worse, or equal results. The
double well potential is a case where the two methods give notice-
ably different results, with the ones from OPCW being closer to
exact classical Wigner. Both methods, however, follow exact quan-
tum mechanics equally well for the double well potential. For a well
behaved molecular potential, OPCW will always converge toward
the exact classical Wigner result as the calculation gets more refined.
A harmonic approximation method such as FK-LPI will not nec-
essarily converge toward the exact classical Wigner result for all
potential energy surfaces.

The way forward from this study would be to test the method
developed here on other potentials and correlation functions. One
set of correlation functions that are of chemical interest and that
possibly could be calculated by the presented method are the ones of
Miller, Schwartz, and Tromp43,44 that can be used to acquire reaction
rate constants. Potential energy surfaces in reaction rate calculations

J. Chem. Phys. 152, 094111 (2020); doi: 10.1063/1.5126183 152, 094111-13

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

tend to have barriers, such as the one in the double well tested here,
and this is where the new method may be an improvement over
methods such as FK-LPI, since OPCW for the double well approxi-
mates the exact classical Wigner result noticeably better than FK-LPI
does.

Systems with many degrees of freedom are seen to be compu-
tationally demanding. Describing the harmonic baths studied with
classical mechanics improves the situation considerably. It would
thus be of interest to try this out on other multidimensional sys-
tems. This should be particularly useful when the coupling between
the system and the bath is weak. It would also be of interest to
try a less approximate simplification for the less quantum mechan-
ical degrees of freedom in a system, such as an open polymer
equivalent to the ring polymer contraction of Markland and
Manolopoulos.45 Another approach of interest for handling the
more computationally demanding systems would be to try to
enhance convergence using the techniques recently introduced by
Bose and Makri.12
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APPENDIX A: ANALYTIC FORMS OF A ′(y 1, x 2 − x 1)
FOR ( Â)W[y1p1 ] BEING A POLYNOMIAL IN p 1

If (Â)
W
[y1, p1] is a polynomial with respect to p1, i.e.,

(Â)
W
[y1, p1] = knpn

1 + kn−1pn−1
1 . . . k2p2

1 + k1p1 + k0, (A1)

where kn, . . ., k0 are constants, then the solution to Eq. (11) is

A′(y1, x2 − x1) =
∫
∞

−∞
dp1 (Â)W

[y1, p1] e−
β
N

p2
1

2m e−
i
h̵ p1(x2−x1)

√
2πmN

β e−
β
N

mN2(x2−x1)
2

2h̵2β2

= kn(−i)n
(

mN
2β
)

n
2

Hn(

√
mN
2β

x2 − x1

h̵
) + kn−1(−i)n−1

(
mN
2β
)

n−1
2

Hn−1(

√
mN
2β

x2 − x1

h̵
) . . .

+ k2(−i)2
(

mN
2β
)

2
2

H2(

√
mN
2β

x2 − x1

h̵
) + k1(−i)(

mN
2β
)

1
2

H1(

√
mN
2β

x2 − x1

h̵
) + k0

=
n

∑
j=0

kj(−i)j
(

mN
2β
)

j
2

Hj(

√
mN
2β

x2 − x1

h̵
), (A2)

where Hj(χ) is the Hermite polynomial defined by

Hj(χ) = (−1)je χ2 d j

dχj e−χ
2

, (A3)

where χ is a dummy variable.

APPENDIX B: KUBO TRANSFORM
One possible form of the Kubo transform24 of the open polymer expression presented in this article is

⟨ÂB̂(t)⟩
Kubo
=

1
Z

Tr{
1
β ∫

β

0
dλ e−λĤÂ e−(β−λ)ĤB̂(t)}

≈
1
Z
(

mN
2πβ
)

N
2
√

β
2πmN

h̵−N
⎧⎪⎪
⎨
⎪⎪⎩

N

∏
j=1
∫

∞

−∞
dxj

⎫⎪⎪
⎬
⎪⎪⎭
∫

∞

−∞
dpN e−

i
h̵ pN(x1−xN)

× e
−

β
N (

p2
N

2m +∑N
j=1 V(yj)+ mN2

2h̵2β2 ∑
N−1
j=1 (xj+1−xj)

2
)

(B̂)
W
[x(yN , pN , t), p(yN , pN , t)]

×
1
N
(

1
2

A′(y1, x2 − x1) +
N−2

∑
k=1

A′(yk+1, xk+2 − xk+1) +
3
2

A′(yN−1, xN − xN−1)). (B1)
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It can be noted that the double counting of A′(yN−1, xN − xN−1) is due to the approximation (Ω̂ e−
β
N Ĥ
)

W
[x, p] ≈ (Ω̂)

W
[x, p]( e−

β
N Ĥ
)

W
[x, p]

≈ ( e−
β
N ĤΩ̂)

W
[x, p]. This double counting leads to an asymmetry that means that the resulting correlation function may have an imaginary

part. If using the Kubo transform, this may be an unwanted property, so the mean of the above expression and its complex conjugate may be
used instead,

⟨ÂB̂(t)⟩
Kubo
≈

1
Z
(

mN
2πβ
)

N
2
√

β
2πmN

h̵−N
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N
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−∞
dxj
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⎬
⎪⎪⎭
∫

∞

−∞
dpN e

−
β
N (

p2
N

2m +∑N
j=1 V(yj)+ mN2

2h̵2β2 ∑
N−1
j=1 (xj+1−xj)

2
)

(B̂)
W
[x(yN , pN , t), p(yN , pN , t)]

×
1

2N
( e−

i
h̵ pN(x1−xN)(

1
2

A′(y1, x2 − x1) +
N−1

∑
k=2

A′(yk, xk+1 − xk) +
3
2
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+ e
i
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1
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A′(yN−1, xN−1 − xN) +
N−2

∑
k=1

A′(yk, xk − xk+1) +
3
2

A′(y1, x1 − x2))), (B2)

which should not give an imaginary part. If A′(yj, xj+1 − xj) is either an even or odd function with regard to xj+1 − xj, the expression can be
simplified to

⟨ÂB̂(t)⟩
Kubo, even

≈
1
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2πβ
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2
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for even A′ and

⟨ÂB̂(t)⟩
Kubo, odd

≈
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×
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1
2

A′(y1, x2 − x1) +
N−2
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A′(yk, xk+1 − xk) +
1
2
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− e
i
h̵ pN(x1−xN)A′(y1, x2 − x1) + e−

i
h̵ pN(x1−xN)A′(yN−1, xN − xN−1)) (B4)

for odd A′.

APPENDIX C: RESULTS FOR HARMONIC
POTENTIAL βh̵ω = 8

Apart from the calculations shown in the main body of this arti-
cle, the four autocorrelation functions position, position-squared,
momentum, and momentum-squared were also calculated for a
one-dimensional harmonic oscillator.

The harmonic potential was taken as

Vharmonic(x) =
1
2

mω2x2, (C1)

where ω is the angular frequency of the harmonic oscillation.

The Monte Carlo procedure and molecular dynamics were con-
ducted as for the other systems. The time step used in the molecular
dynamics was 0.050ω−1.

In order to have exact values to compare our calculated
results against, anaytical classical and quantum mechanical cor-
relation functions were used. These functions are collected in
Appendix D.

As shown in Fig. 13 for both versions of the new method,
the real and imaginary parts of the position autocorrelation func-
tion converge from exact classical mechanics toward exact quan-
tum mechanics as the number of beads increases. ⟨x̂x̂(t)⟩x1

con-
verges toward quantum mechanics, with respect to the number of
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FIG. 13. The position autocorrelation
function for a harmonic potential (βh̵ω
= 8). Comparison between different num-
bers of beads for the two versions of
OPCW and exact solutions for classical
mechanics (CM) and quantum mechan-
ics (QM). The number of Monte Carlo
steps used for each number of beads,
N, is 1 × 109 for N = 5, N = 10, and
N = 40, and 64 × 109 for N = 160.
The standard deviations are in all cases
small enough not to be visible. (a) Real
part of ⟨x̂x̂(t)⟩y1

, (b) imaginary part of
⟨x̂x̂(t)⟩y1

, (c) real part of ⟨x̂x̂(t)⟩x1
,

and (d) imaginary part of ⟨x̂x̂(t)⟩x1
.

beads, noticeably faster than ⟨x̂x̂(t)⟩y1
. This ordering of speed of

convergence with regard to the number of beads, N, is what could be
expected since ⟨x̂x̂(t)⟩x1

requires the positions of neighboring beads
to converge to the same value, while ⟨x̂x̂(t)⟩y1

also requires the posi-
tions of next neighboring beads to converge to the same value (see
Appendix E 1).

In Fig. 14, the position-squared autocorrelation function can
be seen for both versions of the method studied. Both versions
of the method, just as for the previous correlation function, con-
verge from classical toward quantum mechanics as the number

of beads increases. Similar to the previous correlation function,
⟨x̂2x̂2

(t)⟩
x1

converges faster with respect to the number of beads
than ⟨x̂2x̂2

(t)⟩
y1

, as could be expected (see Appendix E 2).
In Fig. 15, the position and position-squared autocorrelation

functions from the two versions of the open polymer method can
be compared to each other, exact classical mechanics, exact quan-
tum mechanics, and RPMD. FK-LPI is always exact for a harmonic
potential, so it is equivalent to exact quantum mechanics. As RPMD
is exact for correlation functions with at least one linear operator
in a harmonic potential,3 the exact RPMD result is also equivalent

FIG. 14. The position-squared autocor-
relation function for a harmonic potential
(βh̵ω = 8). Comparison between differ-
ent numbers of beads for the two ver-
sions of OPCW and exact solutions for
classical mechanics (CM) and quantum
mechanics (QM). The number of Monte
Carlo steps used for each number of
beads, N, is 1× 109 for N = 5 and N = 10,
4 × 109 for N = 40, and 64 × 109

for N = 160. The outer lines of each
type show the standard deviations for the
results. If the standard deviation is small
enough, the outer lines are not visible.
(a) Real part of ⟨x̂2x̂2(t)⟩

y1
, (b) imagi-

nary part of ⟨x̂2x̂2(t)⟩
y1

, (c) real part of

⟨x̂2x̂2(t)⟩
x1

, and (d) imaginary part of

⟨x̂2x̂2(t)⟩
x1

.
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FIG. 15. The position and position-
squared autocorrelation functions for a
harmonic potential (βh̵ω = 8). Compar-
ison between the two versions of OPCW
and numerically exact solutions for clas-
sical mechanics (CM), classical Wigner
(CW), RPMD, and quantum mechanics
(QM). The number of beads used in
the y1- and x1-calculations is N = 160,
and the number of Monte Carlo steps is
64 × 109. The outer lines of each type
show the standard deviations for the
results. If the standard deviation is small
enough, the outer lines are not visi-
ble. (a) Real part of ⟨x̂x̂(t)⟩, (b) imag-
inary part of ⟨x̂x̂(t)⟩, (c) real part of
⟨x̂2x̂2(t)⟩, and (d) imaginary part of
⟨x̂2x̂2(t)⟩.

to exact quantum mechanics for ⟨x̂x̂(t)⟩. For ⟨x̂2x̂2
(t)⟩, it can be

seen that the classical Wigner method gives better results than
RPMD. This is to be expected as the classical Wigner method is
exact for any correlation function for a harmonic potential, while

RPMD is not exact when both operators in the correlation function
are non-linear.

In Fig. 16, the momentum and momentum-squared autocor-
relation functions are shown. For these correlation functions, the

FIG. 16. The momentum and momentum-squared autocorrelation functions for a harmonic potential (βh̵ω = 8). Comparison between different numbers of beads for OPCW
[with ⟨p̂p̂(t)⟩y1

and ⟨p̂2p̂2(t)⟩
y1

being identical to ⟨p̂p̂(t)⟩x1
and ⟨p̂2p̂2(t)⟩

x1
, respectively] and exact solutions for classical mechanics (CM) and quantum mechanics

(QM). The number of Monte Carlo steps used for each number of beads, N, for the calculation of ⟨p̂p̂(t)⟩y1 ,x1
is 1 × 109 for N = 5 and N = 10, 4 × 109 for N = 40, and

64 × 109 for N = 160. The number of Monte Carlo steps used for each number of beads for the calculation of ⟨p̂2p̂2(t)⟩
y1 ,x1

is 1 × 109 for N = 5, 4 × 109 for N = 20, and

128 × 109 for N = 80. The outer lines of each type show the standard deviations for the results. If the standard deviation is small enough, the outer lines are not visible. (a)
Real part of ⟨p̂p̂(t)⟩y1 ,x1

, (b) imaginary part of ⟨p̂p̂(t)⟩y1 ,x1
, (c) real part of ⟨p̂2p̂2(t)⟩

y1 ,x1
, and (d) imaginary part of ⟨p̂2p̂2(t)⟩

y1 ,x1
.
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two versions of the method are identical. ⟨p̂p̂(t)⟩y1 ,x1
converges in a

similar way as ⟨x̂x̂(t)⟩y1
does with respect to the number of beads.

⟨p̂2p̂2
(t)⟩

y1 ,x1
, as all the other correlation functions, converges with

respect to the number of beads from classical toward quantum
mechanics. In this work, ⟨p̂2p̂2

(t)⟩
y1 ,x1

is the most difficult corre-
lation function to converge with respect to the number of Monte
Carlo steps. That is why no results from calculations with N = 160
are shown, and why the standard deviations are visible in the results
for N = 80.

APPENDIX D: ANALYTIC CORRELATION FUNCTIONS
FOR THE HARMONIC OSCILLATOR

For the harmonic oscillator described in Appendix C, correla-
tion functions can be calculated analytically. ⟨x̂x̂(t)⟩ and ⟨p̂p̂(t)⟩ are
straightforward to derive. ⟨x̂2x̂2

(t)⟩ and ⟨p̂2p̂2
(t)⟩ can be acquired

from the simpler correlation functions by using the cumulant expan-
sion of Cao and Voth.46 The correlation functions are, for classical
mechanics,

⟨x̂x̂(t)⟩ =
1

βmω2 cos(ωt), (D1)

⟨x̂2x̂2
(t)⟩ =

1
β2m2ω4 (1 + 2 cos2

(ωt)), (D2)

⟨p̂p̂(t)⟩ =
m
β

cos(ωt), (D3)

⟨p̂2p̂2
(t)⟩ =

m2

β2 (1 + 2 cos2
(ωt)), (D4)

and, for quantum mechanics,

⟨x̂x̂(t)⟩ =
h̵

2 mω
(

eβh̵ω

eβh̵ω − 1
e−iωt +

1
eβh̵ω − 1

eiωt
), (D5)

⟨x̂2x̂2
(t)⟩ =

h̵2

4 m2ω2

⎛

⎝
(

eβh̵ω + 1
eβh̵ω − 1

)

2

+ 2(
eβh̵ω

eβh̵ω − 1
e−iωt +

1
eβh̵ω − 1

eiωt
)

2
⎞

⎠
, (D6)

⟨p̂p̂(t)⟩ =
mh̵ω

2
(

eβh̵ω

eβh̵ω − 1
e−iωt +

1
eβh̵ω − 1

eiωt
), (D7)

⟨p̂2p̂2
(t)⟩ =

m2h̵2ω2

4
⎛

⎝
(

eβh̵ω + 1
eβh̵ω − 1

)

2

+ 2(
eβh̵ω

eβh̵ω − 1
e−iωt +

1
eβh̵ω − 1

eiωt
)

2
⎞

⎠
. (D8)

APPENDIX E: COMPARISON OF THE REAL
AND IMAGINARY PARTS OF CORRELATION
FUNCTIONS FOR THE HARMONIC POTENTIAL

For the harmonic oscillator, the analytical equations of
motion can be put into (B̂)

W
[x(yN , pN , t), p(yN , pN , t)] and

(B̂)
W
[x(xN , pN , t), p(xN , pN , t)] in Eqs. (12) and (13). This appendix

shows how some autocorrelation functions behave for the two
versions of the method presented in this paper.

1. Position autocorrelation function, ⟨ x̂x̂( t) ⟩
For the case of ⟨x̂x̂(t)⟩, entering the analytical equations of

motion into Eqs. (12) and (13) leads to

⟨x̂x̂(t)⟩y1
=

1
Z
(

mN
2πβ
)

N
2
√

β
2πmN

h̵−N
⎧⎪⎪
⎨
⎪⎪⎩

N

∏
j=1
∫

∞

−∞
dxj

⎫⎪⎪
⎬
⎪⎪⎭

× ∫

∞

−∞
dpN e−

i
h̵ pN(x1−xN)

× e
−

β
N (

p2
N

2m +∑N
j=1 V(yj)+ mN2

2h̵2β2 ∑
N−1
j=1 (xj+1−xj)

2
)

× y1(yN cos(ωt) +
pN

mω
sin(ωt)), (E1)

⟨x̂x̂(t)⟩x1
=

1
Z
(

mN
2πβ
)

N
2
√

β
2πmN

h̵−N
⎧⎪⎪
⎨
⎪⎪⎩

N

∏
j=1
∫

∞

−∞
dxj

⎫⎪⎪
⎬
⎪⎪⎭

× ∫

∞

−∞
dpN e−

i
h̵ pN(x1−xN)

× e
−

β
N (

p2
N

2m +∑N
j=1 V(yj)+ mN2

2h̵2β2 ∑
N−1
j=1 (xj+1−xj)

2
)

× x1(yN cos(ωt) +
pN

mω
sin(ωt)). (E2)

To simplify, pN can be integrated out and all constants that are
identical in both cases can be collected into a single constant, C,

⟨x̂x̂(t)⟩y1
= C
⎧⎪⎪
⎨
⎪⎪⎩

N

∏
j=1
∫

∞

−∞
dxj

⎫⎪⎪
⎬
⎪⎪⎭

e
−

β
N (∑

N
j=1 V(yj)+ mN2

2h̵2β2 ∑
N
j=1(xj+1−xj)

2
)

× y1(yN cos(ωt) −
iN
βh̵ω
(x1 − xN) sin(ωt)), (E3)

⟨x̂x̂(t)⟩x1
= C
⎧⎪⎪
⎨
⎪⎪⎩

N

∏
j=1
∫

∞

−∞
dxj

⎫⎪⎪
⎬
⎪⎪⎭

e
−

β
N (∑

N
j=1 V(yj)+ mN2

2h̵2β2 ∑
N
j=1(xj+1−xj)

2
)

× x1(yN cos(ωt) −
iN
βh̵ω
(x1 − xN) sin(ωt)). (E4)

These correlation functions are Boltzmann-weighted averages,
which can be simplified to

⟨x̂x̂(t)⟩y1
= ⟨y1(yN cos(ωt) −

iN
βh̵ω
(x1 − xN) sin(ωt))⟩, (E5)

⟨x̂x̂(t)⟩x1
= ⟨x1(yN cos(ωt) −

iN
βh̵ω
(x1 − xN) sin(ωt))⟩. (E6)

Now, the correlation functions can be separated into the real
parts,

Re⟨x̂x̂(t)⟩y1
= cos(ωt)⟨y1yN⟩

=
cos(ωt)

4
(⟨x2

1⟩ + ⟨x1xN⟩ + ⟨x1x2⟩ + ⟨x2xN⟩)

=
cos(ωt)

4
(⟨x2

1⟩ + 2⟨x1xN⟩ + ⟨x2xN⟩), (E7)

J. Chem. Phys. 152, 094111 (2020); doi: 10.1063/1.5126183 152, 094111-18

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Re⟨x̂x̂(t)⟩x1
= cos(ωt)⟨x1yN⟩

=
cos(ωt)

2
(⟨x2

1⟩ + ⟨x1xN⟩), (E8)

and the imaginary parts,

Im⟨x̂x̂(t)⟩y1
= −

N
βh̵ω

sin(ωt)⟨y1(x1 − xN)⟩

= −
N

2βh̵ω
sin(ωt)(⟨x2

1⟩ + ⟨x1x2⟩ − ⟨x1xN⟩ − ⟨x2xN⟩)

= −
N

2βh̵ω
sin(ωt)(⟨x2

1⟩ − ⟨x2xN⟩), (E9)

Im⟨x̂x̂(t)⟩x1
= −

N
βh̵ω

sin(ωt)⟨x1(x1 − xN)⟩

= −
N
βh̵ω

sin(ωt)(⟨x2
1⟩ − ⟨x1xN⟩), (E10)

where it has been used that all beads are equivalent after the
last momentum was integrated out, so, e.g., ⟨x2

N⟩ = ⟨x
2
1⟩ and

⟨x1xN⟩ = ⟨x1x2⟩.

For the real part, ⟨x2
1⟩ cos(ωt) is the exact quantum mechan-

ics, apart from that the Boltzmann weighting factor in the average
is approximate as long as N is finite. Re⟨x̂x̂(t)⟩x1

consists to a larger
degree of ⟨x2

1⟩ cos(ωt) than Re⟨x̂x̂(t)⟩y1
does. When N → ∞ and

the distance between beads becomes smaller both ⟨x1xN⟩ and ⟨x2xN⟩

will converge toward ⟨x2
1⟩. ⟨x2xN⟩ will most likely converge more

slowly than ⟨x1xN⟩ as it depends on next neighboring beads instead
of immediately neighboring beads. This means that Re⟨x̂x̂(t)⟩x1
could be expected to convergence toward exact quantum mechanics
faster than Re⟨x̂x̂(t)⟩y1

with respect to the number of beads. With
the same kind of reasoning, Im⟨x̂x̂(t)⟩x1

could be expected to con-
verge faster with respect to the number of beads than Im⟨x̂x̂(t)⟩y1

,
since the former depends on ⟨x1xN⟩ and the latter depends
on ⟨x2xN⟩.

2. Comparison of real and imaginary parts
of ⟨ x̂2x̂2( t) ⟩ for the harmonic potential

For ⟨x̂2x̂2
(t)⟩, the equivalent of Eqs. (E5) and (E6) is

⟨x̂2x̂2
(t)⟩

y1
= ⟨y2

1(y2
N cos2

(ωt) −
iN
βh̵ω
(x1 − xN)yN sin(ωt) cos(ωt) −

N2

β2h̵2ω2 (x1 − xN)
2 sin2

(ωt) +
N

βω2m
sin2
(ωt))⟩, (E11)

⟨x̂2x̂2
(t)⟩

x1
= ⟨x2

1(y2
N cos2

(ωt) −
iN
βh̵ω
(x1 − xN)yN sin(ωt) cos(ωt) −

N2

β2h̵2ω2 (x1 − xN)
2 sin2

(ωt) +
N

βω2m
sin2
(ωt))⟩. (E12)

Separating into real parts

Re⟨x̂2x̂2
(t)⟩

y1
= ⟨y2

1y2
N cos2

(ωt) − y2
1

N2

β2h̵2ω2 (x1 − xN)
2 sin2

(ωt) + y2
1

N
βω2m

sin2
(ωt)⟩

=
cos2
(ωt)

16
⟨x4

1 + 2x3
1x2 + 2x3

1xN + x2
1x2

2 + 4x2
1x2xN + x2

1x2
N + 2x1x2

2xN + 2x1x2x2
N + x2

2x2
N⟩

−
N2 sin2

(ωt)
4β2h̵2ω2 ⟨x

4
1 + 2x3

1x2 − 2x3
1xN + x2

1x2
2 − 4x2

1x2xN + x2
1x2

N − 2x1x2
2xN + 2x1x2x2

N + x2
2x2

N⟩

+
N sin2

(ωt)
4βω2m

⟨x2
1 + 2x1x2 + x2

2⟩

=
cos2
(ωt)

16
(⟨x4

1⟩ + 4⟨x3
1xN⟩ + 2⟨x2

1x2
N⟩ + 4⟨x2

1x2xN⟩ + 4⟨x1x2x2
N⟩ + ⟨x2

2x2
N⟩)

−
N2 sin2

(ωt)
4β2h̵2ω2 (⟨x

4
1⟩ + 2⟨x2

1x2
N⟩ − 4⟨x2

1x2xN⟩ + ⟨x2
2x2

N⟩) +
N sin2

(ωt)
2βω2m

(⟨x2
1⟩ + ⟨x1xN⟩), (E13)

Re⟨x̂2x̂2
(t)⟩

x1
= ⟨x2

1y2
N cos2

(ωt) − x2
1

N2

β2h̵2ω2 (x1 − xN)
2 sin2

(ωt) + x2
1

N
βω2m

sin2
(ωt)⟩

=
cos2
(ωt)
4

(⟨x4
1⟩ + 2⟨x3

1xN⟩ + ⟨x2
1x2

N⟩) −
N2 sin2

(ωt)
β2h̵2ω2 (⟨x4

1⟩ − 2⟨x3
1xN⟩ + ⟨x2

1x2
N⟩) +

N sin2
(ωt)

βω2m
⟨x2

1⟩ (E14)

and imaginary parts
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Im⟨x̂2x̂2
(t)⟩

y1
= −

N
βh̵ω

sin(ωt) cos(ωt)⟨y2
1(x1 − xN)yN⟩

= −
N

8βh̵ω
sin(ωt) cos(ωt)(⟨x4

1⟩ + 2⟨x3
1x2⟩

+ ⟨x2
1x2

2⟩ − ⟨x
2
1x2

N⟩ − 2⟨x1x2x2
N⟩ − ⟨x

2
2x2

N⟩)

= −
N

8βh̵ω
sin(ωt) cos(ωt)(⟨x4

1⟩ + 2⟨x3
1x2⟩

− 2⟨x1x2x2
N⟩ − ⟨x

2
2x2

N⟩), (E15)

Im⟨x̂2x̂2
(t)⟩

x1
= −

N
βh̵ω

sin(ωt) cos(ωt)⟨x2
1(x1 − xN)yN⟩

= −
N

2βh̵ω
sin(ωt) cos(ωt)(⟨x4

1⟩ − ⟨x
2
1x2

N⟩). (E16)

From these expressions, it can be seen that ⟨x̂2x̂2
(t)⟩

x1
for both

the real and imaginary parts is a combination of fewer and less
complex averages than ⟨x̂2x̂2

(t)⟩
y1

. Less complex in this case means
averages of fewer different positions and of positions closer to each
other. Thus, it can be expected that ⟨x̂2x̂2

(t)⟩
x1

converges faster with

regard to the number of beads than ⟨x̂2x̂2
(t)⟩

y1
does.
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