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“To understand the universe at the deepest level, we need to know not only
how the universe behaves, but why.”

- Stephen Hawking, The Grand Design
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Abstract

Context: Model-Based Software Engineering (MBSE) is a software devel-
opment approach in which models play a central role and serve a multitude
of purposes. On the one hand, models can be used as drafts for problem
understanding, ideation, creative thinking, and communication. On the other
hand, models can also be used as guidelines for documentation, implementation,
and code-generation.

Motivation: Several studies claim that modeling in MBSE helps to improve
software quality, productivity, and maintainability. However, modeling is
frequently believed to be a time consuming approach that requires a lot of
effort and often complicates matters. Generally, the entire field of Software
Engineering (SE) perceives a discrepancy between empirical findings and prac-
titioners’ a priori beliefs, which are often based on personal perspectives on
the development process.

Objective: We aim to address the interplay of belief and evidence in MBSE
by contributing to the empirical understanding of software design. Moreover,
we aim to support the design activities in MBSE in order to improve the overall
process and achievement thereof.

Method: To achieve the objective of this research, we first conduct more
in-depth empirical studies that investigate the socio-technical nature of MBSE.
In particular, we observe practices and investigate challenges to MBSE in order
to increase our understanding of this software engineering approach. Based on
the results of our empirical investigations, we propose mechanisms and tools to
support the design activities of MBSE.

Studies: We conduct multiple studies to understand and support software
design in MBSE:

• We analyze the modeling process in order to understand how much effort
is given to designing (i.e. thinking about the design of software systems),
and how much effort is given to drawing the model (i.e. tool interaction).

• We also investigate development efforts and challenges in MBSE practices.

• Moreover, our endeavor to support the design activities of developers
resulted in creating two software design environments: OctoUML and
OctoBubbles. OctoUML is a collaborative software design environment
that supports the mix of informal and formal notations. OctoBubbles
is a multi-view interactive environment for concurrent visualization and
synchronization of software design and code.
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• Finally, we study the effect of geographic distance and software design
representation on design collaboration and communication.

Results: By conducting the aforementioned studies, we find the following:

• We find that much of the modeling effort is devoted to designing (thinking
and pondering of design decisions).

• Our inquiry into MBSE efforts shows that the most of MBSE effort is
spent on collaboration and communication between developers. Moreover,
we find that tool-related challenges are the most encountered challenges in
MBSE. We uncover that specific tool-challenges are due to: (i) usability of
the tools, (ii) the learning effort of the tool-chain, (iii) the interoperability
of various tools, and iv) the installation and configuration of the tools.

• Multiple evaluations of OctoUML and OctoBubbles indicate a positive
perception of the users regarding the usability of these environments.

• By studying the effect of distance on design collaboration, we find that
co-located developers do and actively discuss more design decisions in
the problem space than distributed developers.

• We also find that a graphical software design representation is better
than a textual representation in promoting active discussion between
developers and improving the recall ability of design details.

Suggestions: Our endeavour to understand and support the design activities
in MBSE practices suggests that we can enhance MBSE processes by:

• Reducing the complexity of MBSE tool-support and enhancing the us-
ability thereof. This would let developers spend more time on pondering
and thinking of design decisions.

• Introducing explicit triggers for effective communication in co-located
and distributed MBSE collaborations. This in turn would enhance the
efficiency and effectiveness of the collaborative activities of the developers.

• Studying the social challenges in MBSE, and accounting for the effect of
these challenges on team behavior and development activities.

Keywords: Software Engineering, Software Design, Software Modeling, MBSE
Efforts and Challenges, Software Design Environments, Collaboration, Com-
munication, Human Aspects, Empirical Studies.
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Chapter 1

Introduction

Model-Based Software Engineering (MBSE) is an engineering approach for soft-
ware development in which models play an important role, without necessarily
being the key artifacts of the development [1]. This approach has been devised
to handle complexity (by means of abstraction) and enhance productivity in
software development [2].

One argument in discussions about the adoption of MBSE is its in-effectiveness,
e.g., the supposedly large effort it takes to do modeling. In particular, many
practitioners consider MBSE a time consuming approach that requires a lot of
effort and often complicates matters [3]. However, several studies claim that
MBSE helps to improve software quality, productivity and support maintain-
ability (e.g., [4, 5]).

More in general, the whole field of software engineering perceives the dis-
crepancy between scientifically validated results (e.g., in the empirical software
engineering) and developers’ beliefs, usually based only on personal experience
of the development processes. For this reason, there is a need to address
the interplay of belief and evidence in software engineering practices, because
knowledge should be motivated by experience and observation rather than by
intuition [6, 7]. Therefore, in this thesis we conduct empirical studies in order
to gain knowledge and increase understanding by observing and evaluating
MBSE processes, tools and developers’ activities.

Based on the purpose of modeling in MBSE, we highlight in Figure 1.1 that
models can be used as:

(a) drafts for ideation, design exploration, understanding, externalization of
thoughts, creative thinking, sketching, prototyping, or communication
of abstract high-level details of software structure and behavior. We
characterize this way of modeling as informal modeling [8].

(b) guidelines for documentation, verification and validation, implementation,
code-generation, or communication of the complete low-level details of

1
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Informal Modeling
“models used as drafts”

Formal Modeling
“models used as guidelines”

Purposes: 
• Ideation

• Exploration

• Problem Understanding

• Creative Thinking

• Communication

Purposes:
• Documentation

• Communication

• Verification and Validation

• Instruction for Implementation

• Code-Generation

Figure 1.1: The purpose of using informal and formal modeling.

software structure and behavior. In this case, models play a central role
and drive the development process. In contrast to informal modeling, we
distinguish this approach as formal modeling [8].

Accordingly, we classify modeling tools into two categories: informal and
formal [8]. On the one hand, we mean by informal tools any tool that supports
informal modeling in the sense that it does not constrain the modeling nota-
tions that can be used by software designers. Examples of informal tools are
whiteboards and pen & paper. These tools are flexible, easy to use and allow
designers to unleash their expressiveness [9]. On the other hand, we mean
by formal tools any Computer Aided Software Engineering (CASE) tool that
supports the creation of models expressed through formal modeling notations.

Whiteboards, as informal modeling tools, do not serve well for persistence
and transfer of designs. What typically happens in practice is that software
designers go to the whiteboard, create a software design, take a picture of the
created design, go back to their desks, run a CASE tool, and try to re-draw or
formalize the design that they have previously created on the whiteboard. In
this process, redrawing is an additional step using a separate tool and requiring
extra effort. Moreover, the transition between informal (whiteboards) and
formal tools (CASE tools) introduces a discontinuity that can be a source of
errors. Thus, rationale, ideas and the logical basis for design decisions can be
easily lost when moving from the whiteboard to the CASE tool [10].

A common weakness in formal tools is poor support of designing practices
[10]. Indeed, these tools support one or few formal modeling notations, and
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hence restrict designers’ expressiveness. To make matters worse, the majority
of CASE tools are not designed for user experience, and their usability leaves
to be desired [11]. In fact, there are reports showing that CASE tools are
perceived complex and difficult to use [12, 13]. Moreover, the complexity of
CASE tools is considered to be a reason that adversely affect the adoption of
model-based approaches [14].

Both informal and formal modeling have their advantages and disadvantages.
Yet, neither serves all purposes in designing software in MBSE. Therefore, in
this thesis we also study new forms of software modeling tools which could
better serve the multitude of purposes.

The remainder of this chapter is structured as follows: Section 1.1 provides
the motivation of this PhD research. Section 1.2 details the research goals and
questions. Section 1.3 provides the background of this research. Section 1.4
discusses the related work. Section 1.5 details the research methodology. Section
1.6 presents a brief summary of the included papers and their contribution
towards achieving the objective of this PhD research. Section 1.7 wraps up
this chapter with recommendations and plan for future work.

1.1 Research Motivation

In this Section, we describe the Challenges (C) that motivate the endeavor
of our research in Understanding (U) and Supporting (S) the software design
activities in MBSE. The selection of these challenges is based on reading
scientific literature in MBSE and personal observations from conferring with
experienced software developers using MBSE or struggling with MBSE adoption.
The challenges that we report in this section are mainly related to:

• lack of understanding of the development efforts in MBSE, such as design,
modeling, collaboration, artifacts navigation, and communication efforts.

• MBSE tool-related challenges, such as poor tool-usability and lack of tool-
support for an effective software design collaboration as well as software
artifacts visualization and navigation.

Next, we describe the challenges that motivate the endeavor of our research
in understanding software design activities.

C.U.1. Design and Modeling Efforts. Regardless of the reported benefits
of model-based approaches in literature, e.g. [5, 15], the use of modeling is still
debated in practice [16]. This is because modeling is believed as an unnecessary
and superfluous activity that introduces extra effort in the process of software
development [3]. It also believed that the benefits of modeling take place after
a long-term [5,16], in the sense that modeling introduces an initial overhead at
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the beginning, whereas benefits, such as increased productivity [17] and better
software maintenance [18], start to take place at late stages.

We consider that the benefits of modeling does not only take place after
a long-term, but also directly at early stages. In particular, we consider that
part of the modeling effort could be actually devoted to reasoning and thinking
about the design solution, while other parts of the effort are dedicated to
drawing the design solution (i.e., representing the solution via a modeling
notation). Here the challenges are to:

• dissect the effort spent on design thinking and the effort spent on model
drawing in software modeling.

• understand how to reduce the drawing effort (i.e., the modeling cost).

By confronting these challenges, we aim to increase practitioners’ and re-
searchers’ understanding of the efforts of software modeling and design pro-
cesses. We also provide evidence regarding the impact of adopting MBSE on
software development process and its achievement. Moreover, by understanding
how to reduce the drawing effort, we contribute to reducing the overall effort
of MBSE which, in turn, would increase the productivity of MBSE.

C.U.2. Understanding the Challenges and Development Efforts of
MBSE. MBSE aims to increase the abstraction level and promote the au-
tomation of the development process [3]. A recurring theme in discussions
about the adoption of MBSE is its effectiveness. This is because there is a lack
of empirical assessment of the processes and (tool-)use of MBSE in practice.

Although MBSE claims many potential benefits, e.g., gains in productivity,
and maintainability [19–21], its adoption has been facing a number of challenges,
such as poor tool-support [5] and developers’ diverse perception of the benefits
of MBSE [22]. On the one hand, MBSE is considered as beneficial after it
has been applied effectively in several application sectors [4, 23]. On the other
hand, MBSE is considered as a time-consuming and unproven approach that
merely complicates matters [3]. Devanbu et al. [6] suggest that more in-depth
studies that address the interplay of belief and evidence in software practices
are needed. In MBSE, the main challenges are to:

• increase our understanding of the process and use of MBSE in practice.

• address the interplay of belief and evidence in MBSE practices.

By confronting these challenges, we aim to increase the empirical understanding
of MBSE challenges and development efforts. TFurthermore, exposing MBSE
challenges and development efforts would make them a candidate subject for
research that are concerned with MBSE process improvement.
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C.U.3. Distributed MBSE. Global software engineering (GSE) is the
practice of engineering software systems across geographical, socio-cultural, and
temporal boundaries [24]. Organizations engage in GSE to reduce development
costs and take advantage of proximity to markets and customers [25]. However
when globalized, software engineering becomes less effective. Indeed, these
organizations often face numerous challenges, including poor quality of globally
developed software [26].

In collaborative MBSE, geographic distance can lead to socio-technical
challenges that potentially affect the way software is developed. This leads to
the following challenges:

• increase our understanding of software design practice and cognition in
both co-located and distributed MBSE.

• increase our understanding of the impact of distance on collaborative
software design activities.

By understanding software design practice and cognition in collaborative MBSE,
we aim to identifying challenges that needs to be addressed or further studied in
order to support the process of software design, which in turn would contributes
to enhancing the effectiveness and efficiency of MBSE.

C.U.4. Graphical vs. Textual Design Descriptions. By investigating
MBSE development efforts, Jolak et al. [27] find that the effort on communi-
cation is actually more than all of the efforts that developers spent in any of
the other MBSE activities. Accordingly, they decided to study communication
in-depth to determine elements or criteria of its efficiency and effectiveness. To
communicate software design decisions to other stakeholders, developers create
graphical or textual descriptions of these decisions. Graphical descriptions
encode and present knowledge differently from textual descriptions. Moreover,
these two categories of knowledge representation are differently processed by
the human mind, as stated by Moody [28]. Empirical evidence on how graphical
descriptions affect developer’s achievement and development productivity is
still underwhelming, as reported by Hutchinson et al [5] and Meliá et al. [29].
Thus, our focus in to understand how different software design descriptions (i.e.,
graphical versus textual) influence software design communication. Such under-
standing might lead to achieving more effective software design communication,
which in turn would help in reducing the total effort of software development
activities.

Next, we describe the challenges that motivate the endeavor of our research
in supporting software design activities.

C.S.1. Support of Informal and Formal Modeling. Informal modeling
facilitates thinking and fosters ideation [30]. Moreover, it presents an intuitive
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way to prototype and communicate thoughts [31]. Informal modeling supports
the process of software design and serve developers to inspect and develop one
design idea as well as reflect on some other alternatives [32]. In practice, software
developers often go to the whiteboard to discuss requirements, explore domain
problems and sketch design solutions [33]. The reason is that whiteboards
are flexible mediums and at easy disposal. Furthermore, whiteboards allow
informal modeling i.e., there are no restrictions on the type or formality of the
modeling notations that can be used. However, whiteboards do not offer means
for automated data analysis and maintenance. Thus, the sketched diagrams
often need to be formalized and re-modeled again using a CASE tool. This
transition between informal and formal tools introduces a discontinuity that
can be a source of errors and often requires extra effort. Indeed, rationale,
ideas and the logical basis for design solutions can be easily lost when moving
from the whiteboard to the CASE tool [10]. Moreover, CASE tools provide
environments where only one or few formal modeling notations are supported.
This actually limits the expressiveness of designers, especially in early-phase
software design.

Table 1.1 is based on [34], and describes some advantages of informal and
formal modeling tools. Our focus is to provide a ‘one stop’ environment
capable of supporting both informal and formal modeling, while preserving
the advantages of both informal and formal tools. Such an environment would
support the designing and modeling processes which in practice often go hand-
in-hand, and reduce the effort of MBSE.

Table 1.1: Advantages of informal and formal modeling tools

Informal Tools Formal Tools

Clarity
High clarity because of strict
adherence to syntax

Flexibility Caters for improvisation of notation
Ease of continuous
design

In tools based on digital editing, editing (move, resize, delete, undo, etc.)
is easier than in sketch-based tools such as whiteboards.

Ease of learning
Notation

Formal syntax checking helps
in learning the proper syntax

Intuitiveness of
using tool

Very simple to use; but limited in
functionality

More difficult to learn, but
advanced functionalities
supported

Collaboration
Multiple people collaborating on a
shared design prefer to use informal
representations [35]

Integration
Absence of a formal syntax
(and semantics) prohibits
exchange of designs

Formal syntax allows a formal
representation of the design that
can be exchanged with other tools

C.S.2. Usability. CASE tools are criticized of being complex and difficult
to use [12,14]. This complexity of CASE tools hinders their adoption and often
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costs companies extra effort and money for training and learning endeavor. In
particular, the interaction with these tools is not always well-designed for a user
experience, easy learning, and effective use [14]. As a consequence, CASE tools
are often considered as barriers to the adoption of model-based approaches [36].
Our focus is on the challenges of:

• providing rich features in a simple and intuitive User Interface (UI).

• making CASE tools fit easily into users’ activities, rather than forcing
users to fit their activities into the dictates of the tools [37].

Providing ways to overcome these challenges could bring a significant impact
to the effectiveness and efficiency of the MBSE approach.

C.S.3. Interaction Modalities. One key aspect of usability is the manner
in which users interact with the system. The interaction with current CASE-
tools takes place essentially by using the mouse and keyboard. However, in
recent times interaction technologies such as touch, voice and gesture [38] have
matured, and become commonly used as interaction modalities with software
systems. Like [39], we believe that supporting multiple interaction modalities
within software design environments would allow the users to switch to a
better-suited modality for the execution of one particular task. Our focus is to:

• provide more intuitive and effective interaction with CASE tools.

By confronting this challenge, we aim to enhance the usability of MBSE tools
as well as reduce the effort of interaction with these tools. This in turn would
enhance the overall efficiency of the MBSE approach.

C.S.4. Collaboration. Software engineering is a collaborative activity.
More often than not, multiple developers work together on creating a software
design. Moreover, these developers often collaborate with other stakeholders to
shape the structure and behavior of software systems. In [27], we show that the
majority of MBSE effort is spent on communication and collaboration between
developers on MBSE activities.

Tools supporting MBSE are often deployed on personal computers, and
only one developer can effectively interact with the PC at any one time. This
actually limits the collaboration between developers. As globally-distributed
projects become the norm in Software Engineering [40], developers who are
geographically distributed need effective tool-support to accommodate remote-
collaborative design meetings [24]. Our focus is on the challenges of:

• providing effective and efficient support for co-located software design in
MBSE.
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• supporting distributed software design in MBSE, while preserving the
natural, effortless kind of awareness and communication that happens in
collocated settings.

By providing tool-support for both co-located and distributed collaborative
software design, we contribute to improve the collaboration, communication,
and coordination between and among software development teams [41].

C.S.5. Artifacts Visualization. During all stages of development, develop-
ers seek to understand both the design and the implementation of the software
system, as well as the relation between these two artifacts. The process of
understanding often requires developers to create a mental view of high-level de-
scriptive domain artifacts (i.e., models) and low-level artifacts (i.e., code) [42,43].
CASE tools do not provide developers with multiple simultaneously-visible
views of both low- and high level software artifacts. Consequently, developers
often lose the big picture and spend unnecessary effort on navigation and
locating artifacts of interest. Indeed, in scientific literature it is reported that
around 35% of developers time is spent on software navigation [44], and around
60% of developers time is given to software understanding activities [45]. Thus,
our focus is to:

• provide an interactive approach for bidirectional, smooth navigation
between software models and their corresponding source code.

• support program comprehension and tackle the problem of software
artifacts’ navigation.

By assisting software comprehension and navigation, we aim to reducing
the overall effort of MBSE, which in turn helps in increasing the MBSE
productivity.

1.2 Research Focus

In this Section, we describe the research goals and present the research questions.

1.2.1 Research Goals

The overall objective of this PhD project is to Understand and Support the
Design Activities in Model-Based Software Engineering. To achieve the objective
of this research, we define the following goals:

• G1: to better understand the activities of software design in relation to
different design-purposes, and

• G2: to propose and evaluate solutions for supporting the design activities
of software developers.
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Figure 1.2: The approach to achieving the goals of this research.

Figure 1.2 shows the approach that we use to achieve the goals of this PhD
research. In particular, we do the following steps:

1. We develop an understanding of the design activities of software developers
by: (i) reviewing scientific literature in MBSE and (ii) pondering personal
observations from conferring with experienced software developers using
MBSE or struggling with MBSE adoption.

1.1 Having reviewed the literature and pondered observations from dis-
cussions with experienced developers, we conduct empirical studies
to study software design activities in the context of MBSE.

1.2 Based on the results of the empirical studies, we increase our under-
standing of the design activities in MBSE.

2. Based on the results of the empirical investigations and our understand-
ing of the design activities, we propose novel approaches to support
development and design activities.

3. We empirically assess the proposed approaches.

4. Based on assessment results, we further increase our understanding of
design activities in the MBSE domain.
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1.2.2 Research Questions

To achieve our goals in understanding and supporting the design activities in
MBSE, this PhD thesis addresses the following research questions:

• RQ1. How can the design effort and drawing (i.e., modeling and layouting)
effort in software modeling be dissected?

– RQ1.1. How much of the modeling effort is spent on designing?

– RQ1.2. How much of the modeling effort is spent on drawing the
design solution?

In this thesis, we propose that modeling tools in MBSE should support:

(F1) the mix of informal and formal modeling notations.

(F2) a smooth navigation between models and code.

Accordingly, we ask the following research question:

• RQ2. Can supporting (F1) and (F2) make the modeling tools of MBSE
easier to use and more productive?

– RQ2.1. Do developers find combining informal and formal modeling
beneficial?

– RQ2.2. Do developers find navigating between models and code
beneficial?

• RQ3. How is the total effort spent on MBSE distributed over different
development activities?

– RQ3.1. How is the effort spent on different MBSE development
activities distributed over time?

– RQ3.2. How large is the portion of collaborative work in MBSE
projects?

– RQ3.3. What are the challenges that affect MSBE in practice?

• RQ4. How does distance influence the design activities of software devel-
opers?

– RQ4.1. How does distance influence the amount of problem- and
solution design decisions?

– RQ4.2. How does distance influence design communication?

– RQ4.3. What challenges are encountered when collaboratively de-
signing software at a distance?

• RQ5. How does the representation of software design (graphical vs. tex-
tual) influence design communication?
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Table 1.2 reports the research questions and links them to the targeted
research goals. In particular, RQ1, RQ3, RQ4, RQ5 and their sub-questions
aim to achieve Goal 1. RQ2 and its sub-question aim to achieve Goal 2.

Table 1.2: The research questions and the targeted research goals

PhD Goal G1 G2

Description
To better understand the activities

of software design in relation to
different design-purposes

To propose and evaluate solutions for
supporting the design activities of

software developers
Research
Question

RQ1, RQ3, RQ4, RQ5 RQ2

1.3 Background

In the first part of this section, we introduce the concepts of software design
and software modeling. Later on, we provide details on existing modeling tools
and their types.

1.3.1 Software Design

We distinguish between design as a process (i.e., designing) and as an artifact
(i.e., final product of the design process). We define them as follows:

• Definition Designing (process): the process of thinking about, pondering
over, making, shaping, and evaluating design decisions for something that
is to be created.

• Definition Design (artifact): a set of design decisions that describes
how something is to be built.

Ralph [46] describes design as a process that includes three primary activities:
sense-making, co-evolution, and implementation. He defines these concepts as
follows: Sense-making is the process where a design agent (an entity or group
of entities that is capable of forming intentions and goals and taking actions to
achieve those goals, and that specifies the structural properties of the design
object) perceives its environment and the design object’s environment and
organizes these perceptions to create or refine the mental picture of context.
Co-evolution is the process where the design agent simultaneously refines its
mental picture of the design object based on its mental picture of context, and
vice versa. Implementation is the process where the design agent generates or
updates a design object using its mental picture of design object.

According to Budgen [47], the purpose of design is to produce a solution to
a problem. The problem is basically described by means of the requirements



12 1.3. BACKGROUND

specification, and the solution is given via describing how the product should
be constructed.

Dorst and Cross [48] describe the problem-solving aspect of design as a
co-evolution of problem– and solution spaces. In particular, they describe
design as the process of developing and refining together both the formulation
of a problem and ideas for a solution, with constant iteration of analysis,
synthesis, and evaluation processes between the problem space and solution
space. Figure 1.3 shows the co-evolution of problem-solution during design
as described by Dorst and Cross. Designers start by exploring the problem
space and find a partial structure (P(t + 1)). That partial structure is then
used to provide them with a partial structuring of the solution space (S(t +
1)). The designers consider the implications of the partial structure within the
solution space, use it to generate some initial ideas for the form of a design
concept, and so extend and develop the partial structuring (S(t + 2)). Some of
this development of the partial structuring may be derived from references to
earlier design projects. The designers transfer the developed partial solution
structure back into the PS (P(t + 2)), and again consider implications and
extend the structuring of the problem space. The ultimate goal is to create a
matching problem–solution pair.

When designing software, software developers together with other stakehold-
ers explore the interplay of problem and solution space. To handle problems
during design, expert developers intuitively practice design thinking [49]. In
design thinking, developers explore the problem and solution spaces separately,
and iteratively align these two. Developers who are in the design thinking status
are cognitively aware that there is a relation between the way they understand
the problem space and the solution space, and any choice or decision they take
at a certain time will impact the final results.

P(t)

S(t)

P(t+1)

S(t+1) S(t+2)

P(t+2)Problem Space 

Dimension

Solution Space 

Dimension

P(t) initial problem space

P(t+1) partial structuring of problem space

S(t) initial solution space

S(t+1) partial structuring of solution space

S(t+2) developed structuring of solution space

P(t+2) developed structuring of problem space

Figure 1.3: Co-evolution of problem-solution during design [48]
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Lindberg et al. [50] highlight that design thinking fosters three main activi-
ties (see Figure 1.4):

(a) Exploration of the problem space: by analyzing the problem space and
framing the design problem;

(b) Exploration of the solution space: by creatively devising and evaluating
design solutions; and

(c) Iterative alignment of both spaces : by keeping the problem space in mind
for refining and revising the chosen solutions.

Furthermore Lindberg et al. indicate that design thinking can broaden the
problem understanding and problem solving capabilities in IT development pro-
cesses. This is in line with Brooks [51], who considers design thinking an exciting
new paradigm for dealing with problems in software and IT development.

In software engineering, Petre and Van der Hoek consider that designing
is an activity that developers do throughout the entire development process,
despite of their different roles in a project [33]. For example, developers do not
only elicit requirements, they actually design the requirements by discussing
and shaping these requirements with the contributing stakeholders. Developers
also design their code by composing, analyzing, and evaluating algorithms to
ensure, e.g., an efficient algorithm run-time. Similarly, developers design use
cases, interactions, user interfaces, and test cases.

In this thesis, we look into design thinking as a cognitive style that de-
velopers adopt during problem solving [49]. Moreover, in this thesis we use
the term software developer to indicate any person who takes a role in the
software development process. In other words, we consider architects, designers,
programmers, and testers as software developers. Like [33], we also consider
that all developers (architects, designers, programmers, etc.) make design
decisions.

Problem Domain
Exploration

Solution Domain
Exploration

Framing and
Analyzing

Ideating and
Evaluating

Iterative 
Alignment

Iterative 
Alignment

Figure 1.4: Problem solving with design thinking [50]



14 1.3. BACKGROUND

1.3.2 Software Modeling

We distinguish between modeling as a process and model as an artifact (i.e.,
final product of the modeling process):

• Definition Modeling (process): the process of creating a model by choos-
ing what to represent and how to represent it.

• Definition Model (artifact): A model is a systematic and abstract
representation of a concept.

In software engineering, models of software designs serve a multitude of
purposes [52]:

• Planning: splitting the work in parts and delegate these to different teams
or developers.

• Progress Monitoring: providing an overview of the progress of individual
components, or by showing which components have been completed.

• Cost Estimation: providing a breakdown of the system into components.

• Risk Management: making explicit, which components are needed in a
system, this in turn triggers discussion about possible risks that may
arise in the construction and composition of components into the overall
system.

• Compliance: verifying that the implementation indeed conforms to the
design.

• Coordination: providing a common standard on how to handle the design
and implementation.

• Knowledge Sharing: modeling a system is a way of capturing knowledge
about a system. Through its representation this knowledge can be shared
in a development team.

• Ideation: helping in inventing ideas and exploring new directions.

• Analysis: allowing various types of analysis of the system, ranging from
more qualitative ‘what if’ scenarios (e.g., about maintainability) to quan-
titative analysis of extra-functional properties such as performance, relia-
bility, safety, and others.

• Prototyping: models can be used to demonstrate and try out how the
system will work.

• Code generation: models of the system are essential for code-generation.
The main objective of this, is to enhance software productivity.
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• Traceability: providing an intermediate abstraction, especially between
requirements and the implementation. So, models can act as a pivot
point and aid in establishing traceability between requirements and the
implementation.

• Testing: models can be the basis for specifying and prioritizing tests.

A modeling language is a medium that lets developers specify the models for
their systems. Modeling languages can be General Purpose (GPLs) or Domain
Specific Languages (DSLs). GPLs can be applied to any domain. Examples of
GPLs are: Petri nets [53] and the Unified Modeling Language (UML1). DSLs
are designed specifically for a certain application domain or context. Examples
of DSLs are: HTML2 and SQL [54].

Software developers often use software modeling tools to prototype or
document a software design. These modeling tools can be divided into two
categories: informal tools and formal tools.

Informal tools support the creation of informal designs, such as elements
and symbols –often sketchy– that do not adhere to a modeling language or
syntax. Such tools are typically used for problem domain analysis, ideation,
and solution exploration. A typical example of an informal tool is the white-
board.Whiteboards are flexible tools and do not constraint the notation that
can be used.

Formal modeling tools enforce the use of formally defined syntax of some
modeling languages. Indeed, they typically provide support for the creation of
one or more representations that adhere to one or more modeling languages,
such as, e.g., the UML. Typical examples are CASE tools, such as Rational
Rose, Enterprise Architect, Visual Paradigm, and StarUML. These tools are
mainly used to describe or communicate the software system. Sometimes,
these tools are used to create a detailed model that serves as a blueprint for
implementing the software.

1.3.3 Relation between Software Design and Modeling

In practice, software design and modeling go hand-in hand. Figure 1.5 illustrates
the relation between the software design and the software modeling process.
We consider software design as a cognitive process [49] that happens inside of
the mind of the developer. This process enables:

• the exploration of the problem space by analyzing and framing design
problems,

• the exploration of the solution space by creatively ideating and evaluating
design solutions, and

1http://www.omg.org/spec/UML
2https://www.w3.org/html/
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Figure 1.5: Software modeling and design go hand-in hand.

• the iterative alignment of both spaces by keeping the problem space in
mind for refining and revising the chosen solutions.

As a result, the design process progressively produces a set of design decisions.
Software modeling is often used to externalize or express the design decisions
that happen inside of the developer’s mind. In this process, developers create
(i.e., draw) and organize (i.e., layout) models by choosing what to represent
(e.g., the decomposition of a system in subsystems) and how to represent it
(e.g., a component diagram). Software models provide means for representing
software design decisions on different levels of abstraction and from multiple
perspectives [55]. In MBSE, developers iteratively engage in the modeling and
design process. This is because models provide visual representations of the
design which foster the design process [56] by triggering analysis, ideation, and
evaluation of design decisions in both the problem– and solution space.

1.3.4 Model-Based Software Engineering

Model-Based Software Engineering (MBSE) is an engineering approach that
aims to handle complexity and increase the efficiency in the development of
software [2]. This engineering approach addresses complexity by means of
abstraction and modeling. Models in MBSE play an important role although
they are not necessarily the key artifacts of the development (i.e., they do
not drive the process) [1]. MBSE is used in industry [5, 15], and several
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empirical studies show benefits of MBSE, e.g., increased software productivity
and improved quality [5,57]. From these papers, it seems that most increments
in software productivity are actually obtained from increasing the abstraction
level of the artefacts that represent the software system.

There are versions of model-based approaches adopted in practice such as,
e.g., Model-Driven Software Enginnering (MDSE). Compared to MBSE, MDSE
is a model-centric paradigm where models are the main artifacts of software
development [58]. Documents such as code and test cases can be generated
automatically from the models used to develop the system.

MBSE is a super-set of MDSE (See figure 1.6). In MBSE, developers can
create models of the system during the the analysis and design phase and
subsequently use these models as blueprints to manually write the code. Also,
developers can automatically generate code from formal models. Models in
MBSE still play an important role but are not the central artifacts of the
development process and may be less complete (i.e., they can be used more as
blueprints or sketches of the system) than those in an MDSE approach. Indeed,
MBSE is a softer version of MDSE [1]. In MBSE, the audience of models
are primarily humans and secondarily machines. In contrast, the audience of
models in MDSE are primarily machines and secondarily humans.

In MBSE the details and abstraction-level are scalable, whereas the aim
of MDSE to generate code, requires that models are complete, consistent and
adhere strictly to formal standards for syntax.

The software design in MBSE approaches is represented by means of software
models. In other non model-based software engineering approaches, software
design is often represented by means of natural language or informal sketches.

Model-Based 

Software Engineering

(MBSE)

Model-Driven 

Software Engineering

(MDSE)

Figure 1.6: Relationship between MBSE and MDSE [1]
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1.4 Related Work

In this section we describe some related work that focuses on understanding-
and supporting software design.

1.4.1 Understanding Software Design

Petre and Van Der Hoek [59] organized a workshop to study professional
software designers in action. They provided video-recordings and transcripts of
three two-person teams who were assigned to create a software design for the
same set of requirements on a whiteboard. Over fifty researchers were invited
to participate in the workshop. They were asked to explore the videos to
understand design strategies and types of activities that professional designers
engage in during software design sessions. In the following paragraphs, we
report the findings of some of the researches who took a part in the workshop:

• Tang et al. [60] tried to understand how software designers do design
reasoning and decisions, and how the decision making process influences
the effectiveness of the design process. They found that planning design
discussions in an opportune way improves the exploration of design solu-
tions. They also found that the manners by which the decisions are made
have an impact on the use of design time and derived solutions. Further-
more, it seems that the use of design reasoning techniques contributes to
the effectiveness of software design.

• Sharif et al. [61] analyzed the video-recordings and explored the software
design strategies and activities that happened in each design session.
They identified some of the time-consuming design activities such as
decisions about the logic, discussion of uses cases, drawing class diagrams,
and drawing the user interface. Furthermore, they found that planning
and a high degree of agreement between designers plays a significant role
in delivering a detailed design that covers most of the requirements.

• Baker and Van Der Hoek [62] studied the video recordings in order to
understand how software designers address software design problems. In
particular, they evaluated the design sessions in terms of the discussed
subjects, generated ideas and design cycles. They found that the design
sessions were highly incremental and designers repeatedly returned to
high level subjects, as well as to previously discussed ideas.

• Budgen [10] tried to observe the design sessions and identify principles
for designing software design environments. He found that: (i) informal
diagrams and notations are often used, (ii) there was a frequent switch-
ing between viewpoints and sections of the whiteboard, and (iii) the
whiteboard annotations were chiefly performed by one person.
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Razavian et al. [63] consider software design as a problem solving exercise.
They theorize that software design thinking requires two minds: a reasoning
mind that focuses on the process of logical design reasoning and a reflective
thinking mind that challenges the reasoning mind by asking reflective questions.
Razavian et al. conduct multiple case studies to understand how reflections on
reasoning and judgments influence software design thinking. They find that
reflection improves the quality of software design discourse which, in turn, is
considered as a foundation for a good design [64].

Karis et al. [65] performed studies of remote collaboration at Google. They
found that the use of videoconferencing and video portals contributes to the
success of remote collaboration by:

• providing presence and status information,

• helping to establish mutual trust and common ground, and

• preventing misunderstandings.

However, when it comes to remote design collaboration, Karis and his colleagues
highlighted that developers at Google found collaboration over videoconferenc-
ing and video portals a pale imitation of face-to-face interaction. Moreover,
the developers complained that the video portals at Google lacked a shared
drawing tool to facilitate sketching, designing, and brainstorming.

Heijstek et al. measure how well participants extract design decisions from
different software architecture representations [66]. The researchers collected
participant-specific information in two questionnaires, filmed participants dur-
ing tasks, and asked them to think out loud. The experiment comprised of
four architectures, out of which each consisted of a graphical and a textual
description. Participants (students and professional developers) were asked
three questions per architecture. The authors observed that no notation was
clearly superior in communicating architecture design decisions. Nonetheless,
participants tended to first look at the graphical notation before reading the
text. The authors attribute this to the clarity of the graphic representation,
which enables participants to grasp the structure of the model more quickly.

1.4.2 Supporting Software Design and MBSE

On the one hand, several studies point to the lack of adequate and easy-to-use
tools for supporting the activities of software developers in MBSE.

By surveying 155 Italian software professionals, Torchiano et al. [18] consid-
ered the lack of competencies and supporting tools as the main show stoppers
preventing the adoption of modeling and model-driven techniques.

Mussbacher et al. [22] reflected on the opinions of 15 MDE experts on the
biggest problems with MDE technologies over the last 20 years. The authors
highlighted that tools usability and adoption, people’s diverse perception of
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MDE, inconsistencies between software artifacts, and lack of fundamentals in
MDE are considered as hindrances to MBE adoption.

In the embedded systems domain, Liebel et al. [17] analyzed survey-responses
from 122 professionals working with MBE, and considered that interoperability
between (MBE/MDE) tools as a main challenge to MBE adoption. Moreover,
other factors such as, high effort to train developers and tools (poor) usability,
were also identified as secondary MBE challenges.

Whittle et al. [14] explored tool-related issues in affecting the adoption
of MDE in industry. Based on interviews conducted with twenty companies,
they observed that the interviewees emphasized tool immaturity, complexity,
and lack of usability as major barriers against the adoption of MDE. Usability
issues were reported to be related to the complexity of user interfaces. There is
a lack of consideration of how people work and think. The authors suggested to
match modeling tools to people, not the other way around, by producing more
useful and usable tools, as well as supporting early-phase design and creativity
in modeling.

In his paper “The cobblers’ children”, Budgen [10] provided some recom-
mendations for future design support tools. In particular, informal diagrams
and lists need to be integrated with other more formal notations. Ideally, a
tool should be simple and support the transition from informal notations to
formal notations. Budgen also stated that much of reasoning and rationale,
during early-phase design, would quickly be lost unless it transformed into
more formal description.

On the other hand, several studies propose and investigate approaches to
support the activities of software developers in MBSE.

Dekel and Herbsleb [67] observed collocated object-oriented design collabo-
rations and focused on representation use. They found that teams intentionally
improvise representations and sketch informal diagrams in varied represen-
tations that often diverge from formal notations or languages. To support
collaborative software design, they suggest that collaborative software design
environments should focus on preserving contextual information, while allowing
unconstrained mixing and improvising of notations.

Damm et al. [68] conducted user studies in order to understand the prac-
tice of software modelling. They observed that designers alternate between
whiteboards and CASE tools, extend the semantics of the notations to support
the design activities and allow expressiveness, sketch new ideas informally, and
actively collaborate when they work in teams. Damm et al. developed a tool
called Knight. Knight supports informal and formal modelling using gestures
on an electronic whiteboard. In order to achieve intuitive interaction, Knight
uses composite gestures and eager recognition of hand-drawn elements.

Chen et al. [69] developed SUMLOW, a sketching-based UML design tool
for electronic whiteboard technology. SUMLOW allows the preservation of
hand-drawn diagrams and supports the manipulation of them using pen-based
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actions. It also allows the transformation of UML sketches into computer-drawn
UML notations.

Grundy and Hosking [70] stated that software engineers often use hand-
drawn diagrams as preliminary design artifacts and as annotations during
design reviews. They created MaramaSketch to support flexible sketch-based
input of diagrams. MaramaSketch enables the formalization of sketches into
computer-drawn content.

Mangano et al. [71] identified some behaviors that occur during informal
early-phase design. In particular, designers sketch different kinds of diagrams
(e.g. box and arrow diagrams, UI mockups, flowcharts, etc.) and use impromptu
notations in their designs. The authors implemented an interactive whiteboard
system (called Calico) to support these behaviors, and identified some ways
where interactive whiteboards can enable designers to work more effectively.

Wüest et al. [72] stated that software engineers often use paper and pencil to
sketch ideas when gathering requirements from stakeholders, but such sketches
on paper often need to be modeled again for further processing. A tool,
FlexiSketch, was prototyped by them to support informal modeling of software
requirements. FlexiSketch combines free-form sketching with the ability to
annotate the sketches interactively for an incremental transformation into
semi-formal models.

Al Abed et al. [73] stated that MDE faces several challenges which prevent
its adoption. Examples of these challenges are the scalability and re-usability
of models. The authors present TouchRAM, a multitouch-enabled tool for
agile software design modeling which aims at developing scalable and reusable
software design models. The tool exploits model interfaces and aspect-oriented
model weaving to enable the designer to rapidly apply reusable design concerns
within the design model of the software under development. The user interface of
TouchRAM interface exploits mouse and touch-based input to enable intuitive
and fast model editing. TouchRAM uses “eager” recognition of hand-drawn
elements into formal modeling notations.

Brieler and Minas [74] stated that software developers tend to sketch during
early phase software design, as sketching is more natural than using traditional
software. They present an approach, called DiaGen to generate diagram
editors based on language specification. Their approach relies on syntactical
and semantical analysis of the sketches to resolve any ambiguities arising from
the impreciseness of the hand-drawn diagrams. A recognition mechanism then
transforms these sketched diagrams into formal diagrams which can be easily
edited and further processed.

Baltes et al. [75] stated that informal sketches and diagrams are often
detached from the source code they document. The authors conducted a study
to understand the use of sketches in software engineering. They found that
sketches are considered helpful to understand the related source code artifacts.
For this, the authors proposed SketchLink to let software developers easily
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capture, annotate, and link their diagrams and sketches to the correspondent
source code artifacts.

In this thesis we present two tools, called OctoUML and OctoBubbles, that
support the design and modeling processes in MBSE. These tools aim to:

• increase the productivity of MBSE, and

• enhance the usability of MBSE tools.

OctoUML bridges the gap between early-phase software design process (when
developers often reason about the design and sketch their ideas) and the
formalization and documentation process (when CASE tools are usually used
to document the designs). OctoBubbles builds on OctoUML. It supports the
navigation between software models and their corresponding (generated) source
code. Table 1.3 shows the differences between our tools and the related work.

Table 1.3: Comparison between our tools and related work
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Knight 3 3 DS 3
SUMLOW 3 3 DS 3
MaramaSketch 3 3 DS 3
Calico 3 3 RI & DS IF
FlexiSketch 3 3 RI & DS IF
TouchRam 3 3 MI & DS 3
DiaGen 3 3 DS 3
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Our tools 3 3 3 3 3

RI: Remote Interaction DS: Design Sharing
MI: Multi-user Interaction IF: Informal Notations
CC: Collaboration & Communication

In contrast to the related work, our tools aim to support the design, modeling,
and models-code navigation processes in MBSE. Therefore, our tools support
the following modeling purposes in MBSE:

• Exploration and Ideation, by supporting informal modeling notations.

• Collaboration and Communication, by supporting multi-user as well as
remote interaction, version management, and design sharing.
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• Documentation, by supporting transition from informal to formal model-
ing notations and saving design as XMI.

• Code Generation, by supporting the synchronization and navigation
between software models and code.

More details on OctoUML and OctoBubbles are provided in Chapter 3 and
Chapter 5.

1.5 Research Methodology

We employ design science and empirical research methods to achieve the
goals of this research. With Goal 1, we aim to gain knowledge and increase
understanding of software design activities. Hence, this is best addressed by
conducting empirical software engineering research. With Goal 2, we aim to
support the design activities of software developers. This can be addressed by
design science research where new artifacts are created and evaluated in an
iterative manner.

1.5.1 Empirical Research

The aim of empirical research is to gain knowledge and increase understand-
ing by observing and evaluating processes, software tools and human-based
activities [76]. To achieve Goal 1, we used Controlled Experiments and Case
Studies.

1.5.1.1 Controlled Experiments

Controlled experiments help to investigate a testable hypotheses where one or
more independent variables are manipulated to measure their effect on one or
more dependent variables [77]. Thus, they are used to determine in precise
terms whether a cause-effect relationship exists between the variables.

In the context of this research, we conduct a controlled experiment in
Chapter 2 to dissect the design effort and drawing effort in UML modeling. In
Chapter 7 we also conduct a controlled experiment to understand the effect
of software design representation on design communication. The experiments
are controlled in order to limit variables other than the chosen independent
variables form affecting the results.

1.5.1.2 Case Studies

Yin defines case studies as empirical inquiries to perform a deep investigation
of a particular phenomenon, where the boundary between the phenomenon
and its real-life context cannot be clearly specified [78].
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We conduct multiple-case studies in Chapters 4 and 6. In Chapter 4
we investigate MBSE challenges and development effort. In Chapter 6 we
investigate the effect of distance on collaborative software design.

These studies are exploratory- inductive empirical research [79] to identify
patterns in observations, seek new insights, and generate ideas and hypotheses
for new research.

1.5.2 Design Science

Design science methodology is defined as the design and empirical investigation
of artifacts in a given context [80]. In particular, it is an iterative process in
which researchers engage in several cycles of two main activities: development of
solutions (e.g., software prototyping), and evaluation of the proposed solutions
in a given context to figure out whether the solutions effectively accommodate
the problem.

To achieve Goal 2, we used a development approach which follows the
paradigm of design science. In particular, we followed four main activities (See
Figure 1.7):

• identifying needs and establishing requirements,

• developing alternative designs,

• building a prototype of the system, and

• evaluating the developed prototype.

We used the design science in Chapters 3 and 5. In Chapter 3 we develop
and evaluate a software design environment, called OctoUML. OctoUML aims to
support exploratory and collaborative software design. In Chapter 5 we develop
and evaluate a second version of OctoUML, called OctoBubbles. OctoBubbles
aims to facilitate software comprehension and navigation.

To evaluate the developed prototypes, we conduct User Studies. User stud-
ies offer a scientifically sound method to evaluate the strengths and weaknesses
of different visualization and interaction techniques, as well as to investigate
social and cognitive processes surrounding them [81]. In brief, these studies
are based on collecting both quantitative and qualitative data based on stan-
dardized questionnaires that collect perceptions on the usability, efficiency and
effectiveness of the developed prototypes.

1.6 Contributions

In this section, we summarize the main contributions of the six papers on
which this PhD thesis builds. Figure 1.8 provides an overview of these papers
and how they contribute to the main goals and research questions of the PhD
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Figure 1.7: A simple model of the design science life-cycle

thesis. The included papers are presented in a rectangle shape and given an
identification letter as follows:

• Paper A:Dissecting Design Effort and Drawing Effort in UML Modeling.

• Paper B: OctoUML: An Environment for Exploratory and Collaborative
Software Design.

• Paper C: Model-Based Software Engineering: A Multiple-Case Study
on Challenges and Development Efforts.

• Paper D: OctoBubbles: A Multi-view Interactive Environment for Con-
current Visualization and Synchronization of UML Models and Code.

• Paper E: Does Distance Still Matter? Revisiting Collaborative Dis-
tributed Software Design.

• Paper F: Software Engineering Whispers: The Effect of Textual Vs.
Graphical Software Design Descriptions on Software Design Communica-
tion.

In Figure 1.8, the research questions (RQ) are represented by a round shape.
The papers and research questions are placed on one or two horizontal layers
corresponding to the PhD goals (Goal 1 and Goal 2) that they contribute to.
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Legend Paper
Research

Question A B
Paper B extends Paper A Paper B uses Paper A 

A B

Figure 1.8: The research goals and questions of this PhD research.

The yellow layer represents Goal 1, understanding software design. The blue
layer represents Goal 2, supporting software design. Papers that span over the
yellow and blue arrows contribute to the two goals, e.g., Paper B contributes to
both of these two goals of this PhD thesis. The solid and dashed black arrows
between the rectangles (i.e., papers) indicate the direction in which the papers
are built and extended. In particular, the paper at the head-end of the solid
black arrow extends the paper at the tail-end. Also, the paper at the head-end
of the dashed black arrow uses the paper at the tail-end.

Figure 1.9 provides an overview of the research context and contribution
of this thesis. The research context is MBSE, a software development ap-
proach in which models play a central role. To achieve the objective of this
research, we contribute to the empirical understanding of software design and
modeling in MBSE. We investigate the effect of distance, social, and cognitive
aspects on software design and modeling. We also investigate the effect of
design representation on communication. Moreover, we create two software
design environments: (i) OctoUML which enables distributed collaboration and
supports the integration of informal and formal modeling notations, and (ii)
OctoBubbles which supports the navigation between software models and code.
In the next sections, we provide more details by describing the contribution of
each paper included in this thesis.
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Figure 1.9: Overview of the research context and contributions.

1.6.1 Paper A: Dissecting Design Effort and Drawing Ef-
fort in UML Modeling

Model-based approaches are considered to be beneficial for improving software
development productivity and product quality (e.g., [5]). However, these
approaches are criticized because of the supposedly large effort they require
to create and maintain models. Regardless of its reported benefits, software
modeling is still believed as an unnecessary approach by some developers [82].

In this paper, we analyze the process of software modeling in order to find:

• how much effort is spent on the design of a solution (i.e., thinking and
making design decisions), and

• how much effort is spent on drawing of the design solution with a modeling
tool (i.e., tool interaction).

In particular, we consider that the modeling process consists of three main
cognitive sub-activities:

• Design: ideation and thinking about the design.

• Notation Expression: representation of a design via the modeling notation.

• Layout : spatial organization of the elements of a model.
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The drawing effort is the part of the modeling effort that is spent on notation
expression and layout. The design effort is the part that is spent on ideation
and thinking.

In paper A, we address the following research question:

• RQ1. How can the design effort and drawing effort in software modeling
be dissected?

– RQ1.1. How much of the modeling effort is spent on design?

– RQ1.2. How much of the modeling effort is spent on drawing the
design solution?

To compute the effort spent in each sub-activity, we conduct two-phase
experiments. In the first phase, we measure the effort required to make the
initial model of a system. This effort is the sum of the design, notation
expression, and layout efforts. In the second phase, we measure the effort
required to recreate the same model again, simply by redrawing the already
defined solution (i.e., copying effort). At the end, we calculate the efforts for
design, notation expression, and layout by assessing the time difference between
the two phases.

The initial findings suggest that the majority of the modeling effort is
devoted to design (i.e., design effort). This means that projects that create
models incur at least significant thinking about the design. Moreover, we argue
that the effort spent on using modeling tools (i.e., drawing effort) could be
reduced by investigating better modeling-tool support. This is what we actually
investigate in Paper B [83].

Chapter 2 provides more details on the design of the controlled experiments
for this study, including the approach that is used to calculate the effort of
each modeling sub-activity.

1.6.2 Paper B: OctoUML: An Environment for Exploratory
and Collaborative Software Design

We briefly report the challenges that motivates the creation of OctoUML:

• Integrating informal and formal notations: The main challenge is to
provide a ‘one stop’ environment capable of supporting both informal
and formal modeling, while preserving the advantages of both informal
and formal tools [84]. Such an environment would support the designing
and modeling processes which in practice often go hand-in-hand, and
reduce the effort of MBSE.

• Supporting multiple modes of interaction: The main challenge is to
provide more intuitive and effective interaction with CASE tools [38]. By
confronting this challenge, we contribute to enhancing the usability of
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MBSE tools as well as reducing the effort of interaction with these tools.
This in turn would enhance the overall efficiency of the MBSE approach.

• Supporting collaborative software design: The challenge is to provide
effective and efficient support for co-located software design sessions,
and support distributed software design, while preserving the natural,
effortless kind of awareness and communication that happens in collo-
cated settings [24]. By providing tool-support for both co-located and
distributed collaborative software design, we contribute to improve the
collaboration, communication, and coordination between and among
software development teams.

• Usability : The challenge is to provide rich features in a simple and
intuitive User Interface (UI), and make CASE tools fit easily into users’
activities, rather than forcing users to fit their activities into the dictates
of the tools [37]. Providing ways to overcome these challenges could
bring a significant impact to the effectiveness and efficiency of the MBSE
approach.

Based on these motivations, we designed and created a new generation
software design environment, called OctoUML. The design and implementation
of OctoUML was challenging as we wanted to provide an environment that
preserves the advantages of both informal and formal tools. One of the
implementation challenges was enabling OctoUML to support multi-touch.
According to the literature, it is reported that quiet often two or more people
are involved in sketching when the whiteboard is used as a medium [35].
Multi-touch is an interaction technique that permits the manipulation of
graphical entities with several fingers at the same time. This option allows
concurrent collaborative modelling. In particular, it enables two or more
developers to simultaneously work on the same canvas of the same device,
especially when the device is an interactive whiteboard or a large touch screen.
Another OctoUML implementation challenge emerged from deciding to equip
OctoUML with a layering mechanism. In particular, the software design
solution is part of one layer which we call the formal layer. While another layer,
the informal layer, contains the informal sketchy elements e.g., hand-written
comments, illustrative drawings, highlighting arrows or circles, etc. The user
can then select to see combined layers or layers in isolation. A key advantage of
such layers is that they allow the isolation of informal and formal elements. As
a consequence, designers will be able to move and edit the content of each layer
independently without disturbing the rest of the design. For instance, users
might want to archive, print, or share the formal designs without including the
sketchy elements. In that case, the formal layer can be a solution for them.
On the other hand, having the two layers combined could help reveal some
existing ambiguities in diagrams as well as give more insights to increase one’s
understanding of concepts, mainly, during diagram reviewing cycles.
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Figure 1.10: The main goal of OctoUML

Figure 1.10 shows the main goal of OctoUML. In particular, the goal is to
bridge the gap between early-phase software design process (when developers
often reason about the design and sketch their ideas) and the formalization
and documentation process (when CASE tools are usually used to document
the designs).

In this paper, we provide a link to a demonstration video which was
specially recorded to disseminate the concept of OctoUML. A demonstration
is an effective way to show the idea and functionalities of a system in action
in order to enable people to fully grasp its value and potential. Moreover,
we present the architecture and functionalities of OctoUML, and describe the
design process by means of a design scenario. We further present the results of
the evaluations performed in other papers (see the Other Publications in the
list of publications of this thesis). The demonstration video of OctoUML can
be consulted via the following link: https://youtu.be/fsN3rfEAYHw

OctoUML combines the advantages of both whiteboards and CASE tools,
and supports the achievement of informal and formal modeling purposes (see
Table 1.4). The key innovations of OctoUML are:

• enabling users to create and mix both informal hand-drawn sketches and
formal computer-drawn notations at the same time on the same canvas.

• providing a selective recognition mechanism that is used to transform
hand-drawn sketches into formalized contents.

• enabling of multi-user support on a single input device.

Paper B extends Paper A [85], where we argue that the effort of using
modeling tools could be reduced by investigating better tool-support. The
contributions of this paper are two-fold: design and creation of a new generation
software design environment, OctoUML, and a qualitative evaluation and
accompanying usability and efficiency discussion of the environment.

https://youtu.be/fsN3rfEAYHw
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Table 1.4: Informal and formal modeling purposes as supported by the
functionalities of OctoUML
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In this paper, we address the following research question:

• RQ2. Can supporting the mix of informal and formal modeling notations
make the modeling tools of MBSE easier to use and more productive?

– RQ2.1. Do developers find combining informal and formal modeling
beneficial?

– RQ2.2. How do developers perceive the usability of the proposed
solution, OctoUML?

We conduct User Studies [81] to evaluate OctoUML. OctoUML is perceived
to have the potential to effectively support the activities of software devel-
opers by supporting the creation and mixing of both informal and formal
modeling notations. Moreover, the perceptions on OctoUML ’ multiple modes
of interaction are positive. We assess the usability of OctoUML using the
System Usability Scale (SUS) [86]. The results show that OctoUML provides a
usable and user-friendly environment. Chapter 3 provides more details on the
characteristics and functionalities of OctoUML, as well as on the evaluation
process and the obtained results.
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1.6.3 Paper C: Model-Based Software Engineering: A
Multiple-Case Study on Challenges and Develop-
ment Efforts

On the one hand, MBSE has been applied effectively in several application
sectors, e.g., embedded systems [4] and telecommunication [23]. Furthermore,
by focusing on practitioners’ experiences and perceptions, several studies
claimed that the adoption of MBSE helps to (i) improve the productivity of the
developing teams by increasing the abstraction level, (ii) enhance the quality of
the software, and (iii) support software maintainability [4,21,87]. On the other
hand, some practitioners consider MBSE as a time-consuming and unproven
approach that merely complicates matters [3].

Devanbu et al. [6] suggested that more in-depth studies that address the
interplay of belief and evidence in software practices are needed. In this paper,
we extend the goals of Paper A [85] in contributing to the body of knowledge
on understanding the process and use of MBSE in practice. In particular,
we conduct a multiple-case study [78] by collecting, analyzing, and discussing
empirical data about MBSE efforts and challenges collected from 2 two-month
MBSE projects. The main contributions of this paper are two-fold:

• Firstly, we shed light on the distribution of development efforts in MBSE.
The resulting observations on effort distribution could lead to improved
MBSE project planning and organization (e.g., resource allocation and
risk management), which in turn could lead to cost reduction.

• Secondly, we report and further analyze different challenges to the process
and use of MSBE in practice. Exposing such challenges would make them
a candidate subject for research that is concerned with MSBE process
improvement. Moreover, understanding and providing ways to overcome
these challenges could bring a significant impact to the effectiveness and
efficiency of MBSE.

In particular, we address the following research questions:

• RQ3. How is the total effort spent on MBSE distributed over different
development activities?

– RQ3.1. How is the effort spent on different MBSE development
activities distributed over time?

– RQ3.2. How large is the portion of collaborative work in MBSE
projects?

– RQ3.3. What are the challenges that affect MSBE in practice?

We show that there is no effort penalty in building models as part of the
construction phase. We also show that the majority of MBSE effort is spent
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on communication between developers on MBSE activities, such as project
management, design, coding, testing, and configuration and integration. The
resulting observations on effort distribution of this study could lead to improved
MBSE project planning and organization, which in turn could lead to cost
reduction. Our inquiry into challenges showed that tool-related challenges are
the most encountered. We uncover that specific tool-challenges are due to:

• usability of the tools,

• the learning of the tool-chain,

• the interoperability of various tools, and

• the installation and configuration of the tools.

Based on these findings, we study – in Paper D [88] – how to improve the
usability of MBSE tools, as well as investigate new approaches to reduce the
effort of MBSE activities.

1.6.4 Paper D: OctoBubbles: A Multi-view Interactive
Environment for Concurrent Visualization and Syn-
chronization of UML Models and Code

Developers navigate both code and design. Most of the software modeling tools
like ArgoUML3, Visual Paradigm4 and ObjectAid5 support forward, reverse
and round-trip engineering [89]. However, these tools do not provide developers
with multiple simultaneously-visible views of both low- and high-level software
artifacts (i.e., source code and design models). The developers who use these
tools are constrained to use different applications in different windows making
the workspace overcrowded with many opened interfaces and tabs. In such a
situation, developers often lose the big picture and spend unnecessary effort on
navigation and locating the artifact of interest.

In this study, we build on the tool that we developed in Paper B [83] to
create OctoBubbles. OctoBubbles is an interactive environment for concurrent
visualization and synchronization of both high- and low-level software artifacts.
It aims to assist program comprehension and tackle the problem of software
navigation.

The main contributions of this paper are two-fold:

• First, a design of a novel scaling approach which is used to provide an
interactive, bidirectional, and smooth navigation between software models
and code.

3http://argouml.tigris.org/
4https://www.visual-paradigm.com/
5http://www.objectaid.com/

http://argouml.tigris.org/
https://www.visual-paradigm.com/
http://www.objectaid.com/
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• Second, the results of a qualitative user evaluation of OctoBubbles indi-
cating a high level of interest, and pointing out to potential benefits and
future improvements.

In particular, we address the following research questions:

• RQ2. Can supporting a smooth navigation between models and code
make the modeling tools of MBSE easier to use and more productive?

– RQ2.1. Do developers find navigating between models and code
beneficial?

– RQ2.2. How do developers perceive the usability of the proposed
solution, OctoBubbles?

Figure 1.11 shows the main interface of OctoBubbles. It provides an overview
on how the UML model and the corresponding source code are concurrently
visualized on the same canvas. Chapter 5 provides more details on the design
and functionalities of OctoBubbles.

The participants who evaluated OctoBubbles stated that it helps to better
establish traceability between a model and its associated source code, especially

Figure 1.11: A part of the main canvas of OctoBubbles. The buttons at
the top are (from left to right): create class, create enumeration class, create
package, create association, select, pan, delete, undo, redo and visualize code.
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in software testing and maintenance tasks. For such tasks, developers might
jump back and forth between low- and high-level artifacts to have a better
understanding of the system. Moreover, the visualization approach of Octo-
Bubbles was considered extremely useful to have an abstract view of a software
system, concurrently with a more detailed view of its aspects. OctoBubbles was
perceived more efficient than other CASE tools that support forward, reverse
and round-trip engineering. Also, the visualization mechanism of OctoBubbles
was considered very helpful in saving the effort of artifacts navigation.

1.6.5 Paper E: Does Distance Still Matter? Revisiting
Collaborative Distributed Software Design

Companies engage in global software engineering (GSE) to reduce development
time and costs. Companies also head toward cross-site distribution of their
development work to take advantage of proximity to markets and customers [25].
However, working at a distance might compromise the effectiveness of GSE [24].

Many researchers have explored the impact of distance on collaborative
work. Herbsleb [24] argued that colocation fosters communication because
developers are aware of who is around and who is doing what. In contrast,
being unable to share resources and see what is happening at the other sites
hinders communication across different locations.

As globally-distributed projects are becoming the norm in SE [40] and lead
to social, technical, and organizational challenges [90], the software design
activities are affected as well. Moreover, we are witnessing significant advances
in communication and collaboration technologies. So, in this study we explore
the design activities of both co-located and distributed professional software
developers to understand:

• to what extent the design activities are hampered by the distribution of
collaborating teams, and

• whether advances in collaboration and communication technology enable
effective and efficient remote collaboration.

This study extends the goals of Paper C [27] in contributing to the body
of knowledge on understanding software design in MBSE by analyzing col-
laborative, distributed software design. Moreover, we use the tool that we
developed in Paper B [83] and extended in Paper D [88] in the investigation of
the activities of collaborative, distributed design.

In this study, we address the following research questions:

• RQ4. How does distance influence the design activities of software
developers?

– RQ4.1. How does distance influence the amount of problem- and
solution design decisions?
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– RQ4.2. How does distance influence design communication?

– RQ4.3. What challenges are encountered when collaboratively de-
signing software at a distance?

To answer these questions, we conducted a multiple-case study exploring in
depth the design process of co-located and distributed software developers in a
collaborative design setting. For the first case, we used the data set provided by
[59], who performed the study with three (co-located) teams of two professional
software developers each. For the second case, we recruited three teams of
two professional software developers to work on the same design challenge, but
from two different geographic locations: Aachen, Germany and Gothenburg,
Sweden. Instead of a regular whiteboard, we used interactive whiteboards with
a simplified version of OctoUML. While OctoUML has some UML capabilities,
like creating class shapes, we removed those in the study to make OctoUML
resemble a regular whiteboard as closely as possible. Immediately after each
distributed design session, we asked the developers to evaluate the usability of
OctoUML. The reason for this is to understand to what extent the usability of
OctoUML affected the work of the distributed developers. In particular, we
asked the developers to answer the System Usability Scale (SUS) questionnaire.
Overall, we observe that the perceptions regarding the usability of OctoUML
were positive. Regarding the SUS score, OctoUML received an average SUS
score of 74.17± 5.63, which can be interpreted as a grade of B− (i.e., a good
usability score) according to [86].

Our findings indicate that co-located developers discuss more design deci-
sions in the problem domain than distributed developers. Moreover, co-located
teams have many creative conflict discussions which promote software design
reasoning and enhance the effectiveness of group tasks. Accordingly, we sug-
gest that geographic distribution of collaborating partners in practice still
raises social and technological challenges. We argue that the social challenges
in distributed design might be related to lack of trust and lack of common
understanding. Moreover, we observed that lack of awareness was the main
technological challenge in the distributed setting. Thus, we suggest that modern
collaborative design environments should focus on supporting awareness, such
as the ability for developers to relate to each other through pointing, gaze, and
gestures. In this direction, Trainer and Redmiles [91] propose a tool prototype,
that is focused on two kinds of information: availability and responsiveness of
collaborators. The goal of the tool is to bridge the gap between awareness and
trust in globally distributed software teams.

Moreover, by observing the distributed design sessions we noticed that the
distributed developers use informal notations for problem domain exploration
and formal notations (i.e., geometric UML shapes) for design solution repre-
sentation. Thus we underline that software design and modeling tools should
enable the creation of both informal and formal notations to support problem–
and solution space exploration.
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Chapter 6 provides more details on our study of the collaborative design
activities of co-located and distributed software developers.

1.6.6 Paper F: Software Engineering Whispers: The Ef-
fect of Textual Vs. Graphical Software Design De-
scriptions on Software Design Communication

Software engineering is a social activity and requires intensive communication
and collaboration between developers. In large companies, developers work
in different development teams and collaboratively communicate with many
stakeholders. In such a setting, the quality of communication between the
stakeholders plays an important role in reducing the overall effort of teams
and development projects. Furthermore, poorly defined software applications
(due to miscommunication between stakeholders) can affect the final structure
and/or behavior of these applications. This is in line with Jarboe et al. [92] and
Kortum et al. [93] who consider that the quality of communication does influence
developers’ activity and achievement, and therefore customer’s satisfaction.
The effort spent on discussions and communication, as we found in Paper C [27],
is actually more than all of the efforts that developers spent in any of the other
observed development activities. The aforementioned studies underline the
importance of communication in Software Engineering. They also highlight the
need to study communication in-depth to determine elements or criteria of its
efficiency and effectiveness.

In MBSE, the software design knowledge is often communicated by means of
graphical software design descriptions (i.e., software models). In other software
engineering approaches which are not model-based, the software design knowl-
edge is often communicated by textual software design descriptions. Graphical
descriptions encode and present knowledge differently from textual descriptions.
Moreover, these two types of knowledge representation are differently processed
by the human mind, as stated by Moody [28]. Empirical evidence on how
graphical descriptions affect developer’s achievement and development produc-
tivity is still underwhelming, as reported by Hutchinson et al. [5]. Moreover,
Melià et al. [29] report that the software engineering field lacks a body of em-
pirical knowledge on how different representations (graphical vs. textual) could
provide support for improving software quality and development productivity.

In this paper, we extend the goals of Paper C [27] in contributing to the body
of knowledge on understanding the design activities of MBSE in practice. In
particular, we investigate how different software architecture design descriptions
(graphical vs. textual) influence the communication of design knowledge.

With respect to knowledge communication, we look into the following
communication aspects:

(a) Explaining : or knowledge donating, communicating the personal intellec-
tual capital from one person to others [94].
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(b) Understanding : or knowledge collecting, receiving others’ intellectual
capital [94].

(c) Recall : or memory recall, recognizing or recalling knowledge from memory
to produce or retrieve previously learned information [95].

(d) Collaborative Interpersonal Communication [96], which includes:

• Active Discussion: questioning, informing, and motivating others.

• Creative Conflict : arguing and reasoning about others’ discussions.

• Conversation Management : coordinating and acknowledging com-
municated information.

In this study, we address the following research question:

• RQ5. How does the representation of software design (graphical vs.
textual) influence design communication?

Based on empirical findings, we suggest that using a graphical software
design description is better for:

• promoting Active Discussion between developers,

• reducing Conversation Management effort, and

• improving the Recall -ability of design details.

Furthermore, we found that motivating textual design descriptions (by
adding design rationale) and making them cohesive (by organizing the design
knowledge in the document) helps to enhance the explaining and recall of their
details.

Finally, we observe a difference in the explaining approach of software
design knowledge represented by a graphical vs. textual description. Figure
1.12 provides an illustration of the observed explaining approaches of a textual
(TSD) vs. graphical (GSD) Model-View Controller (MVC) design. In one
approach, the Explainers of a TSD tended to explain the three modules of the
MVC sequentially: Firstly the Model entities, then the Controllers, and lastly
the Views, as these modules are orderly presented in the textual document.
We think that this trend is intrinsically imposed by the nature of textual
descriptions where the knowledge is presented sequentially on a number of
consecutive ordered pages. In the other approach, the Explainers of the
GSD had more freedom in explaining the design. Indeed according to their
explaining preferences, the Explainers of the GSD tended to jump back and
forth between the three MVC modules when explaining the design. Based on
this, we suggest that a GSD has an advantage over the TSD in unleashing
Explainers’ expressiveness when explaining the design, as well as in helping
navigation and getting a better overview of the design.
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Figure 1.12: Observed explaining approaches of TSD vs. GSD

1.7 Conclusion and Future Work

The goals of this PhD research are to understand and support software design
in model-based software engineering practices. Based on the results of this PhD
research, we present a number of findings and suggestions to MBSE researchers
and practitioners. These findings and suggestions are related to MBSE process,
MBSE artifacts, and MBSE tools.

(A) MBSE process:

• We find that a significant part of creating models is devoted to
design thinking about the problem domain and solution domain.
Accordingly, modeling should not be considered as a costly process,
because it triggers design thinking. It is an open question how much
design thinking happens when modeling is not used. But, when
modeling is not used then the code is only produced by the coding
process. Thus, we suggest comparing or studying the design thinking
when modeling vs. coding.

• We find that the MBSE approach does not require a lot of effort on
design and modeling. Moreover, this approach requires only little
effort on manual coding, as most of the code is obtained from models
via code-generation.

• We find that model-based software development is an endeavor that
requires intensive communication and collaboration between devel-
opers. Therefore, we suggest studying mechanisms for improving the
efficiency and effectiveness of communication which in turn would
improve the quality and increase the productivity of the overall
software engineering process.

• We suggest practitioners engaging in collaborative design to be aware
that geographic distance can hamper the design process. To prevent
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this, organizations might decide to take important architectural
decisions in co-located settings only.

• In addition to the geographic distance, cultural and social barri-
ers can hamper design collaboration. Therefore, we recommend
organizations to:

– Consider cultural training for their developers.

– Establish trust via arranging personal, virtual meetings, or
social events before the remote design sessions.

– Establish common ground via exchanging interests, experiences,
expertise, and beliefs between distributed designers.

• We also suggest researchers to study, in depth, the social challenges
in MBSE, and investigate approaches to account for the effect of
these challenges on team behavior and development activities.

(B) MBSE artifacts:

• We find that using graphical software design descriptions (e.g.,
software models) to communicate software designs produces more
active discussion, less conversation management, and better recall.

• We suggest the use of graphical software design descriptions in
software design meetings in order to enhance communication and,
therefore, increase the productivity of software development teams.

• We encourage developers to include design rationale in design docu-
mentations to improve design communication, which in turn should
improve the overall communication and collaboration, and thus the
productivity, in SE projects.

• We find that a graphical software design description has an advan-
tage over the textual software design description in unleashing the
expressiveness of design explainers when explaining the design, as
well as in helping navigation and getting a better overview of the
design.

(C) MBSE tools:

• We suggest to reduce the complexity of software design tool-support
and enhance the usability thereof. This would let developers spend
more time on pondering and thinking of design decisions.

• The integration of informal and formal modeling in OctoUML is
perceived beneficial by developers for supporting the design process
and its flow. Thus, we suggest enabling modeling tools to support
both informal and formal modeling.
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• We find that tool-related challenges are the most encountered chal-
lenges in MBSE. These tool-challenges are due to: tools usability,
tool-chain learning, interoperability of tools, and tools installation
and configuration. Providing approaches to overcome these chal-
lenges could bring a significant impact to the effectiveness and
efficiency of the MBSE approach.

• The navigation mechanism between software models and code of
OctoBubbles is perceived beneficial by developers for supporting
software understanding and facilitating traceability. Thus, we sug-
gest enabling MBSE tools to support navigation between different
software engineering artifacts.

• To enhance the effectiveness of distributed software design, we
recommend the developers of collaborative MBSE tools to support
awareness by adapting technology to provide immersive telepresence
experiences.

• We suggest the introduction of explicit triggers for effective commu-
nication in co-located and distributed software design to enhance
the process of making design decisions.

1.7.1 Future Work

In this section, we describe a number of future research directions that can
extend the work of this thesis. Figure 1.13 is an extension of Figure 1.8 that we
illustrated previously in Section 1.6 (Contributions). It shows three future work
(FW) directions to understand and support the design activities of software
developers in MBSE. These directions mainly extend Paper E [97] and Paper
F [98].

• FW 1: Based on the findings of Paper E (“Does Distance Still Matter?
Revisiting Collaborative Distributed Software Design”), we started investi-
gating the use of Virtual Reality (VR) technology to assist collaborative,
distributed software design. In particular, we are collaborating with
researchers from the Slovak University of Technology on evaluating a
VR-prototype of OctoUML. The main goal of this research direction is
to provide an immersive telepresence experience and support awareness
in remote design collaboration.

• FW 2: Based on the findings of Paper E, we argue that, despite the
technological advances in collaborative MBSE, effective collaboration can
only be achieved if we understand how to account for social barriers.
Thus, we propose to study, in depth, how these barriers affect the design
activities, and how their effects can be reduced.
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Figure 1.13: Future research directions.

• FW 3: Based on the findings of Paper F (“Software Engineering Whis-
pers: The Effect of Textual Vs. Graphical Software Design Descriptions
on Software Design Communication”), we suggest investigating new tech-
niques or approaches for supporting software design communication. One
example of these approaches is proposed in a study by Tang et al. [99]
where a reminder card approach was employed to improve software design
reasoning discussions. Another example is proposed by Robillard et
al. [100] who argue that automatic on-demand documentation generators
would effectively support the information needs of developers.
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Abstract

One argument in the discussion about the adoption of UML in industry is the
supposedly large effort it takes to do modeling. Our study explores how the
creation of UML models can be understood to consist of different cognitive
activities: (i) designing : thinking about the design (ideation, key-design decision
making), (ii) notation expression: expressing a design in a modeling notation
and (iii) layouting : the spatial organization of model elements in a diagram.
We explain that these different subactivities relate to different short-term
and long-term benefits of modeling. In this study we present two controlled
experiments with a total of 100 subjects creating models for a small system. In
these experiments we focus on software models as represented through UML
class diagram. Our results show that at least 56% of the effort spent on creating
a class model is actually due to designing. Notation expression is around 41%
of the model creation effort and layouting is in the order of 3%. This finding
suggests that a significant part of creating models is devoted to design thinking
about the problem.

Keywords: Software Engineering; Software Modeling; Software Design; Mod-
eling Effort; Designing Effort; Design Thinking; UML
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2.1 Introduction

Models have emerged in software engineering as a powerful tool to tackle
complexity of system specifications. Indeed, modeling allows to address the
description of software based on different levels of abstraction and from multi-
ple perspectives, in order to accommodate the needs of communication and
description of a variety of stakeholders. In fact, models help to describe, reason,
predict and evaluate both software problems and solutions. Furthermore, they
provide effective means for supporting the communication between stakeholders,
and serve as specifications for implementation [3]. However, software practi-
tioners consider such approaches time-consuming, hence prefer to avoid using
models which are believed as complex, inconsistent, excessive and unnecessary
artifacts [101].

In this study we want to find out how much of the modeling effort is spent
on the design of the solution (i.e. pondering and making the design decisions).
If a significant part of the creation of the models is devoted to design thinking
about the problem, it could mean that the fault of supposedly unproductive
processes should not be blamed on modeling, but to the (anyhow necessary)
effort devoted to thinking about the problem and identifying the solution (i.e.
design effort).

In order to assess this, we run a set of experiments about the creation of
models in response to a set of requirements: we measure the effort required
to make the initial model of a system (modeling effort), and then we measure
the effort required to recreate the same model again, simply by redrawing the
already defined solution (copying effort). For the copying of the solution, we
assume a subject does not have to (re)do any design thinking, but only spend
effort on entering a solution into a modeling tool. At the end we calculate
design effort by assessing the time difference between the two activities (see
the details in Section 2.3).

Some empirical studies provided evidence on the benefits of UML modeling
in enhancing the productivity, quality and maintenance of software products
[5, 102–104]. These studies sustain that benefits of UML modeling take place
after a long-term, in the sense that UML modeling introduces an initial overhead
at the beginning, whereas the benefits start to take place at late stages – like the
two marshmallows reward of the ’one marshmallow now or two marshmallows
later’ experiment [105]. The minority of the kids who participated in that
experiment preferred to have one marshmallow now rather than two later. Such
behaviour may be similar to that of software developers’ who do not prefer to
spend time on modeling at early stages, and eat the marshmallow immediately.

Our hypothesis is that the benefits of UML modeling does not only take
place after a long-term, but also immediately at early stages. To assess this hy-
pothesis, we try to dissect design, notation expression and layout efforts in UML
modeling. If design effort dominates the modeling process, then UML modeling
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consists mostly of thinking of the domain problem and identifying/designing
the solution. In other words UML modeling would reward three marshmallows;
one immediately (foster design thinking and promote ideation) and two later
(enhance productivity, quality and maintenance).

This paper is organized as follows: in Section 2.2 we discuss the related
work. We describe our approach in Section 2.3. Section 2.4 illustrates the
design of our experiments and details their operational phases. Section 2.5
reports the results of the experiments, which are then discussed in Section 2.6.
We consider the threats to validity in Section 2.7. Finally, we conclude and
discuss the future work in Section 2.8.

2.2 Related Work

More often than not, evaluation of software modeling practices and associated
effort have been left in the realm of myth. As a result, software developers and
also modeling experts have different opinions on the pros and cons of modeling
that rely on beliefs (i.e. factoids) more than facts. This leads to a variety
of situations where no proper guidance can be provided in the selection of
the appropriate design tools for software. More in general, the whole field of
software engineering perceives the discrepancy between scientifically validated
results (e.g., in the empirical software engineering) and developers beliefs,
usually based only on personal perspectives on the development processes.
Various recent studies demonstrate that more in-depth studies that address
the interplay of belief and evidence in software practices are needed [6].

A few studies addressed the monitoring and analysis of modeling practices.
Sharif et al. [61] explored design strategies and types of activities that designers
engage in during software design sessions. They used video-recordings and
transcripts of three two-person teams who were assigned to create a software
design for the same set of requirements on a whiteboard. In addition to the
identified design activities, they also found the sequence of activities for each
session as well as the activity that took the longest by analyzing the duration
of actions and speeches mapped to various design activities. They identified
some of time-consuming activities such as decisions about the logic, discussion
of uses cases, drawing class diagrams, and drawing the user interface.

Some experiments have been conducted to identify strategies during the
modeling task. The works [106,107] recorded the activities of a pool of students
when creating UML class diagrams and analysed the logs using LogViz. Four
different strategies were found, namely Depth First, Breath First, Depthless
and Adhoc. The study also found that students spent most of their time in
understanding assignment tasks and in defining the layout of the model. One
thing that the log failed to say was what students do in the time gaps where
they appeared to do “no activity”.

Despite the resistance of software companies in adopting the model-driven
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development, few industrial success stories can be found. Brambilla and Frater-
nali [108] presented the industrial success stories (spanning from financial and
banking to utility) and the advantages of adopting Model-Driven Engineering
(MDE) perceived by the customers of WebRatio, a company which focuses on
MDE tools and services since 2001. The study also included a report of amount
of the effort dedicated by the designers to the different modeling activities.

Furthermore, few researches evaluated some of the claimed advantages
brought by MDE. Diaz et al. [109] measured the reuse gains brought by MDE
in comparison with manual coding of blogs. Brambilla et al. [110] analyzed
the productivity gain brought by MDE in comparison of manual coding of
cross-platform mobile applications. They observed that for mobile applications,
model-driven development allows to save more than 20% of the cost.

2.3 Approach

In this section, we provide an overview of the approach used to estimate the
effort devoted to different activities in the process of software modeling. Our
approach considers software modeling as a process that encompasses three
different activities:

(A) Designing of the solution: It represents the activity of reasoning and
thinking about a design solution of a domain problem. We call the time
devoted to this activity: Design Effort (DE).

(B) Notation expression: The expression of the identified solution through a
modeling notation. We call the time devoted to this activity: Notation
Expression Effort (NEE).

(C) Layouting: It represents the activity of organization of the model elements
in a diagram (e.g. to enhance the readability of the model). We call the
time devoted to this activity: Layout Effort (LE).

Based on that, the total effort dedicated to the software modeling process is
simply obtained as a sum of the single efforts spent in each modeling activity.
The total Modeling Effort (ME) in given by Equation Eq.A.

ME = DE +NEE + LE (Eq.A)

To compute the effort spent in each activity, we ran two-phase experiments.
In the first phase, we measure the effort required to make the initial model
of a system (modeling effort). While in the second phase, we measure the
effort required to recreate the same model again, simply by redrawing the
already defined solution (copying effort). At the end, we calculate the design,
notation expression, layout efforts by assessing the time difference between the
two phases.
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2.3.1 Phase 1: Modeling

During this phase the participants are asked to create a UML class diagram
that addresses a simple assignment using a modeling tool. The participants
think about the solution, express their solution through a modeling notation,
and may organize the elements of the model on the canvas.

Let us denominate the set of all persistent elements that are part of the
final model with (Π), and the set of all deleted elements that are not in the
final model with (∆). Let us also denominate the set of all elements (persistent
and deleted) with (Σ). We have that:

Σ = Π ∪∆ (Eq.B)

Based on Equation Eq.A and Equation Eq.B, the effort dedicated to the
modeling phase, called modeling effort (ME), is given by the following equation
(unknowns are in bold, whereas the known efforts are obtained via analyzing
the log of the modeling tool):

ME(Σ) = DE(Σ) + NEEm(Π) + NEEm(∆) + LEm(Π) + LEm(∆) (Eq.1)

Where:

• ME(Σ): (known) the total modeling effort,

• DE(Σ): (unknown) design effort, the time spent on thinking about the
solution (including both persisted and deleted elements),

• NEEm(Π): (unknown) notation expression effort of persistent elements
during modeling phase; the time spent on creating elements that are part
of the final model,

• NEEm(∆): (unknown) notation expression of deleted elements during
modeling phase; the time spent on creating elements that are not in the
final model (deleted because of exploring design alternatives),

• LEm(Π): (known) layout effort of persistent elements during modeling
phase; the time spent on organizing elements of the final model,

• LEm(∆): (known) layout effort of deleted elements during modeling
phase; the time spent on organizing elements that are not in the final
model.

2.3.2 Phase 2: Copying

During the copying phase, the participants are asked to simply re-draw (copy)
the same modeling solution produced in phase 1. In this phase the participants
are asked to do a strict copy without thinking or enhancing the identified
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solution in phase 1. Thus, the effort dedicated to this phase, called copying
effort (CE), is obtained via the following equation:

CE(Π) = NEEc(Π) + LEc(Π) (Eq.2)

Where:

• CEc(Π): (known) the total copying effort,

• NEEc(Π): (unknown) notation expression effort of persistent elements
during copying phase,

• LEc(Π): (known) layout effort of persistent elements during copying
phase.

2.3.3 Analyze Effort Difference

By isolating design and layout efforts, the notation expression effort of persistent
elements is the same in both phase 1 and 2. We have that NEEm(Π) = NEEc(Π).
We compute the design effort by subtracting Equation Eq.2 from Equation Eq.1.
The final result is reported as follows:

DE(Σ) = ME(Σ)− CE(Π)− LEm(Π)− LEm(∆)−NEEm(∆) + LEc(Π) (Eq.3)

First of all, LEm(Π) + LEm(∆) = LE(Σ) is the total layout effort (LE) in
the modeling phase. Now let us consider the number of persistent and deleted
elements in the modeling phase as |Π| and |∆|, respectively. Based on Equation
Eq.2, we identify NEEm(∆) via the following equation:

NEEm(∆) =
|∆|
|Π|
·NEEc(Π) (Eq.4)

The (DE) is given by inserting the value of NEEm(∆) in Equation Eq.3.
Furthermore, considering Equation Eq.A, the notation expression effort is given
by the following equation:

NEE = ME −DE − LE (Eq.5)

We are interested in identifying how much of the total modeling effort is
spent on designing, notation expression and layouting. Thus, we can define the
Design Effort Percentage (DEP) as the ratio of the Design Effort (DE) over
the total Modeling Effort (ME):

DEP = DE/ME (Eq.6)

Similarly for NEE and LE, the percentages are given by:
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NEEP = NEE/ME (Eq.7)

LEP = LE/ME (Eq.8)

At this point, we want to underline that the DE may also occur during the
process of UML notation expression and/or layouting (as we are capable of
thinking while drawing). Our calculations indeed estimates the lower bound on
DEP (the minimum DEP), in the sense that we do not assume any occurrence
of DE during the process of notation expression and/or layouting. So the real
value of DEP may be more than the minimum found. At maximum, DE could
occur continuously from the beginning to the end of the modeling process (i.e.
Max(DEP) is 100%).

Our experiments were conducted at Polytechnic University of Milan in
Italy and Gadjah Mada University in Indonesia. We formulated three different
modeling scenarios. Every scenario describes a system to be designed (see
Section 2.4.1.1). A mix of 100 B.Sc. and M.Sc. software engineering students
were randomly given the modeling scenarios. To create their models, students
were asked to use WebUML [106] and Papyrus (https://eclipse.org/papyrus)
modeling tools. Both tools allow the logging of the modeling activities. We col-
lected the recorded log files for each participant and assignment. We also setup
an online questionnaire through which participants answered questions about
their background, expertise in UML modeling, tool usability, and assignments
understandability.

Based on the collected results, our research objective has been addressed
by defining and responding to the following research questions:

1. How much of the modeling effort is design, DEP?

2. How much of the modeling effort is notation expression, NEEP?,

3. How much of the modeling effort is layout, LEP?

4. Does the size of the modeling scenario affect DEP, NEEP and LEP?

5. Does the topic of the modeling scenario affect DEP, NEEP and LEP?

2.4 Experiment

This section describes the modeling experiments conducted to answer the
research questions presented in Section 2.3. For this study, we conducted the
experiments in two different settings: (i) participants create models Individually
and (ii) in teams Collaboratively. We refer to the former setting as EXP1 while
the latter as EXP2.

EXP1 was conducted at Polytechnic University of Milan involving 48
students. During this experiment, the participants were asked to design a
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solution for given modeling scenarios using the WebUML editor. EXP2 was
conducted in Gadjah Mada university in Indonesia involving 13 groups of 4
students each. Each group was asked to design a solution for a given modeling
scenario using Papyrus.

2.4.1 Experiment Preparation

2.4.1.1 Scenarios Definition

To make our analysis of the specific case independent, we evaluated the design
effort with three scenarios (scenario 1, scenario 2 and scenario 3 ) from different
topics and with slightly different size (the number of classes in their solution
is different by one or two). Every scenario describes a simple system to be
designed. In addition, we have defined a test scenario, used at the beginning
of the modeling sessions to explain to the participants how the tool works
and to let them get familiar with it. The description of the scenarios and the
experimental material can be found here: (https://goo.gl/mvz2bm).

2.4.1.2 Assigning scenarios to participants

EXP1 The ideal strategy to get the most generalizable results is to assign
all the three scenarios to each participant. However considering the average
time required to complete one scenario (around 25 minutes), assigning three
scenarios to each participant was not feasible due to the limited time the
students had available for the experiment. Thus, we decided to assign two
scenarios to each participant. In order to limit unintended effects and to
have balanced experiments, we used the Graeco-Latin square theory [111] by
assigning different orders of scenario’s to different groups of students. The
scenarios that are used in this experiment are: scenario 1, scenario 2 and
scenario 3.

EXP2 The purpose of this setting is to study possible effects of group work
and modeling tools on the software modeling effort. The used scenario in
this experiment is: scenario 2. The obtained data from this experiment are
compared to the data that are related to scenario 2 of EXP1.

2.4.2 Experiment Execution

In this phase, the participants model the assigned scenarios using the WebUML
tool for EXP1 and Papyrus for EXP2. Both tools have a logging feature that
logs the participants’ actions (such as the creation, modification, and deletion of
an element). The logs are useful to derive quantitative data which enable us to
compare and evaluate the produced designs and the time spent on interacting
with the tool. The experiments were conducted following these five steps:

https://goo.gl/mvz2bm
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(A) Introduction. We introduced the modeling tool to the participants through
a training session.

(B) Instruction. During this phase we explained the procedure of the experi-
ment to the participants, as well as showed them how to save and submit
their designs. Then, a short training exercize of 15 minutes took place
under our supervision in order to get the participants accustomed with
the basic functionality of the tool. This was done using a test scenario,
equal for all the participants.

(C) Modeling assigned scenarios (See Section 2.3, Modeling phase). The
participants have to model the assigned scenario/s.

(D) Copying assigned scenarios (See Section 2.3, Copying phase). The partici-
pants simply copy (re-draw) the proposed model solution that is produced
in the Modeling Phase.

At the end of step 4, the participants of EXP1 were asked to proceed
with the modeling and copying of the other scenarios following the same
way as described in steps 3 and 4, respectively.

(E) Closure. after submitting their models, the participants were asked to
answer a questionnaire about their personal information, knowledge about
UML modeling and perception regarding the usability of the modeling
tools (WebUML for EXP1 and Papyrus for EXP2 ).

The experiments were performed in a controlled environment. The participants
worked on computers in a lab at both Universities. There were supervisors
that walked around to monitor that the participants worked on the assignment
and not on other tasks or distractions.

2.5 Results

In this section we report the results of the two conducted experiments (EXP1
and EXP2). For EXP1, we present the results of 37 subjects since the ex-
periments of 11 subjects were not valid (8 worked concurrently on the first
and second task while 3 had technical network problems which prevented us
from receiving their data) and then removed from the data set. We used the
statistical package R [112] to perform all tests. We chose a significance level at
0.05, which corresponds to a 95% confidence level.
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Figure 2.1: Efforts distribution related to the scenarios of EXP1

Table 2.1: Statistical results for all scenarios of EXP1 and EXP2

EXP1
Scenario # Subjects DEP NEEP LP

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Scenario 1 21 57.93 18.66 37.93 18.65 4.15 2.69
Scenario 2 25 53.87 18.72 43.10 18.39 3.03 1.75
Scenario 3 22 56.21 16.03 41.26 15.67 2.52 1.20
All 55.88 17.69 40.91 17.51 3.21 2.04

EXP2
Scenario # Subjects DEP NEEP LP

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Scenario 2 52 73.60 8.40 22.14 8.34 4.25 2.88

2.5.1 Design, Notation Expression and Layout Efforts

2.5.1.1 EXP1

For each modeling scenario used during EXP1, we calculated the mean and
the standard deviation of DEP, NEEP and LEP. The results are presented in
Table 2.1.

2.5.1.2 EXP2

We calculated the mean and the standard deviation of DEP, NEEP and LP that
are related to scenario 2 used in experiment EXP2. The results are presented
in Table 2.1. Figure 2.1 and 2.2 provide a better view of the distributions of the
various efforts (DEP, NEEP and LEP) related to the scenarios used in EXP1
and EXP2, respectively. (Note that the red diamond represents the Max(DEP),
as the DE may occur concurrently with notation expression and/or layouting
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activities.)

Figure 2.2: Efforts distribution related to scenario 2 of EXP2

Results for Q1, Q2 and Q3 (EXP1): For all scenarios, we found
that the average Design Effort is 55.88%. While the rest is:
40.91% Notation Expression Effort and 3.21% Layout Effort.

Results for Q1, Q2 and Q3 (EXP2): the average Design Effort for
scenario 2 is 73.60%. While the rest is: 22.14% Notation Expres-
sion Effort and 4.25% Layout Effort.

2.5.1.3 Quality of the models

We consider the quality of the produced models as a further crucial factor.
We wanted to know how well the models reflect the domain problem, because
extremely bad (or rough) models could affect the effort statistics. To grade the
quality of the models, we defined a rubric before running the experiment. The
rubric consists of a 5-point scale grading guidelines (https://goo.gl/mvz2bm).
In advance of the actual grading a set of possible ideal solutions was discussed.
The grading was done in two steps: (i) the assessors graded all models separately
(independently), (ii) the assessors discussed the differences in grading and gave
the model the final mark. Cohen’s κ [113] was run to determine if there was
agreement between the assessors. See Table 2.2 (the range of ratings is [1 to 5]
where 1 is the most negative score and 5 is the most positive score, ratings are

https://goo.gl/mvz2bm
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Table 2.2: Quality of the models

I-R. R.
EXP Scenario M Q1 Q3 I-Q. R. Kappa p-value
1 Scenario 1 4.00 3.00 4.00 1.00 0.57 0.000
1 Scenario 2 3.00 3.00 4.00 1.00 0.39 0.000
1 Scenario 3 4.00 3.00 4.00 1.00 0.61 0.000
2 Scenario 2 4.00 3.00 4.00 1.00 0.53 0.002

reported in terms of: (EXP: Experiment, M: Median Score, Q1: 1st quartile,
Q3: 3rd quartile, I-Q. R.: Inter-Quartile Range (Q3-Q1), I-R. R.: Inter-Rater
Reliability).

2.5.2 Comparison between the results of EXP1 and EXP2

The same modeling scenario (scenario 2 ) was used in both experiments EXP1
and EXP2. However, there are two factors that could affect the DEP, NEEP
and LEP: (α) the modeling tool and (β) number of involved subjects per
modeling task. For EXP1, WebUML was used by individuals. Whereas for
EXP2, Papyrus was used by thirteen groups (of 4 people each). In order to
assess the effect of both factors (α and β) on the DEP, NEEP and LEP, we
performed Mann-Whitney’s non-parametric test as the data are not normally
distributed (Shapiro-Wilk test’ p-values are less than 0.05). The following
hypotheses were formed:

• Null Hypothesis H01: There is no statistically significant difference in
the DEP of the two cases.

• Alternative Hypothesis HA1: There is a statistically significant difference
in the DEP of the two cases.

• Null Hypothesis H02: There is no statistically significant difference in
the NEEP of the two cases.

• Alternative Hypothesis HA2: There is a statistically significant difference
in the NEEP of the two cases.

• Null Hypothesis H03: There is no statistically significant difference in
the LEP of the two cases.

• Alternative Hypothesis HA3: There is a statistically significant difference
in the LEP of the two cases.

Table 2.3 shows the results of the test. Since the p-values of DEP and NEEP
are less than 0.05, we reject the null hypotheses (H01 and H02) and accept
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Table 2.3: Impact of modelling tool and collaboration on DEP, NEEP and
LEP (Mann-Whitney tset)

Data Mann-Whitney U sig. 2-tailed
DEP 52.000 0.001
NEEP 42.000 0.000
LEP 125.000 0.249

Table 2.4: Impact of the size of models (Kruskal-Wallis test)

Data Chi-square df p-value
N of Classes 4.151 2 0.126
N of Associations 4.151 2 0.126

the alternative hypotheses (HA1 and HA2). In other words, the differences
between the mean rankings of DEP and NEEP of the two cases are statistically
significant. The p-value of LEP is 0.249 > 0.05. We cannot reject the null
hypothesis (H03), and the difference between the mean rankings of LEP of the
two cases is not significant.

We have a statistical evidence to conclude that the DEP and NEEP are
affected by the change of both the modeling tool and the number of involved
subjects per task. While LEP is not affected by such change.

2.5.3 Impacts of The Topic/Size of The Modeling Sce-
narios on DEP, NEEP and LEP

We used three different scenarios for the three modeling tasks that were used
in EXP1. The scenarios are different in topic, but slightly different in size.

In order to statistically assess the difference in the size, we calculated the
number of classes and associations in each solution created by the students
per scenario. After that, we ran Kruskal-Wallis test [114]. The following two
hypotheses were formed:

• Null Hypothesis H0: There is no statistically significant difference between
the median number of classes/associations in each solution created for
scenario 1, 2 & 3.

• Alternative Hypothesis HA: There is statistically significant difference
between the median number of classes/associations in each solution
created for scenario 1, 2 & 3.

The distributions of the number of classes and associations in the solutions
of each modeling scenario are reported in Table 2.5. The result of Kruskal-
Wallis test is presented in Table 2.4. We cannot reject the null hypothesis (the
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Table 2.5: Number of classes and associations in the solutions of each modeling
scenario

Scenario N of classes N of associations
Med. Q1 Q3 I-Q. R. Med. Q1 Q3 I-Q. R.

1 8.00 7.00 8.00 1.00 7.00 6.00 7.00 1.00
2 6.00 4.00 9.00 5.00 5.00 3.00 8.00 5.00
3 6.50 6.00 7.75 1.75 5.50 5.00 6.75 1.75

significance value p = 0.126 > 0.05). In other words, the difference between
the number of classes/associations in each solution created for scenario 1, 2
and 3 is not significant.

Results for Q4: We cannot assess the impact of the size of the mod-
eling task (scenario) on DEP, NEP and LEP, as we have evidence
that the modeling tasks are not statistically different in size.

At this point we only study the impact of the topic of the modeling scenarios
on DEP, NEEP and LEP. In particular, we want to asses if there is any
statistically significant difference in the mean of DEP, NEEP and LEP between
the three modeling scenarios. To this end, the following set of hypotheses were
formed:

• Null Hypothesis H01: There is no statistically significant difference in
DEP of the three scenarios.

• Alternative Hypothesis HA1: There is statistically significant difference
in DEP of the three scenarios.

• Null Hypothesis H02: There is no statistically significant difference in
NEEP of the three scenarios.

• Alternative Hypothesis HA2: There is statistically significant difference
in NEEP of the three scenarios.

• Null Hypothesis H03: There is no statistically significant difference in
LEP of the three scenarios.

• Alternative Hypothesis HA3: There is statistically significant difference
in LEP of the three scenarios.

The normalities of DEP, NEEP and LEP were checked using Shapiro-Wilk
test [115]. Table 2.6 shows the p-values of the test. The p-values are less than
0.05, and the data are not normally distributed.
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Table 2.6: Normality Test results

Data Shapiro-Wilk (p-value)
DEP 0.046
NEEP 0.027
LEP 0.000

Table 2.7: Impact of the topic of the scenario on DEP, NEEP and LEP
(Kruskal-Wallis test)

Data Chi-square df p-value
DEP 1.040 2 0.595
NEEP 1.630 2 0.443
LEP 4.325 2 0.115

Having non-normally distributed data, we applied the non-parametric
Kruskal-Wallis test [114]. Table 2.7 shows the results of the test in detail.
Since the significance values of DEP, NEEP and LEP are > 0.05, we cannot
reject the null hypotheses. In other words, the differences between the mean
rankings of DEP, NEEP and LEP of the given three modeling scenarios are
not significant.

Furthermore, we compared the differences in the mean value of DEP, NEEP
and LEP between every pair of scenarios using Mann-Whitney test [116]. The
results reported in Table 2.8 prove that the difference in the mean rankings
of DEP, NEEP and LEP is not significant between every pair of the three
scenarios (the critical level of significance is 0.05/3 = 0.0167).

Results for Q5: We have statistical evidence to conclude that the
DEP, NEEP and LEP stay the same through different-in-topic
modeling tasks.

2.5.4 Subjects Questionnaire

This subsection resumes the feedback gathered from the participants involved
in the two experiments. These feedback (presented in Table 2.9) complement
the results, and are discussed in Sections 2.6 and 2.7.3.

2.6 Discussion

With the increasing popularity of agile-approaches in software development
there has been a reduced commitment from software development projects to
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Table 2.8: Impact of topic between every pair of scenarios (Mann-Whitney
test)

DEP (sig. 2-tailed) NEEP (sig. 2-tailed) LEP (sig. 2-tailed)

S1 - S2 0.408 0.316 0.168
S1 - S3 0.343 0.244 0.046
S2 - S3 0.949 0.733 0.394

Table 2.9: Obtained feedback via the questionnaire

Feedback Results
Experiment Med. Q1 Q3 I-Q. R.

EXP1 2 1 3 2
Expertise in software modeling EXP2 3 2 3 1

EXP1 2 1 2 1
Experience in using UML EXP2 2 2 3 1

EXP1 4 4 4 0
Clarity of the scenarios EXP2 4 3 4 1

EXP1 4 3 4 1
Usability of the modeling tool EXP2 3 2 3 1

modeling. Partially this view seems motivated by the seeing of modeling as
an activity that produces ’documentation’ (rather than ’working code’). Our
study shows that a significant part of the effort dedicated to modeling is spent
on thinking about the design. Even though the actual impact of this needs to
be further assessed, we believe that this thinking about the design is valuable.

For EXP1, our results show that at least 56% of the modeling effort is spent
on design. Whereas for EXP2, at least 74% of the modeling effort is design.
Our assumption is that the participants did not make any design effort while
expressing the model in UML notation as well as doing layout.

One threat to the interpretation of our experiment is whether or not
design-thinking actually happens concurrently with notation expression or
layouting. Given the small size of the layout effort, this would only have a
small impact on our interpretation. If one believes these cognitive tasks overlap,
then the interpretation of our experiment should be that there is indeed more
design thinking - i.e. we have found a lower bound on it through our study.
Consequently, the percentages that we found are minimum, and may increase
as the effort on designing overlaps with the effort on the other two activities
(notation expression and layouting).

The notation expression effort is on average 41% and layouting is on average
3%. These efforts may actually represent a cost of UML modeling. This cost
may be seen as an investment in the communication-value of documentation
within a team. In order to understand whether the cost of notation expression
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and layouting is inevitable or not, we may investigate the impact of the usability
of modeling tools on the modeling process. Although the participants of EXP1
used a modeling tool (WebUML) different from the one used in EXP2 (Papyrus),
we could not reveal the impact of the modeling tool on the modeling effort.
This is because the modeling solution of scenario 2 of EXP1 was created
by participants individually, while the same scenario was modeled in by 4
participants collaborating in a team in EXP2. So, the difference in the DE,
NEE and LE between the two settings could be due to the type of the modeling
tool or the number of assigned participants per modeling task. Observing
the perceived usability of the modeling tools by the participants of the two
experiments (see Table 2.9), it might be that the difference in DE and NEE
between EXP1 and EXP2 is due to the factor of collaboration, i.e. design
discussions. As a future work, we aim to isolate the impact of these two factors
(modeling tool and collaboration) on the modeling effort, as well as investigate
better modeling-tool support [117].

2.7 Threats to Validity

2.7.1 Construct Validity

We benefited from the fact that we performed the experiment in a controlled
environment (instead of as a homework assignment): 8 students created the
model and its copy in parallel. We eliminated these cases from our data set
because we could not explicitly calculate the modeling and copying efforts. For
replication of this research, a lesson learned is to instruct students not to do
model and copy simultaneously.

We did not aim at maximizing realism and focused on class diagrams for
various reason. We wanted to: (i) ask simple tasks based on a well-known
notation; (ii) reduce confounding factors and thus keep more control over the
experiment compared to drawing multiple types of diagrams; and (iii) have a
preliminary result that can validate our vision.

2.7.2 Internal Validity

It could be possible that thoughts wander off into unrelated territories. The
following reasons limit the impact of this phenomenon: Firstly, the experiment
was performed in a controlled environment. Supervisors walked around the
room. They monitorred that there were no distractions like coffee drinking
or going to the bathroom. Also, they observed that the participants were
indeed working on the task behind their computers. Suppose that indeed some
wandering of thoughts happens, then our expectation is that this happens more
or less equally in the first phase (modeling) and the second phase (copying). In
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this case at least the relative ratio between these tasks should not be affected
much.

In the redrawing of a copy of the previously created solution, participants
in the study may have benefited from a learning effect. This could have led
to the notation expression effort being a less than the notation expression
effort in the initial creation of the UML models. We think this affect is small,
and that a more detailed analysis of notation creation activities can lead to a
quantification of this learning effect. However in EXP2, we tried to mitigate
this factor by asking each group to copy the created solution of another group.

Moreover when performing the second modeling task (second scenario) in
EXP1, participants may have benefited from a learning effect as well as suffered
from the fatigue of performing two modeling tasks consecutively. We do not
think there is a large learning effect in the use of the tool, because participants
have been trained in using the tool both before starting and as part of this
assignment. Hence they already have a reasonable fluency in the tool at the
start of the first scenario. We do think the affect of fatigue is small because the
modeling scenarios are simple, and the required time to complete one scenario
is not too much (around 25 minutes).

2.7.3 External Validity

Complexity of the scenarios. The scenarios were kept simple and clear
so that the students can easily understand and complete the tasks in the time
of the experiment. In industry settings, modeling tasks can be much more
complicated in term of size, terminology, languages, level of details, etc. which
we could not cover in our study. This is a limitation on the generalizability
of the findings of this paper when it comes to real-world cases. However, we
consider this threat as acceptable for this preliminary investigation. We are
working on studying larger scenarios to increase the generalizability.

Participants and their modeling expertise. The participants involved
in our experiment may not represent the general population of modeling
practitioners. Moreover, the modeling expertise of our participants is relatively
homogeneous. This limits us from generalizing our findings to other subjects
(i.e. experts, professional software architects, industrial practitioners in the
field). Indeed, familiarity with the modeling tool and experience of designing
may result in different DE, NEE and LE percentages. We consider our findings
as a basis to extend our study to larger community of modeling practitioners.

2.8 Conclusion and Future Work

In order to better understand the effort involved in using software models in
software development, we introduced in this paper the distinction between
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design, notation expression and layout efforts. Subsequently, we defined and
ran two experiments in which we measure how much effort each of these
activities takes – both in absolute effort and as a percentage of the total effort
spent on creating class diagrams in a simple student assignment. From these
experiments we conclude that UML modeling should not be considered so very
costly, because it triggers design thinking. According to our results, the effort
spent on thinking about synthesizing the design takes at least 56% of the total
modeling effort.

One implication of this research is that projects that create models concur
at least with significant thinking about the design. This aligns with an earlier
finding that developers report that creating design models in the early stage of
a software development projects, leads to better modularity of the design [104].

Future work: This line of research can be extended in many directions. In
order to increase the external validity, we would like to obtain data from larger
and/or industrial projects about their modeling effort. We have started looking
into two projects where teams of 8 students work for 3 months full time on a
software project. Another extension that is of interest is to study the effect of
usability of modeling tools on the time spent on subtasks of modeling. This
would highlight if tool complexity is a major factor in adoption of modeling.
Complementary questions would be to: (i) explore how much effort is involved
in maintaining models up-to-date in documentation throughout a project, and
(ii) study the impact of the designing and modeling on the speed and quality
of software development.
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Abstract

Software architects seek efficient support for planning and designing models
at multiple levels of abstraction and from different perspectives. For this
it is desirable that software design tools support both informal and formal
representation of design, and also support their combination and the transition
between them. Furthermore, software design tools should be able to provide
features for collaborative work on the design. OctoUML supports the creation
of software models at various levels of formality, collaborative software design,
and multi-modal interaction methods. By combining these features, OctoUML
is a prototype of a new generation software design environment that aims to
better supports software architects in their actual software design and modelling
processes.
Demo video: https: // youtu. be/ fsN3rfEAYHw

OctoUML Project: https: // github. com/ Imarcus/ OctoUML

Keywords: software design; modelling notations; multi-modal interaction;
collaborative design; user experience; UML

https://youtu.be/fsN3rfEAYHw
https://github.com/Imarcus/OctoUML
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3.1 Introduction

Designing software consists of exploring design problems, discussing solutions
and creating software models as design artifacts. Such artifacts provide a bridge
between problem and software implementation by describing user’s needs as
well as the product to be developed. As software systems are gaining increased
complexity, the importance of efficient software design tools is also increasing.
Software models change frequently and are quite often updated by many
designers simultaneously [118]. These models should present a description
of complex systems at multiple levels of abstraction and from a different
perspectives. Therefore, it is crucial to provide software design tools that give
possibilities for efficient and collaborative development as well as options for
multi-modal interaction.

Modelling tools can be classified into two groups: informal and formal [84].
We mean by informal any tool that supports informal design in the sense
that it does not constrain the notation used. Indeed, informal tools are
preferred for their flexibility as well as the role that they play in unleashing
designers’ expressiveness. Examples of such tools are whiteboards, paper
and pencil. While we mean by formal any tool that support one or few
formalized notations. Typical examples are UML CASE-tools (e.g. Rational
Rose, Enterprise Architect, Papyrus, StarUML, etc.). Formal tools are usually
used for code-generation and/or documenting purposes.

During early design phases, software designers often use informal tools (e.g.
whiteboards) to sketch their thoughts and compare design ideas. Once the
designers settle on one possible solution, they proceed to create a formal version
of the sketchy design. In particular, they move from the whiteboard, start-up
the computers, run a formal tool (a CASE-tool), and re-enter the solution
that has been created previously during the early design phase. So there is
a gap between informal designing in early software design phases and formal
design and documentation practices in subsequent development. To bridge
this gap, we present OctoUML, a software design environment that supports
exploratory and collaborative design meetings. OctoUML provides means to
allow the creation of both sketchy hand-drawn elements and formal notations
simultaneously. Moreover, it allows the transformation of sketchy designs into
formal notations.

Oviatt and Cohen [119] illustrated the importance of multi-modal systems
in reshaping daily computing tasks and predicted their future role in shifting
the balance of human-computer interaction much closer to the human. We
enabled OctoUML to support multiple modes of interaction including mouse,
keyboard, touch/multi-touch using fingers and styluses, sketching, and voice
modality.

More often than not, the process of software design involves several designers
working on the same project simultaneously. This could also occur in user-
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centered design situations where users are involved in the design process. We
implemented OctoUML to support design collaborative sessions, both in-situ
(via the adoption of multi-touch technique) and at a distance “remotely” (by
using a client-server paradigm). OctoUML can be run using a number of
input devices ranging from desktop computers over large touch screens to large
interactive whiteboards.

The paper is organised as follows: the related work is presented in section
two. Further information on OctoUML, its architecture and features, and the
performed evaluation are reported in section three. The future objectives and
concluding remarks are presented in the last section (section four).

3.2 Related Work

Several studies proposed different approaches to enhance the software design
process. Mangano et al. [71] identified some behaviors that occur during
informal design. In particular, designers sketch different kind of diagrams (e.g.
box and arrow diagrams, UI mock-ups, generic plots, flowcharts, etc.) and use
impromptu notations. The authors implemented an interactive whiteboard
system (called Calico) to support these behaviors and identified some ways
where interactive whiteboards can enable designers to work more effectively.

Wüest et al. [72] stated that software engineers often use paper and pencil to
sketch ideas when gathering requirements from stakeholders, but such sketches
on paper often need to be modelled again for further processing. A tool,
FlexiSketch, was prototyped by them to combine free-form sketching with the
ability to annotate the sketches interactively for an incremental transformation
into semi-formal models. The users of FlexiSketch were able to draw UML-like
diagrams and introduced their own notation. They were also able to assign
types to drawn symbols. Users liked the informality provided by the tool, and
had the will to adopt it in practice.

Magin and Kopf [120] created a multi-touch based system allowing users to
collaboratively design UML class diagrams on touch-screens. They have also
implemented a new algorithm to recognize the gestures drawn by the users and
to improve the layout of the diagrams. However, their tool does not allow for
informal freehand sketching of arbitrary notations.

Lahtinen and Peltonen [121] presented an approach to build speech interfaces
to UML tools. The authors set up a spoken language to manipulate the UML
models, and built a speech control system (VoCoTo) integrated with a CASE-
tool (Rational Rose). They stated that speech recognition is applicable to be
used to enhance the interaction with UML tools.

Table 3.1 summarizes the main supported functionalities by OctoUML and
illustrates the differences to the related work.
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Table 3.1: Comparison between OctoUML and the related work.

Related Work Informal & formal
notations

Interaction Modal-
ities

(Multi-Touch,
Remote Control)

Calico informal hand-drawn
notations

mouse, keyboard and
touch

(no, no)

Flexisketch informal hand-drawn
notations

mouse, keyboard and
touch

(no, no)

Magin&Kopf formal notations cre-
ation via gestures

touch-based (yes, no)

VoCoTo formal notations mouse, keyboard and
voice

(no, no)

OctoUML creation and mix of in-
formal and formal nota-
tions simultaneously

mouse, keyboard,
single touch, multi-
touch, and voice

(yes, yes)

3.3 OctoUML

In a previous work [84], we presented our vision for a new generation software
design environment. To realize our vision, we developed a prototype called
OctoUML [117]. OctoUML is a software design environment that supports
exploratory and collaborative software design. It is used to create and organize
diagrams as well as supports their modification and evolution. Firstly, we
illustrate the architecture of OctoUML. Secondly, we describe the main func-
tionalities that are supported by OctoUML (sections B and C). Later on, we
provide a scenario showing how such functionalities could support the design
process. Lastly, we provide some details on OctoUML evaluation.

3.3.1 OctoUML’s Architecture

The key architectural components of OctoUML are presented in Figure 3.1.
The environment contains three major components: UI component, Data
component and Services. The current version of the system offers only the
UI and Data components. Additional services will be added during future
development. The UI component consists of: Presentation manager and Input
unit. The Presentation manager provides means for performing stylus or
touch-based input commands on devices being used. Drawing layers include
support for both informal and formal modelling layers. The Command tools
are responsible for transferring the inputs from users to different controllers.
The Graph controller allows switching between different input techniques with
combining of multiple layers. The Input unit is responsible for processing
different inputs. In particular, a Sketch recognizer is provided to recognize
and transform informal models into formal concepts, and hence allows to
maintain and transfer the designs for further processing tasks. A Multi-touch
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Figure 3.1: Architectural Components of OctoUML

controller captures and coordinates the inputs from different touch-points. All
the program data are saved and stored in the Data component. Our tool uses
a set of data structures to manage and maintain the sketched elements and
formalized designs.

3.3.2 Informal and Formal Notation

Whiteboards (or any informal tools e.g. paper and pen) are used during early
software design phases because of their flexibility and immediacy, but also
becuase they do not constrain the notation being used. Informal notations
(e.g. sketches) can be used to express abstract ideas representationally, to
allow checking the entirety and the internal consistency of an idea as well as
to facilitate development of new ideas [31]. Furthermore, informal notations
can have a very close mapping to the problem domain. However, the informal
notations often need to be formalized in order to allow their manipulation and
process e.g. sharing, code generation or documentation.

Modelling tools should not constrain designers to create only some specific
notations. Furthermore, they should maintain the characteristics of formal
tools in their support of design transfer and persistence [84].

OctoUML allows the creation of both hand-drawn informal sketches and
computer-drawn formal elements (currently UML class and sequence models)
on the same canvas simultaneously (Figure 3.2). OctoUML bridges the gap
between early software design process, when informal tools are typically used,
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Figure 3.2: Combination of different notations on the same canvas

and later documentation and formalization process, when formal tools are
used. Beside supporting the creation of software models at different levels of
formality, OctoUML is equipped with a Sketch recognition unit which enables
sketch formalization. In particular, OctoUML allows the transformation of
models from informal to formal and vice versa at any time during the modelling
session. Furthermore, we adopted a layering technique by which the informal
notations belong to one layer that we call the informal layer, and the formal
notations belong to another layer that we call the formal layer. The user can
then select to see the layers in combination or isolation.

3.3.3 Interaction Modes and Collaboration

The usability of current CASE tools is a common source of criticism [13]. The
interaction with such tools is often based on using the mouse and keyboard.
Other modes of interaction (e.g. touch, gesture and voice) could be more
natural and intuitive. In order to improve the user experience of OctoUML and
increase its accessibility, the interaction modalities of OctoUML are enriched
by providing a voice-commands recognition component capable of transforming
designers’ voice-commands into control actions.

The process of software design often involves more than one designer working
on the same project simultaneously. OctoUML promotes collaborative design
by adopting a multi-touch technique and supporting remote collaboration. Next,
we provide more details on the supported functionalities:

• Multi-touch is an interaction technique that permits the manipulation
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of graphical entities by more users at the same time. Our tool allows
multiple users to design diagrams simultaneously by performing simple
touch gestures.

• In order to improve the user experience, we integrated a voice-commands
control component within the Input unit. The component is capable of
handling the most commonly used functions during the design process.
Thus, users can use voice commands in order to create and edit elements
of software diagrams.

• To open up new opportunities for interactive collaborative design, our tool
supports remote collaborative sessions between geographically distributed
teams. One team of designers can run a server instance of OctoUML,
whereas another team can join the session as client connecting to the
server. Video calls and chatting tools will be integrated in order to
support the joint design sessions.

3.3.4 Design process in UctoUML: A Scenario

Figure 3.3 illustrate the design process in OctoUML. Activities that are currently
supported by OctoUML are distinct in green. Let us think about the following
scenario: a group of software designers meet to explore and discuss design ideas
of a specific software product. The designers start with the creation of some
informal sketchy designs using OctoUML being deployed on a large interactive
whiteboard. After that, the designers proceed with a selective transformation
of some informal sketches into a formal model. Later on, the created model
is analyzed to check possible flaws and performance bottlenecks. Finally, the
model is saved and uploaded to a version control repository. The designers
meet again (on-site or from different locations) when new requirements come
out or having earlier requirements exposed to changes. They fetch the design
that was previously shared on the version repository, update the design, and
commit a new version that is now compliant to the new requirements.

3.3.5 Evaluation

Two user studies were performed to evaluate OctoUML. In both studies, the
participants had to do a modelling task using OctoUML, answer a System
Usability Scale (SUS) questionnaire [122], and participate into semi-structured
interviews. The first study involved fourteen software engineering students
(ten PhD and four M.Sc. students) and two post-doc researchers. The main
purpose of the first study was to evaluate the usability of OctoUML as well
as to investigate whether supporting the mix of informal and formal notation
could support the design process. OctoUML got an average SUS-score of 78.75
which is a high usability score according to [86]. The participants stated that
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Figure 3.3: Design process in OctoUML

informal notations could be valuable artifacts beyond being just explorative
means. They also stated that such notations support designers’ activities
in understanding the problems and communicating ideas. Figure 3.4 shows
the feedback from the participants regarding the use of informal and formal
notations within OctoUML.

Figure 3.4: User study I: informal vs. formal notations

The second study involved fourteen participants (three PhD and eleven
M.Sc. software engineering students). The main purpose was to evaluate the
learnability and usability of OctoUML as well as the role of the voice interaction
modality in enhancing the user experience and supporting the software design
process. OctoUML got a SUS-score of 74.6 which can be considered a quite
good usability score [86]. The majority of the participants stated that it was
easy to learn and use the different functionalities of OctoUML (including the
voice interaction modality), see Figure 3.5. Furthermore, the voice interaction
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Figure 3.5: User study II: usability and learnability of OctoUML

modality was perceived helpful in overcoming non-ergonomic tasks e.g. typing
via a keyboard.

3.4 Conclusion and Future Development

In this paper we presented OctoUML, a prototype of a new generation software
design environment for collaborative software design. It provides support for
mixing informal hand-drawn elements with formal notations. Moreover, it
supports different input methods and interaction modalities.

OctoUML combines the advantages of both informal tools e.g. interactive
whiteboards and formal tools e.g. CASE tools, and therefore is able to bridge
the gap between early software design process (when designers often sketch
their ideas) and formalisation/documentation process. OctoUML was evaluated
by conducting two user studies and involving thirty participants in total. The
main goal was to get feedback on the viability and usability of OctoUML. The
results show that the participants enjoyed their experience with OctoUML and
had a positive perception regarding its usability.

The current architecture of OctoUML allows future expansions of the system
with additional functionalities. The goal is to implement and incorporate
additional features in the subsequent versions of the system:

– Analysis component. It will perform software model analysis. This tool
will be used to automatically evaluate the created software models to
detect general design flaws, security flaws and performance bottlenecks.
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– Versioning component. The purpose is to provide a repository for keeping
track of the version history of stored models, and the ability to observe
changes that are made to specific artifacts in the environment. The
system should also be able to resolve conflicts when two users change
the same model data. Such component would increase the potential for
parallel and distributed work, improve the ability to track and merge
changes over time, and automate management of revision history. It
would also allow multiple designers to work concurrently, supporting tight
collaboration and a fast feedback loop.

– Code management. Models and code must be combined throughout the
development process. Users will be able to generate code from formalized
UML class diagrams as well as view models and codes side by side and
jump between editing one and keeping the other synchronized.
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Abstract

A recurring theme in discussions about the adoption of Model-Based Engi-
neering (MBE) is its effectiveness. This is because there is a lack of empirical
assessment of the processes and (tool-)use of MBE in practice. We conducted
a multiple-case study by observing 2 two-month MBE projects from which
software for a Mars rover were developed. We focused on assessing the dis-
tribution of the total software development effort over different development
activities. Moreover, we observed and collected challenges reported by the
developers during the execution of projects. We found that the majority of the
effort is spent on the collaboration and communication activities. Furthermore,
our inquiry into challenges showed that tool-related challenges are the most
encountered.

Keywords: Software Engineering; Model-Based Engineering; Effort Distri-
bution; Modeling Tools; MBE Challenges; Case Study Design.
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4.1 Introduction

Models provide effective means for supporting the communication between
stakeholders, and serve as specification for the implementation of software
systems. Model-Based Engineering (MBE) is a software development approach
in which models play an important- central role [123]. MBE aims to increase
the abstraction level and aims to promote the automation of the development
process [3].

Empirical assessment of the use and process of MBE is scarce. The adop-
tion of MBE is still debated in practice. On the one hand, MBE has been
applied effectively in several application sectors, e.g., embedded systems [4] and
telecommunication [23]. Furthermore, by focusing on practitioners’ experiences
and perceptions, several studies claimed that the adoption of MBE helps to (i)
improve the productivity of the developing teams by increasing the abstraction
level, (ii) enhance the quality of the software and (iii) support its maintain-
ability [4, 21, 87]. On the other hand, some practitioners consider MBE as a
time-consuming and unproven approach that merely complicates matters [3].

4.1.1 Rationale

Generally, the field of software engineering perceives a discrepancy between
empirical software engineering findings and developers’ (a priori) beliefs and
opinions, which are often based only on personal perspectives on the devel-
opment processes. Devanbu et al. [6] suggested that more in-depth studies
that address the interplay of belief and evidence in software practices are
needed. The same issue is pointed out by Ralph [124] who differentiated be-
tween two paradigms of software development research: Empirical and Rational.
Empiricists believe that knowledge can only be justified by sense experience
and observation. In contrast, rationalists accept that some knowledge can be
justified by observation, but claim that other knowledge is justified by reason
or intuition. Ralph claims that the rational paradigm continues to dominate
the software engineering standards and approaches: many developers and
researchers hold beliefs that are incongruous with empirical evidence. This,
according to Ralph, would undermine the software engineering community’s
scientific credibility.

4.1.2 Objective and Contribution

This study contributes to the body of knowledge on the process and use of
MBE in practice. In particular, we conducted a multiple-case study [78] by
analyzing and discussing empirical data collected from 2 two-month MBE
projects carried out at the Technical University of Eindhoven, the Netherlands.
The main contributions of this paper are two-fold:
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• Firstly, we shed light on the distribution of development efforts in MBE.
The resulting observations on effort distribution could lead to improved
MBE project planning and organization (e.g., resource allocation and
risk management), which in turn could lead to cost reduction.

• Secondly, we report and further analyze different challenges to the process
and use of MBE in practice. Exposing such challenges would make them
a candidate subject for research that are concerned with MBE process
improvement. Moreover, understanding and providing ways to overcome
these challenges could bring a significant impact to the effectiveness and
efficiency of the MBE approach.

In this paper, we address the following research questions:

• R.Q.1 How is the total effort spent on MBE distributed over different
development activities?

• R.Q.2 How is the effort spent on different MBE development activities
distributed over time?

• R.Q.3 How large is the portion of collaborative work in MBE projects?

• R.Q.4 What are the challenges that affect MBE in practice?

• R.Q.5 How are the challenges that affect MBE distributed over project
time?

The remainder of this paper is organized as follows: in Section 4.2, we consider
and discuss the related work. We describe the case study design in Section 4.3.
We present and discuss the results in Section 4.4. We discuss the threats to
the validity of this study in Section 4.5. Finally, we conclude and discuss the
future work in Section 4.6.

4.2 Related Work

In this section, we review the published work on: (i) measuring effort distribu-
tion between MBE development phases, and (ii) challenges encountered when
adopting MBE.

4.2.1 Effort distribution in MBE

Distribution of effort in software engineering processes is largely researched in
the context of estimation and planning of software projects [125]. Several prac-
titioners studied the effort required for different software development activities,
and provided rules of thumb such as the “40-20-40” rule of Pressman [126],
that is 40% on analysis and design, 20% on coding and 40% on integration and



76 4.2. RELATED WORK

testing. Other rules of thumb were provided by: Ambler [127], Boehm [128],
Boehm et al. [129], Brooks [130] and Zelkowitz [131].

In his text book, Sommerville [132] estimates effort distribution by measur-
ing cost units in different development activities, i.e., 15 units on specification,
25 units on design, 20 units on development/implementation and 40 units on
testing.

Yang et al. [133] empirically studied development effort distribution of 75
projects from 46 software organizations from the China Software Benchmarking
Standard Group (CSBSG) database. The development approaches defined
in CSBSG database roughly follow the waterfall model, including planing,
requirements, design, coding, testing and transition. The following mean
efforts over each development phases are reported: 16.14% for planning and
requirements, 14.88% for design, 40.36% for coding (including unit test and
integration), 21.57% for testing (system testing), 7.06% for transition (including
installation, acceptance test and user training).

Recent works including the one by Papatheocharous et al. [134] studied
effort distribution based on projects obtained from the International Software
Benchmarking Standards Group (ISBSG) R10 dataset [135]. The six develop-
ment phases declared by ISBSG are: planning, specification, design, build, test
and implementation. The mean efforts spent on each development phase are
reported as follows: 8.2% for planning, 7.9% for specification, 11.9% for design,
36.8% for developing and building, 15.5% for testing, 5.6% for implementation
and 14.0% for unphased activities.

On the basis of data collected from 20 industrial software development
projects, Heijstek and Chaudron [136] reported effort distribution over various
disciplines, defined by the Rational Unified Process (RUP), in MBE. The
following effort distribution was reported: 11% for analysis & design, 8% for
requirements analysis, 12% for testing, 38% for implementation, 13% for project
management, 4% for change & configuration management, 3% environment,
2% for deployment, 9% for others choices. This is, according to the authors,
surprisingly similar to the RUP Hump chart, and thus underlines the similarity
between MBE and traditional development approaches. To the best of our
knowledge, this study is so far the only one that investigates effort distribution
in MBE projects.

4.2.2 Challenges in MBE

Although MBE claims many potential benefits, e.g., gains in productivity,
portability, maintainability and interoperability [19–21], its adoption has been
facing a number of challenges. These challenges are discussed in academic
forums and empirically investigated in a number of industrial cases.

Van Der Straeten et al. [137] summarize outcomes of a plenary session at the
MODELS’08 workshop on “Challenges in Model-Driven Software Engineering”
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where participants discussed challenges in the field of MDE. Discussed challenges
included: management of models quality, lack of focus on modeling process
and models at run-time, and insufficient MDE tool-support.

Lately, Mussbacher et al. [22] reflected opinions of 15 MDE experts on the
biggest problems with MDE technologies over the last 20 years. The authors
highlighted that tools usability and adoption, people’s diverse perception of
MDE, inconsistencies between software artifacts, and lack of fundamentals in
MDE are considered as hindrances to MBE adoption.

Baker et al. [23] discussed experiences with MBE/MDE at Motorola over a
time span of almost 20 years. A number of challenges were reported, such as
poor tools and generated code performance, lack of integrated tools, and lack
of scalability.

Hutchison et al. [5] analyzed 250 survey-responses and 22 interviews, as well
as did on-site observations of MDE. They found that the main challenges to
MDE adoption are significantly related to Domain-Specific Languages (DSLs)
and MDE tools, as well as to organizational factors and human training
issues. Based on a survey involving 113 software practitioners, Forward and
Lethbridge [138] reported common problems with model-centric development
approaches. These problems are related to inconsistency of models over time,
model interchange between tools, and heavyweight modeling tools.

Similarly, by surveying 155 Italian software professional, Torchiano et al. [18]
considered lack of competencies and supporting tools as the main show stoppers
preventing altogether the adoption of modeling and model-driven techniques.

In the embedded systems domain, Liebel et al. [17] analyzed survey-responses
from 122 professionals working with MBE, and considered that interoperability
between (MBE/MDE) tools as a main challenge to MBE adoption. Moreover,
other factors such as, high effort to train developers and tools (poor) usability,
were also identified as secondary MBE challenges.

While the above-mentioned studies help in exploring challenges, there are
a number of other studies which focus on specific challenges, especially tool-
related ones. By performing a series of interviews with 20 engineers and
managers at General Motors, Kuhn et al. [139] identified five points of friction
in MDE. All of them are related to MDE tools. Similarly, by analyzing a total
of 39 interviews with industrial practitioners, Whittle et al. [14] identified a
taxonomy of technical, social and organizational issues related to MDE tool
use in practice. Addressing such issues together with modeling tools-related
issues identified by this study, would probably ameliorate the effectiveness and
efficiency of MBE.

4.3 Case Study Design

Yin defined case studies as empirical inquiries to perform a deep investigation
of a particular phenomenon, where the boundary between the phenomenon and



78 4.3. CASE STUDY DESIGN

Figure 4.1: Case Study Design.

its real-life context cannot be clearly specified [78]. Our multiple-case study is
an exploratory- inductive empirical research [79] conducted to identify patterns
in observations, seek new insights, and generate ideas and hypotheses for new
research. Figure 4.1 shows the design of our multiple-case study. Further details
regarding the case study design will be presented in the following subsections.

4.3.1 Purpose and Cases

Multiple-case studies are regarded as being more robust than single-case studies,
and the evidence from multiple cases is often considered more compelling [140].
The intention of the study is to explore the effort distribution over different
MBE development activities. Moreover, the study seeks to identify challenges
and impediments that could hinder the use of MBE in practice. In particular,
two cases were examined:

(A) MathWorks: MBE of the software of a Mars rover using MBE tools as
provided by MathWorks technologies, e.g., Matlab and Simulink.

(B) PolarSys: MBE of the software of the same rover using MBE tools as
provided by PolarSys open source technologies, e.g., Papyrus and Capella.
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4.3.2 Units of Analysis

The multiple-case study is embedded [78], with two Units of Analysis (UoA):

(A) Effort Distribution: Analysis of the distribution of the total MBE effort
over different development activities over time.

(B) MBE Challenges: Analysis of the challenges that could hinder the adop-
tion of MBE in practice.

4.3.3 Propositions

The two cases are selected to predict possible contrasting results (theoretical
replication) on MBE challenges and development efforts by altering one condi-
tion: the used MBE tools (MathWorks vs. PolarSys). Furthermore, the findings
of the this study will be compared to those of other related work in order to
find out any eventual supportive similarities or contradicting differences.

In particular, based on the related work we state the following two proposi-
tions:

• Proposition A: We propose that the distribution of development effort
over different MBE activities follows the rules-of-thumb e.g., the “40-20-
40” rule. If our findings are not compliant, then a deeper investigation
of the MBE approach is needed in order to understand why the effort
distribution deviates from the standard rules.

• Proposition B : We propose that poor tool-support is the most frequently
reported challenge that affect the adoption of MBE in practice. If the
perceived challenges in our study do not match, then a deeper investigation
of the severity of the perceived challenges (both of our study and related
work) is needed.

Moreover, for the scope of this multiple-case study, and based on the planned
cross-case analysis, we state the following two additional propositions:

• Proposition C : We propose that the distribution of the development effort
in case 1 matches that of case 2. If the distributions do not resemble, then
the choice of tools and technologies in MBE could affect the development
effort. Hence, a deeper investigation of the impact of MBE tools on the
development effort is needed.

• Proposition D : We propose that similar challenges would be perceived
in the two cases. If different challenges with different severities are
perceived, and if the differences are mainly related to the used MBE
tools, then we suggest that there is a difference in the maturity between
the two technologies (i.e., MathWorks vs. PolarSys).
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Figure 4.2: Maze-discovering rovers assignment.

4.3.4 Context

The Professional Doctorate in Engineering (PDEng) program of the TU/e aims
to train graduates that have (a non-CS) MSc diploma to become professional
software engineers. A group of 17 trainees of this program were involved in two
projects to develop software for a couple of collaborating concurrently-maze-
discovering rovers. The rover system was chosen because of its similarity to
the type of software that is developed at the ASML company1 in Eindhoven.

For both projects, it was mandatory to use MBE as the development
approach (e.g., almost all software were developed and generated based on, and
from, models). The objective of the projects was to develop control software
for two rovers that would concurrently discover a single maze of roads as fast
as possible. See Figure 4.2. Here, a road consists of a small line of tape with a
reflection that differs sufficiently from the underground it is mounted on. The
rovers were equipped with IR sensors and a (low-resolution) PID-controller
that enabled the rovers to autonomously follow the roads. The rovers had to
communicate with each other in order to complete their task in discovering
different parts of the same maze. The discovered map of the maze had to be
visualized to the end-user during the discovery, and had to be persisted as an
end-result.

The trainees were bootstrapped with the hardware and a software API to
control the hardware (e.g., motion of the rover), as well as to get the sensors’
readings (for e.g., line tracking). The software API was provided at the start
of the projects, the hardware itself was provided late in the projects as usually
is the case in real-life situations. The main deliverable of the two projects
was to produce the rovers’ software application. However, in order to test
the maze-discovering software application, the trainees needed to develop a
software simulator of the hardware. Once the rovers’ software application was

1https://www.asml.com

https://www.asml.com
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verified and validated, the simulator was replaced by the actual hardware.
The supervisors of the projects could accept deviations from the initial

requirements w.r.t. the development process. That would be possible if and
only if such deviations were very well motivated and supported by the trainees.

The group of trainees was organized as follows:

• Team MathWorks: Consisted of seven trainees: One team leader respon-
sible of general team tasks as well as team process, risks and design. One
design manager appointed to collaborate with the PM on the architec-
ture. One test manager responsible for managing UI tests, unit tests
and acceptance tests. One quality manager responsible for code-review
for quality assurance and managing documentation (coding and docu-
mentation standards). Three developers responsible for modeling, code
generation, and manual coding as well as testing. The MathWorks team
had to develop both software systems (the rover software application and
the simulator) using MBE/MDE tools as provided by the MathWorks2

technologies, e.g., Matlab3 and Simulink4.

• Team PolarSys: Consisted of six trainees. One team leader, one design
manager, one test manager, one quality manager and two developers.
These roles had the same responsibilities as described in team MathWorks.
The PolarSys team had to develop the same software applications using
MBE/MDE tools as provided by the PolarSys5 open source technologies,
specifically, Papyrus6 and Capella7. Other tools used by the two teams
are reported later in Section 4.4.4.

• Configuration & Integration Support : Three trainees given the task to
setup, configure and support a continuous development and integration
environment for both MathWorks and PolarSys teams.

• Project Management (PM): Both teams were managed by one trainee, who
was responsible of the plan, process, risks, architecture and integration
management of the two teams.

The two teams organized themselves in an agile way and had to complete
their projects in two months working full-time (i.e., each trainee worked ap-
proximately 8 hours per day). The trainees of each team had to meet with
the PM and discuss the progress on a weekly basis. Figure 4.3 summarizes
the organization of the development teams augmented with size and role
information.

2https://se.mathworks.com
3https://se.mathworks.com/products/matlab.html
4https://se.mathworks.com/products/simulink.html
5https://www.polarsys.org
6https://www.eclipse.org/papyrus
7https://www.polarsys.org/capella

https://se.mathworks.com
https://se.mathworks.com/products/matlab.html
https://se.mathworks.com/products/simulink.html
https://www.polarsys.org
https://www.eclipse.org/papyrus
https://www.polarsys.org/capella
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Figure 4.3: Organization of the development teams.

4.3.5 Data collection and Analysis

The data collection consisted of weekly questionnaires as well as developers’
time and actions tracking tools. Each week, the developers had to answer
a questionnaire8 in which we collected, amongst others, evidence on: (i) the
perceived effort spent on different MBE activities, and (ii) challenges and
impediments that affected the development process. The ProcrastiTracker9

software was used to automatically track for each developer which applications
and documents were used on their computer and for how long. We also collected
the recorded log files produced by this software for each developer on a weekly
basis.

We intend to analyze the results by means of pattern matching and cross-
case synthesis [78]. Pattern matching helps to compare an empirically observed
pattern with another pattern. When they agree then the pattern is true.
Whereas, cross-case synthesis can be used in multiple-case studies to investigate
and compare the different cases. Moreover, we intend to use NVivo10 for
qualitatively analyzing the data related to the experienced challenges to MBE
approaches.

4.4 Results

In this section, we present the findings of this study together with their interpre-
tation, as well as in relation to the published work and stated propositions. We
recall that the findings are based on the considered multiple-case study and its
context. Also, as mentioned previously in Section 4.3.5, we recall that we used
pattern matching and cross-case synthesis for data analysis and interpretation.

8http://www.rodijolak.com/pdf/WeeklyQuestionnaire.pdf
9http://strlen.com/procrastitracker

10https://www.qsrinternational.com/nvivo

http://www.rodijolak.com/pdf/WeeklyQuestionnaire.pdf
http://strlen.com/procrastitracker
https://www.qsrinternational.com/nvivo
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Figure 4.4: Total Effort Distribution Case 1

Figure 4.5: Total Effort Distribution Case 2

4.4.1 Development Efforts (R.Q.1)

Figures 4.4 and 4.5 orderly arrange the percentage values of the efforts spent
on different MBE activities in case 1 (MathWorks) and case 2 (PolarSys),
respectively. As can be noted, the majority of the effort is spent on Discussion
(14.32% in case 1 (MathWorks) and 15.32% in case 2 (PolarSys)). More details
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Figure 4.6: Discussion Effort Distribution Case 1

regarding the topics/arguments of the discussions related to case 1 and 2 are
provided by Figures 4.6 and 4.7, respectively. In particular, these figures report
an estimation of the percentages of the topics that were discussed each week.
We got these estimations by matching the reported percentages on development
discussions with the role responsibility of the reporting developer. Based on
this, four main discussion topics were identified: Design and Development,
Testing, Configuration and Integration, and Project Management. It can be
observed that the majority of the discussions were about Project Management
and Design and Development.

Table 4.1 shows a comparison of the effort phase distribution between
the related work and our multiple-case study. This table is inspired by Pap-
atheocharous [134]. First of all, it seems that the effort phase distributions
in our two cases are compliant with the RUP’s effort distribution reported
by [127]. Moreover, it seems that the development effort distribution in the
two cases is compliant with the “40-20-40” rule-of-thumb. This suggests that
the effort distribution in MBE projects does not deviate from the distribution
defined by the standard rules (Proposition A).

Giving a look on the separate development phases, we note the effort spent
on planning (i.e., project management activities such as: define project scope,
allocation, estimate cost, risks and schedule, etc.), RE, specifications and testing
in our two cases seem to be in-line with the efforts reported by the related
work, especially the recent works of Heijstek [136], Papatheocharous [134] and
Yang [133]. Surprisingly, the effort spent on software design and modeling in
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Figure 4.7: Discussion Effort Distribution Case 2

our two cases is similar to the findings of the other related work, especially
[134], [133] and [131]. This finding empirically suggests that MBE approaches
do not require a lot of effort on design and modeling, as it is believed among
many developers. Moreover, code-generation based on models allowed our
teams to spend less effort on manual coding. In particular, the combined effort
spent on code-generation and manual coding together in each of our two cases
is less that the effort of coding reported by [134, 136] and [133]. This empirical
finding confirms that MBE approaches require less effort on manual coding
because most of the code is obtained from models via code-generation.

By doing a cross-case analysis, we interestingly note that the effort distri-
butions across phases of the two cases are quite similar to each other. The use
of different modeling tools in the two cases, may explain the small differences
in efforts spent on Design and Modeling. In particular, developers in case 1
MathWorks spent more effort on design and modeling than the developers of
case 2 PolarSys. Hence, it might be that different modeling tools only have a
small difference in impact on the development effort (proposition C ).

Based on empirical findings, we suggest that MBE approaches do
not require a lot of effort on design and modeling. Moreover, they
require a little effort on manual coding, as most of the code is
obtained from models via code-generation.
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Table 4.1: Effort phase distribution reported in literature

Study Planning Requirements Specifications Design Coding Testing Integration
Ambler (RUP) [127] Inception (10%) Elaboration (25%) Construction (55%) Transition (10%)
Zelkowitz [131] RE (10%) Spec (10%) Design (15%) Coding (20%) Testing (45%)
Brooks [130] Planning (33%) Coding (16%) Testing (25%) Integration (25%)
Sommerville [132] Specs (15%) Design (25%) Development (20%) Testing (40%)
Boehm [128] RE - Analysis - Design (60%) Coding (15%) Testing (25%)
Pressman [126] Analysis & Design (40%) Coding (20%) Testing & Integration (40%)
Papatheocharous [134] Plan (9.6%) Specs (9.3%) Design (14.0%) Build (42.3%) Testing (18.2%) Implement (6.6%)
Heijstek [136] Planning (13%) RE (8%) Analysis & Design (11%) Coding (38%) Testing (12%) Configuration (4%)
Yang [133] Planning & RE (16.1%) Design (14.9%) Coding (40.3%) Testing (21.6%) Transition (7%)
Case Study 1
(MathWorks)

Planning (15.0%) RE (10.0%) Analysis & Research (7.0%) Design & Modeling (17.0%)
Code Generation (9.2%)
Manual Coding (13.6%)

Testing (15.4%)
Integration & Configuration

(12.7%)
Case Study 2
(PolarSys)

Planning (15.3%) RE (6.8%) Analysis & Research (8.8%) Design & Modeling (13.0%)
Code Generation (12.0%)
Manual Coding (11.0%)

Testing (20.0%)
Integration & Configuration

(13.2%)



4.4. RESULTS 87

4.4.2 Effort Distribution Over Time (R.Q.2)

Figures 4.8 and 4.9 present the effort distributions over each MBE activity
during the two-month project period related to MathWorks case and PolarSys
case, respectively. On the left side of the figures, eight main development
activities are shown: Requirements Engineering, Analysis and Research, Design
and Modeling, Code Generation, Manual Coding, Testing, Integration and
Configuration, and Project Management. Whereas, on the right side of the
figures, the effort distributions of other three secondary activities are reported:
Documentation, Tool-Learning and Discussion.

By considering the effort spent on design and modeling, we notice a spike
during the first week in both cases, MathWorks and PolarSys. This is because
both teams used models at the beginning of the projects for ideation and
discussion of design alternatives.

Team MathWorks spent more effort on manual coding than team PolarSys
(as can be noticed by looking to figures 4.4 and 4.5), especially towards the end
of the project. This phenomenon suggests that the code-generation facilities
offered by MathWorks technologies are less than those of PolarSys. This is
confirmed by the developers who reported that the tools offered by PolarSys
(i.e., Papyrus and PapyrusRT) are more effective, user-friendly and generate
code with more appropriate data structures and executables statements.

Both teams started with testing relatively early and throughout the projects.
It is also notable that both teams spent more effort on testing towards the
end of the projects. We think that this is a common trend in most software
development projects, where more tests happen towards the end (e.g., system,
integration and acceptance tests).

The effort spent on integration and configuration is quite similar between
the two cases. Integration of software was occurring regularly in the two cases.
In particular, for both cases, we notice a peak in the effort on week six. This is
actually because the hardware was provided to both teams during that week,
and the developers spent more effort on the configuration of the software and
hardware.

As predicted, the effort on tool learning was high during the first weeks of
the two cases, and gradually went down afterwards as the developers got more
used to the tools over the time. The majority of the effort spent in the two
cases was on discussing of the development activities. In particular, it seems
that the discussions were regularly happening during the entire duration of the
two projects, and not only during the planned weekly meetings.

Considering code-generation, we found that the tools offered by
PolarSys open source technologies (i.e., Papyrus and Papyrus-RT)
are more mature than the tools offered by MathWorks technolo-
gies (i.e., Matlab and Simulink).
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Figure 4.8: Effort Distribution Case 1

Figure 4.9: Effort Distribution Case 2
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4.4.3 Individual vs. Collaborative Effort (R.Q.3)

In the weekly questionnaire, we asked developers about their perceptions of the
ratio of individual versus collaborative development effort that occurred during
each week. Figures 4.10 and 4.11 provide an overview of the distribution of
collaborative work over the entire duration of the project of case 1 MathWorks
and case 2 PolarSys, respectively.

Figure 4.10: Case 1: individual versus collaborative work

Figure 4.11: Case 2: individual versus collaborative work
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Apparently in both projects, and for each week, the collaborative work
was dominating. The collaborative work included discussions, group meetings,
sharing knowledge and understanding, and collaborative development (e.g.,
definition of the data structure of the maze, modeling, code-generation, testing
and pair programming). A further analysis of the patterns in figures 4.10
and 4.11 shows that more individual work happened at the beginning of both
development projects, while more collaborative work happened towards the end.
This can be explained by the fact that the developers worked individually on
tools exploration and learning during the first weeks. Moreover, the developers
reported that they spent more time on pair programming and testing meetings
towards the end of the projects.

Our findings empirically indicate that model-based software devel-
opment is an endeavor that requires intensive communication and
collaboration between developers.

4.4.4 Tool-Chain

A variety of tools were used for the different development activities. These
tools ranged from being main model-based development tools, such as Papyrus,
PapyrusRT, Matlab/Simulink, Enterprise Architect and Capella, to other
supportive tools such as Latex, Slack, PDF Reader, Version Control, Text
Editor, Outlook, Power Point and Word. Figure 4.12 and 4.13 provide an
overview on the tools which were used in the two cases: 1 and 2. These figures
also highlight the distribution of the total tool effort percentage between the
different used tools. About 22% of case 1 total tool-use effort was spent on
Matlab and Simulink. Whereas, around 30% of case 2 total tool-use effort was
spent on Papyrus and Papyrus RT. The focus on these tools was expected
given the project’s objective of tool use of the two development teams.

4.4.5 Experienced Challenges (R.Q.4)

Every week, the members of each project were asked to report the challenges
that they experienced during the past week. The pie charts 4.14 and 4.15
orderly arrange the reported challenges ranging from the most experienced
to the less experienced challenge during the execution of case 1 and case 2,
respectively. Tools Usability was the most experienced challenge to MBE in
the two cases (23% in case 1 and 25% in case 2). Challenges in Tool-Chain
Learning were the second most experienced challenges (20% in case 1 and 19%
in case 2). More details regarding the categories of the challenges are described
in Table 4.2.
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Figure 4.12: Case 1: Overview of the used tools and their effort distribution

Figure 4.13: Case 2: Overview of the used tools and their effort distribution

In both of the cases in our study, multiple challenges related to MBE tools
were reported, such as tools- usability, learning, installation and configuration,
and update. This is actually in-line with the related work (e.g., [22] and [14])
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which states that poor tool-support is one of the main challenges to MBE
(proposition B).

A cross-case analysis shows that the majority of the challenges were overall
experienced similarly in both cases, especially tool-related challenges (proposi-
tion D). This finding indicates that the modeling tools provided by MathWorks
and PolarSys are still immature and have to be enhanced in order to meet the
needs of MBE and MBE developers. More information on MathWorks and
PolarSys challenges are provided on-line11.

Our findings show that tool-related challenges are the most en-
countered. These tool-challenges are due to: tools usability, tool-
chain learning, interoperability of tools, and tools installation and
configuration.

Figure 4.14: Experienced challenges in Case 1

11http://www.rodijolak.com/pdf/toolsChallenges.pdf

http://www.rodijolak.com/pdf/toolsChallenges.pdf
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Figure 4.15: Experienced challenges in Case 2.

Table 4.2: Classification schema for the challenges

Category Description
Tool-Chain Learning Effort on learning the tools to be used in the project

Tools Installation & Configuration (I&C) Effort on the I&C of the tools on the machines of the developers
Interoperability Missing the ability to exchange artifacts between different tools
Tools Update Effort on adapting the software to new tool/library versions

Difficulty of Use Complexity and cumbersomeness of the tools
Effectiveness Incompleteness, inaccuracy and inconsistency
Efficiency Long tasks’ completion time

Tools Usability

UX Uncomfortable tools and unacceptability of use
Task Allocation Effort on organization & distribution of tasks between developers

Task Management
Synchronization Effort on synchronization of development activities

Team Management Effort on organization of the teams
Challenging Tasks Complex development tasks that require a lot of mental effort

Portality Difficulty in transferring software on different platforms
(i.e., operative systems)

Integration Challenges Difficulty in integrating single different modules of the software
Communication Problems caused by miss- or late communication between the

stakeholders
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4.4.6 Challenges Distribution Over Time (R.Q.5)

Figure 4.16 presents the distribution of the experienced challenges over the eight
weeks period of the two projects. It is remarkable that Tool-chain Learning
and Tools Usability challenges were mostly experienced and reported during
the first two weeks of the two project.

Challenges in tool-learning were also perceived in weeks 3 and 4 in both
cases. For case 1 (MathWorks), the main reason was that the developers spent
a lot of time on learning Simulink testing-tool in order to test the simulator
software. Whereas for case 2 (PolarSys), learning how to use third-party C++
code in a PapyrusRT project was perceived as challenging.

Tools usability challenges were reported regularly during the execution of
the two projects. In particular, on week 6 challenges related to Simulink model
advisor were reported in case MathWorks. In contrast, on weeks 5 and 6 several
challenges were reported by team PolarSys related to a PapyrusRT update
from version 0.7 to 0.8, which in turn caused lots of migration conflict issues.

Generally, it seems that the majority of the issues related to tools usability
were encountered during the first weeks, when the developers started to get their
hands dirty in the projects. More tool-related issues were reported afterwards
by performing more activities in the projects, and hence by exploring and using
more tools’ functionalities.

For both cases, Task management challenges were basically encountered
at the beginning, when the teams spent more effort on distributing the tasks
between the developers, and also in different occasions afterwards (until week
7) where synchronization issues were reported.

In both cases Challenging tasks (see Table 4.2) were more encountered at the
beginning- and towards the end of the projects. At the beginning, performing
development activities was challenging as the developers were not so familiar
with the tools. Whilst in order to finish the projects on time, the developers
were over-allocated with multiple tasks towards the end of the projects.

Tools installation and configuration challenges were encountered during the
first weeks of the two projects, as could be expected.

For both cases, tool-interoperability challenges were mainly encountered
from week 3 to week 6 when several issues related to linking the produced
software application with the API of the rover (e.g., coding the wrapper
between the generated code and rover’s API) were reported. This also caused
Portability challenges as there were incompatibilities between some API-library
dependencies and the used operative systems.
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Figure 4.16: The distribution of the experienced challenges over the total period of the project.
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4.5 Threats to Validity

We identified and grouped the threats to validity in our study according to
Yin [78]:

4.5.1 Construct Validity

Constructs validity refers to how well operational measures represent what
researchers intended them to represent in the study in question. The collection
of subjective perceptions regarding development efforts and challenges after
completing a project may not be optimal. This is because the subjects may
fail to recall how much effort was given to a specific task or what challenges
were encountered during their experience. To mitigate this, we collected the
perceptions on a weekly basis: Once after the end of each week. Furthermore,
we looked into the logs of the modeling tools and Procrasti activity tracker in
order to triangulate the data which we got through collecting perceptions. In
turn, the activity tracking and logging tools have a limitation. These tools log
the activities only when there is an interaction between the users and their
PCs. As a result, no activity does not imply that the subject is not working,
for example one might be reading the document without touching the PC. We
think that the two data collection approaches (i.e., collecting perceptions and
logging developers’ activities) adopted in this study have their own limitations.
However, using multiple sources of evidence helped us to increase construct
validity by encouraging convergent lines of inquiry.

4.5.2 Internal Validity

Internal validity concerns studies in which causal relationships are examined.
Moreover, it concerns efforts made to ensure that possible confounding factors
are identified and alleviated. The level of experience and expertise in MBE
may influence the effort required by a developer to accomplish a specific MBE
activity. This may lead to spending more or less effort on the development
tasks. All of the subjects who took a part in our study are familiar with MBE
because they participated in a workshop that taught the MBE development
paradigm.

Some developers may consider some development tasks as challenging, while
other developers may consider such tasks as less challenging. The subjects often
discussed their reported challenges and motivated their perceptions. This was,
to some extent, helpful to conceive the seriousness of the reported challenges.
Moreover, we consider the challenges that were encountered and reported by
more than one subject as more significant.

We recall that our subjects are Professional Doctorate in Engineering
(PDEng) trainees. This might have made the subject spending more effort on
learning new tools and finding out how to work as an actual development team.
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However, our subjects know each other in advance. Furthermore, prior to our
study, the subjects worked together on several other development projects.

4.5.3 External Validity

External validity concerns the extent to which results of a case study can
be generalized. By design, case studies have a very limited external validity
stemming from the fact that a topic is studied within its context. Therefore,
we cannot claim that our findings are generalizable (i.e, generalizations to
different projects in different domains might have different results). Instead,
the case design and the replication logic with the cross-case analysis increases
the external validity of this study. In particular, we tried to describe the case
context as detailed as possible in order to allow practitioners to decide whether
or not the findings might generalize to their own case context. Moreover, we
underline that our study involved first-time tool users. Therefore, different
results might be obtained if professionals with deep tool experience did the
same projects.

4.5.4 Reliability

Reliability concerns the extent to which the operations of a study can be
repeated by other researchers, achieving the same results. As a part of the case
study design, we created a case study protocol which ensured that we conducted
the study and collected the data in a consistent manner. By using this protocol,
we believe that the study can be reproduced by other researchers.

4.6 Conclusion and Future Work

In this paper we studied the effort distribution across various tasks for two
projects that use different MBE tool-chains for developing an autonomous
MARS rover. We obtained data both from the automatic logging of the tool-
activities on the developers’ computers as well as via weekly questionnaires.

Our study showed the patterns of effort distribution in MBE across different
development activities as well as over time. This shows that there is no penalty
in building models as part of the construction phase. Our study is the first
to show that collaborative tasks make up the major part of the total of all
development tasks. The resulting observations on effort distribution of this
study could lead to improved MBE project planning and organization, which
in turn could lead to cost reduction.

Our inquiry into challenges showed that tool-related challenges are the most
encountered. We uncover that specific tool-challenges are due to: i) usability
of the tools, ii) the learning of the tool-chain, iii) the interoperability of various
tools and iv) the installation and configuration of the tools. Exposing such
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challenges would make them a candidate subject for research that are concerned
with MBE process improvement. Moreover, understanding and providing ways
to overcome these challenges could bring a significant impact to the effectiveness
and efficiency of the MBE approach.

4.6.1 Future Work

As we found that the majority of the development effort is spent on the
collaboration and communication activities, we would like to explore the effect
of using models on software design communication. This in order to understand
whether or not the use and share of software models could help in communicating
and discussing software architectural/design decisions.
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Abstract

The process of software understanding often requires developers to consult both
high- and low-level software artifacts (i.e. models and code). The creation and
persistence of such artifacts often take place in different environments, as well
as seldom in one single environment. In both cases, software models and code
fragments are viewable separately making the workspace overcrowded with
many opened interfaces and tabs. In such a situation, developers might lose the
big picture and spend unnecessary effort on navigation and locating the artifact
of interest. To assist program comprehension and tackle the problem of software
navigation, we present OctoBubbles, a multi-view interactive environment for
concurrent visualization and synchronization of software models and code. A
preliminary evaluation of OctoBubbles with 15 professional developers shows
a high level of interest, and points out to potential benefits. Furthermore,
we present a future plan to quantitatively investigate the effectiveness of the
environment.

Keywords: Model-Based Software Engineering; Modeling; Code; Multiple
Views; Synchronization; Design Environment; UML.
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5.1 Introduction

Model-based approaches aim to raise the abstraction level in system specification
by allowing developers to think in terms of conceptual ideas rather than in
terms of their details [141]. Software designers create models in order to
express their ideas and document their decisions regarding a software system.
Successively, the created models are used to communicate the design decisions
to other stakeholders, e.g. developers. In turn, developers use these models,
which are considered as instructions (blueprints) for system construction [3], to
implement the software system. Before and during the implementation phase,
the developers seek to understand both the structural and behavioral aspects
of the system. The process of understanding often requires developers to create
a mental representation of high-level descriptive domain artifacts (i.e. models)
and low-level artifacts (i.e. code) [42,43].

The Unified Modeling Language (UML) provides a standard way to vi-
sualize, specify, construct and document software systems [142]. Most of
UML Computer-Aided Software Engineering (CASE) tools like ArgoUML1,
Visual Paradigm2 and ObjectAid3 support forward, reverse and round-trip
engineering [89]. However, these tools do not provide developers with multiple
simultaneously-visible views of both low- and high-level software artifacts. The
developers who use these tools are constrained to open views on different soft-
ware artifacts making the workspace overcrowded with many opened interfaces
and tabs. In such a situation, the developers often lose the big picture and
spend unnecessary effort on navigation and locating the artifact of interest. It
is reported that at most 35% of developers time is spent on software naviga-
tion [44], and around 60% of developers time is given to software understanding
activities [45]. Moreover, the use of concurrent and multi-view interfaces is
proposed for tasks in which a mental effort is required to perform a comparison
between the different parts of complex systems [143].

In this paper, we present OctoBubbles to assist program comprehension
and tackle the problem of software navigation. OctoBubbles is a multi-view
interactive environment for concurrent visualization and synchronization of
both high- and low-level software artifacts (i.e. models and code).

The main contributions of this paper are two-fold. First, a design of a
novel scaling approach which is used to provide an interactive, bidirectional,
and smooth navigation between models and code. Second, the results of a
qualitative user evaluation of OctoBubbles indicating a high level of interest,
and pointing out to potential benefits and future improvements. Furthermore,
in this paper we present a future plan for a quantitative evaluation of the
effectiveness of OctoBubbles.

1http://argouml.tigris.org/
2https://www.visual-paradigm.com/
3http://www.objectaid.com/

http://argouml.tigris.org/
https://www.visual-paradigm.com/
http://www.objectaid.com/
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Figure 5.1: A part of the main canvas of OctoBubbles. The buttons at
the top are (from left to right): create class, create enumeration class, create
package, create association, select, pan, delete, undo, redo and visualize code.

5.2 Approach

OctoBubbles aims to facilitate software comprehension by bridging the gap
between high- and low-level software artifacts. Also, it aims to reduce the
cognitive load placed on developers by getting rid of disorienting view switches
between models and code. OctoBubbles is an open source software development
environment based on OctoUML project [8,83,117]. It supports multiple modes
of interaction e.g. mouse, keyboard and touch. It can be deployed on a variety
of devices ranging from PCs over touch screens to large interactive whiteboards.
Figure 5.1 shows the main interface of OctoBubbles. It provides an overview
on how the UML model and the corresponding source code are concurrently
visualized on the same canvas.

The environment is designed to support and improve the synchronization
and visualization process of models and code.
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5.2.1 The Synchronization Mechanism

The synchronization mechanism of OctoBubbles is responsible of transmitting
changes in the UML model to the source code and vice versa. This mechanism
is based on the JavaParser library. This library provides means to convert the
source code into a Abstract Syntax Tree (AST) structure. The AST structure is
used for matching the altered artifact with its corresponding low- or high-level
artifact. By this mechanism, the users can modify the details of one of the two
artifacts (UML model or source code), and OctoBubbles keeps the other one
synchronized. This means any modification in the source code committed by
the user will automatically propagate to the class model and vice versa.

5.2.2 The Visualization Mechanism

In contrast, the visualization mechanism of OctoBubbles is based on a novel
scaling approach. To have an idea on how this approach does support the
concurrent visualization of models and code, let us consider the following
scenario:

Bob draws a UML class model as in Figure 5.2 (A). He then selects one
or more classes (in this case ClassD is selected), and clicks the </> button
(shown in the top of Figure 5.1). Doing this, OctoBubbles either matches the
selected class with the existing relative source code or generates a source code
skeleton from scratch according to the predefined attributes and operations.
OctoBubbles also draws an invisible borderline which surrounds the model
and splits it into four areas: top-left, top-right, bottom-right, and bottom-left.
Moreover, it detects in which area the majority of the selected class resides (in
this case the top-left area), as it is shown in Figure 5.2 (B).

After detecting the area of interest, OctoBubbles further splits the external
space which is surrounding the UML class model into eight external regions:
(i) four main regions: top, right, bottom and left, and (ii) four reserve regions:
top-left, top-right, bottom-right and bottom-left (see Figure 5.3 (C)). These
regions are used for code visualization. OctoBubbles first seeks to visualize the
code in the main regions, however; in case of lack of space in the main regions,
the reserve regions are then used for code visualization.

There are three external regions which are adjacent to the area of interest
(see Figure 5.3 (C)). Two are main regions (left and top), and one is a reserve
region (top-left). These regions become candidates for visualizing the source
code of classD. As it can be observed from Figure 5.3 (C), there is an empty
space in both of the two main external regions. To decide in which region
the source code should be visualized (displayed), OctoBubbles calculates the
distances from the sides of the selected class box (i.e. ClassD box) to the
opposite borderlines between the area of interest and the external main regions
(in this case α and β, see Figure 5.3 (D)).
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Figure 5.2: The scaling approach: steps A and B
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Figure 5.3: The scaling approach: steps C and D
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Finally, OctoBubbles chooses the closest external main region to the selected
class and visualizes the source code there (in this case the top region, because
α <β).

In case that α = β, then OctoBubbles chooses the region which contains
less visualized source code bubbles. Moreover, in case of lack of space in the
candidate external main region, OctoBubbles visualizes the source code bubble
in the closest external reserve region to the area of interest (in this case the
top-left region).

The users of OctoBubbles can arbitrarily close and change the location
of any source code bubble and any class box. When the users change the
location or size of a class box, the location of its corresponding visualized code
bubble can be either updated automatically or manually by: (i) closing the
code bubble, (ii) selecting the target class, and (iii) clicking the </> button.

Figure 5.4 summarizes the overall synchronization and visualization process
of OctoBubbles. Furthermore, to get a better idea on how OctoBubbles works,
check out the demo video4.

5.3 Preliminary Evaluation

For a preliminary evaluation of OctoBubbles, we formed the following research
questions:

• R.Q.1 What are users’ perceptions regarding the idea, usability and
efficiency of OctoBubbles?

• R.Q.2 What are the missing and desired functionalities?

In order to answer these questions, we conducted a user study. Fifteen
subjects were involved in this study. All subjects are working in industry as
software developers. All subjects have knowledge in UML and object oriented
programming. The user study included three main tasks:

• Task I to perform a round-trip engineering assignment5. The assignment
was to create a UML class diagram of a given scenario. Moreover, to
perform synchronization and modification of both the created UML class
diagram and the associated source code,

• Task II to answer ten closed questions regarding the usability of Octo-
Bubbles, and

• Task III to answer five open questions on the perceived usefulness (1
question (q)) and efficiency of OctoBubbles (2qs), missing functionalities
(1q) and desired features (1q) for future development of the system.

4http://rodijolak.com/#octobubbles
5http://rodijolak.com/pdf/OctoBubbles_Assignment.pdf

http://rodijolak.com/#octobubbles
http://rodijolak.com/pdf/OctoBubbles_Assignment.pdf
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Figure 5.4: The synchronization and visualization process of OctoBubbles

Having done Task I, the subjects were asked to answer ten closed questions
regarding the usability (Task II ). Table 5.1 presents the obtained results. For
each usability measurement, the subjects gave a score ranging form 1 (the
lowest score) to 5 (the highest score). Med is the median score, Q1 indicates
the first quartile, Q3 is the third quartile, and IQR stands for Inter-Quartile
Range (i.e. Q3 -Q1 ).

We qualitatively analyzed the answers to the five open questions (Task III ).
In particular, we present the answers of the subjects according to the following
three themes:

5.3.0.1 Potential Benefits of OctoBubbles

The subjects stated that OctoBubbles helps to better establish traceability
between a UML model and its associated source code, especially in software
testing and maintenance tasks. For such tasks, developers might jump back
and forth between low- and high-level artifacts to have a better understanding
of the system. The visualization approach of OctoBubbles was considered
extremely useful to have an abstract view of a software system, concurrently
with a more detailed view of its aspects.
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Table 5.1: Perceptions regarding the usability of OctoBubbles

Usability Measurement Med Q1 Q3 IQR
Willing to use the system frequently 4 3 4 1
Complexity of the system 1 1 1 0
Ease of use 5 4 5 1
Need of support to use the system 1 1 1 0
Integrity of various functions 5 4 5 1
Inconsistency in the system 1 1 1 0
Intuitiveness 4 4 5 1
Cumbersomeness to use 1 1 2 1
Feeling confident when using the system 4 4 5 1
Required learning-effort 1 1 2 1

5.3.0.2 Perceived Efficiency

According to our subjects’ experience, OctoBubbles was perceived more efficient
than other CASE tools that support forward, reverse and round-trip engineering.
One of the subjects uses StarUML (http://staruml.io). Comparing StarUML
with our approach, the subject stated that OctoBubbles is more efficient and
user friendly. The synchronization mechanism of OctoBubbles was perceived
pretty smooth and extremely fast. Moreover, the visualization mechanism
of OctoBubbles was considered very helpful in saving the effort of artifacts
navigation.

5.3.0.3 Missing Functionalities & Desired Features

There was a demand to enable OctoBubbles of supporting a concurrent visu-
alization of software behavioral models (e.g. Sequence Diagrams) and their
associated source code. The motivation behind this demand is that high- and
low-level behavioural artifacts would complement the role of the structural
artifacts in describing the software system. Indeed, the behavioral artifacts
describe the software system from a different perspective, and this is considered
helpful to better support program comprehension. The find-method-usage
feature in most integrated development environments was suggested to be
supported by OctoBubbles. This in order to show methods’ usage-links between
the visualized code fragments, but also between the elements of the model.
Finally, the subjects suggested to make use of the voice interaction modality of
OctoUML [144] to support the visualization mechanism of OctoBubbles.

5.4 Related Work

There are several UML CASE tools that allow the transformation of UML
models into source code and vice versa. Examples are Visual paradigm, Ar-
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goUML, Altova UModel6, yWorks UML Doclet7 and ObjectAid. These tools
support the creation of several types of diagrams like UML, entity-relationship
and business process modeling diagrams, as well as various programming lan-
guages such as Java, C++ and C#. None of these tools allow for a concurrent
visualization, as well as modification, of models and multiple code fragments on
the same interface. Therefore, these tools may actually increase the cognitive
load placed on users by forcing disorienting view switches between different
software artifacts.

Lethbridge et al. [145] created Umple, a software development technology
that merges modeling and programming. Umple aims to enhance program
understanding by letting developers to work at the abstract level, and con-
currently see diagrammatic and Umple’s textual representations of the source
code. Once the diagram is created, the users of Umple can generate source
code in different languages such as, Java, Ruby and PHP. Compared to Umple,
OctoBubbles does not require the users to learn a specific textual language to
create diagrams. Indeed, OctoBubbles allows a direct bi-directional mapping
between the model and the source code (for example, Java). Furthermore the
visualization approaches of Umple and OctoBubbles are different. OctoBubbles
aims to reduce the navigation and traceability efforts by visualizing code frag-
ments as close as possible to their corresponding class models. Moreover, the
low- and high- level software artifacts in OctoBubbles are visualized concur-
rently on the same canvas (one screen), and the users can zoom-in/out to the
artifact of interest. In contrast, Umple visualizes the diagram and the Umple’s
textual representation in two different juxtaposed scrollable screens, and the
users have to scroll-up/down in order to locate the artifact of interest.

Bragdon et al. [146] proposed a working set-based interface to support
software development and ease code understanding and maintenance. Their
interface allows a concurrent visualization of multiple lightweight and editable
code fragments called Code Bubbles. The evaluations showed that their ap-
proach helps in improving code understanding time and decreasing navigation
interactions. Code bubbles is concerned with source code visualization and
management. In contrast, OctoBubbles allows the concurrent visualization
of models and source code, as well as supports the management and the
synchronization of these two artifacts.

Baltes et al. [75] stated that informal sketches and diagrams are often
detached from the source code they document. The authors conducted a study
to understand the use of sketches in software engineering. They found that
sketches are considered helpful to understand the related source code artifacts.
For this, the authors proposed SketchLink to let software developers easily
capture, annotate, and link their diagrams and sketches to the correspondent
source code artifacts. In contrast to OctoBubbles, SketchLink provides a

6https://www.altova.com/umodel/
7https://www.yworks.com/products/ydoc

https://www.altova.com/umodel/
https://www.yworks.com/products/ydoc
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matching between early-phase sketches and the corresponding source code.
Furthermore, SketchLink does not support a bi-directional synchronization of
the two artifacts, together with the links in between when they are updated or
deleted.

5.5 Conclusion and Future Evaluation Plan

While performing software comprehension and maintenance tasks, software
developers often use different interfaces to navigate complex and often implicit
relationships between software artifatcs [147]. This actually requires developers
to spend an extra effort to locate the artifacts of interest. In this paper we
presented OctoBubbles, a multi-view interactive environment for concurrent
visualization and synchronization of UML models and code. OctoBubbles
aims to support program comprehension, facilitate traceability and tackle the
problem of software navigation by avoiding disorienting view switches between
high- and low-level software artifacts.

In order to study the effectiveness of OctoBubbles, we aim to investigate
achievable improvements in developers’ daily practice using OctoBubbles. We
also aim to understand whether OctoBubbles can reduce developers’ workload
and mental demand when they have to switch their focus between UML class
diagrams and the related source code. The task of the study will require the
participants to understand and evolve an object-oriented-programming based
system. This task is frequently performed in software development processes
such as software maintenance, where combining models and source code has
been claimed to improve the efficacy of the process [148,149]. The quantitative
measures that would be used in the study are both objective and subjective.

Objective Measures. Task completion time and the number of committed
mistakes during the execution of the task will be used to measure participants’
performance. We also plan to use quantitative measures of eye gaze such
as pupil’s size and saccades, as they have been used to measure cognitive
workload [150,151] and to evaluate user interfaces [152].

Subjective Measures. NASA TLX and SUS will be used to examine
perceived cognitive workload and analyze users’ subjective preferences on the
usability of OctoBubbles. These measures have been widely used in prior works
to evaluate the mental impacts of CASE tools on software developers [153].

The planned user study should adequately examine the effectiveness of
OctoBubbles. We also believe that the user study can be applied to evaluate
similar systems in the future.
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Abstract

Global software engineering requires supporting distributed collaboration for
most software development activities. However, geographical distance challenges
effective collaboration. Nowadays, we are witnessing significant advances
in communication and collaboration technologies. So, we explored whether
these advances enable effective remote collaboration. To that end, we studied
the design activities of both colocated and distributed professional software
designers. The findings are based on analysis of video recordings of design
sessions and questionnaires. We found that despite comprehensive technological
improvements, distance still matters. To ensure effective distributed software
design, designers must consider extra (nontechnical) details.

Keywords: Software Engineering; Collaborative Design; Communication;
Distance; GSE
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6.1 Introduction

Companies engage in global software engineering (GSE) to reduce development
time and costs. Companies also head toward cross-site distribution of their
development work to take advantage of proximity to markets and customers [25].
However, working at a distance might compromise the effectiveness of GSE.
There are two important challenges to making GSE successful. Almost two
decades ago, Gary Olson and Judith Olson raised these challenges [154]:

• technological challenges raised by the need for efficient, effective remote-
collaboration tools and media; and

• social challenges raised by differences in local context, culture, language,
and trust between collaborators.

They predicted that future technological advances will reduce the effect of the
technological challenges. But they also predicted that working at a distance will
rarely succeed owing to the inevitable differences raised by the social challenges.
However, advances in communication and collaboration technologies raise the
question of whether distance still matters.

One of the key activities of software engineering is software design. It
comprises discussing requirements, exploring the problem domain, and making
design decisions. When globalized, software design could become less effective.
Several design activities could be affected, including:

• design modeling (representation),

• design reasoning (about problem domain and solution-domain design
aspects), and

• design communication.

Also, lack of awareness (understanding others’ activities) and problems with
communication media might threaten the success of distributed software design.

Many researchers have explored the impact of distance on collaborative
work. James Herbsleb argued that colocation fosters communication because
developers are aware of who is around and who is doing what [24]. In contrast,
being unable to share resources and see what is happening at the other sites
hinders communication across different locations.

Pernille Bjørn and her colleagues investigated whether distance still matters
for distributed collaboration [155]. They found that the social challenges form
an obstacle to achieving effective work between remote collaborators.

Demetrios Karis and his colleagues performed studies of remote collaboration
at Google [65]. They found that the use of videoconferencing and video portals
contributes to the success of remote collaboration by:

• providing presence and status information,
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• helping to establish mutual trust and common ground, and

• preventing misunderstandings.

However, when it comes to remote design collaboration, Karis and his colleagues
highlighted that developers at Google found collaboration over videoconferenc-
ing and video portals a pale imitation of face-to-face interaction. Moreover,
the developers complained that the video portals at Google lacked a shared
drawing tool to facilitate sketching, designing, and brainstorming.

This conforms with what David Budgen stated in his paper “The Cobblers
Children”: many modeling tools do not serve the purpose of software design
and rarely support realistic software design practices [10]. According to Budgen,
modeling tools should preserve the flexibility and simplicity of whiteboards
and provide proper support for distributed designers at different locations.

Several researchers have proposed next-generation design-support tools that
are in line with Budgen’s guidelines. One of these tools is OctoUML [83].
OctoUML allows mixed informal modeling (sketching) and formal modeling
and supports collaborative distributed software design.

To answer the question posed in our article’s title, a deep investigation of
current practices of collaborative software design is required. To do so, we
analyzed a collaborative design multiple-case study based on two exploratory
cases. Details regarding this study are in the following section.

6.2 Multiple-Case Study

In the first case study, three colocated pairs of software designers worked on a
software design challenge at a single location (labeled C1, C2, and C3 in the
main article) [59]. We conducted the second case study, which involved three
design sessions (D1, D2, and D3) between distributed pairs of software design
practitioners in Aachen, Germany, and Gothenburg, Sweden. We used the
same design problem and timing as in the first case study. This allowed us to:

• explore the design decisions and process activities of the two studies,

• gather experiences and seek insights, and

• develop suggestions and recommendations that could be of interest to
practitioners concerned with distributed collaborative software design.

The designers in our study varied from three to seven years of professional
experience. Three designers worked in automotive software development, two
worked in networking solutions, and one worked in traffic technologies. In
both studies, the designers solved a software design challenge. The challenge
was to create a software design of a simulator that should enable its users to
investigate the effects of different signal timing on traffic flow. The challenge
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description is available in Software Designers in Action: A Human-Centric
Look at Design Work [59].

Teams of two professional software engineers solved the same challenge
locally, which focused on four functional requirements:

• Users can create a visual map of intersected roads of varying length.

• Users can describe the behavior of the traffic lights at each of the inter-
sections, such that combinations of individual signals that would result
in crashes are prohibited.

• Users can simulate traffic flows on the map, and the resulting traffic levels
are conveyed visually.

• Users can change the traffic density per road.

We informed the designers that:

• their design would be evaluated primarily on the basis of its elegance and
clarity, and

• they should focus on the interaction that the users will have with the sys-
tem, including the basic appearance of the program, and on the important
design decisions that form the foundation of the implementation.

To create the design, the designers in our case study used a smart whiteboard
with the OctoUML1 collaborative-design software [117] connected to a computer
providing videoconferencing between the two sites. OctoUML is open source;
it supports mixed informal modeling (free strokes) and formal modeling (UML
class diagram shapes) and supports translating free strokes into class diagram
shapes on the fly. It provides predefined shapes, drawing selection mechanisms,
and undo and redo functionality. With OctoUML, remote designers share a
joint canvas upon which they can draw UML diagrams along with informal
elements (i.e., text, drawings, etc.). We chose to deploy a simplified version of
OctoUML (a shared canvas and sketching tool) on a smart whiteboard that
mimics standard whiteboards (see Figure 6.1). Because the designers in the
first case study could not use formal modeling, we deactivated those features
as well.

Each design session finished with a questionnaire on the experiences and
challenges of collaborative distributed design. We analyzed approximately 10
hours of design activity by six pairs of professional software designers and
performed a manual coding of more than 2,000 discussion events. For coding
the conversation dialogs of the design sessions, we used the collaborative
conversation skill taxonomy of Margaret McManus and Robert Aiken [156] and
the design-reasoning decisions of Rainer Weinreich and his colleagues [157], as

1http://rodijolak.com/#octouml

http://rodijolak.com/#octouml
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Figure 6.1: UI sketches produced by one of the teams.

presented in Figure 6.2. The former captures various collaborative problem-
solving conversation discussions; the latter captures decisions from the problem
domain (traffic flow) and solution domain (software engineering). We focused on
exploring design reasoning, design communication, awareness, and the number
and nature of problems that occurred during the distributed software design
sessions.

6.3 How Distance Affects Design Decisions

First, let’s look at the type of design decisions that were made and see whether
they differed between distributed and colocated design sessions. The graphs in
Figure 6.3 indicate that the colocated designers discussed more design decisions
in the problem domain than the distributed designers did. More details on
how these design decisions were made are available at http://rodijolak.com/
DoesDistanceStillMatter.html.

The decisions in the problem domain consisted mainly of assumptions, as
shown in Figure 6.4. One of the reasons that might have allowed colocated
designers to discuss more problem domain design decisions is that they implicitly
knew (via facial expressions and body language) whether a specific assumption
was mutually understood. In a collaborative process, the conversation can
continue only when the collaborators mutually establish what they know [158].
Distance obstructs the process of establishing a mutual understanding of the
problem domain between distributed designers. When one designer makes
an assumption and implicitly perceives that the colocated partner did not
understand that assumption, that designer might rephrase the assumption or
build more knowledge around it.

http://rodijolak.com/DoesDistanceStillMatter.html
http://rodijolak.com/DoesDistanceStillMatter.html
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Figure 6.2: A classification schemata for conversation skills and software
design decisions [156,157].
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Figure 6.3: The number of design decisions and social and technical issues per each collocated team (C1–C3) and
distributed team (D1–D3).

Figure 6.4: The categories of problem domain design decisions made in each design session.
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In contrast, distributed designers usually do not see each other when dis-
cussing assumptions. Hence, the perception of having a mutual understanding
(via body language) was rarely possible. Indeed, the distributed designer
making an assumption often implicitly considered that the remote partner
understood it, thus producing fewer problem domain design decisions.

Technical issues also affected the distributed design discussions– e.g., through
blurriness of the voice and instability of the communication medium. Lack of
awareness could have also led to fewer problem domain design decisions in the
distributed setting. This is because not perceiving another person’s actions
makes it difficult to initiate contact and often leads to misunderstanding of
communication content and motivation [24].

6.4 How Distance Affects Collaborative Com-
munication

The graphs in Figure 6.5 show how distance could affect communication in
distributed design. We see that distributed teams had fewer creative-conflict
discussions but more conversation. Creative-conflict discussions can promote
software design reasoning and enhance the effectiveness of group tasks [96].

The creative-conflict problem-solving discussion skill comprises two major
subskills: Mediate and Argue (see Figure 6.2). Argue comprises different
actions (agree, disagree, offer an alternative, propose an exception, etc.). Dis-
tributed designers argued less, as shown in Figure 6.6. One of the reasons
for fewer arguments–and hence fewer creative-conflict discussions–might have
been lack of trust. Colocated designers share experiences and context, which
helps them to develop trust. Trust is needed for collaborators to be able to
challenge each other without frustrating collaboration. Distributed settings
can complicate establishing trust and might compromise reliability between
the remote collaborators [159].

Another reason could have been lack of common ground–i.e., the knowl-
edge that the designers are aware of and have in common–in distributed
design sessions. When common ground is missing, it might affect distributed
collaborators’ activities and communication effectiveness [160]. Indeed, this
might promote mutual tacit acceptance of design decisions. Hence, it reduces
creative-conflict discussions.

Lack of awareness can also reduce creative-conflict discussions. For example,
information on authorship (who did what) and intention (what designers are
going to do) was not available for the participants in our study.

As we mentioned before, more conversation happened between the dis-
tributed designers than between the colocated designers. To explain this, we
recall that conversation comprises three major subskills: Maintenance, Task,
and Acknowledge (see Figure 6.2). Distant collaboration requires more man-
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Figure 6.5: The categories of collaborative discussions made in each design
session.

Figure 6.6: Percentages of collaborative-discussion categories per each team.

agement overhead and discussion about work coordination. Lack of awareness
among distributed collaborators also raises more task discussions and mainte-
nance discussions. For example, the distributed designers summarized design
decisions to confirm knowledge of what they had done so far. Summarizing
also helped them understand the intention of their partners.

In addition, distributed designers had fewer Inform (see Figure 6.6) discus-
sions than the colocated designers. This indicates that distributed designers
tend to give less information about their decisions, which leads to less active
discussion of the essence of and rationale for those decisions.

6.5 The Challenges of Distributed Design

The distributed designers reported the following challenges.



120 6.6. CONCLUSION

6.5.1 Technological Challenges

The designers considered connection instability as a challenge. Network prob-
lems and high CPU use in the client machines interrupted several design
sessions. These devices were simultaneously running OctoUML, screen- and
voice-recording software, and telecommunication software, which overloaded
them. Consequently, the designers had to wait until communication was
reestablished. This situation can be prevented by avoiding such overloads.

Moreover, the distributed designers complained about the quality of voice
communication. This depends on different factors: the quality of the Internet
connection, the distance from the microphone, and the volume of the speakers.
This problem can be alleviated by adopting advanced communication infras-
tructures, a high-speed Internet connection, and advanced voice management
tools.

Nonetheless, many organizations fail to keep pace with technological ad-
vances and therefore fail to manage the aforementioned challenges.

6.5.2 Social Challenges

First, the designers perceived the lack of awareness as a challenge. In particular,
they felt that the inability to interpret eye contact, body language, and facial
expressions affected their decisions and activities. For instance, one designer
said that because he could not see how his partner reacted to his proposals, he
was unable to decide how to act appropriately. Each designer was unaware of
what the collaborating designer was doing and which part of the system that
designer was talking about or pointing to.

Second, the designers also perceived the lack of trust as a challenge. In
particular, the designers felt that not knowing their collaborator beforehand
could have affected their discussions and work.

6.5.3 Other Challenges

The design assignment per se was perceived as a challenge. We believe this
confirms our process of thoughtfully planning the assignment to simulate real-
world software design situations. This planning took into account ideation,
problem domain exploration, and design solution decisions.

6.6 Conclusion

The geographical distribution of collaborating partners in practice still raises
social and technological challenges. Thus, practitioners should carefully con-
sider whether the distribution is applicable and weigh the benefits of tech-
nology deliberately. To support distributed designing, for instance, modern
collaborative-design environments focus on the consistent, real-time sharing of
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diagrams. However, social awareness, such as the ability of designers to relate
to each other through pointing, gaze, and gestures, remains missing.

The designers in our study indicated challenges in distributed collaborations
that are beyond the scope of tooling. In particular, in contrast with locally
collaborating teams, distributed designers did not know their collaborators
beforehand. Hence, they had to build professional and personal trust during
the experiment.

On the basis of our results, we encourage software design practitioners
aiming to collaborate remotely to consider the following:

• Establish trust via arranging personal or virtual meetings or social events
before the remote design sessions [65].

• Establish common ground via exchanging interests, experiences, expertise,
and beliefs between distributed designers.

• Introduce explicit triggers for creative-conflict discussions into the collab-
oration process.

Furthermore, we recommend that the developers of computer-supported coop-
erative work (CSCW) tools for software design should support awareness by
adapting technology to provide immersive telepresence experiences.

Software design requires extensive exploration of the problem domain and
context, and leads up to making critical design decisions about software systems.
Moreover, collaborative software design is tightly coupled work that requires
either more frequent or more complex interactions [154]. Because of these
aspects of software design and because the current technology is still incapable
of fully mitigating the social challenges of remote collaboration, we suggest
that distance still matters.
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Abstract

Context : Software engineering is a social and collaborative activity. Commu-
nicating and sharing knowledge between software developers requires much
effort. Hence, the quality of communication plays an important role in in-
fluencing project success. To better understand the effect of communication
on project success, more in-depth empirical studies investigating this phe-
nomenon are needed. Objective: We investigate the effect of using a graphical
versus textual design description on co-located software design communication.
Method : Therefore, we conducted a family of experiments involving a mix of
240 software engineering students from four universities. We examined how
different design representations (i.e., graphical vs. textual) affect the ability to
Explain, Understand, Recall, and Actively Communicate knowledge. Results:
We found that the graphical design description is better than the textual in
promoting Active Discussion between developers and improving the Recall
of design details. Furthermore, we found that well-organized and motivated
textual design descriptions help to enhance the explaining and recall of their
details.

Keywords: Software Engineering; Software Design; Software Modeling; UML;
Communication; Knowledge Sharing; Graphical Representation; Textual Rep-
resentation; Family of Experiments
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7.1 Introduction

Software engineering is a social activity and requires intensive communication
and collaboration between developers. In large companies, developers work
in different development teams and collaboratively communicate with many
stakeholders. In such a setting, the quality of communication between the
stakeholders plays an important role in reducing the overall teams’, and thus
projects’, development effort. In a multiple-case study on challenges and efforts
of model-based software engineering approaches, Jolak et al. [27] analyzed
the distribution of efforts over different development activities in two software
engineering projects. Interestingly, they found that communicating and sharing
knowledge dominates the effort spent by developers. The effort on commu-
nication, as Jolak et al. found, is actually more than all of the efforts that
developers spent in any of the other observed development activities, such as,
requirements analysis, design, coding, testing, integration, and deployment.

Furthermore, poorly defined software applications (due to miscommunica-
tion between stakeholders) can affect the final structure and/or behavior of
these applications. This is in line with Jarboe et al. [92] and Kortum et al. [93]
who consider that the quality of communication does influence developers’
activity experience and achievement, and therefore customer’s satisfaction.

The aforementioned studies underline the importance of communication
in Software Engineering (SE). They also highlight the need to study com-
munication in-depth to determine elements or criteria of its efficiency and
effectiveness. The study we present in this article is inline with this concern:
we investigate how different software architecture design representations affect
the communication of design knowledge. In particular, we compare textual
vs. graphical representations. In contrast with a textual representation, a
graphical representation provides a two-dimensional visuospatial description of
information reflecting the actual spatial configurations of the parts of a process
or system [56]. With respect to knowledge communication, we look into the
following communication aspects:

• Explaining : or knowledge donating, communicating the personal intellec-
tual capital from one person to others [94].

• Understanding : or knowledge collecting, receiving others’ intellectual
capital [94].

• Recall : or memory recall, recognizing or recalling knowledge from memory
to produce or retrieve previously learned information [95].

• Collaborative Interpersonal Communication [96], which includes:

– Active Discussion: questioning, informing, and motivating others.

– Creative Conflict : arguing and reasoning about others’ discussions.
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– Conversation Management : coordinating and acknowledging com-
municated information.

7.1.1 Rationale

Kauffeld et al. [161] suggested that effective team communication and infor-
mation flow are prerequisites for the success of software development projects.
In a study on requirements practices in start-ups, Gralha et al. [162] iden-
tified knowledge management and communication as increasingly important
strategies for risk mitigation and prevention. As a consequence, research
concerning different factors influencing the degree and way in which people
communicate and share their knowledge is actually relevant for maximizing
the aforementioned advantages.

Graphical descriptions encode and present knowledge differently from tex-
tual descriptions. In particular, they provide a visuospatial representation of
information, and can recraft these information into a multitude of forms by us-
ing fundamental graphical elements, such as dots and lines, nodes and links [56].
Moreover, graphical descriptions encourage spatial inferences (e.g., inferences
about the behavior, causality, and function of a system) to substitute for and
support abstract inferences [163]. This is inline with Moody [28], who states
that graphical and textual knowledge representations are differently processed
by the human mind. Empirical evidence on how graphical descriptions affect
developer’s achievement and development productivity is still underwhelming,
as reported by Hutchinson et al. [5]. Moreover, Meliá et al. [29] report that the
software engineering field lacks a body of empirical knowledge on how different
representations (graphical vs. textual) could provide support for improving
software quality and development productivity.

In this study, we focus on design knowledge communication/transfer between
two software developers, where, by using a graphical vs. textual software design
description, one developer is taking the role of design Explainer (i.e., design
knowledge owner), and one developer is taking the role of design Receiver (i.e.,
design knowledge receiver). Rus et al. [164] reported that greatest challenge
of companies is to retain tacit knowledge, mainly, but also explicit knowledge
(e.g., models).

Companies, such as Ericsson Software Technology1 and sd&m2, started
initiatives –Ericsson’s initiative is called “Experience Engine”– to exchange
knowledge between developers by connecting two individuals, a problem owner
and experience communicator. The problem owner is the employee who re-
quires information or support to solve a specific problem and the experience
communicator is the employee who has in-depth knowledge of the problem
domain. Having been connected, the experience communicator has to educate

1https://www.ericsson.com
2https://www.capgemini.com

https://www.ericsson.com
https://www.capgemini.com
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the problem’s owner on how to solve it. The aforementioned initiatives illustrate
that our study has a practical relevance.

7.1.2 Objective and Contribution

We planned and conducted a family of experiments with a goal to understand
and compare the effect of using a Graphical Software Design description (GSD)
versus a Textual Software Design description (TSD) on software design com-
munication. Through this, we contribute to the body of empirical knowledge
on the practical use of graphical versus textual software design descriptions.
Such knowledge might lead to achieving more effective software design com-
munication, which in turn would help in reducing the total effort of software
development activities. Consequently, we address the research objective by
answering the following question:

• R.Q.1 How does the representation of software design (graphical vs.
textual) influence [Communication Aspect]?

Where the investigated [Communication Aspect]s are the following:

– Design Explaining,

– Design Understanding,

– Design Recall,

– Active Discussion,

– Creative Conflict, and

– Conversation Management.

We first understand how each software design representation (i.e., graphi-
cal/textual) affect the six aspects of communication that we described previously
(i.e., explaining, understanding, recall, active discussion, creative conflicts, and
conversation management). Then, we compare the effect of using the graphi-
cal vs. textual software design description on the considered communication
aspects.

To address certain threats to external validity, we also compare the effect
of using a cohesive3 and motivated4 TSD versus less cohesive and unmotivated
TSD on software design communication. In particular, we address the following
research question:

• R.Q.2 Does using a cohesive and motivated TSD influence [Communica-
tion Aspect]?

Where the investigated [Communication Aspect]s are the following:

3Cohesive: documented information or knowledge that are well-organized.
4Motivated : augmented with design rationale.
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– Design Explaining,

– Design Understanding,

– Design Recall,

– Active Discussion,

– Creative Conflict, and

– Conversation Management.

The remainder of this paper is organized as follows: We discuss the related
work in Section 7.2. We describe the family of experiments in Section 7.3. We
present the results in Section 7.4. We discuss the results and threats to validity
in Section 7.5. Finally, we conclude and describe the future work in Section
7.6.

7.2 Related Work

Effective communication depends on various factors, such as personality [165],
distance [97], or knowledge representation (graphical vs. textual) [29,66,166].

In a recent study on design activities of co-located and distributed collabora-
tive software design [97], the authors investigate whether advanced technologies
for distributed communication can replace personal meetings. The main result
is that co-located face-to-face meetings remain relevant as facial reactions and
body language are often not transmitted by current communication software.
This is partly due to technical challenges, such as unstable or slow Internet
connection, that affect communication results. In contrast to that study, our
family of experiments does not investigate distributed communication and
is conducted without the use of communication tool-support to mitigate the
effects of technical challenges.

Meliá et al. [29] describe an experiment in which students perform main-
tenance tasks on a graphical model and on a textual model. The authors
investigate whether a model’s syntax affects subjective and objective perfor-
mance and whether the notation influences developer satisfaction. Objective
performance is measured by the number of correct answers in the task whereas
the subjective performance is the performance as perceived by the developer.
In the experiment, participants were divided into two groups, one group worked
with a model for selling tickets, the other group had a model for organizing
online courses. Participants received the models in textual and in a graphical
notation and were asked to find 5 errors in each notation. They also received
5 tasks in which they had to extend and modify each model. Participants
using the textual notation performed significantly better in finding errors in
the domain model and also spent less time until finishing the task. Nonetheless,
participants preferred to work with the graphical notation. The authors believe
this to originate from the fact that students learn graphical modelling languages
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such as UML as stereotypes for domain models whereas less attention is given
to textual modelling languages.

In another study, the authors measure how well participants extract the
required information (such as architectural design decisions) from different
media [66]. The researchers collected participant-specific information in two
questionnaires, filmed participants during tasks, and asked them to think
out loud. The experiment comprised of four architectures, out of which each
consisted of a graphical and a textual description. Participants (students
and professional developers) were asked three questions per architecture. The
authors observed that no notation was clearly superior in communicating
architecture design decisions. Nonetheless, participants tended to first look at
the graphical notation before reading the text. The authors attribute this to
the clarity of the graphic representation, which enables participants to grasp
the structure of the model more quickly.

In a case study on comparing graphical versus textual representations, the
researchers measure the accuracy and time spent to solve three requirement
comprehension tasks [166]. The study does not indicate results concerning
accuracy (both notations yield correct results), but participants spent less
time when working with textual requirements. Participants preferred to work
with the graphical representation nonetheless. Also, when working with a
combination of graphical and textual representations, the study measured the
best results concerning time and accuracy.

Other research investigated a combined usage of textual and graphical
representations [167]. The researcher interviewed 21 practitioners to find out
how developers work with different requirements artifacts of various granularity
and notation and how they handle scattered information. The researcher found
out which artifacts the practitioners used and which problems they encountered.
A share of 70% of the interviewees reported issues when working with multiple
artifacts. The main shortcomings were inconsistencies and the additional effort
for documenting.

In contrast to our research, the studies described in [29, 66, 166,167] do not
observe communication based on using graphical and textual representations,
but how well both notations are suited to share information. Therefore, more
research concerning both notations as a base for explaining and discussing
software architectures is required.

Other related research aims to find out if drawing improves the recall ability,
compared to making textual notes [168]. The participants of this research
were divided into two groups, younger and older adults, to measure whether
the notation influences both groups in the same way. Participants were told
30 nouns, one after the other, and asked to either draw or to note the items
textually. Afterwards, they were asked to recall and list all items. For the
drawn nouns both groups performed equally well, but for the textual words,
young adults performed better. This indicates that a graphical notation can
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compensate for the age-related deficit.
To summarize the related work section, Table 7.1 provides a brief comparison

between the research objectives of our study and related work.

Table 7.1: Research objectives of our study and related work.

Work Objectives

Heijstek et al. [66]
Study the effect of using a graphical vs. textual on extracting
design decisions information.

Jolak et al. [97] Study the effect of distance on communication
Liskin [167] Study the use of different requirement artifacts in practice.

Meade et al. [168] Study the effect of drawings vs. textual notes on memory recall.

Meliá et al. [29]
Study the effect of using a graphical vs. textual notation on
domain models maintenance.

Sharafi et al. [166]
Study the effect of using a graphical vs. textual representation
on requirement comprehension.

Our Study
Study the effect of using a graphical vs. textual software design
description on face-to-face design communication.

7.3 Experimental Design

This section describes the protocol that is used to perform the experiments
and analyze the results. In particular, we report the experiment according to
the guidelines suggested by Jedlitschka et al. [169].

7.3.1 Family of Experiments

Easterbrook et al. [77] highlighted that controlled experiments help to in-
vestigate testable hypotheses where one or more independent variables are
manipulated to measure their effect on one or more dependent variables. A
family of experiments facilitates building knowledge and extracting significant
conclusions through the execution of multiple experiments pursuing the same
goal. Basili et al. [170] reported that families of experiments can help to (i)
generalize findings across studies and (ii) contribute to important and relevant
hypotheses that may not be suggested by individual experiments.

We planned and conducted a family of experiments based on the methodol-
ogy of Wohlin et al. [76]. Our family of experiments are between-subject designs
to minimize learning effects and transfer across conditions. The family of ex-
periments consists of one original experiment and three external replications
involving 240 participants in total (See Table 7.2). The original experiment
(OExp) was conducted at the University of Gothenburg involving a mix of 50
B.Sc. and M.Sc. Software Engineering students. The first replication (REP1)
was conducted at RWTH Aachen University with 36 M.Sc. and Ph.D. SE
students. The second replication (REP2) was conducted at the University of
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Lille involving 94 M.Sc. SE students. REP1 and REP2 replicated as accurately
as possible the original experiment (strict replications [170]). The third repli-
cation (REP3) was conducted at the Slovak University of Technology with 60
B.Sc. and M.Sc. SE students. REP3 varied the manner in which the original
experiment was conducted, so that certain threats to external validity were
addressed. In particular, REP3 is a replication that varies a variable intrinsic
to the object of study [170]. This variable is the TSD. More details regarding
this variation are provided in Section 7.3.5.

The experiment material and communication language in OExp, REP1,
and REP3 were in English. In contrast, the experimental material and commu-
nication language in REP2 (which was conducted at the University of Lille,
France) were in French. The gender distribution in each experiment is also
shown in Table 7.2. The majority of the participants are males (79%).

Table 7.2: The family of experiments.

ExpID
(R.Q.)

S.R. Context Lang. Date Participants # Females

OExp
(R.Q.1)

-
Chalmers &
Gothenburg
University

English 11/10/18
B.Sc. & M.Sc.

Students
50 22%

REP1
(R.Q.1)

Yes
RWTH
Aachen

University
English 25/10/18

M.Sc. & Ph.D.
Students

36 17%

REP2
(R.Q.1)

Yes
University
of Lille

French 03/12/18 M.Sc. Students 94 26%

REP3
(R.Q.2)

No
Slovak

University of
Technology

English 13/12/18 M.Sc. Students 60 15%

R.Q.: Research Question Total 240 21%
S.R.: Strict Replication

7.3.2 Scope

Developers intensively communicate ideas, decisions, progress, updates, etc.
throughout the software development life-cycle. In this study, we focus on
investigating co-located, face-to-face software design communication.

Design communication plays a fundamental role in transferring software de-
sign decisions (i.e., instructions for software construction) from architects/analysts
to programmers or other stakeholders. Also, the quality of these communi-
cations might play an important role in shaping the overall structure and
behaviour of software products.

In co-located teams, developers usually communicate face-to-face. In dis-
tributed teams, developers use other communication channels, such as video
conferencing systems. Jolak et al. [97] found that co-located software design
discussions are more effective than distributed design discussions. Moreover,
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Storey et al. [171] stated that face-to-face communication is one of the most
important and preferred communication channel for collaborative software
development. Indeed, with face-to-face communications, developers can receive
feedback quickly which facilitates discussing through complex issues, such as
design decisions. Thus, we investigate co-located face-to-face communication, as
this type of communication is widely preferred and would therefore contribute
to the generalizability of our results.

Modeling languages can be (i) of general-purpose and applied to any domain,
such as the Unified Modeling Language (UML) or (ii) domain-specific and
designed for a specific domain or context, such as the Domain Specific Languages
(DSLs). Brambilla et al. [123] stated that UML is widely known and adapted,
and comprises a set of different diagrams for describing a system from different
perspectives. Brian Dobing and Jeffrey Parsons [172] found that the use of
UML class diagrams substantially exceeds the use of any other UML diagram
(use case, sequence, activity, etc.). Thus, in order to increase the generalizability
of the results of this study we chose to represent the graphical software design
description by a UML class diagram.

7.3.3 Participants

The population for this study was intended to match two prerequisites: (i)
having a basic knowledge in UML (especially UML class models), (ii) and being
able to understand and communicate in the experiment language. The target
group in this case is the entire group of people who posses the aforementioned
criteria: students who took an academic course in UML modeling, professional
software developers, architects, etc. However, the portion of the population
to which we had reasonable access is a subset of the target population. In
particular, the accessible population for this family of experiments was the group
of B.Sc. and M.Sc. Software Engineering (SE) students at the universities where
the authors teach SE courses. The sampling approach was convenience sampling.
On the one hand, this sampling approach is easy and readily available. On the
other hand, the sample produced by convenience sampling might not represent
the entire population (i.e., threat to external validity or generalizability of the
results). To increase the external validity of the results, we recruited a mix of
240 B.Sc. and M.Sc. SE students from four universities to take a part in a
family of experiments. Previously in Section 7.3.1 (Table 7.2), we provided
details on the participants in this family of experiments.

7.3.4 Experimental Treatments

The participants of each experiment were randomly assigned to two treatments
or groups:

• Group G: participants in this group had to discuss a software design as
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represented by a graphical description (UML class diagram).

• Group T: participants in this group had to discuss the same software
design, but as represented by a textual description.

Furthermore, the participants of each group were randomly assigned one specific
role:

• Explainer: this role consisted in: (i) understanding the design represen-
tation, and (ii) explaining it to a Receiver.

• Receiver: this role consisted in understanding the software design based
on the discussion with an Explainer.

Having the roles assigned, we randomly formed 120 Explainer -Receiver pairs.
These pairs were involved in discussing a design case which we detail in the
next Section 7.3.5.

7.3.5 Design Case and Graphical vs. Textual Descrip-
tions

We created a design case for our family of experiments. The design case
describes a structural view of a mobile application of a fitness center, the
Fitness Paradise. This fitness center gives its clients the opportunity to book
facilities and activities. The featured application enables clients to consult the
schedule of activities, manage bookings, keep track of payments, and visualize
performance data when available. We believe that the selected design case
relies on a familiar domain, Sport and Gym, from everyday life which is quite
popular and easy to understand without prior knowledge.

To introduce the Explainers with the design case, we created a design case
specification document which describes the fitness center and lists the features
of the mobile application in natural language:

Design Case Specification
The Fitness Paradise is offering a combination of sport activities. To this end, it
has several facilities: an Olympic size swimming pool, a gym with several fitness
machines (weight, rowing, cycles), a football-pitch, a tennis court. The Fitness
Paradise offers these facilities for rent for its clients. The Fitness Paradise
accepts both individuals and clubs (e.g., companies and sport clubs) as members.
The members have an account. In addition to the facilities, it also offers
activities: training, yoga classes, physiotherapy and massages. The activities
have a schedule that is updated every month. The Fitness Paradise wants to
support booking via an app for smart phones. The app presents the activity
schedule for every day and week. Bookings can be paid with different methods.
At the end of every month, an invoice is sent to members for any unpaid
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bookings over the past month. The system keeps track of the bookings. The app
can also keep track of the fitness and performance of Fitness Paradise members.
Examples of performance are for example: the distance cycled in a certain
amount of time, calories burnt in a training session (but also aggregates over
a week and month). For the fitness enthusiasts it is also possible to exchange
such performance data which is collected by the member’s fitness-band/watch.

7.3.5.1 Design Descriptions

We played the role of the designer/architect and created the two design represen-
tations (i.e., GSD and TSD). The GSD and TSD provide the same information
and describe one structural design of the Fitness Paradise app. The two design
descriptions only differ in the way they represent the design (i.e., graphical vs.
textual).

• GSD. We created the UML class diagram of the design case (see Figure
7.1). The diagram includes 28 classes (21 model entities, 3 controllers, and
4 views) and 30 relationships. We chose to use the Model View Controller
(MVC) design pattern for structuring the design, as this pattern is well
known by the participants of the experiments. The entities of each part
of the MVC were given a specific color. The model entities have a yellow
color, the controllers are in blue, and the views are in green. The colors
were added to the entities in the GSD in order to mimic the characteristic
of structured textual document (which we describe next) in facilitating a
visual distinction between different sections (i.e., the three parts of the
MVC).

• TSD. For EXP, REP1, and REP2, each element of the GSD was method-
ologically used to create exactly one corresponding element (e.g., one
paragraph or sentence) in the textual description, thus to maintain a
one-to-one correspondence between GSD and TSD (See Figure 7.2). In
other words, we were thoroughly keen to make both the graphical and
textual designs present the exact same amount of information or design
knowledge in order to control eventual bias due to different amount of
information. The textual description was arranged into two main struc-
tured sections. In the first section, we orderly described the entities of
each module of the MVC: First the entities of the model part, then the
entities of the controller part, and last the entities of the view part. In
the second section, we described the relationships between the entities
following the same appearance order of the entities.

• Altered TSD. In REP3, we wanted to know whether or not a motivated
and cohesive TSD could affect design communication differently from the
original TSD. Figure 7.3 shows the altered TSD.
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Figure 7.1: Graphical Software Design Description (GSD)
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Figure 7.2: Original Textual Software Design Description (TSD)
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Figure 7.3: Altered Textual Software Design Description (Altered TSD)

To make the design motivated, we added an introduction to the original
textual description, including a rationale of the chosen design pattern
(i.e., MVC).

To make the design cohesive, we organized the textual design description



7.3. EXPERIMENTAL DESIGN 137

in a different way. In particular, the description of the relationships
of each entity was moved and placed right after the description of the
entity. In this way, information regarding each entity and its relationships
are close to each other, instead of being distant/remote (i.e., located on
different pages), as in the original textual description.

7.3.6 Tasks

The main task of this family of experiments was inspired by the Chinese
Whispers (or The Telephone) game. In this game, players form a line, and the
first player comes up with a message and whispers it to the ear of the second
person in the line. The second player repeats the message to the third player,
and so on. When the last player is reached, they announce the message they
heard to the entire group.

In contrast, we created a message (i.e., a software design representation), and
asked the first player (i.e., the Explainer) to first understand the message then
explain it to the second player (i.e., the Receiver). After that, the players (i.e.,
Explainers and Receivers) have to announce the message (i.e., via answering
a post-task questionnaire). Finally, the original message (i.e., the software
design representations) is compared with the final version (i.e., knowledge of
Explainers and Receivers).

The main task of the experiments reflects common scenarios in software
engineering industry where developers collaborate, communicate, and exchange
knowledge in order to create software. For example, the main task reflects a
common knowledge-transfer scenario between a software architect (i.e., Ex-
paliner) who owns knowledge on the structure and behavior of the software
system and a software developer (i.e., Receiver) who needs to receive and
understand the knowledge of the architect in order to start coding. Moreover,
knowledge communication is especially important when new employees enter a
company and struggle to learn the existing tacit knowledge. In this direction,
our task reflects the scenario of onboarding of novice developers by experienced
developers (e.g., Ericsson’s “Experience Engine” initiative (cf. section 7.1).

In addition to the main task, we added two secondary tasks to collect com-
plementary data, such as participants’ design experience and communication
skills that are also needed for data analysis and results’ discussion.

For the study, the participants had to perform the following three tasks:

(A) Answer the pre-task questionnaire. All participants have to answer
the pre-task questionnaire based on the group they are assigned to. No
time-limit is imposed for this task. We noted the required time for
this step during the experiments and found that it takes 15 minutes on
average.

The pre-task questionnaire is developed to collect participants’ design
experiences and communication skills based on self-evaluations. The
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questions in the pre-task questionnaire vary according to the role of the
participant (Explainer vs. Receiver) and his/her group (G vs. T).

• G-Explainer: participants belonging to this subset have to answer
questions on (i) familiarity with software design and UML modeling,
(ii) how good are they in understanding and sense-making5 of UML
models, an English/(French) conversation, and explaining their
knowledge to others.

• G-Receiver: participants belonging to this subset have to answer
questions on (i) familiarity with software design and UML modeling,
(ii) how good are they in understanding and sense-making of UML
models, an English/(French) conversation, and building knowledge
from conversing with others.

• T-Explainer: participants belonging to this subset have to an-
swer questions on (i) familiarity with software design, (ii) how
good are they in reading, understanding, and sense-making of an
English/French text, understanding and sense-making of an En-
glish/French conversation, and explaining their knowledge to others.

• T-Receiver: participants belonging to this subset have to answer
questions on (i) familiarity with software design, (ii) how good
are they in understanding and sense-making of an English/French
conversation, and building knowledge from conversing with others.

(B) Discuss the Design (i.e., transfer design knowledge). Each Ex-
plainer receives a design case specification plus either a GSD or TSD,
based on Explainer ’s group (G or T). The Explainer has to read and
understand the received artifacts, as good as he/she can, in 20 minutes
(defined based on to the pilot studies, see Section 7.3.7.1). The Explainers
are allowed to individually ask questions to experiment supervisors to
clarify issues related to the design, if required.

After 20 minutes, the Explainers give the design case specification back
to the supervisors, but keep the design description (GSD or TSD). Each
Explainer is randomly paired with a Receiver from the same group. Then,
each Explainer -Receiver pair is given 12 minutes (defined based on to
the pilot studies, see Section 7.3.7.1) to discuss the design, where the
Explainer has to explain the design and the Receiver has to understand
the design. The Receivers can unhesitatingly ask questions. Moreover
to help the understanding process, Receivers are allowed to take notes
during the discussion, but all notes are collected by the supervisors

5Developing the understanding of a concept by connecting it with existing knowledge
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before the next task. This is because two of the communication aspects,
Understanding and Recall, that we measure require the participants to,
respectively, apply and remember the design knowledge without using the
design descriptions or the notes that they took during the discussions.

(C) Answer the post-task questionnaire. All participants have to answer
the post-task questionnaire based on their groups. No time-limit is
imposed for this task. We also noted the required time for this step and
found that it takes 15 minutes on average.

The first part of the post-task questionnaire is developed to collect
participants’ self-evaluations of their experiences just after the design
discussion. The questions vary according to the role of the participant
(Explainer vs. Receiver) and his/her group (G vs. T).

• G-Explainer: participants belonging to this subset have to answer
questions on (i) how good they are in remembering UML models,
(ii) how well they did understand and explain the design, and (iii)
how much diagrams did help them in understanding and explaining
the design.

• G-Receiver: participants belonging to this subset have to answer
questions on (i) how good they are in remembering UML diagrams,
(ii) how well they did understand the design from the discussion
with the Explainer, and (iii) how much diagrams did help them in
understanding the design.

• T-Explainer: participants belonging to this subset have to answer
questions on (i) how good they are in remembering a English/French
text, (ii) how well they did understand and explain the design, and
(iii) in case they could have used them, how much diagrams would
have helped in understanding and explaining the design.

• T-Receiver: participants belonging to this subset have to answer
questions on (i) how good they are in remembering a English/French
text, (ii) how well they did understand the design from the discussion
with the Explainer, and (iii) in case they could have used them, how
much diagrams would have helped in understanding the design.

The second part of the post-task questionnaire evaluates participants’
understanding and recall abilities.

To measure the Recall, we formulated ten questions6 challenging partici-
pants’ recall abilities. Two of these questions are open requiring free-text
answers, six questions are multiple-choice questions which require the

6http://rodijolak.com/SE_Whispers/Recall_Q.pdf

http://rodijolak.com/SE_Whispers/Recall_Q.pdf
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participants to choose only one choice, and two questions are check-boxes
questions which require to select one or more answers from the available.

To measure the Understanding, we formulated three questions7 focusing
on MVC design maintenance (using maintenance questions to measure
understanding is motivated in Section 7.4.3). In each question we in-
troduce a design maintenance (i.e., evolution) scenario and suggest four
ways to address it. The three questions are multiple-choice questions
which require the participants to choose only one choice from 4 provided
choices.

To evaluate the answers of the participants on recall and understanding
questions, we defined grading rules that can be consulted online8.

Remark. In REP2 (University of Lille), the pre- and post-task questionnaires,
design case specification, GSD, and TSD were translated to French, as the SE
course that the participants are frequenting is in French. During the translation
process, each word was carefully chosen to match the semantics of the original
English textual description as close as possible. To maintain a strict replication,
after the translation process we thoroughly did review the aforementioned
artifacts and ensured that the amount of information/knowledge they convey is
the same as provided by the artifacts used in the original experiment (OExp).

7.3.7 Variables and Hypotheses

The goal of this study is to compare between the effect of using GSD versus
TSD on software design communication. The only independent variable and
manipulated factor is the design description. This variable is nominal and
corresponds to two treatments/groups: G group using GSD and T group using
TSD. In this study, we consider six dependent variables (See Tables 7.3). These
variables correspond to the six communication aspects which we described in
the introduction.

The original experiment and replications were conducted under the same
environment conditions and by following a well-defined protocol to ensure that
the impact of any other variable on the results is relatively negligible.

For OExp, REP1, and REP2, we formulate and study the following null
H0 and alternative hypotheses Ha

0 :

• HEXPa
0 : The design description [has no impact ]0/[has impact]a on EXP.

• HUNDa
0 : The design description [has no impact ]0/[has impact]a on UND.

• HRECa
0 : The design description [has no impact ]0/[has impact]a on REC.

7http://rodijolak.com/SE_Whispers/Understanding_Q.pdf
8http://rodijolak.com/SE_Whispers/Grading_Rules.pdf

http://rodijolak.com/SE_Whispers/Understanding_Q.pdf
http://rodijolak.com/SE_Whispers/Grading_Rules.pdf
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Table 7.3: Dependent variables and measurement.

Dependent Variable Measure Source
Measurement
Instrument

Measurement
Scale

Explaining
(EXP)

Ordinal Subjective
Questionnaire
(Perceptions)

5-point Likert Scale
Very Poor - Very Good

Understanding
(UND)

Interval Objective Maintenance Questions
Total Score from

0 to Max 3 Points
Recall
(REC)

Interval Objective Recall Questions
Total Score from

0 to Max 10 Points
Active Discussion

(AD)
Ratio Objective

Counting Occurrences in
Recorded Conversations

AD/(AD+CC+CM)
Values from 0 to 1

Creative Conflict
(CC)

Ratio Objective
Counting Occurrences in
Recorded Conversations

CC/(AD+CC+CM)
Values from 0 to 1

Conversation Mgt.
(CM)

Ratio Objective
Counting Occurrences in
Recorded Conversations

CM/(AD+CC+CM)
Values from 0 to 1

• HADa
0 : The design description [has no impact ]0/[has impact]a on AD.

• HCCa
0 : The design description [has no impact ]0/[has impact]a on CC.

• HCMa
0 : The design description [has no impact ]0/[has impact]a on CM.

REP3 varies one variable intrinsic to the object of study (i.e., the indepen-
dent variable TSD). Accordingly, we study the following null H0 and alternative
hypothesis Ha

0 :

• HTSDa
0 : A motivated and cohesive TSD [has no impact ]0/[has impact]a

on the communication aspect.

7.3.7.1 Experiment Procedure

Before presenting the experiment procedure, we would like to highlight that we
conducted several pilot studies, 2 in the university of Gothenburg, 1 in Aachen
university, 1 in Lille university, and 1 in the Slovak university. To cover the
treatments of our study, each pilot study involved 2 Explainer -Receiver pairs
(B.Sc., M.Sc., or PhD students in SE). One pair was assigned to the G group
using a graphical design description, and the second pair was assigned to the T
group using a textual design description. These pilot studies helped us in:

• Designing a research protocol and assessing whether or not it is realistic
and workable, especially in estimating the time that is required by: (i) the
Explainer to understand the design (20 minutes), and (ii) the Explainer
and Receiver to discuss the design (12 minutes).

• Identifying logistical problems and determining what resources (e.g, su-
pervisors, software, and rooms) are needed for the actual experiments.

• Training the supervisors of the experiments.
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The experiment procedure was created to define the process of the experi-
ment and to ensure strict replications of the original experiment. Figure 7.4
presents the four main steps of the experimentation procedure:

• Step 1: To anonymize their identity and thus their answers, all partici-
pants were randomly assigned an identification number (ID). We asked
the participants to bring their PCs to be able to answer the online pre-
and post-task questionnaires. Eduroam Internet connection was available
in the rooms where the experiments were running. Also, we asked the
participants to bring a device to record the discussions (either by down-
loading audio-recording software on their PCs or by using a smart-phone
with a recording application). We booked large university lecture-rooms
which can host all Explainer -Receiver pairs with a sufficient distance
between each pair. This helps to reduce voice interference to a minimum
and produce better-quality audio recordings. We randomly assigned
the participants to two groups (G and T). Furthermore, we randomly
assigned each participant one role, Explainer or Receiver. After that, we
asked the participants to answer the pre-task questionnaire.

• Step 2: Once all participants filled the pre-task questionnaire, the Ex-
plainers were taken to a second room where they received the design case
specification and the design description (GSD or TSD). The Explainers
were asked to understand the design that they received as good as they
can in 20 minutes. During this time, the Receivers ensured that their
recording software/devices were working as expected.

• Step 3: After 20 minutes, we took the design case specification from the
Explainers, but let them keep the assigned design description (GSD or
TSD). The Explainers and Receivers were randomly grouped in pairs in
one or two rooms according to the number of participants and room’s
capacity. The pairs were then informed that, using the design descriptions
(GSD or TSD), Explainers should explain the design to the Receivers in 12
minutes. We also informed the pairs that Receivers can ask clarification
questions to the Explainers. When all participants were prepared, we
asked the participants to start the audio recorder software and begin
the discussions by introducing themselves (by mentioning the name/ID
and role). This allowed us later to match the discussion records of the
participants with their corresponding answers to the questionnaires.

• Step 4: After 12 minutes, the participants were informed that they should
stop the audio recording. All documents, including Receivers ’ draft notes,
were collected. Then, we asked all the participants to answer the post-task
questionnaire individually. Lastly, we asked the participants to rename
the audio recordings with their ID numbers and put the recordings in a
USB flash drive that we provided.
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Figure 7.4: The five main steps of the experimentation procedure.

7.3.8 Data Analysis

The data of this study was collected via questionnaires and by audio-recording
discussions between Explainers and Receivers. In this section, we describe
three types of analysis procedures that we used:

• Data Set Preparation: To check and organize data collected from different
sources and prepare it for analysis.

• Descriptive Statistics : To describe the basic features of the data by sum-
marizing and showing measures in a meaningful way such that patterns
might emerge from the data.

• Hypothesis Testing : To make statistical decisions by evaluating two
mutually exclusive statements about a population and determining which
statement is best supported by the sample data.

• Meta-Analysis: To obtain a global effect of a factor on a dependent
variable by combining the effect size of different experiments, as well
as assessing the consistency of the effect across the individual experi-
ments [173].
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7.3.8.1 Data Set Preparation

Data from 14 participants (7 pairs) were eliminated: 1 Explainer -Receiver
pair from OExp as well as REP1, and 5 pairs from REP2. In particular, 5
pairs discussed the design assignment for too short time (less than 2 minutes)
and decided to discuss other topics of their interest for the rest of the time.
Moreover, the audio quality of the recorded discussion of 2 pairs was bad and
the corresponding data from these pairs was eliminated. The final number of
participants in each experiment is provided in Table 7.4.

Table 7.4: Final number of participants.

ExpID
Initial # of

Subjects
Final # of
Subjects

Eliminated
Pairs

Reason of Elimination

OExp 50 48 1 - Bad quality of recorded discussion
REP1 36 34 1 - Too short discussion time (<2 minutes)

REP2 94 84 5
- Too short discussion time (<2 minutes) (4 cases)
- Bad quality of recorded discussion (1 case)

REP3 60 60 0 N/A

The discussions between Explainers and Receivers were recorded by using
either mobile phones or Audacity, an easy-to-use audio editor and recorder
that works on multiple operative systems9. We transcribed approximately 23
hours of audio recordings and performed a manual coding of more than 2000
discussion records between Explainers and Receivers. For coding the discussions,
we used the collaborative interpersonal problem-solving skill taxonomy of
Margaret McManus and Robert Aiken [156], as presented in Figure 7.5. This
taxonomy captures the collaborative interpersonal communication aspects;
Active Discussion, Creative Conflict, and Conversation Management, which
we described previously in Section 7.1. For instance, the following transcribed
sentence: “Can you explain why/how?” is a Request for Clarification which
contributes to Active Discussion. Another example: “If... then” refers to
Suppose; one of the categories of Argue which contributes to a Creative Conflict.
More examples are provided online10.

NVivo11 was used for coding the transcriptions. Prior to coding, we ensured
coding/rating’s reliability by performing two-way mixed Intraclass Correlation
Coefficient (I-C-C) tests with 95% confidence interval on 9% of the data. In
particular, three coders/rater were involved in measuring the I-C-C of the G
group and T group of EXP, REP1, and REP2 (I-C-C value is 0.97 for group G
and 0.96 for group T). Whereas, two coders/raters were involved for measuring
the I-C-C of the G group and T group of REP3 (I-C-C value is 0.83 for group
G and 0.92 for group T). The coding/rating reliability is positive. Indeed,
according to [174], I-C-C is good when it is > 0.75 and ≤ 0.90 and excellent

9https://www.audacityteam.org
10http://rodijolak.com/SE_Whispers/Problem_Solving_Skill_Taxonomy.pdf
11https://www.qsrinternational.com/nvivo

https://www.audacityteam.org
http://rodijolak.com/SE_Whispers/Problem_Solving_Skill_Taxonomy.pdf
https://www.qsrinternational.com/nvivo
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Figure 7.5: Collaborative interpersonal problem-solving conversation skills
[156].

when it is > 0.90. Based on this result, the raters collaboratively continued to
code the rest of the data i.e., 91% of the data.

7.3.8.2 Descriptive Statistics

By using IBM SPSS12, we generated descriptive statistics, including Box-plots
and Mean +/- 1SD plots, to analyze the collected data via questionnaires
and audio recordings. In particular, we measured: means, medians, standard
deviations, and ranges. These descriptive statistics help to analyze central
tendencies and dispersion.

7.3.8.3 Hypotheses Testing

In the family of experiments, we wanted to compare two treatments/groups (G
and T). So, we assigned our participants to these two groups by following the
between-subjects design. In this setting, different people test each condition
to reduce learning- and transfer-across-conditions effects. The collected data
during the experiments include both interval and ordinal measures. Moreover,
they are not normally distributed. Thus, we used non-parametric tests.

In particular, the hypotheses that we formulated in Section 7.3.7 seek
to determine whether two independent samples have the same distribution.
Therefore, these hypotheses were tested by performing the non-parametric
independent-samples Mann-Whitney test.

12https://www.ibm.com/analytics/spss-statistics-software

https://www.ibm.com/analytics/spss-statistics-software
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7.3.8.4 Meta-Analysis

We perform a fixed-effect meta-analysis, as all factors that could influence the
effect size are the same in all the experiments [173]. We use different scales
to measure the communications aspects. Thus, for each experiment (i), we
compute the effect size (Gi) by calculating the Hedges’ g metric [175]. The
assigned weight to each experiment is:

Wi =
1

VGi

(7.1)

where, VGi is the within-experiment variance for the ith experiment.
We obtain the global effect size by calculating the weighted mean M:

M =

∑k
i=1WiGi∑k
i=1Wi

(7.2)

According to [175], the effect size is small when g ≥ 0.2; medium when g
≥ 0.5; and large when g ≥ 0.8. We report the result of the meta-analysis by
using forest plots [173].

7.4 Results

In the first part of this section, we report the participants’ perceptions of their
design experiences and communication skills (the results of the pre-task ques-
tionnaire). After that, we present the results of the individual experiments and
the performed meta-analysis. Finally, we report the participants’ perceptions
of their experience in working with different design representations (the results
of the post-task questionnaire).

7.4.1 Perceived Design Experience and Communication
Skills

Table 7.5 presents the questions of the pre-task questionnaire. It reports the
id-number of the question, its description, and the experiment group.

The results to these questions are presented as box-plots in Figure 7.6. We
report the id-number of the question and the experiment group on the x -axis.
The y-axis presents a 5-point Likert scale, where 1 is the lowest score and 5 is
highest score. We find that:

• the participants are somewhat familiar with software design (median =
3).

• the participants are familiar with software modeling and good in under-
standing and sense-making of UML models (median = 4).
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• the participants are very good in reading, understanding, and sense-
making of textual documentation (median = 5).

• the Explainers in the group G are neither poor or good in explaining
their knowledge (median = 3), while the Explainers in the group T are
good in explaining their knowledge (median = 4).

• the Receivers of the two groups (G and T) are good in building knowledge
from conversing with others (median = 4).

Table 7.5: Pre-Task Questionnaire

Q Description G Role
G EXP/REC

1 How familiar are you with software design?
T EXP/REC

2 How familiar are you with UML modeling? G EXP/REC
3 How good are you in understanding UML models? G EXP/REC
4 How good are you in sense-making of UML models? G EXP/REC
5 How good are you in reading a textual document? T EXP/REC
6 How good are you in understanding a textual document? T EXP/REC
7 How good are you in sense-making of a textual document? T EXP/REC

How good are you in explaining your knowledge G EXP
8

to others? T EXP
How good are you in building knowledge from conversing G REC

9
with others? T REC

Q: Question, G: Group

7.4.2 Individual Experiments

Table 7.6 shows the descriptive statistics of the studied communication aspects
grouped by the two groups G and T. Considering Explaining, Recall, Active
Discussion, and Creative Conflict, we observe that the unbiased estimate of the
effect size, based on the standardized mean difference between the two groups
(Hedges’g [175]), is positive. This means that there is a clear tendency in favor
of using GSD.

For Understanding, the participants achieved better results when using TSD
in OExp (negative g value). In contrast, the participants of REP1 and REP2
achieved better results when using GSD. For Conversation Management, the
results show that the participants of all the experiments spent more effort on
conversation management when using TSD.

We tested whether or not the distribution of the communication aspects
(i.e., dependent variables) is the same across the two groups by running the
Independent-Samples Mann-Whitney U Test. Table 7.7 shows the results of
the test. The p-value is the probability of obtaining the observed results of a
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Figure 7.6: Results of the Pre-Task Questionnaire.

test, assuming that the null hypothesis is correct. We set the probability of
type I error (i.e., α, probability of finding a significance where there is none)
to 0.05.

The statistical power is the probability that a test will reject a null hypothesis
when it is in fact false. As the power increases, the probability of making a
type II error (β-value) decreases. A power value of 0,80 is considered as a
standard for adequacy [176]. β-value is used to estimate the probability of
accepting the null hypothesis when it is false. In REP1, we observe that there
is a statistically significant difference in Recall between the two groups G and
T (p-value = 0.037 < 0.05, statistical power is 0.554). In REP2, we observe
that there is a statistically significant difference in Active Discussion and in
Conversation Management between the two studied groups (p-values = 0.010
and 0.011 < 0.05, statistical powers are 0.694 and 0.705, respectively).

7.4.3 Meta-Analysis

In this section, we report and discuss the meta-analysis by means of forest
plots. The squares in each forest plot indicate the effect size of each experiment.
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Table 7.6: Descriptive statistics.

Dept. Group G Group T Hedges’
ID

Var. Mean Median Std. Dev. Mean Median Std. Dev. g*
EXP 3,864 4,000 0,710 3,654 4,000 0,689 0,295
UND 1,545 1,750 0,754 1,808 2,000 0,906 -0,307
REC 5,843 5,535 1,828 5,418 5,205 2,368 0,195
AD 0,512 0,494 0,094 0,461 0,500 0,137 0,412
CC 0,267 0,272 0,053 0,234 0,224 0,080 0,466

OExp

CM 0,221 0,209 0,088 0,305 0,244 0,172 -0,580
EXP 3,900 4,000 0,553 3,563 4,000 1,209 0,365
UND 1,875 2,000 0,741 1,625 1,750 0,806 0,317
REC 6,973 7,165 1,747 5,598 6,125 1,981 0,725
AD 0,457 0,447 0,107 0,409 0,411 0,063 0,505
CC 0,166 0,189 0,067 0,118 0,121 0,053 0,745

REP1

CM 0,377 0,406 0,124 0,473 0,488 0,085 -0,841
EXP 3,810 4,000 0,634 3,714 4,000 0,708 0,140
UND 1,905 2,000 0,813 1,619 1,500 0,847 0,341
REC 5,876 5,960 1,685 5,537 5,585 1,787 0,193
AD 0,488 0,495 0,068 0,431 0,435 0,074 0,786
CC 0,267 0,250 0,097 0,265 0,249 0,082 0,020

REP2

CM 0,245 0,220 0,086 0,304 0,306 0,056 -0,793
* Hedges’g: unbiased estimate of the effect size based on the standardized mean difference [175].

The size of the squares represents the relative weight (squares are proportional
in size to experiments’ relative weight). The horizontal lines on the sides of
each square represents the 95% confidence interval. The diamond shows the
global effect size (the location of the diamond represents the effect size), while
its width reflects the precision of the estimate (i.e., 95% confidence interval).
The plot also shows the values of the effect size, weight, and p-value relative
to each experiment and to the global measure. Positive values of the effect
size indicate that the use of GSD increases/improves the effort/quality of the
communication aspect, while negative values indicate that using TSD is the
increasing/improving condition.

Figure 7.7 shows the forest plot for perceived quality of Explaining. We
observe that the effect size values are positive. This implies that using a GSD
has a positive effect on perceived Explaining quality. In other words, the
participants’ level of perceived explaining is better when using the GSD. How-
ever, despite this tendency, the global effect size is not statistically significant
(p-value is 0.128 > 0.05).

Observation 1 (Quality of Explaining).
We find that using a GSD has a positive effect on perceived Explaining
quality. However, there is no statistically significant difference in the
perceived quality of explaining between the two groups (G and T).

In a revised Bloom’s taxonomy, Anderson et al. [95] outline a hierarchy
of cognitive-learning levels ranging from remembering of a specific topic, over
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Table 7.7: Independent variables Mann Whitney Test.

Mann Whitney Test
Exp-ID Sample Size Dependent Variable

p-value Statistical Power β-value
Explaining 0,367 0,168 0,832
Understanding 0,300 0,179 0,821
Recall 0,501 0,101 0,899
Active Discussion 0,622 0,167 0,833
Creative Conflict 0,140 0,198 0,802

OExp 48

Conversation Mgt. 0,284 0,188 0,812
Explaining 0,519 0,184 0,816
Understanding 0,342 0,151 0,849
Recall 0,037 0,554 0,446
Active Discussion 0,374 0,184 0,816
Creative Conflict 0,110 0,550 0,450

REP1 34

Conversation Mgt. 0,091 0,414 0,586
Explaining 0,636 0,097 0,903
Understanding 0,152 0,332 0,668
Recall 0,350 0,139 0,861
Active Discussion 0,010 0,694 0,306
Creative Conflict 0,990 0,050 0,950

REP2 84

Conversation Mgt. 0,011 0,705 0,295

understanding and application of such knowledge, to advanced levels of analysis,
evaluation, and creation. Figure 7.8 shows the hierarchy of the six cognitive
learning levels. According to Anderson, remember is the recalling of the
previously learned topic. understand is the ability to grasp the meaning of
the topic by interpreting the knowledge and predicting future trends. Apply
instead, comes on top of understand. It is the ability to use the acquired and
comprehended knowledge in a new and concrete context or situation. In order

Figure 7.7: Meta-analysis for the perceived quality of Explaining.
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Figure 7.8: Bloom’s taxonomy of cognitive learning.

to measure the quality of understanding of our experiments’ participants, we
formulated three questions on design maintenance (these questions are provided
in Section 7.3.6) which required the participants to use/apply their acquired
knowledge in a new context (i.e., apply in Anderson’s revised taxonomy).

The participants in the two groups (G and T) answered ten recall questions.
We formulated the recall questions (see Section 7.3.6) to evaluate how well the
participants do remember the design details after the discussions.

Figure 7.9 shows the the forest plot for quality of (a) Understanding and
(b) Recall ability of design details. Regarding the quality of Understanding, the
effect size value is negative for OExp, which means that TSD is the improving
condition. For the other experiments (REP1 and REP2) the values of the effect
size are positive. This implies that using a GSD in these two experiments has
a positive effect on the understanding quality. Despite these tendencies, the
global effect size is not statistically significant (p-value is 0.329). Considering
the Recall ability, we observe that the effect size values are positive. This
implies that using a GSD has a positive effect on the Recall ability. This effect
is statistically significant and has a medium effect size for REP1. Furthermore,
the global effect size is statistically significant (p-value = 0.048 < 0.05).

Observation 2 (Quality of Understanding).
In OExp, we find that using a TSD has an advantage in improving the
Understanding. Whereas in REP1 and REP2, we find that using a GSD
is the improving condition. Globally, there is no statistically significant
difference in the quality of understanding between the two groups.

Observation 3 (Recall Ability).
We find that using a GSD has a positive, statistically significant effect on
Recall. This suggests that using a GSD during design communication has
an advantage in improving the recall of design details.
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(a)

(b)

Figure 7.9: Meta-analysis for quality of Understanding (a) and Recall (b).

Figure 7.10 shows the the forest plot for collaborative interpersonal com-
munication dimensions: Active Discussion (AD), Creative Conflict (CC), and
Conversation Management (CM). Considering AD and CC, we observe that
the effect size values are positive. This implies that using a GSD has a positive
effect on the amount of ADs and CCs. The global effect size for AD is statisti-
cally significant (p-value = 0.005 < 0.05). However, the global effect size for
CC is not statistically significant (p-value = 0.162).

Considering CM, we observe that the effect size values are negative. This
implies that the effort on CM is bigger when using TSD. The global effect size
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for CM is medium and statistically significant (p-value = 0.001 < 0.05).

Observation 4 (Active Discussion, AD).
We find that a GSD fosters more AD than a TSD. This suggests that GSD’
users question, inform, and motivate each other more than TSD’ users.

Observation 5 (Creative Conflict, CC).
We find that using a GSD has a positive effect on the amount of CC
discussions. However, this effect is not statistically significant between the
two groups (G and T).

Observation 6 (Conversation Management, CM).
Using a GSD requires less CM effort than using TSD. The effect is statisti-
cally significant. This suggests that GSD’ users do less coordination and
acknowledgment of communicated information than TSD’ users.

7.4.4 Motivated and Cohesive TSD

Falessi et al. [177] suggested that documentation of software design rationale
could support many software development activities, including analysis and
re-design. Tang et al. [178] conducted a survey of practitioners to probe
their perception of the value of software design rationale and how they use
and document it. They found that practitioners recognize the importance
of documenting design rationale for reasoning about their design choices and
supporting the subsequent implementation and maintenance of systems.

The goal of running REP3 is to know how a motivated and cohesive TSD
(as described previously in Section 7.3.5.1 – Altered TSD) could influence
design communications. To this end, we used a different TSD in REP3, which
includes a rationale that motivates why the MVC paradigm is selected for
structuring the design. Moreover, we organized the information/knowledge in
the TSD and made it cohesive. In particular, the relationships of each entity
are reported right after describing it, instead of being reported with all the
other relationships in the ‘relationship section’ at the end of the TSD.

To achieve the goal of REP3, we compared the communication aspects:
understanding, explaining, recall, and interpersonal communication of the text
groups of OEpx, REP1, and REP2 (Text1 ) with the text group of REP3
(Text2 ). The results of comparing Text1 with Text2 are presented in Table 7.8.
We performed the independent-samples Mann-Whitney U test of explaining,
understanding, and recall as for these three indicators, the number of observa-
tions in Text2 is ≥ 30. The p-value of explaining is 0,049 (< 0,05) and the effect
size (Hedges’ g) is negative (i.e., using TEXT2 is the improving condition).
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(a)

(b)

(c)

Figure 7.10: Meta-analysis for interpersonal communication: Active Discus-
sion (a), Creative Conflict (b), and Conversation Management (c).
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Moreover, the p-value of recall is 0,008 (< 0,05) and the effect size is
negative and medium. We can state that the distribution of explaining and
recall are not the same across the two groups (Text1 and Text2).

Table 7.8: Descriptive statistics and independent-samples Mann-Whitney U
test of difference between the two groups: Text1 and Text2.

Text 1 Text 2
Dept. Var.

Mean Median Std.Dev. #Obs Mean Median Std.Dev. #Obs
EXP 3,667 4,000 0,812 84 3,967 4,000 0,964 30
UND 1,679 1,500 0,853 84 1,800 2,000 0,726 30
REC 5,512 5,585 1,995 84 6,664 7,080 2,226 30
AD 0,436 0,439 0,096 42 0,625 0,627 0,110 15
CC 0,228 0,224 0,093 42 0,113 0,118 0,058 15
CM 0,336 0,306 0,126 42 0,262 0,255 0,114 15

Mann Whitney Test
Dept. Var.

p-value Hedges’g Power β-value
EXP 0,049 -0,349 0,360 0,640
UND 0,534 -0,147 0,103 0,897
REC 0,008 -0,556 0,722 0,278
AD small sample size
CC small sample size
CM small sample size
* Effect Size (Hedges’g [179]) is small when g ≥ 0,2; medium ≥ 0,5; large ≥ 0,8

Observation 7 (Cohesive and Motivated TSD)
We suggest that a cohesive TSD that motivates the design choices with ra-
tionale can enhance the perceived explaining (during design communication)
and recall ability of design details.

7.4.5 Perceived Experience in Working with Different
Design Representations

Table 7.9 presents the questions of the post-task questionnaire. It reports the
id-number of the question, its description, and the experiment group.

The results to these questions are presented as box-plots in Figure 7.11. We
report the id-number of the question and the experiment group on the x -axis.
The y-axis presents a 5-point Likert scale, where −2 is the lowest score and
+2 is highest score. The results indicate that:

• the participants perceive that the design is very clear (median = +2).

• the participants perceive that they are good in recalling: a conversation,
UML design models, and textual documentation (median = +1).
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• the participants in the group G perceive that models are helpful in
understanding the design (median = +1).

• the participants in the group T perceive that having diagrams would
have helped in understanding the design (median = +1).

• the Explainers in the group G perceive that models are very helpful in
explaining the design (median = +2).

• the Explainers in the group T perceive that having diagrams would have
helped in understanding the design. (median = +1).

Table 7.9: Post-Task Questionnaire

Q Description G Role
G EXP/REC

1 How clear was the design of the system that you received?
T EXP/REC
G EXP/REC

2 How good are you in recalling (remembering) a conversation?
T EXP/REC

3 How good are you in recalling (remembering) UML design models? G EXP/REC
4 How good are you in recalling (remembering) a textual document? T EXP/REC
5 Did the diagrams help you in understanding the design? G EXP/REC
6 Do you think having diagrams would have helped in understanding? T EXP/REC
7 Did the diagrams help you in explaining the design? G EXP
8 Do you think having diagrams would have helped you in explaining? T EXP
Q: Question, G: Group

7.5 Discussion

Our experiments investigate whether design communication between software
engineers can become more effective when using GSD instead of TSD to
exchange design information. To this end, we investigate whether using a
GSD affects six considered communication aspects (Understanding, Explaining,
Recall, Active Discussion, Creative Conflict, and Conversation Management)
differently from using a TSD (R.Q.1). Moreover, we study whether a cohesive
and motivated TSD improves design communication (R.Q.2).

The global effect size of the perceived explaining quality is positive. This
means that using a GSD has a positive effect on the perceived explaining
quality. Similarly, the global effect size of the understanding (i.e., maintenance
task) score is positive, which means that the score of the GSD users is better
than the score of TSD users. Nevertheless, by considering distributions of the
scores we neither find a statistically significance difference in the quality of
explaining (Observation 1) nor in the quality of understanding (Observation 2)
between the two groups: G and T.
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Figure 7.11: Results of the Post-Task Questionnaire

While analyzing the recorded, and further transcribed, discussions between
the Explainers and Receivers, we interestingly observed a difference in the
explaining approach between the Explainers of the two groups. Figure 7.12
provides an illustration of the observed explaining approaches in the two groups.
On the one hand, the Explainers of a TSD tended to explain the three modules
of the MVC sequentially: Firstly the model entities, then the controllers,
and lastly the views, as these modules are orderly presented in the textual
document. We think that this trend is intrinsically imposed by the nature
of textual descriptions where the knowledge is presented sequentially on a
number of consecutive ordered pages. On the other hand, the Explainers of
the GSD had more freedom in explaining the design. Indeed according to their
explaining preferences, the Explainers of the GSD tended to jump back and
forth between the three MVC modules when explaining the design. Based on
this, we suggest that a GSD has an advantage over the TSD in unleashing
Explainers’ expressiveness when explaining the design, as well as in helping
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Figure 7.12: Observed explaining approaches used in group G and group T.

navigation and getting a better overview of the design. However, developers
might not have this advantage when explaining many GSDs (e.g., many UML
diagram) spread on different pages within a software design documentation.

We found that using a GSD is better than a TSD for recalling the details
of the discussed design (Observation 3). This is actually inline with Maede
et al. [168], who suggest that drawing graphical notations brings more recall
benefits than writing textual words in younger and older adults.

Graphical representations are considered better than the textual in rep-
resenting information which deals with relationships between entities [180].
One of the recall questions that we used to measure the recall ability of the
participants is concerned with the relationships between the entities of the
software architecture design. We compared the score (interval variable; min is
0 and max is 1 point) of the two groups on this question. On average, the users
of the graphical representation were slightly better in recalling the relationships
between the entities (G: Mean= 0.506; Std. Dev.= 0.331) vs. (T: Mean=
0.423; Std. Dev.= 0.347). However, this difference is not statistically significant
(Sig.= 0.128 > 0.05; Hedges’ g= 0.244; Power= 0.338).

The Chinese Whispers game is often invoked as a metaphor for miscommu-
nication. In this game, the first player often fail to recall all the information of
the initial message that she/he receives. Likewise, the second player often fail
to recall all the information of the message that she/he receives from the first
player, and so on for the rest of the players. In the same manner, the Explainers
in our experiments failed to recall all the design details that we asked for in
the post-task questionnaire (Mean Score= 3.319; Std. Dev.= 0.855). The
Receivers were, as expected, worse than the Explainers in recalling the design
details (Mean Score= 2.492; Std. Dev.= 0.885). Moreover, we found that the
difference in recall ability betweeen Explainers and Receivers is statistically
significant (Sig.= 0.000 < 0.05; Hedges’ d= 0.946, Power= 0.999).

Based on empirical results, we find that a GSD fosters more Active Discus-
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sion (AD) than TSD (Observation 4), while reducing Conversation Management
(CM) at the same time (Observation 6). In the skill taxonomy of McManus
and Aiken [156], the communication activities in the AD category generally
aim at helping an active exploration of the discussed argument by encouraging
information requesting, clarification, or elaboration. In contrast, the branch of
CM comprises communication activities that generally contribute less to active
information requesting or clarification, such as acknowledging or coordinating
group tasks. Consequently, we suggest that using a GSD as a basis for software
design communication promotes an active exploration of the communicated
designs, which in turn helps to improve the effectiveness of software design
communication.

There is no significance difference in Creative Conflict (CC) discussions
between the two groups (Observation 5). We suggest that the type of design
description does not influence design argumentation and reasoning. Alterna-
tively, we think that the context, complexity of the design, available knowledge,
or the application of reasoning techniques might affect the quality of design
argumentation and reasoning discussions, as suggested by Tang et al. [99].

It is widely assumed that model-based techniques support communicating
software [181]. Our findings support such assumption and prove that using a
GSD (i.e., a software model) improves the recall ability of the discussed design
details, fosters Active Discussion, and at the same time reduces less useful
conversation on activities management.

We conducted REP3 to better calibrate our findings of the differences
between GDM and TSD. We found that a motivated (i.e., augmented with
rationale) and cohesive TSD helps to improve both the explaining and recall
ability of the discussed design details (Observation 7). This finding is indeed
inline with Tang et al. [60] who stated that discussing the reasons of making
software design choices (i.e. design rationale) positively contributes to the
effectiveness of software design discussions by facilitating communication and
design knowledge transfer.

7.5.1 Threats to Validity

Our family of experiments is subject to threats to their construct validity,
internal validity (causality), external validity (generalizability), and conclusion
validity. We highlight these issues and discuss related study design decisions.

7.5.1.1 Construct Validity

Constructs validity refers to how well operational measures represent what
researchers intended them to represent in the study in question. In this study,
we used a single method for measuring the impact of different design repre-
sentation per each communication aspect. To mitigate this issue, we did not
only rely on questionnaires, but also recorded, transcribed, and later evaluated
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the communication observed during the experiments. Nonetheless, leveraging
additional methods to probe the explaining, understanding, recall, and interper-
sonal communication skills of the participants might help to better investigate
the effects of different design representations. Such methods, for instance,
might comprise conducting actual software design or software engineering tasks
after receiving the explanation. However, this would introduce a multitude of
other variables (e.g., the programming language or IDE used) that either can
be hardly controlled or demand for drastic simplification, thus reducing our
experiments’ generalizability.

Another threat to construct validity could arise from discretizing the mea-
surement of continuous properties, such as the participants’ familiarity with
software design or their expertise with UML. This challenge has been investi-
gated for balanced Likert and identified as not comprising generalizability [182].

7.5.1.2 Internal Validity

The questionnaires to evaluate the participants’ performance raise threats to
internal validity themselves: For instance, the participants might interpret the
Likert scales we have used differently, might have avoided extreme responses
(central tendency bias), and - as the participants evaluated their communication
skills themselves - might be biased towards overestimating or underestimating
their skills, which might be subject to different effects on their introspection. To
support comprehension and reproduction of results, we use established surveys
where possible and provide all materials on the experiments’ companion website.
Nonetheless, completely mitigating the potential effects of surveys’ general
deficiency requires the development of novel methods to test familiarity and
understanding of UML designs and textual designs, as well as communication
skills. While for the latter, specifically tailored exercises might be feasible to
evaluate the skill level, conducting these, (a) requires unbiased instruments as
well and (b) might affect our experiments. A specific challenge of our family
of experiments regarding the questionnaires arises from conducting the REP2
survey in French, whereas the other experiments used English documents.
While this generally could affect the results, the experimenters of REP2 had
the task documents and questionnaires professionally translated and reviewed
to maintain the consistency of the communicated information.

To mitigate the effect of limited preparation and explanation time – the
Explainers had 20 minutes to understand the design and 12 to discuss it with
the Receivers – we conducted multiple pilot studies at all sites prior to the
actual experiments to understand how much time is required. After running
the pilot studies, we increased the initially considered 10 minutes of discussion
to 12 based on the feedback of the participants of the pilot studies. Afterwards,
we conducted another pilot study that confirmed that both times are considered
suitable for the tasks.

Other challenges to internal validity stem from the selection of our experi-
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ments’ participants. Potential confounding factors include that due to randomly
assigning the participants to the G or T group, certain personality types are
prevalent in one of the groups – which could affect results. By measuring
the Big Five factors of personality [183], we checked that this is not the case:
the distribution of the five personality factors (Extraversion, Agreeableness,
Conscientiousness, Neuroticism, and Openness) is the same across the two
groups. Similarly, it could have affected our findings that the members of one
of the two groups have significantly more experience with software design than
the members of the other group. The pre-task questionnaire establishes that
this is not a problem of our study. Other issues could have arisen from our
participants being unfamiliar with UML designs or textual designs but the
pre-task questionnaire shows that this is not the case. We assume that this is
due to the participants’ educational backgrounds (in which processing textual
designs for exercises or exams is common).

The textual representations used in this research are structured by inden-
tation, indexing, and grouping information, which are helpful for information
retrieval [184]. However, these might have positively affected the quality of TSD
communication. Similarly, the MVC entities in the graphical representation
were highlighted by colors, which is also helpful for information retrieval [184].
This might have also positively affected the quality of GSD communication.
If the descriptions of the entities in TSD were tangled and if the entities of
the GSD were not colored, then the quality of communication of these two
representations might have been different and less efficient. As this is the case
in both groups (i.e., G and T), we assume that this should not affect the results
of the comparison too much. This, however, raises threats to validity: The
augmentations to the textual representation might yield other (stronger or
weaker) effects than the class diagram coloring. As both, coloring in graphical
models and structuring of textual design documents, is common in industrial
practice, we do not consider this a significant threat over using unstructured
text and uncolored diagrams.

Some Receivers of the text group were drawing (informal) class diagrams
while being explained to. Hence, there might be an interaction of both treat-
ments, but with only six (2.5%) of the Receivers being affected, the effect of
this combination of both representations is negligible.

Another threat might arise from the using textual survey questions as
method to investigate the benefits of textual and graphical designs. Maybe,
textual design representations yielded better answers to the questions because
they are syntactically closer than graphical designs to the textual answers. This
threat could be mitigated through leveraging graphical questions and answers
in the surveys. While this would be feasible for the answers, for formulating
the questions as graphical class diagrams, this would entail a new syntax which
might yield further threats.
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7.5.1.3 External Validity

Threats to external validity indicate to which extent the results of our study
can be generalized. Due to working at software engineering research and
education institutes, we selected students with strong software engineering
backgrounds of our Universities. While this prevents generalizing results to
software developers with different backgrounds (e.g., developers in computer
vision, artificial intelligence, or robotics), software design aims at software
architecture from which we expect strong software engineering backgrounds.

Also, we conducted our studies with students instead of software design
practitioners. Hence, the participants involved in our experiments may not
represent the general professional population of software engineering practition-
ers. While this limits us from generalizing our findings to other subjects (i.e.,
domain experts, professional software architects, industrial practitioners in the
field), the differences between students and professional software developers in
performing small tasks are generally very small [185]. We, therefore, consider
our findings as a basis to extend our study to a larger community of software
engineering practitioners.

Another threatening effect is that the population of professional software
developers yield a larger age range than students. With recall abilities changing
over time [186], this limits generalization of our results to professional software
developers of the same age range – between 20 and 30 years – than software
engineering students and PhD students (as proposed in [187]).

Moreover, the studies were conducted in educational contexts, i.e., contexts
in which the students usually are evaluated and graded. This generally might
have improved their performance (Hawthorne effect). However, as this applies
to both groups, this does not affect our results.

Due to the outline of our experiments as single one-hour sessions and their
popular context in sports that are easily relatable, we can exclude threats
regarding history or maturation. The participants could neither have been
effected from previous events of the experiment as there have not been any.

Moreover, as we used the same two textual/graphical notations in all exper-
iments, this limits generalizability of our results to other textual or graphical
representations, i.e., differently structured text or differently highlighted class
diagrams. This, however, is a threat independent of the specific choice of
representation and demands for studies deploying multiple (popular) represen-
tations – which demands correctly identifying industrially relevant forms of
representation and yields further threats to generalizability.

Another challenge to generalizability might arise from the constructs investi-
gated, i.e., whether structured textual design documents and colored UML class
diagrams actually are relevant to communicating design decisions in industry.
While the use of UML in software design and engineering is undaunted in
various domains (cf. [17,188]), so is the use of textual documents to describe
software designs [189–191]. However, using a specific form of structured text
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for communicating design decisions limits generalizability to this form of text.
For instance, in requirements engineering, there are different tools that support
capturing textual requirements and design decisions using different textual
representations [192] and using these might entail different effects.

Generalizability might also be challenged by the size of documents used of
investigation. There are no studies on the number of classes per class diagram
in industrial software engineering projects. However, a report on numbers of
classes per class diagram used in different lectures reports that in 101 diagrams
from 5 different courses, the maximum number of classes per diagram is 40,
with the minimum being 3 and the average being 10.75 [193]. This might
indicate that our design class diagram of 28 classes is a bit more complex than
it would be usual for education (and hence be more realistic regarding industrial
challenges). Another study investigated 100 android applications from open-
source repositories [194]. Here, only the average size of these applications as
90 classes is reported. While this does not report how these would be aligned
in different class diagrams, assuming the these cover at least three different
concerns (e.g., model, view, and controller) appears reasonable, which would
entail 30 classes per class diagram on average and would be in line with the
28 classes presented in our experiment. Therefore, we consider the size of the
experiments’ class diagrams relevant. For the textual design documents, we
are unaware of any studies on their average size, but due to them containing
the same information as the class diagrams, which are of relevant size, we
conclude that these should be as well. However, this needs further investigation
and might challenge the generalizability of our results. Also, the effect of the
number of classes conveyed in both representations might effect understanding
and recall. This also demands for further investigation.

Similar to the threat of using specifically indented and colored documents,
the optimality of their representations might challenge generalizability of our
results as it might be conceivable that there are better suitable textual or
graphical representations that lead to different results. To the best of our
knowledge, the best representations of textual design documents and graphical
class diagrams still have to be identified and whether these are optimal for any
domain needs to be investigated. Nonetheless, differently presented textual
or graphical designs might have yielded different effects. This, however, is a
threat to generalizability that holds for any study investigating a finite number
of alternative treatments where infinitely many are possible and needs to be
considered when applying our results.

Also, the experimental conditions (scope, team size, duration, etc.,) might
differ from real-world conditions and limit generalizability of results. Nonethe-
less, especially in the use case of onboarding of job newcomers by experienced
developers and designers, this challenge is of practical interest as indicated by
Ericsson’s “Experience Engine” initiative (cf. section 7.1).
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7.5.1.4 Conclusion Validity

Threats to conclusion validity challenge how reasonable a research or experi-
mental conclusion is. In our study, these threats might arise, mainly, through
concluding the existence of in-existing differences (type I error) and concluding
the in-existence of existing differences (type II error).

We conducted hypotheses testing to determine whether two independent
varaibles have the same distribution. We might have committed type I error
and incorrectly rejected the null hypothesis (false positive), or committed type
II error and incorrectly accepted the null hypothesis (false negative). However,
we considered the significance and minimized the risk of detecting a non-real
effect by setting the α value to 0,05. Also, we analyzed the sensitivity by
discussing the effect size and statistical power of our tests.

7.5.2 Implications

Using GSD to communicate software designs produces more active discussion,
less conversation management, and better recall. These effects contribute to
deepening the active exploration of the discussed design [195], which is why we
consider using GSD beneficial to communicating software designs. While for
identification of design errors, textual descriptions seem to be more efficient [29]
than GSD. Our findings suggest the use of GSD as a basis for communicating
designs with the objective of transferring design knowledge, which is in line
with the observed benefits of graphical documents on recall [168].

Our findings, however, assume that the textual design document accurately
represents the GSD. Often, however, these natural language documents yield
ambiguities or omit details that can be missed less easily in graphical descrip-
tions. We assume that this can be due to graphical descriptions, such as UML
class diagrams, being accessible for model checking to identify, e.g., missing
associations or missing types. Future work should investigate whether textual
artifacts used in practice indeed represent the underlying design accurately.

With REP3, we also investigated the effects of a cohesive and motivated TSD
on design understanding, explaining, recall, and interpersonal communication.
As we found a difference in explaining and recalling ability between both
groups: original TSD and altered TSD (Observation 8), future research in
improving software design communication should investigate comparing benefits
of augmenting GSD with textual motivation and rationale as well.

7.5.3 Generalization

Generally, we found that communicating design with a GSD yields better
discussions and better recall. We believe that these effects are not limited
to software design documents but transfer to graphical software descriptions
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in general. While, for instance, UML class diagrams meant for implementa-
tion might differ in the level of detail, but not in the general representation.
Applying our findings regarding the benefits of (i) GSD over TSD and (ii)
cohesive TSD with rationale to other kinds of software artifacts can yield
benefits for their communication and consumption as well. For instance, as
requirements documents become more complex [162], augmenting these with
graphical representations or rational could, ultimately, improve requirements
engineering. Model-based systems engineering [196] traditionally considers
graphical representations. Nonetheless, similar improvements could be achieved
as the collaborating stakeholders from various domains could benefit from being
provided rationale of design decisions made in other domains.

There also is research in textual modeling [197], which leverages textual
models with well-defined semantics for software design and development. As
such, these textual models are in-between GSD and TSD and whether our results
translate to textual software models, such as UML/P class diagrams [198],
needs further investigation.

Similarly, the observed benefits of GSD are subject to the viewpoint we
selected in a fashion that allows presenting the complete design description
(i.e., model) on a single sheet of paper. For more complex diagrams, this might
not scale-up. However, we assume that the textual design document (currently
three sheets of paper) scales-up even worse. Consequently, we believe that
the effects of software design representation on large designs with hundreds or
thousands of elements will be even more prominent.

7.6 Conclusion and Future Work

We conducted a family of experiments to study the effect of using graphical
versus textual software design descriptions on software design communication.
According to [94–96], we considered the following communication aspects:

• Explaining : communicating intellectual capital from one person to others.

• Understanding : receiving others’ intellectual capital.

• Recall : recognizing or recalling knowledge from memory to produce or
retrieve previously learned information.

• Collaborative Interpersonal Communication, which includes:

– Active Discussion: questioning, informing, and motivating others.

– Creative Conflict : arguing and reasoning about others discussions.

– Conversation Management : coordinating and acknowledging com-
municated information.



166 7.6. CONCLUSION AND FUTURE WORK

Based on empirical findings, we suggest that a graphical software design
descriptions (GSD) improves design-knowledge transfer and communication by:

• promoting Active Discussion between developers,

• reducing Conversation Management effort, and

• improving the Recall ability of design details.

Furthermore, we found that motivating (by adding design rationale) and
making textual design descriptions cohesive (by organizing the design knowledge
in the document) help to enhance the explaining and recall of their details.

7.6.1 Impacts on Practitioners

In a field study of the Software Design process, Curtis et al. [199] identified
broad communication and knowledge sharing as two factors that have effects
on software quality and productivity. According to our findings, we suggest
that the use of GSD can help in improving design-knowledge sharing and
communication. Hence, we identify the following impacts on practitioners:

• Agile Practices. Agile development practices include several processes
in which communication is at least involved, if not central [200]. Daily
meetings are, by definition, the perfect example of agile ceremony which
completely relies on communication. According to Karlström et al. [201],
holding daily meetings as a mechanism for design problem solving ap-
peared to have positive effects on the communication of the design issues.
Based on our findings, introducing GSDs in daily discussions about design
decisions would enhance the communication quality between participants,
which in turn could strengthen the impact of applying agile practices in
software engineering projects.

• Reducing Development Efforts. Multiple studies demonstrated that com-
munication is one of the most time-consuming tasks in software develop-
ment, requiring more effort than any other development activity [27] and
taking up to two hours a day per each individual developer [202]. As face-
to-face communications are strongly preferred when possible [171,202],
the use of GSD as a support for design-related communication could be
of benefit for productivity. Minimizing the required effort for communi-
cation would provide developers with more time at disposal as well as
reduce developers mental-load, so they can focus on different tasks.

• Satisfaction and Productivity. Although there is no notable difference in
the perceived quality of explaining between group G and group T, all
participants from the two groups reported that a GSD indeed helped, or



7.6. CONCLUSION AND FUTURE WORK 167

would have helped them, in explaining the design. Accordingly, we think
that using GSDs would make the communication of the design easier and
increase the satisfaction of developers. Graziotin et al. [203] reported
that satisfaction is directly correlated to productivity. So, we suggest the
use of GSD in design meetings in order to increase the productivity of
software development teams.

• Pedagogical medium. By observing of the explaining approaches in the
two groups, we suggested that a GSD has an advantage over the TSD
in helping navigation and getting a better overview of the design. Even
though this requires more investigation, we suggest that, due to its
nature, a GSD provides more adaptability and extra degrees of explaining
freedom, which makes it a better pedagogical medium for face-to-face
design knowledge transfer.

• Design Rationale. Falessi et al. [177] state that documenting design
rationale could support many software development activities, such as
an impact analysis or major redesign. Tang et al. [204] find that design
reasoning (i.e., discussing rationale) improves the quality of software
design. In this paper, we find that a TSD that motivates the design
choices with rationale can enhance the recall and explaining of its design
details. Accordingly, we suggest the producers of software design tools
(graphical or textual) to provide explicit mechanisms for capturing and
retrieving design rationale. Furthermore, we encourage developers to
include design rationale in design documentations to improve design
communication, which in turn should improve the overall communication
and collaboration, and thus the productivity, in SE projects.

7.6.2 Future Work

One future direction is to replicate the experiment in order to address and
minimize the threats to the validity of our research design and results. For
instance, by replicating the experiment with a more complex graphical or textual
software design description, by changing the order of complexity of the recall and
maintenance tasks, or by involving professionals. Moreover, to maximize the
benefits, another line of research is to investigate new techniques or approaches
that would enhance the effectiveness of software design communication. One
example of these approaches is proposed in a study by Tang et al. [99] where a
reminder card approach was employed to improve software design reasoning
discussions. Another example is proposed by Robillard et al. [100] who argue
that automatic on-demand documentation generators would effectively support
the information needs of developers.
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