Teaching a robot spatial expressions
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Abstract The location of the objects as well as the partitioning
of the space is specified with a large degree of am-
Describing the semantics of natural lan- biguity. Which chair in Figure 1a im front of the
guage spatial expressions such as (1) desk? Hownearis near? The choice of a natural
‘moving forward slowly’ and (2) ‘you're language description also depends on other objects
in front of the desk’ is not a straightfor- in the ‘scene’ (‘distractors’) and the perspective at
ward task. In this paper we describe a set-  which the scene is viewed. B behindA in both
ting with a mobile robot where the mean- configurations in Figure 1b?
ings of such expressions are learned from .
a set of robot data and natural language D

descriptions made by a human commen-
tator. We start with simple robot-centered N B
spatial expressions like (1). These do not b O @ A
make reference to the environment exter- Q

nal to the robot. We then extend the learn-

Bio

ing to prepositional expressions like (2) ek L P
which denote relations between the ob- i i
jects in the environment.

1 Introduction (a) (b)

A significant body of research in computational lin- Figure 1:Ambiguity and distractors

guistics and artificial intelligence concentrates on

interfacing information about the physical world Factors like properties of objects (animacy, move-
and natural language expressions. Physical scienciility) or focus affect the naturalness of spatial de-
have developed many methods for representing oberiptions. Thus one would say thine is near the
jects in space: points, vectors, representations of ohousebut would probably not say thdthe house is
entation and motion of objects. These representaear Jane (Herskovits, 1986) lists many factors that
tions are continuous and enable quantitative locatiamay be important for the interpretation of spatial ex-
of objects in a coordinate space. Any (coordinate)ressions.

values will provide a precise and unique location of Describing the semantics of spatial expressions is
the objects. Natural language operates in a quitbus not a straightforward task, especially if done by
different manner. Spatial expressions partition theand. A good overall survey of various approaches
space into loose regions suchreear, backandleft.  is given in (Mukerjee, 1998).



We decided that a good test-bed for theories abothe presence of ‘distractors’ so that the training data
the meanings of spatial expressions, particularlgonsists of clear instances of these spatial concepts.
prepositions, would be a mobile robot setting. If In the third phase, distractors are included in the
a robot can be taught to ‘understand’ and use suatenario. The commentary will sometimes men-
expressions in a manner that would seem natural tmn these, and sometimes not. The aim is to see
a human observer, then we can be reasonably sufehe robot-generated narrative describing its route
that we have captured at least something importaand relative position is able to select the most appro-
about their semantics. In the robots we work witlpriate and informative set of prepositional relations
[Newman (2001 2002)], we have access to some aisrthe presence of distractors.
pects of the internal state of the robot, including its In this paper we describe results obtained from the
representation of speed and relative orientation, arfidst two phases.
its own representation of some salient features of
the environment. Of course, as was stated abov@, A description of the system
we already know that this is not sufficient to be .
able to model the correct usage of natural Ianguagzé1 System design
prepositions, but it gives us a platform on which weMOOS [Newman (2001 2002)] stands for Mission
can superimpose successively more abstract propéiriented Operating Suite and in its core represents
ties in order to approach this more nearly. Furthe@ set of libraries and executables that run a mobile
more, if the experiment is successful, we would havepbot. Its main advantages are that it is platform in-
something of great practical utility: a robot that carfdependent (Unix, Windows) and that it is conceived
both be instructed to move via natural language, arté a modular system with a star-like topology. Each
which can report what it is doing when moving un-application within a MOOS ‘community’ has a con-
der the control of another, or (more likely) movingnection to a single MOOS databaddd0SDB): it
autonomously (in a burning building or other haz<an publish as well as retrieve the information to the
ardous environment, for example). database but cannot publish or retrieve information

Our project is planned in several stages. At eactirectly from another client. There are two advan-
stage, we collect a ‘training corpus’ of observatages of this design. Each application is indepen-
tions generated by the robot based on its interndent of the others and can be written in a program-
state and representation of the environment, pairéding language of the author’s choice. Natural lan-
with a human generated commentary. The conguage applications that are written in domain spe-
mentary consists of short phrases describing whaific languages such as Prolog can be added to the
the robot is doing. In the first phase, the interMOOS community at no extra cost while preserv-
nal state recorded is completely ‘robot-centred’, i.dng the benefits that these languages offer in terms
no reference to external properties of the enviroref programme design. The communication is done
ment is made. The commentary accordingly corthrough the TCP/IP protocol which means that the
sists of phrases describing (from the robot’s point ofpplications can run on a different machine than
view) what is happening: e.g. slowing down; turnthe MOOSDB so that the MOOS community can be
ing right; stopping. This commentary is obtainedspread over several different machines.
via a speech recognition system: a human narrator ) )
describes what is happening as the robot is driven? EXPeriment design
around its environment. In the laboratory, a closed environment was set up

In the second phase, the internal state is augyith the following real-size objects: a chest, a box,
mented with positional information about severah table, a pillar, a stack of tyres, a chair and a desk.
objects in the environment, including the narratorThe robot was left to explore the environment and
The commentary now makes reference to these obuild its map using a technique known as SLAM
jects and includes relative position and relational infNewman (2001)] which stands for simultaneous lo-
formation: you are behind the desk; the desk is igalisation and map building. Initially, the robot has
front of me; etc. These situations carefully avoicho information about the environment or its location,



the SLAM application §SMSLAM builds its map speech recognition MOOS application based on Mi-
incrementally through the observations of the envierosoft SAPI 5.1. The relational descriptions were
ronment. The robot can then use the map to navigatgounded in the robot’s perspective and their vo-
in the environment since it knows its absolute locaeabulary was restricted to that listed in Section 3.1.
tion. Figure 2 shows a photograph of the robot in thé typical description would be ‘The chair is be-
environment, Figure 3 contains a 3D graphical refhind you’. The recognised string was sent to the
resentation of the map built by the robot. Note thaMOOSDB. i AGV provided the odometry information
the robot is at a different location in each figure.  for the robot (Section 3.2), ammLogger produced
a time-stamped log of all of the above values.

Figure 2: The environment: the tyres are to the le
of the robot, the table is to its right and the chest is

behind it. Figure 3: A screen shot from the ‘SLAM’ process.

The robot is equipped with a scanning laser which

The robot has no knowledge of discrete and dis- the local . tal trv. Und
continuous objects: the objects that can be reco gnses the local environmental geometry. nder an

nised in Figure 3 by humans appear to it as sets ]nllne, probabilistic framework, consecutive ‘scans

points. Objects were thus grounded manually. Eac?ée fused sequentially to produce a learnt 2D map

object was defined as a vectar, y, z, object-namg, thark gn$§).FThe h;)gd-lll;eDstructure oln the tohp ?]f
wherez, y and z are the coordinates of the cen- € robotin Figure 215 a scanning faser whic

tral axis of each object relative to the robot’s Ori_produces clouds of 3D pom'Fs shown n light gray.
gin andobject-namds the name of the object. A Only the most recently acquired 3D points are ren-

special MOOS applicationComrent ar y was de- dered — hence only two faces of the chest are dis-

signed which recalculates the global object COOIgernible even though its entire cjrcumference has
dinates to relative object coordinates in respect tBe?n map:jpgd.t;_héljabelletd coordinate frameslof 0b-
the current position and orientation of the vehicldS¢'s US€d by tNELOMTENL ar'y process are also

as it is changing locations. The values generatetsérovgn' I_SS the \I/etl_ﬁlclehr_novbe dt this ?rrlocess. olutpu;s
byi Conment ar y are published to th®OOSDB at € Euciidean relationships between the vehicle an

some predefined time interval. all other labelled frames.

During each experiment person A guided the
robot performing motion in the environment us-3 Thedata
ingi Renot e. i Renpt e accepts commands from
a computer keyboard and publishes the values df1 Languagedata
desired thrust and desired rudder to the MOO® Experiment 1 we restricted ourselves to a small
database. Person B commented the motion of ttset of spatial expressions that presumes no refer-
robot (Experiment 1) or the relations between thence to the external environment. These are of
objects and the robot (Experiment 2)itéoi ce, a three types: those describing the motidonfard,



backwards stopped, those describing the mannervals. The values for the:;, y and =z coordinates
of motion @lowly, moderatelyandfasf), and those of the robot in the data fromComent ary were
describing the direction of motioreft, right and thus(0,0,0) at any given time, while objects such
straight (on)) All them were used ‘dynamically’ as the desk, for example, were given values such as
which means they were progressive descriptions di.535, —2.558,0.6355) valid at some given time.
the routes that the robot was taking.

In Experiment 2 we included the reference to thd Machinelearning
external environmenRelationsbetween the objects ] ) ]
in the environment, the located object (LO) and th&C" machine learning we used Weka (Witten and
reference object (REFO), are expressed by naturaj2nks 2000), a deservedly popular implementation
language prepositions. These descriptions are stafifMany common machine learning algorithms and

as they involve a fixed scene and include expressiofi§Sociated tools written in the Java programming
such as ‘A isnearB’ ‘A is behindB’ ‘Ais in front l@nguage. One big advantage is that it uses a unified

of B, ‘A is to the left/right of B, ‘A is aboveB’ file structure for the input data for all learning algo-

and ‘A isat B'. The robot ('you’) may or may not be rithms in the package. Different algorithms can be
one of the related objects A and B. tested on one set of data without a difficulty. There is

The expressions from Experiment 1 also allow fo'© N€€d 10 pre-process the input to the learner each
prepositional phrase modifiers that describe the 1iMe and the results of various algorithm implemen-
cation of movement. In this case the LO is alwayfations can be compared on an equal basis.
the moving entity (the robot or ‘you’) and the REFO .
is either the destination point of movement, as in'1 Theinput data
‘Going forward/back/to the door’, or its location, Weka algorithms can handle datasets that consist of
as in ‘Turning left/right/at the table’ and ‘Stopping independent, unordered instances and where there
(near the window)’. In terms of reference to physis no relationship between the instances themselves.
ical space, this class of expressions combines boflhe software can read such datasets in the form of an
kinds of expressions discussed above. ExperimemRFFfile which is a structured text file. EachriF
to include these expressions are planned for the fiile contains a declaration of attributes (or classes of

ture stage of the project. data). To learn a theory means to find relationships
between the attributes that would correctly classify
3.2 Non-language data this (and new) data. One of the attributes must be

The non-language data includes information abowhosen as the target concept or the class that the
the position and motion of the robot and the positiofearned hypothesis should predict. Attributes can
of the objects. The information about the positiorbe numeric or nominal, in the later case the set of
and motion of the robot can be extracted from thgossible nominal values must also be declared. In-
odometry information published byAGV to a log stances are represented as vectors of attribute values
file. It includes the globat andy coordinates from (Attributel, Attribute2, Attributeg the last attribute
some origin where the vehicle started, its heading ivalue being by convention the target concept that we
radians relative to the same coordinate frame, velogant to learn.
ity in the x and y directions measured in m/s, and the The choice and representation of attributes has a
angular velocity measured in rad/s. The speed of theghly significant impact on learning. In a MOOS
vehicle can be calculated from theandy coordi- log file, each attribute is logged separately, one per
nates by Pythagoras which means that it will alwaybne, each entry with its own time stamp. The
have positive values. first pre-processing step for data from both exper-
As described previously, we grounded the objectsnents was to find non-linguistic spatial data that
manually relative to the global frame, and then usedorresponded to the time when the description was
the application called Corment ary to recalcu- logged. This means that the time of each descrip-
late the coordinates to be relative to the robot’s cution defines an instance, whereas the linguistic de-
rent location and orientation in regular time interscription of robot’s movement (Experiment 1) or the



preposition used to describe the relation between L{behind, to-the-right-of, to-the-left-of, in-front-pf
and REFO (Experiment 2) are the target concepts the target concept to be learned. Thus, in this case
that are learned. The learned theory is a set of hgach instances is represented as a vector of the fol-
potheses that relate non-linguistic data to linguistitowing attribute valuegTime, LO-X, LO-y, REFO-
descriptions at any time. X, REFO-y, Preposition, OriginalDescriptipn

What are the the attributes from each experiment? |, hoth experiments the attributes Time and Orig-
In Experiment 1 each instance was represented g|Description were not included in the learning
a vector of attribute value¢Time, DeltaHeading, gcheme; they were kept in anrAr file for debug-

Heading, Motion, Manner, OriginalDescription  ging purposes to be able to relate the information
The DeltaHeading attribute (angular velocity in Secpetween this file and the log file.

tion 3.2) refers to the rate of change in heading mea-

sured in rad/s. MOOS headings are zero for north,

positive for left and negative for right. This is be-4.2 Thelearning algorithms used

cause this attribute is a measurement of the robot's ) )

yaw axis, rather than conventional compass heaE_—or the'learnlng exercise, two frequently used algo-
ings. The Speed attribute refers to the speed of tfNMs in the Weka toolkit were chosen: J48 and

vehicle in m/s. As noted in Section 3.2 the measurdaive Bayes. They use quite different approaches

can only have positive values. It is desirable to hav forming hypotheses about the data.

positive values to indicate forward movement, and J48 is Weka’s implementation of the C.45 deci-
negative for reversing. Additional calculations weresion tree learner. J48 uses a method that (Witten
required to determine the +/- prefix: we omit the deand Frank, 2000) describe as ‘divide and conquer’.
tails here. First, an attribute is selected as a root node for the

The following three attributes Heading, Motiontree and then branches are created for each of its
and Manner refer to the three groups of spatial eypossible values. The process is repeated recursively
pressions that we identified in Section 3.1. Becauder each branch, using only those instances that can
these are nominal attributes they will have a closeble classified under that branch. If all instances at a
set of values: Heading {straight, right, leff, Mo- node have the same classification, the development
tion : {stopped, forward, backwafcand Manner : of that part of the tree can be stopped. The difficulty
{none, slowly, moderately, fast The values were is to decide at which attribute to split on. J48 uses
obtained by parsing the fourth attribute OriginalDea measure callethformation gainmeasured to ac-
scription which is a string published byoice after complish this. For details, see (Witten and Frank,
recognising a voice utterance. The utterance did nd000), p.89ff.

necessarily include all the attributes. In this case, Naive Bayes on the other hand learns probabilis-
a default value was assigned to that attribute. F@jc knowledge. Instead of choosing just one attribute
example, for the attribute Manner, the value ‘noneg split on, it uses all attributes and allows them to
was assigned if the utterance did not include a spefrake contributions to the decision as if they were
ification of the manner of motion; if no word for the g)| equally important and independent of one an-
attribute Motion was specified (as Wou're moving other. Although in real datasets attributes are not
right now), the value was defaulted to ‘stopped’, ancbqually important and independent of one another,
if no input for the attribute Heading was found (as inyajve Bayes nonetheless works surprisingly well in
You're moving forwardl the value was defaulted to practice. One disadvantage of the approach is that
fstraight’. This introduced some noise into the trainthe probabilistic knowledge is not very informative
ing data. to the plain human eye. Decision trees on the other

Experiment 2 included learning a relation betand are much more readable to humans.
tween LO and REFO. The location of LO and REFO

in relation to the vehicle (which may be one of these—— _ _ .
It implements the last public version (Revision 8) of the

objects), their: and_y coordinates, can be e)_(t_raCtedC4.5 algorithm, before C5.0 commercial implementation was
from the data froni Conmrent ary. Preposition : released.



5 Results leaves tells us the number of incorrectly classified

. L ) instances under that node.
51 Experiment 1: descriptions of motion

Root

There were 82 instances in the training set. Weka
was set to use 10-fold cross-validation to test the
learned hypotheses which means that 90% of the in-
stances (74) were used for training on each pass.

i ) Motion Motion Motion

Both algorithms performed very well on learning stopped forward b/ack@

the Heading attribute. The accuracy of classification';er spmeed Seeed speed
. . ! < = > —.
after 10-fold cross-validation was 97.6% for J48 and s} <3 >3 | |
. .. (5312) M | PN Manner  Manner

98.8% for Naive Bayes. J48 produced a decision {siouly,  SPeed Speed maynone
tree in Figure 4. The numbers in brackets on the .
leaf nodes indicate the number of instances that have N mdty  fast

o @ ®
been classified under that node. A lesser accuracy

was obtained for the other two attributes as showrfFigure 5:A decision tree for the Manner attribute
in Table 1.

Root

5.2 Experiment 2: Prepositions

Deltatieading Deltatleading The training set in this experiment contained 251 in-
< .024 > .024

| stances. Again 10-fold cross-validation was used to

Heading

DeltaHeading
< —.11

|
Heading

DeltaHeading
> —.11

|
Heading

left
(15)

test the learned hypotheses. The performance of the
trained model is comparable to the models learned

right straight

ion raig in Experiment 1: the learned decision tree classifies

74.9% instances correctly whereas the Naive Bayes
Figure 4:A decision tree for the Heading attribute Model does so for 77.3% of instances.

Figure 6 shows a decision tree that was learned.
Because this learning task involves more attributes
than the previous one, and because an assumption
is made that the attributes are independent of each
other (and hence the learner does not take LO-x and
LO-y to be related), itis more difficult to observe the
motivations behind the learner’s choice. For exam-
ple, according to our ideal notions of the meaning of

Figure 5 shows a simplified decision tree for thehe prepositions in question, there should be no dif-
Manner attribute. The learner chose to split the daf@rence in classifications if LO-X .8 or LO-x > .8.
on the Motion attribute first. This is expected sincdhe classification tells us about the structure of our
negative Speed values mean backward motion. Theaining set. The preposition ‘to the right’ occurs
classification of the Manner attribute is thus differ-only if LO-x > .8, whereas the preposition ‘in front
ent if the Speed attribute is negative or positive: fagif’ occurs under both branches. Perhaps, the com-
backward motion has the lowest rather than the higlmentator used the preposition ‘to the right’ mostly in
est value. Under the Motion = ‘forward’ brancha situation where the REFO was the robot (REFO-x
the split on the Speed attribute appears reasonabfe:1.6) and the LO was an object to its right (LO-x
the leaves under the Speed .3 branch (simpli- > .8 and LO-y< 1.9). From this, can we speculate
fied here to exclude a further differentiation on thehat if one wants to ground the robot (LO), one is
DeltaHeading attribute) include ‘none’, ‘slowly’ and more likely to choose objects to its left rather than
‘moderately’, whereas the terminals under the Speaibjects to its right? Another example that shows
> .3 branch include ‘moderately’ and ‘fast’. Notethe influence of the training set data is the branch
also that the second number in the brackets on theO-y > —1.4". Under this branch, one does not

Learner ] Motion Manner
J48 82.9% 70.7%
Naive Bayes| 72% 67%

Table 1:Correctly classified instances



have to look at the coordinates of the REFO in ordesions referring to the previously known tasks. The
to choose a preposition. If LO-X —1 and LO-y knowledge of the new new task is acquired through
> —1.4 (roughly corresponding to the top left quad-instruction and the new task is subsequently added
rant of the coordinate system) then the most likelyo its database. IBL is a different kind of machine
preposition is ‘to the left’, regardless of the coordi{earning in comparison to the algorithms used in this
nates of the REFO. Finally, it is important to notepaper. What we are trying to do here is to ground
that the numerical values that have been learned dtee basic concepts used by the robot in properties of
applicable to the scale of the scene in which the déhe internal state of the robot itself. The Weka al-
scriptions were made: the typical distances betweeagorithms we use try to find a set of attribute-values
the robot and other objects in the scene. With gproperties of the robot and the environment) that
change of scene, these should be scaled approgsredict another attribute (a natural language descrip-
ately. We have not yet implemented this requiretion). IBL, in contrast, is compiling high level in-
ment. structions to lower level instructions whose ground-
ing is taken for granted.

The learning tasks in (Roy, 2002) are similar to
the ones described in this paper. The domain of the

o o target concepts that are learned is wider than ours.
/\ /\ Each training instance consists of a natural language
o Sy refox reforx sequence of words and a set of valued features that
;{ g P correspond to the semantics of this bag of words.
lo- lo- - . .
ey oy % B <o s1e  GsB) The system has no prior knowledge of word’s lexi-
—3. > —3. > - - o .
- | | ] to-rlight in-font cal semantics, word classes nor the syntactic struc-
in-front behind ~ to-left -~ infront 78710y (4/1) . .
® (37/3)  (66/15)  (46/17) tures that they occur in. All are automatically ac-

quired by probabilistic learning algorithms from a
set of features and words. The experiments are based

. . . - . on a rectangle description problem where images of
In conclusion, machine learning (as it is set up in

. . . c?loured rectangles are automatically generated and
these experiments) cannot induce the semantics 0 . .
- . : human subjects are asked to describe the scene. Our
prepositions that would be informative to human

s : .
but can ‘teach’ the robot to have a sufficient no-a pproach differs from (Roy, 2002) in that we trans-

: i . . . rﬁose the learning task to the domain of a mobile
tion what these prepositions in a given environme i .
robot, we use a different set of spatial features and

Figure 6:A decision tree for prepositions

mean. different learning algorithms. Nevertheless, many
6 Robotics, machine learning and of our aims are similar and we intend to follow this
descriptions of space work closely.

In this section we briefly discuss two approaches thgt | mprovements and further research

combine machine learning with description of space.

(Lauria et al., 2002) describe a setting with a mobild’he 70-80% accuracy could be improved to a higher
robot that uses a technique known as Instructiorfate, perhaps to that achieved for the attribute Head-
Based Learning (IBL) to learn route descriptions iring in Experiment 1, by increasing the size of
a miniature town. A robot has a preprogrammethe training set. By comparison with most ma-
set of primitive descriptions such as ‘move forwarcchine learning experiments our training sets are very
until [(pastoveracross)(landmark]’ which it can small.

execute. IBL is a special kind of machine learning The expressions have been learned with an ac-
where the robot engages in a dialogue with the usareptable rate of success. The learned knowledge
and then, depending on whether it knows how to peshould be tested in a ‘conversation’ with the robot,
form the task, either performs it, or asks the useior example, to instruct the robot to perform motion
to explain how to perform it by using the expres-n the environment or to ground objects. In both



cases, however, there seems to be a great deal of ashiime and effort was spent on understanding each
biguity that need to be resolved before any action isther’s language and on interfacing our software and
performed. For example, if a robot is instructed tesystems. In this paper we report of the stage where
turn left, there is a range of attribute values that corwe are able to learn simple descriptions of move-
respond to ‘left’, but only a particular one has to banent and spatial relations between the objects in the
chosen to perform the action. Equally, if the roboenvironment using non-symbolic methods. We are
is to be able to ground (or name) the object on itplanning to increase the number of instances in our
left by being told ‘The table is to the left of you’, training data to improve the accuracy of learning,
the learned models would return a set of candidaghow that the learned knowledge can be used by a
objects from which a single object must be chosenrobot to describe its environment, and include ad-
This problem is related to the problem of ‘distrac-ditional properties of the environment to be able to
tors’ for prepositional expressions. In the present exake into account the presence of ‘distractor’ objects.
periments distractors were ignored and a commenta-
tor attempted to describe the location of an object bls-ﬁeferences
relating it to any other object in the scene. How-
ever, humans do not ground objects this way: iM. W. M. G Dissanayake, P. M. Newman, H. F. Durrant-
order to locate an object they choose a REFO that Whyte, S. Clark, and M. Csorba. 2001. A solu-
. . . . tion to the simultaneous localization and map building
IS sal-lent or has prppertles such ‘?s being m_qvat_’le(SLAM) problem. IEEE Transactions on Robotic and
or animate, depending on the relation/preposition in Automation 17(3):229-241.

guestion. Representing objects as vectors of valu%s tte Herskovits. 1086L q tial )

. . . . ._Annette Herskovits. anguage and spatial cogni-
Qf their 9_”{ y andz coordinates is thus too simplis tion: an inderdisciplinary study of the prepositions in
tic. Add|t|0na| features can be added to our SyS'[em Enghsh Stud|es |n natura' |anguage processing_ Cam-

incrementally and machine learning should tell us bridge: Cambridge University Press.

;T)?]r: abouttheir significance for individual prep03|—S_ Lauria, T. Kyriacou, G. Bugman, J. Bos, and E. Klein.

2002. Converting natural language route instructions
With distractors included, the learning experiment into robot-executable procedures. Rroceedings

can be formulated in three different ways: (1) given g;éhﬁ uzrggﬁ Iﬁgégmgrg‘éﬂ:ﬁm\gtﬂoa gr?wai?(?;t
LO and REFO, which preposmor_\ relates them best; pages 223-228. Berlin. Germany. ( 02)

or (2) given REFO and a relation such as ‘left’,

ground the LO; or (3) given LO and a relation, find aStephen Muggleton and L. De Raedt. 1994. Inductive
REFO. The formulation of the learning task depends '09iC Programming. theory and methoddournal of

on how the learned knowledge is going to be used. Logic Programming19(20):629-679.

For example, (1) would be used when the robot atAmita.bha Mukerjee. 11998.  Neat versus .scruffy: a
tempts to describe the environment, (2) for ground- ;?(‘)’r']esw Ionf ;g{:}gll(ﬂg'isi”j' a?gd:lgufs% st%?tggsgpfeedsi:
ing unknown Obje_CtS fand (3).f_or describing a scene tors,F.Zepresentation and processing of spatial e;<pres-
whereby the relation is specified. The current non- sjons Lawrence Erlbaum Associates, Inc.

symbolic machine learning techniques do not allow

: : : aul Newman, 2001-2002.MOOS - Mission Orien-
us to combine the knowledge acquired in all thre€ tated Operating Suite Oxford University Robotics

settings in a single model. This would be possi- Research Group, Department of Engineering Sci-
ble with a symbolic learning approach such as In- ence, Oxford University, http://www.robots.ox.ac.uk/
ductive Logic Programming (ILP) (Muggleton and ~pnewman/MOOS/.

De Raedt, 1994) which we are planning to investipep, . Roy. 2002. Learning visually-grounded words

gate in the future. and syntax for a scene description tasomputer
speech and languagé6(3):353—385.

8 Conclusion lan H. Witten and Eibe Frank. 2000Data Mining:

o ) ] o Practical machine learning tools with Java implemen-
In our joint work between computational linguistics  tations Morgan Kaufmann, San Francisco.

and robot engineering so far a significant amount



