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Abstract

Describing the semantics of natural lan-
guage spatial expressions such as (1)
‘moving forward slowly’ and (2) ‘you’re
in front of the desk’ is not a straightfor-
ward task. In this paper we describe a set-
ting with a mobile robot where the mean-
ings of such expressions are learned from
a set of robot data and natural language
descriptions made by a human commen-
tator. We start with simple robot-centered
spatial expressions like (1). These do not
make reference to the environment exter-
nal to the robot. We then extend the learn-
ing to prepositional expressions like (2)
which denote relations between the ob-
jects in the environment.

1 Introduction

A significant body of research in computational lin-
guistics and artificial intelligence concentrates on
interfacing information about the physical world
and natural language expressions. Physical sciences
have developed many methods for representing ob-
jects in space: points, vectors, representations of ori-
entation and motion of objects. These representa-
tions are continuous and enable quantitative location
of objects in a coordinate space. Any (coordinate)
values will provide a precise and unique location of
the objects. Natural language operates in a quite
different manner. Spatial expressions partition the
space into loose regions such asnear, backandleft.

The location of the objects as well as the partitioning
of the space is specified with a large degree of am-
biguity. Which chair in Figure 1a isin front of the
desk? Hownear is near? The choice of a natural
language description also depends on other objects
in the ‘scene’ (‘distractors’) and the perspective at
which the scene is viewed. IsB behindA in both
configurations in Figure 1b?
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Figure 1:Ambiguity and distractors

Factors like properties of objects (animacy, move-
ability) or focus affect the naturalness of spatial de-
scriptions. Thus one would say thatJane is near the
housebut would probably not say thatThe house is
near Jane. (Herskovits, 1986) lists many factors that
may be important for the interpretation of spatial ex-
pressions.

Describing the semantics of spatial expressions is
thus not a straightforward task, especially if done by
hand. A good overall survey of various approaches
is given in (Mukerjee, 1998).



We decided that a good test-bed for theories about
the meanings of spatial expressions, particularly
prepositions, would be a mobile robot setting. If
a robot can be taught to ‘understand’ and use such
expressions in a manner that would seem natural to
a human observer, then we can be reasonably sure
that we have captured at least something important
about their semantics. In the robots we work with
[Newman (2001 2002)], we have access to some as-
pects of the internal state of the robot, including its
representation of speed and relative orientation, and
its own representation of some salient features of
the environment. Of course, as was stated above,
we already know that this is not sufficient to be
able to model the correct usage of natural language
prepositions, but it gives us a platform on which we
can superimpose successively more abstract proper-
ties in order to approach this more nearly. Further-
more, if the experiment is successful, we would have
something of great practical utility: a robot that can
both be instructed to move via natural language, and
which can report what it is doing when moving un-
der the control of another, or (more likely) moving
autonomously (in a burning building or other haz-
ardous environment, for example).

Our project is planned in several stages. At each
stage, we collect a ‘training corpus’ of observa-
tions generated by the robot based on its internal
state and representation of the environment, paired
with a human generated commentary. The com-
mentary consists of short phrases describing what
the robot is doing. In the first phase, the inter-
nal state recorded is completely ‘robot-centred’, i.e.
no reference to external properties of the environ-
ment is made. The commentary accordingly con-
sists of phrases describing (from the robot’s point of
view) what is happening: e.g. slowing down; turn-
ing right; stopping. This commentary is obtained
via a speech recognition system: a human narrator
describes what is happening as the robot is driven
around its environment.

In the second phase, the internal state is aug-
mented with positional information about several
objects in the environment, including the narrator.
The commentary now makes reference to these ob-
jects and includes relative position and relational in-
formation: you are behind the desk; the desk is in
front of me; etc. These situations carefully avoid

the presence of ‘distractors’ so that the training data
consists of clear instances of these spatial concepts.

In the third phase, distractors are included in the
scenario. The commentary will sometimes men-
tion these, and sometimes not. The aim is to see
if the robot-generated narrative describing its route
and relative position is able to select the most appro-
priate and informative set of prepositional relations
in the presence of distractors.

In this paper we describe results obtained from the
first two phases.

2 A description of the system

2.1 System design

MOOS [Newman (2001 2002)] stands for Mission
Oriented Operating Suite and in its core represents
a set of libraries and executables that run a mobile
robot. Its main advantages are that it is platform in-
dependent (Unix, Windows) and that it is conceived
as a modular system with a star-like topology. Each
application within a MOOS ‘community’ has a con-
nection to a single MOOS database (MOOSDB): it
can publish as well as retrieve the information to the
database but cannot publish or retrieve information
directly from another client. There are two advan-
tages of this design. Each application is indepen-
dent of the others and can be written in a program-
ming language of the author’s choice. Natural lan-
guage applications that are written in domain spe-
cific languages such as Prolog can be added to the
MOOS community at no extra cost while preserv-
ing the benefits that these languages offer in terms
of programme design. The communication is done
through the TCP/IP protocol which means that the
applications can run on a different machine than
theMOOSDB so that the MOOS community can be
spread over several different machines.

2.2 Experiment design

In the laboratory, a closed environment was set up
with the following real-size objects: a chest, a box,
a table, a pillar, a stack of tyres, a chair and a desk.
The robot was left to explore the environment and
build its map using a technique known as SLAM
[Newman (2001)] which stands for simultaneous lo-
calisation and map building. Initially, the robot has
no information about the environment or its location,



the SLAM application (pSMSLAM) builds its map
incrementally through the observations of the envi-
ronment. The robot can then use the map to navigate
in the environment since it knows its absolute loca-
tion. Figure 2 shows a photograph of the robot in the
environment, Figure 3 contains a 3D graphical rep-
resentation of the map built by the robot. Note that
the robot is at a different location in each figure.

Figure 2:The environment: the tyres are to the left
of the robot, the table is to its right and the chest is
behind it.

The robot has no knowledge of discrete and dis-
continuous objects: the objects that can be recog-
nised in Figure 3 by humans appear to it as sets of
points. Objects were thus grounded manually. Each
object was defined as a vector〈x, y, z, object-name〉,
wherex, y and z are the coordinates of the cen-
tral axis of each object relative to the robot’s ori-
gin andobject-nameis the name of the object. A
special MOOS applicationiCommentary was de-
signed which recalculates the global object coor-
dinates to relative object coordinates in respect to
the current position and orientation of the vehicle
as it is changing locations. The values generated
by iCommentary are published to theMOOSDB at
some predefined time interval.

During each experiment person A guided the
robot performing motion in the environment us-
ing iRemote. iRemote accepts commands from
a computer keyboard and publishes the values of
desired thrust and desired rudder to the MOOS
database. Person B commented the motion of the
robot (Experiment 1) or the relations between the
objects and the robot (Experiment 2) toiVoice, a

speech recognition MOOS application based on Mi-
crosoft SAPI 5.1. The relational descriptions were
grounded in the robot’s perspective and their vo-
cabulary was restricted to that listed in Section 3.1.
A typical description would be ‘The chair is be-
hind you’. The recognised string was sent to the
MOOSDB. iAGV provided the odometry information
for the robot (Section 3.2), andpLogger produced
a time-stamped log of all of the above values.

Figure 3: A screen shot from the ‘SLAM’ process.
The robot is equipped with a scanning laser which
senses the local environmental geometry. Under an
online, probabilistic framework, consecutive ‘scans’
are fused sequentially to produce a learnt 2D map
(dark lines). The hood-like structure on the top of
the robot in Figure 2 is a 3D scanning laser which
produces clouds of 3D points shown in light gray.
Only the most recently acquired 3D points are ren-
dered — hence only two faces of the chest are dis-
cernible even though its entire circumference has
been mapped. The labelled coordinate frames of ob-
jects used by theiCommentary process are also
shown. As the vehicle moved, this process outputs
the Euclidean relationships between the vehicle and
all other labelled frames.

3 The data

3.1 Language data

In Experiment 1 we restricted ourselves to a small
set of spatial expressions that presumes no refer-
ence to the external environment. These are of
three types: those describing the motion (forward,



backwards, stopped), those describing the manner
of motion (slowly, moderatelyand fast), and those
describing the direction of motion (left, right and
straight (on)). All them were used ‘dynamically’
which means they were progressive descriptions of
the routes that the robot was taking.

In Experiment 2 we included the reference to the
external environment.Relationsbetween the objects
in the environment, the located object (LO) and the
reference object (REFO), are expressed by natural
language prepositions. These descriptions are static
as they involve a fixed scene and include expressions
such as ‘A isnearB’, ‘A is behindB’, ‘A is in front
of B’, ‘A is to the left/right of B’, ‘A is aboveB’,
and ‘A isat B’. The robot (‘you’) may or may not be
one of the related objects A and B.

The expressions from Experiment 1 also allow for
prepositional phrase modifiers that describe the lo-
cation of movement. In this case the LO is always
the moving entity (the robot or ‘you’) and the REFO
is either the destination point of movement, as in
‘Going forward/back/to the door’, or its location,
as in ‘Turning left/right/at the table’ and ‘Stopping
(near the window)’. In terms of reference to phys-
ical space, this class of expressions combines both
kinds of expressions discussed above. Experiments
to include these expressions are planned for the fu-
ture stage of the project.

3.2 Non-language data

The non-language data includes information about
the position and motion of the robot and the position
of the objects. The information about the position
and motion of the robot can be extracted from the
odometry information published byiAGV to a log
file. It includes the globalx andy coordinates from
some origin where the vehicle started, its heading in
radians relative to the same coordinate frame, veloc-
ity in the x and y directions measured in m/s, and the
angular velocity measured in rad/s. The speed of the
vehicle can be calculated from thex andy coordi-
nates by Pythagoras which means that it will always
have positive values.

As described previously, we grounded the objects
manually relative to the global frame, and then used
the application callediCommentary to recalcu-
late the coordinates to be relative to the robot’s cur-
rent location and orientation in regular time inter-

vals. The values for thex, y and z coordinates
of the robot in the data fromiCommentary were
thus〈0, 0, 0〉 at any given time, while objects such
as the desk, for example, were given values such as
〈1.535,−2.558, 0.6355〉 valid at some given time.

4 Machine learning

For machine learning we used Weka (Witten and
Frank, 2000), a deservedly popular implementation
of many common machine learning algorithms and
associated tools written in the Java programming
language. One big advantage is that it uses a unified
file structure for the input data for all learning algo-
rithms in the package. Different algorithms can be
tested on one set of data without a difficulty. There is
no need to pre-process the input to the learner each
time and the results of various algorithm implemen-
tations can be compared on an equal basis.

4.1 The input data

Weka algorithms can handle datasets that consist of
independent, unordered instances and where there
is no relationship between the instances themselves.
The software can read such datasets in the form of an
ARFF file which is a structured text file. Each ARFF

file contains a declaration of attributes (or classes of
data). To learn a theory means to find relationships
between the attributes that would correctly classify
this (and new) data. One of the attributes must be
chosen as the target concept or the class that the
learned hypothesis should predict. Attributes can
be numeric or nominal, in the later case the set of
possible nominal values must also be declared. In-
stances are represented as vectors of attribute values
〈Attribute1, Attribute2, Attribute3〉, the last attribute
value being by convention the target concept that we
want to learn.

The choice and representation of attributes has a
highly significant impact on learning. In a MOOS
log file, each attribute is logged separately, one per
line, each entry with its own time stamp. The
first pre-processing step for data from both exper-
iments was to find non-linguistic spatial data that
corresponded to the time when the description was
logged. This means that the time of each descrip-
tion defines an instance, whereas the linguistic de-
scription of robot’s movement (Experiment 1) or the



preposition used to describe the relation between LO
and REFO (Experiment 2) are the target concepts
that are learned. The learned theory is a set of hy-
potheses that relate non-linguistic data to linguistic
descriptions at any time.

What are the the attributes from each experiment?
In Experiment 1 each instance was represented as
a vector of attribute values〈Time, DeltaHeading,
Heading, Motion, Manner, OriginalDescription〉.
The DeltaHeading attribute (angular velocity in Sec-
tion 3.2) refers to the rate of change in heading mea-
sured in rad/s. MOOS headings are zero for north,
positive for left and negative for right. This is be-
cause this attribute is a measurement of the robot’s
yaw axis, rather than conventional compass head-
ings. The Speed attribute refers to the speed of the
vehicle in m/s. As noted in Section 3.2 the measure
can only have positive values. It is desirable to have
positive values to indicate forward movement, and
negative for reversing. Additional calculations were
required to determine the +/- prefix: we omit the de-
tails here.

The following three attributes Heading, Motion
and Manner refer to the three groups of spatial ex-
pressions that we identified in Section 3.1. Because
these are nominal attributes they will have a closed
set of values: Heading :{straight, right, left}, Mo-
tion : {stopped, forward, backward} and Manner :
{none, slowly, moderately, fast}. The values were
obtained by parsing the fourth attribute OriginalDe-
scription which is a string published byiVoiceafter
recognising a voice utterance. The utterance did not
necessarily include all the attributes. In this case,
a default value was assigned to that attribute. For
example, for the attribute Manner, the value ‘none’
was assigned if the utterance did not include a spec-
ification of the manner of motion; if no word for the
attribute Motion was specified (as inYou’re moving
right now), the value was defaulted to ‘stopped’, and
if no input for the attribute Heading was found (as in
You’re moving forward), the value was defaulted to
‘straight’. This introduced some noise into the train-
ing data.

Experiment 2 included learning a relation be-
tween LO and REFO. The location of LO and REFO
in relation to the vehicle (which may be one of these
objects), theirx andy coordinates, can be extracted
from the data fromiCommentary. Preposition :

{behind, to-the-right-of, to-the-left-of, in-front-of}
is the target concept to be learned. Thus, in this case
each instances is represented as a vector of the fol-
lowing attribute values〈Time, LO-x, LO-y, REFO-
x, REFO-y, Preposition, OriginalDescription〉.

In both experiments the attributes Time and Orig-
inalDescription were not included in the learning
scheme; they were kept in an ARFF file for debug-
ging purposes to be able to relate the information
between this file and the log file.

4.2 The learning algorithms used

For the learning exercise, two frequently used algo-
rithms in the Weka toolkit were chosen: J48 and
Naive Bayes. They use quite different approaches
in forming hypotheses about the data.

J48 is Weka’s implementation of the C.45 deci-
sion tree learner.1 J48 uses a method that (Witten
and Frank, 2000) describe as ‘divide and conquer’.
First, an attribute is selected as a root node for the
tree and then branches are created for each of its
possible values. The process is repeated recursively
for each branch, using only those instances that can
be classified under that branch. If all instances at a
node have the same classification, the development
of that part of the tree can be stopped. The difficulty
is to decide at which attribute to split on. J48 uses
a measure calledinformation gainmeasured to ac-
complish this. For details, see (Witten and Frank,
2000), p.89ff.

Naive Bayes on the other hand learns probabilis-
tic knowledge. Instead of choosing just one attribute
to split on, it uses all attributes and allows them to
make contributions to the decision as if they were
all equally important and independent of one an-
other. Although in real datasets attributes are not
equally important and independent of one another,
Naive Bayes nonetheless works surprisingly well in
practice. One disadvantage of the approach is that
the probabilistic knowledge is not very informative
to the plain human eye. Decision trees on the other
hand are much more readable to humans.

1It implements the last public version (Revision 8) of the
C4.5 algorithm, before C5.0 commercial implementation was
released.



5 Results

5.1 Experiment 1: descriptions of motion

There were 82 instances in the training set. Weka
was set to use 10-fold cross-validation to test the
learned hypotheses which means that 90% of the in-
stances (74) were used for training on each pass.

Both algorithms performed very well on learning
the Heading attribute. The accuracy of classification
after 10-fold cross-validation was 97.6% for J48 and
98.8% for Naive Bayes. J48 produced a decision
tree in Figure 4. The numbers in brackets on the
leaf nodes indicate the number of instances that have
been classified under that node. A lesser accuracy
was obtained for the other two attributes as shown
in Table 1.
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Figure 4:A decision tree for the Heading attribute

Learner Motion Manner
J48 82.9% 70.7%
Naive Bayes 72% 67%

Table 1:Correctly classified instances

Figure 5 shows a simplified decision tree for the
Manner attribute. The learner chose to split the data
on the Motion attribute first. This is expected since
negative Speed values mean backward motion. The
classification of the Manner attribute is thus differ-
ent if the Speed attribute is negative or positive: fast
backward motion has the lowest rather than the high-
est value. Under the Motion = ‘forward’ branch
the split on the Speed attribute appears reasonable:
the leaves under the Speed≤ .3 branch (simpli-
fied here to exclude a further differentiation on the
DeltaHeading attribute) include ‘none’, ‘slowly’ and
‘moderately’, whereas the terminals under the Speed
> .3 branch include ‘moderately’ and ‘fast’. Note
also that the second number in the brackets on the

leaves tells us the number of incorrectly classified
instances under that node.
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Figure 5:A decision tree for the Manner attribute

5.2 Experiment 2: Prepositions

The training set in this experiment contained 251 in-
stances. Again 10-fold cross-validation was used to
test the learned hypotheses. The performance of the
trained model is comparable to the models learned
in Experiment 1: the learned decision tree classifies
74.9% instances correctly whereas the Naive Bayes
model does so for 77.3% of instances.

Figure 6 shows a decision tree that was learned.
Because this learning task involves more attributes
than the previous one, and because an assumption
is made that the attributes are independent of each
other (and hence the learner does not take LO-x and
LO-y to be related), it is more difficult to observe the
motivations behind the learner’s choice. For exam-
ple, according to our ideal notions of the meaning of
the prepositions in question, there should be no dif-
ference in classifications if LO-x≤ .8 or LO-x > .8.
The classification tells us about the structure of our
training set. The preposition ‘to the right’ occurs
only if LO-x > .8, whereas the preposition ‘in front
of’ occurs under both branches. Perhaps, the com-
mentator used the preposition ‘to the right’ mostly in
a situation where the REFO was the robot (REFO-x
≤ 1.6) and the LO was an object to its right (LO-x
> .8 and LO-y≤ 1.9). From this, can we speculate
that if one wants to ground the robot (LO), one is
more likely to choose objects to its left rather than
objects to its right? Another example that shows
the influence of the training set data is the branch
‘LO-y > −1.4’. Under this branch, one does not



have to look at the coordinates of the REFO in order
to choose a preposition. If LO-x≤ −1 and LO-y
> −1.4 (roughly corresponding to the top left quad-
rant of the coordinate system) then the most likely
preposition is ‘to the left’, regardless of the coordi-
nates of the REFO. Finally, it is important to note
that the numerical values that have been learned are
applicable to the scale of the scene in which the de-
scriptions were made: the typical distances between
the robot and other objects in the scene. With a
change of scene, these should be scaled appropri-
ately. We have not yet implemented this require-
ment.
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Figure 6:A decision tree for prepositions

In conclusion, machine learning (as it is set up in
these experiments) cannot induce the semantics of
prepositions that would be informative to humans,
but can ‘teach’ the robot to have a sufficient no-
tion what these prepositions in a given environment
mean.

6 Robotics, machine learning and
descriptions of space

In this section we briefly discuss two approaches that
combine machine learning with description of space.
(Lauria et al., 2002) describe a setting with a mobile
robot that uses a technique known as Instruction-
Based Learning (IBL) to learn route descriptions in
a miniature town. A robot has a preprogrammed
set of primitive descriptions such as ‘move forward
until [(past|over|across)〈landmark〉]’ which it can
execute. IBL is a special kind of machine learning
where the robot engages in a dialogue with the user,
and then, depending on whether it knows how to per-
form the task, either performs it, or asks the user
to explain how to perform it by using the expres-

sions referring to the previously known tasks. The
knowledge of the new new task is acquired through
instruction and the new task is subsequently added
to its database. IBL is a different kind of machine
learning in comparison to the algorithms used in this
paper. What we are trying to do here is to ground
the basic concepts used by the robot in properties of
the internal state of the robot itself. The Weka al-
gorithms we use try to find a set of attribute-values
(properties of the robot and the environment) that
predict another attribute (a natural language descrip-
tion). IBL, in contrast, is compiling high level in-
structions to lower level instructions whose ground-
ing is taken for granted.

The learning tasks in (Roy, 2002) are similar to
the ones described in this paper. The domain of the
target concepts that are learned is wider than ours.
Each training instance consists of a natural language
sequence of words and a set of valued features that
correspond to the semantics of this bag of words.
The system has no prior knowledge of word’s lexi-
cal semantics, word classes nor the syntactic struc-
tures that they occur in. All are automatically ac-
quired by probabilistic learning algorithms from a
set of features and words. The experiments are based
on a rectangle description problem where images of
coloured rectangles are automatically generated and
human subjects are asked to describe the scene. Our
approach differs from (Roy, 2002) in that we trans-
pose the learning task to the domain of a mobile
robot, we use a different set of spatial features and
different learning algorithms. Nevertheless, many
of our aims are similar and we intend to follow this
work closely.

7 Improvements and further research

The 70–80% accuracy could be improved to a higher
rate, perhaps to that achieved for the attribute Head-
ing in Experiment 1, by increasing the size of
the training set. By comparison with most ma-
chine learning experiments our training sets are very
small.

The expressions have been learned with an ac-
ceptable rate of success. The learned knowledge
should be tested in a ‘conversation’ with the robot,
for example, to instruct the robot to perform motion
in the environment or to ground objects. In both



cases, however, there seems to be a great deal of am-
biguity that need to be resolved before any action is
performed. For example, if a robot is instructed to
turn left, there is a range of attribute values that cor-
respond to ‘left’, but only a particular one has to be
chosen to perform the action. Equally, if the robot
is to be able to ground (or name) the object on its
left by being told ‘The table is to the left of you’,
the learned models would return a set of candidate
objects from which a single object must be chosen.

This problem is related to the problem of ‘distrac-
tors’ for prepositional expressions. In the present ex-
periments distractors were ignored and a commenta-
tor attempted to describe the location of an object by
relating it to any other object in the scene. How-
ever, humans do not ground objects this way: in
order to locate an object they choose a REFO that
is salient or has properties such as being movable
or animate, depending on the relation/preposition in
question. Representing objects as vectors of values
of their x, y andz coordinates is thus too simplis-
tic. Additional features can be added to our system
incrementally and machine learning should tell us
more about their significance for individual preposi-
tions.

With distractors included, the learning experiment
can be formulated in three different ways: (1) given
LO and REFO, which preposition relates them best;
or (2) given REFO and a relation such as ‘left’,
ground the LO; or (3) given LO and a relation, find a
REFO. The formulation of the learning task depends
on how the learned knowledge is going to be used.
For example, (1) would be used when the robot at-
tempts to describe the environment, (2) for ground-
ing unknown objects and (3) for describing a scene
whereby the relation is specified. The current non-
symbolic machine learning techniques do not allow
us to combine the knowledge acquired in all three
settings in a single model. This would be possi-
ble with a symbolic learning approach such as In-
ductive Logic Programming (ILP) (Muggleton and
De Raedt, 1994) which we are planning to investi-
gate in the future.

8 Conclusion

In our joint work between computational linguistics
and robot engineering so far a significant amount

of time and effort was spent on understanding each
other’s language and on interfacing our software and
systems. In this paper we report of the stage where
we are able to learn simple descriptions of move-
ment and spatial relations between the objects in the
environment using non-symbolic methods. We are
planning to increase the number of instances in our
training data to improve the accuracy of learning,
show that the learned knowledge can be used by a
robot to describe its environment, and include ad-
ditional properties of the environment to be able to
take into account the presence of ‘distractor’ objects.
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