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Abstract

Natural language contains a number of
word categories that are referential in na-
ture. Their full semantics can only be
evaluated by examining the context in
which the words are used. An important
and challenging group of words are those
that describe space. A system has been
developed where the meanings of spatial
words such as near, left and behind are
learnt by a mobile robot from its experi-
ence of environment: by abstracting over
the properties of its knowledge of environ-
ment and the descriptions that a human
commentator used to describe it. Learn-
ing is performed offline using statistical
and symbolic learning techniques. With
the knowledge that it acquired the robot is
able to generate new descriptions of new
environments. Users can query the robot
through a simple dialogue interface using
spoken natural language.

1 Introduction

A semantic theory of spatial expressions is of inter-
est of any computational treatment of the meaning of
natural language. This is especially the case in auto-
matic generation of descriptions for virtual environ-
ments such as computer games, car navigation sys-
tems that alert and inform the driver of the route to
be taken, and for assistive aids for visually impaired.
The area is tightly connected to mobile robotics that

deals with localisation and mapping (SLAM) (Dis-
sanayake et al., 2001).

The meaning of spatial words can only be evalu-
ated by establishing a reference to the properties of
the environment in which the word is used. For ex-
ample, in order to evaluate how near is near or how
fast is fast in a given context, we need to evaluate
properties such as the size of the scene, the perspec-
tive at which the scene is viewed, typical behaviour
and properties of objects in the scene and the config-
uration and position of other objects or ‘distractors’
(Herskovits, 1986).

There are two main difficulties in interfacing the
information about the physical world and natural
language descriptions. Physical world can be evalu-
ated by measures that are continuous in nature. The
location of two points can be determined by intro-
ducing a coordinate system with a fixed origin and
by determining the points’ x and y coordinates in
the system using the scale of real numbers. On the
contrary, natural language descriptions use discrete
reference to refer to events or objects. They partition
space into regions such as near, back and left, and
degrees of motion to slowly, moderately and fast.
While non-linguistic reference can be made with a
high degree of accuracy, the reference of spatial de-
scriptions is often ambiguous and vague.

As elsewhere in natural language and knowledge
representation, the approaches to the semantics of
the spatial expressions divide between symbolic and
non-symbolic. Symbolic approaches (Di Tomaso
and Lombardo, 1998) attempt to design rules that
encode domain specific knowledge manually. Non-
symbolic techniques, such as (Gapp, 1994) and



(Regier and Carlson, 2001), identify abstract para-
meters that model some properties of physical envi-
ronment (supported by psychological evidence) and
subsequently train their values using machine learn-
ing techniques to match the descriptions.

2 Our approach

Our approach follows the second line of research.
However, instead of introducing complex (already
abstracted) parameters and training their values, we
train our classifiers on simple primitives that are
available to us through the sensory data of a mobile
robot. If a robot can be ‘taught’ to understand and
use such expressions in a manner that would seem
natural to a human observer, then we can be reason-
ably sure that we have captured at least something
important about their semantics. Of course, as we
already know, this may not be sufficient to be able to
model the correct usage of natural language spatial
expressions, but it gives us a platform on which we
can superimpose successively more abstract proper-
ties in order to approach this more nearly.

Our learning task closely resembles the task of
grounding of word meanings described in (Roy,
2002). Here lexical semantics, syntax and word cat-
egories are learnt from a bag of words that represent
human commentary of computer generated scenes
that include rectangles of various sizes, colours and
shapes. The features of these scenes and the words
describing them are paired using probabilistic ma-
chine learning techniques. Our approach transposes
the learning task to the area of mobile robotics where
the ‘training’ corpus consists of observations gener-
ated by the robot using its sensors and human com-
mentary. The commentary consists of short phrases
describing what the robot is doing or what are the
relations between the objects in its environment.

Our system is able to use this domain specific
knowledge to generate new descriptions in new en-
vironments. A robot that can both be instructed to
move via natural language, and which can report
what is doing when moving autonomously or under
control of another in a burning building or hazardous
environment is of great practical utility. Further-
more, linguistic descriptions could be used along-
side sensory data in SLAM to disambiguate the lo-
cation of the robot. For example, (Stachniss et al.,

2005) describe a method where parts of the map
are automatically labelled as ‘office’, ‘corridor’ and
‘kitchen’. The reverse should also be possible: by
being told that its location is ‘in the corridor by the
kitchen’ or ‘to the left of the table’ the robot could
correct its position on the map where sensory data
were insufficient. Our language system is already
integrated with the system that is used to drive, nav-
igate and localise a mobile robot MOOS (Newman,
2001). It is one of our long term goals to be able
to exchange sensory and other already abstracted in-
formation across both systems in a way that would
improve the operation of both.

3 MOOS

MOOS (Newman, 2001) stands for Mission Ori-
ented Operating Suite and its core represents a set
of libraries and executables that run a mobile robot.
Its main advantages are that it is platform indepen-
dent (Unix, Windows) and that it is conceived as a
modular system with a star-like topology (Figure 1).
Each application within a MOOS community has a
connection to the MOOS database (MOOSDB). This
acts as a blackboard: applications do not commu-
nicate directly with each other but can only publish
and retrieve information to and from MOOSDB.

MOOSDB

pAntler
starts processes

iAGV
publishes the
odometry info

pLogger
logs values
from MOOSDB

iRemote
manual
control

iVoice
speech
recognition

Figure 1: The simple topology that was used dur-
ing collection of motion data. iRemote was used to
move the robot around the room. A human describer
described the scene to speech recognition software
that passed the sentences to iVoice, and iAgv pro-
vided odometry information such as robot’s heading
and speed. All data was passed to MOOSDB where
it was retrieved from and logged by pLogger.



4 Data collection

Spatial descriptions that describe a mobile robot be-
long to two different contexts. In the first context,
the robot is moving in an enclosed space and the
descriptions refer to its motion (You’re going for-
ward slowly. Now you’re turning right.). In the
second context, the robot is static in an enclosed
space which contains real-size objects such as desks,
chairs and walls. Here we are interested in preposi-
tional phrases that are used to describe relationships
between objects (The chair is to the left of you. The
table is further away than the chair). The perspec-
tive can be varied by changing the location of the
robot. However, descriptions are always made from
the robot’s point of view.

Four different describers, two native and two
non-native speakers of English, were asked to de-
scribe each context. Each describer first trained the
speech recognition software to get accustomed to
their voice. Before beginning describing, in the first
context, the operator of the robot demonstrated to
the describers various types of motion that the ro-
bot is capable of performing (without using any lin-
guistic descriptions). In the second context, the op-
erator explained to the describers the names of the
objects. The describers were then asked to describe
the scenes with any descriptions that they consid-
ered appropriate. Figure 2 shows the robot and its
environment in the second context.

Figure 2: The robot in the second context: the tyres
are to the left of the robot, the table is to its right and
the chest is behind it.

The first context included dynamic scenes where
the robot operator guided the robot in an enclosed
space attempting to perform all kinds of motion that
the robot was capable of. As a guideline the opera-
tor had a list of possible motions (but which was not
disclosed to the describers) to make sure that during
each data collection session all kinds of motion were
exhausted. The motion types included forward and
backward motion with various velocities and turning
left or right under acute or obtuse angles. The robot
can be controlled using a keyboard by increment-
ing or decrementing the desired thrust and heading
values which are expressed as percentages of their
maximum values. The changes in values are made
in steps of 2.

One difficulty that became evident during the data
collection was a possible delay between the time
of the motion and the time when the description
reached MOOSDB. There are three reasons for this.
The data was collected in an enclosed space in the
lab and thus the length of motion was quite limited.
Secondly, it was observed that it takes a consider-
able time for the describer to decide upon a suitable
description once the motion has started. Finally, a
time lag was also introduced by the speech recog-
niser during which it recognised the string and pub-
lished it to the system. It was also noticed that some
describers experienced difficulties describing from
the robots perspective, especially for backward left
and right. In same cases they switched to their own
perspective. This means that a considerable error
was introduced in the dataset and methods had to
be devised to evaluate and minimise this error in the
learning procedure.

In the second context, real-size objects (chest,
box, table, pillar, stack of tyres, chair, desk, shelves,
etc.) were introduced to the environment and the
task of the describer was to describe the location of
these objects which also included the robot. The op-
erator changed the location of the robot from time
to time to vary the perspective. However, while the
describer was describing, the robot was stationary
and hence much of the errors from the previous con-
text could be avoided. Nonetheless, describers may
have introduced some errors by giving wrong de-
scriptions.

Before the data collection a SLAM map of the
environment was built using the MOOS SLAM ap-



plication pSMSLAM (Newman, 2001). Initially, the
robot has no information about the environment or
its location. pSMSLAM (in SLAM mode) builds
its map incrementally through the observations us-
ing a scanning laser while the robot explores the
environment.1 The SLAM algorithm uses online
probabilistic methods (Pr(location|observation))
to fuse consecutive scans into a coherent map of the
environment relative to the robot’s origin.

The map contains no abstraction of objects or en-
vironment. It is a bag of 〈x, y〉 coordinates2 relative
to the robot’s origin. For this reason, objects had
to be grounded manually. Each object was defined
as a vector 〈x, y, z, object-name〉, where x, y and z
are the coordinates of the central axis of each ob-
ject relative to the robot’s origin and object-name is
the name of the object. Since the central axis was
taken, the approach ignores the shape of the object
and hence will have difficulties dealing with objects
that are long and thin rather than square. Consider
a situation where such an object (e.g. the barrier
in our case) is parallel with the robot but where the
robot aligns with it only alongside one half of the
object’s length. A describer may describe it to be
to the right of the robot, yet the object’s y coordi-
nate will be atypically large (and thus perhaps better
corresponding to the description in front of ) in com-
parison to objects whose sides are of equal length.
We plan to include information about object shape
in our future work.

When the robot was placed in a scene and the sys-
tem was ready for the describers to start, PSMSLAM
(now in the localisation mode) was used to localise
the robot on the map that was build in the previ-
ous step (Pr(location|observation, map)). Thus,
the system had the information about the location of
the objects and the current position of the robot. An
application iCommentary was written which out-
puts the Euclidean relationships between the vehicle
and the labelled objects. The data that was logged to
pLogger represented the coordinates of objects in
the current reference frame of the robot and the de-
scriptions created by the describers made from the
robot’s perspective.

1While it is possible to include navigation, for the purposes
of data collection, the robot was navigated manually.

2The z coordinate can also be measured if 3D rather than 2D
laser is used.

5 Creating instances for machine learning

For machine learning we chose Weka (Witten and
Frank, 2000) a deservedly popular implementation
of many common machine learning algorithms and
associated tools. One considerable advantage is that
it uses a unified file structure for input and output
data for all learning algorithms that it implements.
Thus, different algorithms can be tested on the same
dataset with no extra processing, and their perfor-
mance can be compared. Weka algorithms can han-
dle datasets that consist of independent, unordered
instances. Instances are vectors of attribute values,
the properties that we want to include in the learn-
ing. To learn one attribute (which is also known as
the target concept) means to find relationships be-
tween the values of other attributes that predict the
values of the target concept.

The choice and representation of attributes has a
highly significant impact on learning. Our method
of machine learning is a supervised method, which
means that the input data represented as attributes is
already structured and abstracted. As stated previ-
ously, pLogger logs each attribute independently
of other attributes. To create a coherent instance,
a set of log entries, one per each attribute, should
be chosen and their values extracted. These values
should subsequently be rewritten as vectors 〈Attr1,
Attr2, Attr3. . . 〉 in a structured text file that the Weka
can open. All numeric data should be normalised so
that the theories that will be learnt will be applicable
to new environments and situations. Linguistic data,
which is represented as random sentences, should be
tokenized to words, and their categories (or attribute
membership) should be determined. Instances were
created automatically, while the tagging procedure
was performed manually.

A straightforward algorithm to create instances
from log entries is as follows: (i) find a
VOICE INPUT entry, (ii) find ODOMETRY en-
try (or COMMENTARY RELATIONS entry, depend-
ing on what kind of instances we are extract-
ing) such that its log time is lesser than the
log time of the VOICE INPUT entry, and such
that the log time of the next ODOMETRY (or
COMMENTARY RELATIONS) entry is greater than
the log time of that VOICE INPUT entry. This as-
sures that only the immediately preceding odometry



or commentary relations entry is extracted. This is
necessary because such entries are numerous as they
are published at less than a second intervals.

Unfortunately, there is no assurance that the im-
mediately preceding entry will be the best one. This
is especially true for motion instances from the first
context where delays are quite frequent. In order
to try to minimise the error, an alignment procedure
was devised. The point where the algorithm can
check whether the data is correctly aligned is when a
describer said ‘stopped’. The data is segmented into
segments bound by these descriptions. If the imme-
diately preceding odometry information reports zero
speed, the alignment is correct and all intermediate
descriptions can be handled as under first algorithm,
if not, the segment must be realigned. Currently, a
method where all description times in a given seg-
ment are linearly shifted by the delay of the descrip-
tion ‘stopped’ has been implemented. We proceed
as follows: (i) find odometry time in the same seg-
ment where speed is zero, (ii) determine Delay be-
tween the ‘stopped’ description and that odometry
time, (iii) subtract Delay from all description times
in that segment, (iv) create instances as under first
algorithm. The disadvantage of this approach is that
it assumes that the delay is linear (which may be not)
and that for descriptions at the beginning of the seg-
ment we may not find any odometry information, be-
cause this has been cut off by the segmentation. On
the other hand, the idea of segmentation is attractive,
since it allows us to separate segments that contain
clean data and those that do not.

Matching entries from log files is not sufficient
to create instances. Information from these entries
must be further processed. The ODOMETRY variable
published by the robot gives us the x and y coor-
dinates and the heading of the robot relative to the
origin where the vehicle started, its current veloc-
ity in the x and y directions (in m/s) and its an-
gular velocity (rad/s). The two attributes that we
require are the robot’s current heading and speed
〈delta heading, speed〉. The angular velocity is a
measure of the robot’s current heading. Its speed can
be calculated by Pythagoras from the x and y veloc-
ities. The value of the speed is normalised to the
value of a pre-specified maximum speed that the ve-
hicle can take. For the second context, the value of
the MOOS entry COMMENTARY RELATIONS will

contain the coordinates of all objects relative to the
robot at any given time 〈object, x, y〉. The coordi-
nates x and y of each entry are normalised to the
maximum x and y value found in the SLAM map.

To process linguistic information automatic POS
tagger could be used to tag words, yet their num-
ber was relatively small. The total number of words
that all four describers used in the context of motion
expressions amounted to 267. Most of them, how-
ever, were not spatial expressions but words from
non-related statements that may have been logged
while testing the speech recogniser and words that
have been recognised incorrectly. By examining in-
put sentences, it became evident that the categories
that are required to describe a motion scene are Verb
and various kinds of adverbs: those that describe Di-
rection of movement (forward, backward), Heading
(left, right), and Manner (slowly, fast). For the sec-
ond context containing descriptions of static scenes,
the categories that are required are prepositional Re-
lation and Object. During the tagging procedure,
a set of log files was opened, all words were ex-
tracted from them and a human tagger assigned one
of the above categories to each word. Words that
did not belong to any of these categories were ig-
nored. The spelling of words that were incorrectly
recognised could also be adjusted. The tagged words
were saved as entries of a very simple unification
grammar. Each entry was represented as a predi-
cate lexical entry/1 whose argument is a list
of feature=value pairs. Three features that are
required for our grammar are form which specifies
the word form of the entry, sem type that defines
its category, and arg list which is a list of argu-
ments that this entry takes and whose names corre-
spond to the semantic types of other words. When
extracting arguments from a sentence, the algorithm
first looks for a verb and then tries to match words
whose categories correspond to its arguments. If no
word of the required category is found, the entry is
rewritten as none. Thus, when parsing a sentence,
the algorithm returns a vector of words 〈verb, direc-
tion, heading, manner〉.3

When both linguistic and non-linguistic data was
combined, two sets of instances, one set per con-
text, were created. The instances for the first con-

3In this step, spelling correction is also applied.



text are represented by vectors of attribute val-
ues 〈delta heading, speed, verb, direction, heading,
manner〉 and those for the second context are rep-
resented by vectors of values 〈lo x, lo y, refo x,
refo y, relation〉. Note that the latter vector does not
contain object names that were used in the descrip-
tion but their coordinates. LO refers to the object
that is located by its relation to the reference object
REFO (‘the table (LO) is in front of you (REFO)’.

6 The learning algorithms

Two popular algorithms from the Weka toolkit were
chosen to train on data: J48 and NaiveBayes. Each
uses a different method of forming hypotheses about
the data.

J48 is Weka’s implementation of the C.45 deci-
sion tree learner. A new instance can be classified
by following branches of a tree until reaching leaf
nodes which represent the target concept. (Witten
and Frank, 2000) describe the method of building a
decision tree as ‘divide and conquer’. First, an at-
tribute is selected as the root node for the tree and
then branches are created for each of its possible
values. The process is repeated recursively for each
branch but using only a subset of instances that fall
under that mother branch. If all instances at a node
have the same classification, the development of that
part of the tree can be stopped. The most impor-
tant step is to decide which attribute to split on first.
Small trees are preferred and thus an attribute that
would result in reaching the leaf node as soon as
possible is the winning candidate. The measure that
J48 uses is information gain (which is based on in-
formation and entropy). The attribute that gains the
most information is the preferred candidate to create
a branch for. This is the attribute for which creat-
ing branches for its values will introduce the small-
est variation of the target attribute values alongside
each branch.

NaiveBayes learns probabilistic knowledge. For
example, to learn the meaning of a word it means to
determine probability distributions on the right hand
side of the Equation 1. E are the values of other
attributes included in the learning.

Pr(desc|E1...n) =
Pr(E1|desc) . . . Pr(En|desc)Pr(desc)

Pr(E)
(1)

It follows from Equation 1 that all attributes are
making a contribution to the decision about the
class. Importantly, their probabilities will be dif-
ferent and some will have a greater weight than the
others. Although in real datasets attributes are not
equally important and independent of one another,
NaiveBayes nonetheless works surprisingly well in
practice.

7 Results

Both algorithms were run on various subsets of our
data and their results are presented in the following
sub-sections. All classifiers were evaluated by 10-
fold cross-validation.

7.1 Context I: motion scenes

Let us consider the results from two subsets of data.
Subset I (192 instances) contains data that was man-
ually estimated during collection to be the most
error-free and no alignment of instances was per-
formed. Subset II (338 instances) contains data
that may contain errors and on which alignment
was performed. The attributes that were included
in each training run were the two numerical at-
tributes {delta heading, speed} and one of the nom-
inal attributes representing the categories of words
{direction, heading, manner, verb}, thus for exam-
ple 〈delta heading, speed, verb〉. Including all nom-
inal attributes in each run significantly increased the
classifiers’ accuracies (not shown here). This is ex-
pected, since nominal attributes are not independent
and knowing the class of verb makes it much easier
to predict the class of heading, for example. If the
vehicle is ‘turning’ then the class of heading is most
likely to be ‘left’ or ’right’. Tables 1 and 2 show
that the accuracies of classifiers trained and tested on
Subset II are lower than the accuracies of classifiers
based on Subset I. A full comparison between the ef-
fects of alignment vs no-alignment is yet to be made.
Note that in both tables the classifiers for Manner
and Verb have the lowest accuracy. This confirms
our intuition that these attributes are the most am-
biguous and thus hardest to learn. Finally, Table 3
shows the values of nominal attributes in Subset I.
Since each attribute has 4 or 5 values, the probabil-
ity of randomly guessing a word for each class is
25% or 20% which serves as the base case for com-



parison.

Classifier Direction Heading Manner Verb
J48 74.0% 74.0% 79.2% 75.5%
NaiveBayes 67.7% 75.5% 78.1% 64.1%

Table 1: Subset I: nominal instances

Classifier Direction Heading Manner Verb
J48 73.4% 73.1% 65.4% 65.4%
NaiveBayes 70.1% 67.8% 57.4% 62.1%

Table 2: Subset II: nominal instances

Attribute Values
Direction backward, forward, none, spot, straight
Heading anticlockwise, clockwise, left, none, right
Manner fast, moderately, none, slowly
Verb creeping, going, moving, turning, stopped

Table 3: Nominal attribute values for Subset I. Other
subsets may have different values depending on what
words describers used.

Learning continuous numeric attributes
{delta heading, speed} is not as straightfor-
ward as learning nominal ones since classifiers
cannot deal with target concepts that are not
nominal. Before learning, numeric attributes must
be turned into nominal ones. This can be done
by splitting the scale of all possible real numbers
that define the numeric attribute into a predefined
number of intervals or bins of fixed size.4 Contrary
to the naı̈ve belief, increasing the number of bins
does not improve the accuracy of the classifier
but decreases it, since the greater the number of
bins, the harder to predict the instance class as
demonstrated in Table 4. On the other hand, to have
a useful classifier, an increased number of bins is
desirable. A choice on the optimal number of bins
must thus be made. For our dataset, 5 appears to
be a reasonable choice since this corresponds to the
number of conceptual distinctions contained in our
nominal classes, and the classifier accuracies are
also comparable.5

4Weka already contains such filter (weka.filters.
unsupervised.attribute.Discretize).

5The optimal number of bins could be determined formally
by starting with a large number of bins and then computing mu-
tual information between each neighbouring pair. Bins with
high mutual information could be fused into one until an op-
timal number would be reached.

Bins Delta heading Speed
3 81.8% 80.2%
5 72.4% 69.8%
10 49.5% 64.0%
20 35.9% 52.6%
30 30.7% 52.1%
40 26.0% 49.5%

Table 4: The accuracy of the J48 classifier trained
on Subset I for numeric attributes binned to various
number of bins.

7.2 Context II: prepositional relations

251 instances from the second context were chosen
where each instance was represented as a vector of
values 〈lo x, lo y, refo x, refo y, relation〉. Relation
was the target concept to be learnt and its possible
values were {‘in front of’, ‘behind’, to the left of’,
‘to the right of’}. The performance of classifiers is
comparable to the ones from the first context: J48
correctly classified 74.9% of instances and Naive-
Bayes 77.3% of instances.

8 Using the acquired knowledge

The aim of the learning experiment is to be able to
show that the robot can use the knowledge that it
learnt in practice. It is planned for our future work
to have human evaluators that would judge the lin-
guistic response of the robot and compare the figures
with those given by the classifiers. To this end, two
programmes were designed that can be integrated
with the MOOS community which we called pDe-
scriber and pDialogue.

pDescriber is a commentator: if the robot is mov-
ing it describes its actions, else if the robot is station-
ary, it provides comments about position of objects.
In order to do so, pDescriber uses the classifiers for
nominal attributes discussed in Sections 7.1 and 7.2.
The system has a similar setup as when collecting
the data, except that now a speech synthesiser rather
than a recogniser is used which pronounces the sen-
tences that are generated from the words predicted
by the classifiers.

pDialogue answers user’s questions about the po-
sition of objects, performs motion commands or just
chats with users. It contains three modes of opera-
tion: the first one is a simple pattern matching dia-
logue interface that tries to match the words in the
user’s question with a predefined pattern of words



and then responds with the reply of the winning pat-
tern. The second mode performs commands such
as ‘Go forward slowly’ and ‘Go forward right fast’.
For this mode, the classifiers for Delta heading and
Speed are used. Furthermore, their output values
(which represent robot’s states) must be turned to
instructions that move the robot. These are desired
rudder and desired thrust which are percentages of
the maximum rudder and the maximum speed. In
the third mode, the robot answers questions about
the position of objects, for example ‘Where is the
chair?’. For this, the classifier from Section 7.2 is
used. At the moment, the reference object is chosen
manually. This is not sufficient, since human intu-
ition shows that depending on the configuration of
the scene, some objects are more likely to be RE-
FOs than the others. pDialogue determines its mode
by parsing a tokenized user input with the grammar
discussed in Section 5 and by checking the semantic
type of the verb.

Both pDescriber and pDialogue normalise all nu-
meric values to current maximum values and thus
can be used in environments different from the ones
in which their classifiers were trained.

9 Conclusion and further work

In this paper we describe a complete cycle how de-
scriptions are learnt from the properties of the envi-
ronment internalised by the robot and later used by
it to interact with users and its environment. There
are many ways in which the system could be im-
proved. Machine learning described in this paper is
a type of supervised learning which means that many
steps depended on human input and judgment. An
important achievement would be to show how such
human ‘interference’ can be minimised. Secondly,
the learning is performed on very simple representa-
tions of robot’s environment. We have seen that such
representations are not sufficient to model the mean-
ings of spatial expressions closely. The question of
representations is also related to the modelling of
perspective (of the robot and its interlocutors) which
our system presently does not implement. A signifi-
cant effort has been devoted to minimise and evalu-
ate errors in the input data and further improvements
are underway. Finally, our longterm research goal is
to examine how linguistic and localisation systems

can be closely integrated to exchange information
that is potentially useful to both.
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