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Abstract

This is an article about abstraction, generalization, and the beauty of mathematics. We claim that

abstraction and generalization in of itself may very well be a beauty of the human mind. The fact

that we humans continue to explore and expand mathematics is truly beautiful and remarkable.

Many years ago, our ancestors understood that seven stones, seven fish, and seven trees repre-

sent in some sense one entity, in this case all united by the number seven. That in itself is an

abstraction. We will discuss abstraction and the different beautiful properties of mathematics in

relation to some examples, where we describe the connection between algebra and geometry.

Modern technological tools enable and encourage us to perform mathematical investigations of a

kind that was once considered difficult.
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Introduction

In many countries and in many publications about the teaching of mathematics, there is
often emphasis on the realistic or concrete side of mathematics. There is a general claim that
students should see the real-life usefulness of the mathematics they are learning. Abstract or
pure mathematics is often considered to be far too complicated. It is an issue not only for
students in upper secondary school or university while grappling with a particularly complex

Corresponding author:

Russell Hatami, Ostfold University College, Høgskolen i Østfold, P.O.Box 700, NO-1757 Halden, Norway.

Email: russell.hatami@hiof.no

Policy Futures in Education

0(0) 1–16

! The Author(s) 2020

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/1478210319895104

journals.sagepub.com/home/pfe

https://orcid.org/0000-0002-7432-7378
mailto:russell.hatami@hiof.no
http://uk.sagepub.com/en-gb/journals-permissions
http://dx.doi.org/10.1177/1478210319895104
journals.sagepub.com/home/pfe
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1478210319895104&domain=pdf&date_stamp=2020-01-21


calculus problem it is a well-known fact that also teachers in compulsory school are dwelling
on the shortcomings of many students when encountering abstract mathematics.

It is fascinating that many fields of mathematics emerged from the study of real-world
problems long before their underlying rules and concepts were identified. The rules and
concepts were then defined as abstract structures. Algebra, where letters and symbols are
used to represent numbers and quantities in formulas and equations, was born from solving
problems in arithmetic. Geometry emerged as people worked to solve problems dealing with
distances and areas in the real world.

Think of the young child who says to their mother “Look mommy, I see a large triangle
up there” while pointing to the roof of a house, using their index finger to draw a triangle in
the air. The child has then, in our view, shown both abstraction and generalization.

The very process where we move from the concrete situation to the abstract scenario is
known as abstraction and generalization. Via the process of abstraction, the underlying
essence of a mathematical concept can be extracted. Via generalization we can use the
concept and procedures from a specific example in other situations. Think of adding inte-
gers, fractions, complex numbers, vectors, and matrices. In different situations, the concept
is the same but the applications are different.

We consider it essential for mathematics that we can lift ourselves from the special case
and to realize that some mathematical relation is valid only for fish, for stones, or for people.
The theorem of Pythagoras is probably valid also when humans have disappeared. We
furthermore claim that when we are doing mathematics, we are in the area of absolute
abstraction. If some abstract conditions are satisfied, then some other abstract conditions
are also satisfied. We could view the process of generalization as the greatest of all gifts. To
be able to see particular and seemingly disparate phenomena as a consequence of unifying
and clear facts is something that is ultimately important and is sometimes not validated
enough. There is a tendency sometimes to explore very particular notions, but only the
unification of those notions shines a new light on the subject at hand and opens significantly
new horizons. The foundation of the Pythagorean brotherhood and the mystical rumors
about their rituals and influence offer some evidence that Pythagoras had sensed the possible
importance of mathematics in the formation of science.

The growth of abstraction in mathematics provided disciplines like chemistry, physics,
astronomy, geology, and meteorology with the ability to explain a wide variety of complex
physical phenomena that occur in nature. Anyone who comprehends the process of abstrac-
tion in mathematics will be prepared to understand abstraction occurring in other subjects
such as chemistry or physics.

When it comes to the beauty of mathematics, it seems that it is more related to the
abstract part of mathematics. In our first example, we will explore connections between
specific numbers and geometry, revealing new connections that possibly you, dear reader,
might have overlooked or have not even seen before. We will use modern technology, for
example GeoGebra, to help us do these explorations and thereby illuminate the strength of
technology when working with abstract mathematical investigations—see Lingefj€ard (2013).

Dynamic geometry

Dynamic Geometry Environments (DGE), such as GeoGebra (Hohenwarter, 2001),
CabriTM (Laborde and Bellemain, 1993), or The Geometer’s SketchpadTM (Jackiw,
1991), include features that enable and constrain conceptions of mathematical ideas; our
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article investigates the possibility of linking geometry to algebra through a process involving
DGE technology. While these DGE tools are increasingly complex, they nevertheless enable
geometrical actions and therefore unwrap questions that one might not have asked without
the availability of the DGE.

A DGE affords the user with the ability to drag parts of a geometrical object and, in the
process, observe properties about the object that remain invariant and those that do not. In a
DGE, the underlying principle is “to provide diagrams representing a set of geometrical
objects and dynamical relations instead of a single static diagram.” The DGE itself therefore
allows the user to perform investigations and to work with inquiry-based learning activities.
The mathematics education community has strongly emphasized the importance of inquiry-
based learning activities for promoting active learning on the part of students (Brown and
Walter, 2005; Da Ponte, 2007; Jones and Shaw, 1988; Leikin, 2004; Silver, 1994; Wells, 1999).

GeoGebra is a free program and, at the time of writing, there are GeoGebra applets available
for smartphones, iPads, and Internet connected computers. There are more than one million
applets uploaded to the GeoGebra resources web site. The fact that GeoGebra has been trans-
lated into over 70 different languages and that users can decide what language to use is an
important feature. In several senses, GeoGebra is a democratizing force within mathematics.

Some oddities of the number 7

It is a well-known fact that a week consists of seven days. “In six days God made the heaven
and the earth, the sea, and all that is in them, but He rested the seventh-day. Therefore the
Lord blessed the Sabbath day and made it holy.” Therefore, the creation story points out
seven as a special number.

The Egyptians had seven original and higher gods; the Phoenicians had seven kabiris; the
Persians had seven sacred horses of Mithra; the Parsees had seven angels opposed by seven
demons, and seven celestial abodes paralleled by seven lower regions. The seven gods were
often represented as one seven-headed deity.

The heaven was subjected to the seven known planets of our solar system; hence, in
nearly all religious systems we will find seven heavens. An important cognitive ability
within humans is memory span. Memory span often refers to the longest possible list of
items (e.g., colors, digits, letters, and words) that a person can repeat immediately after a
presentation in the correct order. Miller (1956) has shown that the memory span of humans
often is approximately 7� 2 items.

According to the theory of biorhythms, a person’s life is affected by rhythmic biological
cycles which affect one’s ability in various domains, such as mental, physical, and emotional
activity. These cycles begin at birth and oscillate in a steady sine wave fashion throughout
life. By modelling them mathematically, a person’s level of ability in each of these domains
can be predicted approximately from day to day. The emotional biorhythm model is a
28-day cycle. Here, too, the number seven plays a role.

Mathematically interesting connections

Obviously, the number seven plays a role in many different areas of human life. Within
natural numbers we have the somewhat abstract division of composite or prime numbers.
The number seven is a prime number, and Archimedes discovered its approximate kinship to
the circle. He realized that a circle’s circumference can be bounded from below and from
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above by inscribing and circumscribing regular polygons and computing the perimeters of

the inner and outer polygons. By so doing, he proved that

3
10

71
< p < 3

1

7

The first prime number that is not one more than a power of two is seven: thus, 2¼ 2� þ 1,

3¼ 21þ 1, 5¼ 22þ 1, and 7¼ 23 – 1. A regular polygon with seven sides is the first regular

polygon that cannot be constructed by traditional Euclidean methods using a straightedge

and compass alone.
The repeating portion of the decimal fraction corresponding to 1/7 is 0.142857142,857 . . .

Furthermore, we know that:

142857� 1 ¼ 142857

142857� 2 ¼ 285714

142857� 3 ¼ 428571

142857� 4 ¼ 571428

142857� 5 ¼ 714285

142857� 6 ¼ 857142

The same figures come back in different orders. We can also express 1/7 as a geometrical

series defined as

a
X1
n¼0

kn ¼ a

1�k

a¼ 0.14 and k¼ 0.02 (the sum evaluates to 0.14/0.98, which simplifies to 1/7).
Remember the ancient Egyptian and Archimedes approximation for p through 22/7¼

21/7þ 1/7¼ 3.142857142857. . .
Given an integer k, a positive integer x is said to be k – transportable if, when its left most

digit is moved to the unit’s place (i.e., ‘left to right’), the resulting integer is kx.
The integer 142,857 is 3-transportable since 428; 571 ¼ 3� 142; 857
Kahan (1976) proved that for k> 1 there are no such integers unless k¼ 3, and the

3-transportable integers all belong to one of the following two sequences:

142; 857; 142; 857; 142; 857; 142; 857; 142; 857; 142; 857; . . .

285; 714; 285; 714; 285; 714; 285; 714; 285; 714; 285; 714; . . .

Example 1

The following connection between algebra, geometry, and the fraction 1/7 was shown to one

of us authors by the Swedish mathematician Andrejs Dunkels in a conference meeting in

1988. Dunkels challenged us to show that if we combine six overlapping pairs of digits in

142,857, and thereby get the following Cartesian points in the plane (1, 4), (4, 2), (2, 8), (8,

5), (5, 7), and (7, 1), these six points lie on an ellipse.
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This fact was first pointed out in 1986 by Edward Kitchen, who encouraged readers of
Mathematics Magazine (problem section) to prove the fact noted above. See Figure 1, which
was constructed with GeoGebra. The problem is easily solved by Dynamical Geometry
program (e.g., GeoGebra or Geometer’s Sketchpad), but in the October 1987 issue of the
magazine, the problem was solved by hand by John C. Nichols, Thiel College, Pennsylvania.

It is a well-known fact that five arbitrary points satisfy a conic equation given by:

Ax2 þ Bxyþ Cy2 þDxþ Eyþ F ¼ 0

We have six coefficients to determine, but they are determined up to multiplication by a
non-zero constant (that is, if the six numbers are scaled up by a common constant, we get
the same conic), which means that five points determine the conic (provided that four of
them do not lie on a line; if three of the points lie on a line, the conic is a union of two lines).

Its equation is: 19 � x2 þ 36 � xyþ 41 � y2 � 333 � x� 531 � yþ 1638 ¼ 0:
The fact is, is that in the 1/7 ellipse, the sixth point, too, lies on the conic rests in a symmetric

relation that holds between the six points; specifically, on the fact that 142þ 857¼ 999, which
yields the following relation: [1, 4]þ [8, 5]¼ [4, 2]þ [5, 7]¼ [2, 8]þ [7, 1]¼ [9, 9].

What other reciprocals have the same qualities? What will happen, for instance, if we

combine the points (14, 28), (28, 57), (57, 14) with the points (42, 85), (85, 71), (71, 42)?
(These are obtained by taking 2-digit combinations from the decimal expansion of 1/7.)
Likewise, it happens that these six points also lie on an ellipse—see Figure 2.

Its equation is: 165104 � x2 � 160804 � x � yþ 41651 � y2 � 8385498 � xþ 3836349 � yþ
7999600 ¼ 0.

Generalizing the question

The Shippensburg University problem solving group (1987) investigated all ‘period six
reciprocals’ (i.e., those whose digital forms have a six-digit repetend, like 1/7) and found

Figure 1. A 1/7 ellipse, where A¼ (1, 4), B¼ (4, 2), C¼ (2, 8), D¼ (8, 5), E¼ (5, 7), F¼ (7, 1).
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that reciprocals of 13 and 77 yield hyperbolas, the reciprocals of 39, 63, 91, 143, 273, 429,

693, and 819 yield ellipses, while the reciprocals of 21, 117, 189, 231, 259, 297, 351, 407, 481,

and 777 do not yield a conic at all.
Mathpuzzle (December 2006) cited Chris Lomont:

Out of curiosity, I found a lot more of these ellipses. One with more points is the 1/7373 ellipse,

1/7373¼ 0.00013653. . . which gives seven points (0, 0), (0, 1), (1,3), (3,0), (3,5), (5,6), (6, 3) on an

ellipse. To get 8 points on a single ellipse I found that the fraction 4111/3030303 works. I’ve yet

to find more on a single ellipse. I’m unaware of any proof that can be done, although integer

points on curves are much studied (http://www.mathpuzzle.com/25Dec2006.html).

The first 6 pairs of numbers in several decimal fractions lie on an ellipse (e.g., 23/91 or 75/91)

or on a hyperbola (e.g., 2/13 or 36/91).
Further, one might investigate the effect of considering not just single digits, but blocks

of digits of various lengths (2, 3, . . .) for the coordinates. We found that the blocks of

length 2 of several reciprocals, including 1/7, 1/13, 1/77, 1/91, and 1/819, yield conics

but the blocks of length 2 of 1/7373 (period 8 reciprocal with seven points on a conic)

do not yield a conic. Moreover, blocks of length 3 of the reciprocals 1/7, 1/13, 1/77, 1/91

yield the straight line y¼�xþ 999, whereas blocks of length 3 of 1/819 yield the straight line

y¼�xþ 222.

Figure 2. A variant of the 1/7 ellipse, with A¼ (14, 28), B¼ (28, 57), C¼ (57, 14), etc.
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For example, blocks of length 2 of 1/13 yield a hyperbola with the equation (see Figure 3;

the caption shows how the coordinates of the points are computed):

–4013x2 þ 36478xy–53117y2–1408374xþ 3452922yþ 7074800 ¼ 0

The centers of the conics of 1/7 and 1/13 are all located at (9/2, 9/2), whereas the centers

of the conics connected with blocks of length 2 are located at (99/2, 99/2).

Analysis. One way to look at digital-conics is that if you have four numbers called a, b, c, d,

then the six points are given by:

ða; bÞ; ðb; cÞ; ðc; d� aÞ; ðd� a; d� bÞ; ðd� b; d� cÞ; and ðd� c; aÞ

These numbers a, b, c, d will be on a conic with center in (d/2, d/2). The case of parabola,

hyperbola, or ellipse depends on the values of a, b, c, d.
In the case of 1/7, we have that a¼ 1, b¼ 4, c¼ 2, d¼ 9, which is connected to the fact

that 142þ 857¼ 999 and, in a similar way, we have that:

ð14; 28Þ; ð42; 85Þ; ð28; 57Þ; ð85; 71Þ; ð57; 14Þ; ð71; 42Þ

This can be seen as:

ða; bÞ; ðd� c; d� aÞ; ðb; cÞ; ðd� a; d� bÞ; ðc; aÞ; ðd� b; d� cÞ

Figure 3. Points produced from blocks of length 2 from 1/13¼ 0.076923. . ., yielding a hyperbola.
Here, A¼ (07, 69), B¼ (76, 92), C¼ (69, 23), D¼ (92, 30), E¼ (23, 07), F¼ (30, 76).
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with a¼ 14, b¼ 28, c¼ 57, d¼ 99. In this case, the coordinates are permuted in two different
cycles of length 3 while we in the previous case had one single cycle of length 6. It is worth
noting that in both cases we find the center of the ellipse at (d/2, d/2).

If we go back to the example of the 1/7 ellipse, we see that the ellipse can be described as:

19ð2x� 9Þ2 þ 36ð2x� 9Þ � ð2y� 9Þ þ 41ð2y� 9Þ2 ¼ 1224

Also, other 6-tuples of numbers can be used—they do not need to be different. In addi-
tion, 112,332 with (a¼ b¼ 1, c¼ 2, d¼ 4) gives 6 points that are on the ellipse
3ðx� yÞ2 þ ðxþ y� 4Þ2 ¼ 4.

If the pairs of triplets of a period six reciprocal lie on the same line, the slope must be s¼ -
1. This follows from the fact that the first and fourth points have the same coordinates in
reversed order: x1¼ y4 and x4¼ y1, which gives the slope s ¼ y4�y1

x4�x1
¼ y4�y1

y1�y4
¼ �1.

What happens if we multiply seven with 13¼ 91? We have that 1/91 is 0.0109890109. . .
which yields the points (0, 1), (1, 0), (0, 9), (9,8), (8, 9), and (9, 0)—see figure 4.

So far, we have worked mainly on numbers generating fractions. What if we ask the
question from the other way around? For instance, is there a fraction 1/x with a cycle of
length eight that will fit to an ellipse? It is possible to find that 1/73¼ 0.01369863013 gives
eight points (0, 1), (1, 3), (3, 6), (6, 9), (9, 8), (8, 6), (6, 3), (3, 0)? See figure 5.

Once the points are visualized, we can actually see that they seem to be in an oval
structure with the center in (9/2, 9/2). However, they are not all in an ellipse, which we
find if we ask GeoGebra to fit a conic to the points. Here comes a difficulty: by omitting the
points one by one, we finally see that if we omit the points (9, 8) and (0, 1) we get an ellipse
that not only goes through the six remaining points, but also through additional integer

Figure 4. The ellipse built on the fraction 1/91, visualized by GeoGebra.
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points (0, 0), (1, -1), (8, 10), and (9, 9). This was found by carrying out systematic inves-

tigations. We call this a ten-point ellipse. The equation is:

3ð2x –9Þ2 þ 2ð2y –9Þ2 � 4ð2x–9Þð2y–9Þ ¼ 81

The midpoint is at (9/2, 9/2)—see figure 6.
One final ellipse before we leave you to your own investigations. In figure 7, you find an

ellipse with 18 outspread integer points on the surface. Isn’t that and abstract mathematics

beautiful?
Obviously, we can go in many different directions when we can investigate and visualize

with technology. We leave further investigations within this realm to the reader.

Example 2

In our next example, we will go from geometry to algebra and mathematical modelling. Let

us have a look at the following geometrical situation.
The history behind the following exploration is unfortunately not available to the authors

at this time. You see two equilateral triangles in Figure 8. The side of the larger triangle has

been divided into three equal parts in order to construct the inner, smaller triangle in a

specific way. When measured, one finds that the ratio between the outer and the inner

triangles’ area is exactly seven.
The next step is to divide the outer equilateral triangles’ side into five equal sections and

construct the smallest possible equilateral triangles inside. What will the ratio be now?

Figure 5. Points derived from the fraction 1/73, visualized by GeoGebra.
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Figure 6. An ellipse partly derived from the fraction 1/73, visualized by GeoGebra.

Figure 7. An ellipse with 18 integer points, visualized by GeoGebra.
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You see two equilateral triangles in Figure 8. See also Figure 9, Figure 10, and Figure 11.
If we repeat the measuring and the procedure for seven equal sections, for 11 equal
sections, or for 13 equal sections, what will we find? The activity is easy enough to
start with, yet it appears to be both complex and rich and it is difficult to immediately
see a clear relation or to find a final answer. One probably needs to get involved in the
activity in order to find a structure to follow. The activity will promote many different types
of responses.

An equilateral triangle is divided according to 3,5,7,. . ., n parts where n is an odd
number. Therefore n¼ 2kþ 1 and k¼ 1, 2, 3. . .We start clockwise and take the shortest
path with the first point, second point, and so forth. We measure the ratios which always
seem to be a whole number, including 7, 19, and 37. Is there a pattern? When investigating
the ratios 7, 19, and 37, it seems that the relations between these numbers have first
increased with 12 and then with 18. Is it possible that next increment will be 24 and the
ratio thereby 37þ 24¼ 61?

If we do not divide any side of the outer triangle, the ratio will be 1. So we investigate 1, 7,
19, 37, 61 . . . ak, where a is the number and k is the serial number.

a0 ¼ 1 ¼ 1
a1 ¼ 7 ¼ 1þ 1 � 6
a2 ¼ 19 ¼ 1þ 2 � 6 þ 1 � 6
a3 ¼ 37 ¼ 1þ 3 � 6þ 2 � 6þ 1 � 6
a4 ¼ 61 ¼ 1þ 4 � 6þ 3 � 6þ 2 � 6þ 1 � 6
ak ¼ 1þ n � 6þ ðn� 1Þ � 6 þ ðn� 2Þ � 6 . . .þ 2 � 6þ 1 � 6

Figure 8. Investigation of the ratio of the areas.
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Simplifying the equation:

ak ¼ 1þ 6
�
nþ ðn� 1Þ þ ðn� 2Þ . . . 3þ 2þ 1

�
¼> : ak ¼ 1þ 6k

ðkþ 1Þ
2

This discussion suggests that the ratio between the equilateral triangles will change
according to the formula above, and this can be proved to indeed be the case: we have
arrived at an algebra based formula here that we can simplify to 1þ 3�k(k - 1).

When searching the Internet with the numbers 1, 7, 19, 37, 61, 91. . . it becomes apparent
that these numbers are called hexagonal centered numbers and they result from counting the
number of spots making up a full hexagon:

Figure 9. Further investigations of the ratio of the areas.

Figure 10. Hexagonal centered numbers from http://www.drking.org.uk/hexagons/misc/numbers.html.
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We use the notation TðkÞ ¼ kðk þ 1Þ
2 and HðkÞ ¼ 2k2 � k in order to prove that all hex-

agonal numbers H(k) are triangular T(k) numbers.
The aim is to prove T(k)¼H(m) for some k, m.
We thereby get: kðk þ1Þ

2 ¼ 2m2 �m ¼ mð2m� 1Þ () nðnþ 1Þ ¼ ð2m� 1Þ2m
We see that k ¼ 2m� 1 is true and that Tð2m� 1Þ ¼ HðmÞ or that H kþ1

2

� �
¼ TðnÞ (for

k odd).
Furthermore: Tð�kÞ ¼ �kð�kþ1Þ

2 ¼ kðk�1Þ
2 ¼ Tðk� 1Þ

Finally: HðkÞ ¼ Tð�2kÞ ¼ Tð2Þ.

QED

Obviously, there exists a connection between ratios of equilateral triangles areas and

number theory. If we create a list of points as (0, 1), (1, 7), (2, 19), and so forth, we

could also get a regression derived model in GeoGebra, as in the figure below.
If we, after having found this model, go back to our original first division of the triangles,

and if we use congruency and the cosine theorem so that s and x denote the large and the

small triangle respectively and that the triangle on which we apply the law of cosine has sides

x, kx and (kþ 1)x, then we can derive the following:

s2 ¼ ðkþ 1Þ2 � x2 þ k2 � x2 þ 2k � ðkþ 1Þ � x2 � ð1=2Þ

This can (since area scale is (length scale)2) be simplified to:

s2 ¼ ð1þ 3kþ 3k2Þ � x2

Figure 11. Modeling tools within GeoGebra.
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Conclusions

New technological artefacts obviously bring about new ways of interacting with geometrical
investigations. Seymour Papert (1993: 23), in Mindstorms: Children, Computers, and
Powerful Ideas, suggested that we humans should be using computers as an “object-to-
think-with.”. He was envisioning new ways of learning mathematics. Papert suggested a

change of the educational culture towards a more “personal, less alienating relationship with
knowledge” (Papert, 1993: 177) where students and teachers create bonds when learning
about learning—see Lingefj€ard (2015).

Some mathematics teachers naturally see the potential of using dynamic geometry to
explore mathematical terrain and to enhance inquiry-based learning experiences to students.
Many teachers also refer to improvements in the classroom atmosphere, students’ increased

motivation, and the efficiency of showing many examples at once as some of the reasons for
incorporating dynamic geometry into their lessons (Lampert, 1993; Ruthven et al., 2005).
The two examples we have shown in this article illustrate how the use of technological
artefacts could bring about new conceptions of mathematical ideas in humans’ work. Our

learning and understanding of mathematics may be enhanced by the activity of, and by the
response from, the DGE.

A further issue when using a DGE is that of the DGE acting as an amplifier or a reor-
ganizer of mental activity (Pea, 1985, 1987). When technology is used as an amplifier, it
performs more efficiently tedious processes (that might be done by hand), such as compu-
tations or the generation of standard mathematical representations such as graphs. In this

use of technology, what students do or think about are not changed but can instead be
accomplished with significantly less time and effort and with more accuracy. For example,
the use of a scientific calculator for computations while solving problems can make students’
work more efficient and freer from basic arithmetic errors. However, their activity and

thinking is generally unchanged by this use of the calculator. On the other hand, when
technology is used as a reorganiser, it has the power to shift the focus of students’ math-
ematical thinking. It supports looking for patterns, identifying invariances, or making and
testing conjectures. Students can focus on developing insight rather than on drawing and

measuring objects. Hopefully, the trend of digitalizing and programming can encourage
students and teachers to do further investigations in different directions.
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