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ABSTRACT

Anders Gabriel Duhre, an important mathematician and mathematics educator in Sweden during the 18™ century,
contributed with two textbooks in mathematics, one in algebra and one in geometry. Among others, he treats
infinitesimals based on Nieuwentijts’ theories from Analysis infinitorum and infinite sums based on Wallis’
method of induction from Arithmetica infinitorum. Based on these results, Duhre develops an ingenious method
to determine the area enclosed by curves by constructing a corresponding curve. He applies his method to the
circle in order to find an expression of m as an infinite series. The series he finds is a modified version of the
Gregory-Leibniz’ series. In the present paper we consider in detail Duhre’s presentation in order to further
investigate the influence upon him as well as his influence on the Swedish mathematical society of his time.

1 Introduction

The Swedish mathematician and mathematics educator Anders Gabriel Duhre (c. 1680-1739)
was an important and influential person in the Swedish mathematical society in the early 18t
century (Rodhe, 2002). He studied mathematics at Uppsala University, Sweden, and for some
time he was a student of the Swedish scientist, inventor and industrialist Christopher Polhem
(1661-1751) at his school Laboratorium Mechanicum in Stjarnsund. For some years Duhre
taught mathematics to engineering students at Bergskollegium (a central agency in the mining
industry) and to prospective officers at the Royal Fortification Office in Stockholm. In 1723 he
opened his own school, Laboratorium Mathematico-Oeconomicum, outside Uppsala, where
theoretical and practical subjects were taught to young boys (Hebbe, 1933). Of particular
interest is that mathematics was taught in this school; Duhre had knowledge of mathematics
that was not yet taught at the university, and students at the university turned to him to learn
more on modern mathematics. Among his students were several of the Swedish mathematicians
to be established during the 1720s and 1730s (Rodhe, 2002). Duhre taught in Swedish and early
on planned to write mathematical textbooks in Swedish in order to introduce the Swedish youth
to new and modern mathematics.

Duhre contributed with two textbooks in mathematics — one in algebra and one in geometry.
Both were based on his lecture notes from his teaching at Bergskollegium and the Royal
Fortification Office. The first book, En Grundelig Inledning til Mathesin Universalem och
Algebram (“A thorough introduction to universal mathematics and algebra”), was edited by
Georg Brandt and published in 1718. In this book, modern algebra based on Descartes’ notation
is presented, as well as examples from Newton’s, Wallis’ and Nieuwentijt’s theories from the
end of the 17 century. For example, he treats infinitesimals based on Nieuwentijt’s theory as
presented in Analysis infinitorum (1695) and utilizes Wallis’ method of induction, as presented
in Arithmetica infinitorum (1656), to determine the quotient of infinite series. In his second
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book, Forsta Delen af en Grundad Geometria (“The first part of a founded geometry”),
published in 1721, Duhre takes advantage of the theories he presented earlier in his book on
algebra. Of particular interest is his use of algebra in the geometrical context (Pejlare, 2017).

In this paper, we will consider Duhres’ utilization of infinitesimals and infinite sums to
determine the quotient between the circumference and the diameter of a circle, in order to find
m expressed as an infinite series. We will first give a short introduction to Nieuwentijt’s
Analysis infinitorum and his utilization of infinitesimals, before we consider Duhre’s
interpretation of Nieuwentijt’s work. Thereafter we will consider Wallis’ Arithmetica
infinitorum and how Duhre utilizes his method of induction to determine the quotient of infinite
series. Following that, we will consider Duhre’s method to find the area enclosed by curves.
Finally, we will consider how Duhre utilizes this method on a circle and how he determines an
expression for .

2 Infinitesimals in Nieuwentijt’s Analysis infinitorum

The Dutch philosopher and mathematician Bernard Nieuwentijt (1654—1718) is, in particular,
known for his critique on the foundations of Leibniz’ infinitesimal calculus. In 1695 he
published Analysis infinitorum, a book “written by a beginner for beginners”* on elementary
infinitesimal calculus. This book is primarily of a didactic character; he attempted at presenting
mathematics in a systematic way as a coherent unit (Vermij, 1989). In the prologue he presents
three definitions and two axioms which enable him to deduce rules for calculating with the
infinite and infinitesimal quantities through more than 50 lemmas. In the chapters following the
introduction, these lemmas lead to the propositions on infinitesimal calculus.

For Nieuwentijt, a quantity is infinitesimal if it is smaller than any arbitrary given quantity
and it is infinite if it is greater than any arbitrary given quantity. The word infinitesimal is
however not used in the definitions, axioms or lemmas. Instead, Nieuwentijt uses the expression
“datd minor” which can be translated into “the given smallest”. Of central importance is his
first axiom:

Anything that when multiplied, however many times, does not equal another
given quantity, however small, cannot be considered a quantity,
geometrically it is absolutely nothing.?

The main peculiarity of Nieuwentijt’s approach to infinitesimals is represented in Lemma 10,
where it is stated that if an infinitesimal quantity is multiplied by an infinitesimal quantity, then
the product is zero or nothing. The product of two infinitesimal quantities, or “the infinite small
of the infinite small”, can be interpreted as Leibniz’ second differential. However, whereas
Nieuwentijt considered squares of infinitesimals to be equal to zero, this is generally not the
case with Leibniz’ differentials (Mancosu, 1996).

1 “Tyroni scriptum tyronibus” (Nieuwentijt, 1695, prefatio).

2 “Quicquid toties sumi, hoc est per tantum numerum multiplicari non potest, ut datam ullam quantitatem, ut ut
exiguam, magnitudine sué a&quare valeat, quantitas non est, sed in re geometricd merum nihil” (Nieuwentijt,
1695, p. 2).



3 Infinitely small quantities in Duhre’s textbook on algebra

In Chapter XXVI of his book on algebra, Duhre presents an interpretation of the prologue of
Nieuwentijt’s Analysis infinitorum (1695). An infinitely small quantity is defined by Duhre as:

If a quantity is divided by an infinitely big number, one should consider the
received quotient to be infinitely small; it is something that is smaller than the
smallest quantity that can ever be given.®

Thus, according to Duhre, if O is an infinitely big number then the quotient % is infinitely
smaller than the quantity a. Duhre considers the nature of an infinitely big number to be
that it is bigger than every given number and that it thus can be seen as “ceaselessly
growing with no return”.* From this it follows that % is smaller than the smallest quantity
that can ever be given. Duhre gives a proof by contradiction that % really is “smaller than
the smallest”: if ¢ is a quantity that is smaller than %then the given quantity a is bigger
than Oc and the quotient% is bigger than the infinitely big quantity O, but this “contradicts
all truth”.® Therefore, % must be smaller than the smallest quantity, i.e., an infinitely small
quantity.

The arguments above show that handling the infinite is problematic. Duhre treats the infinite
as a fixed number, but this is in conflict with his earlier statement that an infinite number grows
ceaselessly. Also, it seems easier to accept the infinitely big than the infinitely small, since the
existence of the infinitely small is proven with the help of a given existence of the infinitely
big.

After introducing infinitely small quantities, Duhre continues with 14 lemmas with rules for
calculating with them; 10 of these are also found in Nieuwentijt’s Analysis infinitorum. Among
Duhre’s lemmas we find, among others, that the sum of two infinitely small quantities is an
infinitely small quantity (Lemma 1) and that the product of any number and an infinitely small
quantity is an infinitely small quantity (Lemma 3). Of great importance for his later presentation
on infinite sums is Lemma 4, which corresponds to Nieuwentijt’s Lemma 10:

If an infinitely small part % is either multiplied by itself or by another

infinitely small part ; then the received product 2% or 2% is nothing or no
o 00~ 09
quantity.®

Thus, Duhre, just as Nieuwentijt, considers the square of infinitely small quantities to be equal
to zero. In the proof of this lemma Duhre uses Nieuwentijt’s first axiom: If the product of two

infinitely small quantities is multiplied by an infinite number, this will be equal to an infinitely
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small quantity, i.e., o5 o and 0 ~ o and since something multiplied by an infinite

870m en forestéld quantitet halles fore wara fordehlad utaf ett odndeligen stort tahl; bor man anse then ther af
komna quotienten for odndeligen lijten thet &r for en ting som &r mindre &n then allerminsta quantitet som
nigonsin kan gifwas” (Brandt, 1718, p. 212).

47[...] ouphérligen vaxande utan ndgon atervanda” (Brandt, 1718, p. 213).

5~[...] stridande emot all sanning” (Brandt, 1718, p. 213).

6 “Om en oéindeligen lijten dehl %, antingen warder multiplicerad med sig sielf eller med ndgon annan

oandeligen lijten dehl %; at then ther af komna producten % eller % métte wara alsintet eller ingen quantitet”
(Brandt, 1718, p. 214).



number is equal to an infinitely small number then this something is not a quantity and
geometrically is nothing.

In this proof Duhre does not seem to have a problem handling the infinite; it is no problem
for him to shorten the expression with the infinitely big number O. He uses Lemma 4 in Lemma
14 where he deals with how infinitely small quantities can be handled in equations. He
concludes that in an equation involving infinitely small quantities, the infinitely small quantities
can be omitted, since, if the equation is divided by an infinitely big number O, then it follows
from Lemma 4 that these can be considered as nothing. Algebraically this lemma can be

X

. a - X a
interpreted as x + S xsinces+5=5

4 Wallis’ Arithmetica infinitorum

After considering the introduction of Nieuwentijt’s Analysis infinitorum, Duhre, in Chapter
XXVII of his book on algebra, proceeds with studying John Wallis’ (1616-1703)
Arithmetica infinitorum from 1656. Arithmetica infinitorum was an important text in the
17" century, in particular regarding the transition from geometry to algebra and regarding
infinite series (Stedall, 2005). For example, Isaac Newton (1642-1727) was influenced by
Wallis in his work towards integral calculus. Introducing new methods and concepts,
Wallis’ purpose was to find a general method of quadrature, i.e., finding the area enclosed
by curves, or rather the ratios of those areas to inscribed or circumscribed rectangles. He
achieved this by drawing together ideas from René Descartes’ (1596-1650) algebraic
geometry and Bonaventura Cavalieri’s (1598-1647) theory of indivisibles. Wallis’ results
were based on the summation of indivisibles or infinitesimal quantities, where an
indivisible can be considered to have at least one dimension equal to zero, as for example
a line or a plane, while an infinitesimal is considered to have an arbitrarily non-zero width
or thickness. Wallis was however not concerned with the distinction between indivisibles
and infinitesimals and generally spoke of infinitely small quantities.

In order to find the area enclosed by curves, Wallis reduced the geometric problem to the
summation of arithmetic sequences (Stedall, 2004). Two important mathematical methods he
developed were induction and interpolation. Wallis’ method of induction relied on intuition; he
believed that if a pattern was established for a few cases then it could be assumed to continue
indefinitely. Also, in his method of interpolation he relied on intuition; for example, he assumed
continuity regarding sequences of numbers in order to interpolate intermediate values. One
example of this is when he used his method of interpolation between the triangular numbers 1,
3, 6, 10 ... Another example of interpolation is when he, in Proposition 191, found the ratio of
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a square to an inscribed circle: — = :
T 2X4X4X6X6X%X8etc.

5 Infinite sums in Duhre’s textbook on algebra

We now turn our attention to Duhre’s textbook on algebra again. We will here only consider
those parts when Duhre uses Wallis” method of induction in order to deal with infinite sums.
Duhre begins Chapter XXVII by determining that the proportion of the sum of infinitely many
squares with the roots 1, 2, 3, 4, 5 et cetera to the summan totidem terminorum maximo
g@qualium equals the proportion of 1 to 3. The summan totidem terminorum maximo aqualium



is explained to be “the sum of the greatest term as many times as there are terms in the
progression”’. Thus, in modern notation the proportion to be determined can be interpreted as:
YR k? 1

nooo (n+1)n2 3

Duhre proves this proportion using Wallis’ method of induction, as presented in
Arithmetica infinitorum. To do this, he first examines the proportion when n equals 1, 2, 3,
4, and 5 in the expression above:

0+1+4 1 1

4+4+4 3 12

0+1+4+9_1+1
9+49+9+9 3 1

8
0+1+4+9+16 1 1
3

16+16+16+ 16+ 16
0+1+4+9+16+25 1 1

25+ 25+25+25+25+25 3 30

24

Duhre examines the pattern of the partial proportions and concludes that the denominators 6,
12, 18, 24, 30 et cetera form an arithmetical sequence. As long as the number of squares is finite

the proportion is bigger than g However, if we have infinitely many (O) squares, the proportion

will be % + %, but since § + % = gaccording to Lemma 14 in Chapter XXVI (see Section 3), the

proportion will be § Therefore, he concludes, the proportion of the sum of infinitely many

squares with the roots 1, 2, 3, 4, 5 et cetera to the summan totidem terminorum maximo
&qualium equals the proportion of 1 to 3.

In this presentation, Duhre closely follows Wallis, but unlike Wallis who in his following
propositions offers geometrical interpretations of this result, Duhre does not do so. According
to Wallis, the above proportion 1 to 3 geometrically corresponds to the proportion of the
complement of half a parabola to the parallelogram completed by the same half parabola and
its complement (Wallis, 1656, Prop. XXIII). Furthermore, Wallis’ method of induction would
not be an accepted method of induction today, since only a limited number of cases for n =
1,2, 3, ... were tested and the induction step (i.e., if the property is assumed to be true forn = k
it should be proven to be true for n = k + 1) was not included.

Duhre proceeds by proving the corresponding proportion for cubes with the help of Wallis’
method of induction. In modern notation, he proves the following:

YRiookd 1

lim =k=0~__ —
now(m+ Dnd 4

7>[...] en summa innehéllande then storsta ledamoten s ofta som progressionens ledaméter #re” (Brandt, 1718,
p. 77).



After these two proofs, using Wallis method of induction, Duhre states that, again
interpreted in modern notation, the following proportions are true:

lim —11:=o K = 1
n-o(n+1)n* 5

lim —1’}:0 k* = 1
noo(n+1)n> 6

y Yhok® 1
nses (n+1né 7

6 Duhre’s method of finding the area enclosed by curves

Let us now turn to Duhre’s textbook on geometry. We will consider Duhre’s method of finding
the area enclosed by curves in order to see how he uses the proportions including infinite sums
that he considered in his Algebra. In Chapter XXX Duhre formulates a proposition where he
considers the curve ABCD and from it constructs the curve AIOM such that the area of the
segment ADCBA is equal to half of the area AEMOIA (see Figure 1). The curve AIOM is
constructed in the following way: Let AS be a tangent at the point A, parallel to the ordinate DE
and for every point C on ABCD with a tangent CG where G is a point on AS, the ordinate OK is
equal to the line AG.

i N\
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Figure 1: The area of the segment ADCBA is equal to half of the area AEMOIA (Duhre, 1721, p. 572).

Duhre proves this proposition without using algebra, only considering geometrical properties.
First, he draws a few helplines. He draws the line AQ parallel to DG such that ADGQ is a
parallelogram. If the point C is considered to be infinitely close to the point D, he concludes
that the line CD can be considered to be a straight line and thus it can be considered to be a part
of the tangent DG. Then he draws the line CL parallel to DM and the lines CR, LM and NP
parallel to AE. Finally, he draws the line AC. The proof of the proposition follows:

Since the two parallel lines DM and CL are infinitely close to each other, the points L and O
are infinitely close to each other, and thus the mixed lines figure EMOK must be the same as
the parallelogram EMLK. Furthermore, the lines EM, AG and CN are equal to each other and
hence the parallelogram EMLK equals the parallelogram PNCR, which in turn equals the
parallelogram QNCD. Now, if CD is considered as a base, the parallelogram QNCD is twice as
big as the triangle ACD, since the lines CD and AQ are parallel. This implies that also the mixed
lines figure EMOK and the parallelogram PNCR are twice as big as the triangle ACD. Finally,
if other lines parallel to the line DM are drawn, each of the resulting mixed lines figures are



twice as big as the corresponding triangles for the same reason that the mixed lines figure
EMOK is twice as big as the triangle ACD. Therefore, the figure AEMOIA, which is the
composite of the mixed lines figures, equals twice the sum of the corresponding triangles that
forms the segment ADCB, which is what Duhre wanted to prove.

7 Duhre’s method applied to the circle

In order to calculate the decimals of &, or more specifically, in order to show that the proportion
between the diameter and the circumference of a circle is approximately the same as 100 to
314, Duhre now wants to apply the proposition from Chapter XXX to a circle, i.e., instead of
considering the circumference he considers the area of a circle. He begins Chapter XXXI with
considering a half circle; the area under the corresponding curve to a half circle should be equal
to the area of a full circle (see Figure 2). However, the corresponding curve ASM to the half
circle ACB in fact is an asymptote to the line BV, and thus the “indescribable width™® of the
area contained by the “indescribable” line ASM is equal to the area of the circle. However, the
“undescribable width” is too difficult for Duhre to consider further. Therefore, he instead
considers a quarter of acircle ACD and its corresponding curve ASR. Doing this, the area ADRH
equals twice of the area of the segment ACE according to the proposition in Chapter XXX. By
adding half of this area to the area of the triangle ADC and multiplying the expression by four,
an expression of the area of the circle will be given.

Figure 2: The area ADRH equals twice of the area of the segment ACE (Duhre, 1721, p. 574).

Instead of calculating the area of the figure ADRH, Duhre’s idea is to calculate the area of the
figure ARQ. He states that the line AQ, which is equal to the line AD, can be divided into
infinitely many equal parts, and the lines NT, OH, PS et cetera proceeding from these points of
intersection will fill up the figure ARQ.

Now Duhre introduces the variables a, x and y. He lets AB = 2a, i.e., the radius of the circle
equals a, the ordinate GH = AF = DI = x and AG = y. He wants to find an expression for y,
which can be considered as a length that varies. He does this using proportional reasoning: He
first concludes that BG = 2a — y and, because of properties of the circle the square of GE
equals AG + BG which is the same as 2ay — y2. Considering the two uniform triangles BDI and
BGE, Duhre concludes that since BD, DI, BG and GE are geometrical proportional, i.e.,

8¢«[...] obeskrifweliga widden” (Duhre, 1721, p. 110).



BD, DI :: BG,GE, the squares BDq, DIq, BGq and GEq will also be geometrical proportional,
i.e., BDq,DIq :: BGq, GEq.° From this it follows that aa, xx :: 4aa — 4ay + yy, 2ay — yy,
which can be simplified into aa, xx :: 2a — y, y. He now uses the fact that the product of the
two utmost in a geometrical progression equals the product of the two inners, i.e., aay =
2axx — xxy. By adding xxy and dividing by aa + xx on both sides, Duhre now finally finds

the expression y = aiaf;x = AG. This quotient can be expressed as an infinite series:
2axx  2xx 2x* 2x° 2«8
AG = vy = = - + — &ec.

aa + xx a a3 as a’

Furthermore, he concludes that if GH = 2x then

8xx 32x4+128x6 512x8

AG =
a a3 as a’

&ec.,

if GH = 3x then

_ 18xx 162x* 4 1458x° 13122x8

AG
a al as a’

&ec.,

and so on. Since AQ = a is divided into infinitely many equal parts, where the first one is AN =
x, AO = 2x, AP = 3x, and so on, the expressions above give the corresponding lengths of
AG = y. These lengths could also be denoted NT, OH, PS according to Figure 2. The last of
these lengths is QR = a. The infinitely many lengths together fill up the figure AQR, and
therefore Duhre now has to compute the infinite sum of these infinitely many series. In order
to compute the sum, i.e., the area of the figure AQR, Duhre now collects all terms of the same
power of x. Thus, the area AQR will be:

2 2 2
- (xx + 4xx + 9xx &c.) — = (x* + 16x* + 81x* &c.) + E(x6 + 64x° + 729x° &c.) &c.

In modern notation this expression can be interpreted as

n n
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To compute these sums, Duhre uses the results on infinite sums from his text book on algebra
(see Section 5). First, he has to determine the summa totidem terminorum maximo aqualium.
The summa totidem terminorum maximo aqualium to the infinite sum xx + 4xx + 9xx&c.

must be a - aa, since he considers a to be the number of terms in the infinite sum and aa to be
the biggest term in the sum. It follows that, in modern notation, lim Y7_,(kx)* = §a3. In the
n—->oo
same way lim Yp_;(kx)* = %as, lim Y-, (kx)® = %a7 and so on. Therefore, the infinite
n—oo n—oo
sum of the infinite series above, i.e., the area of the figure AQR, will be equal to

9 . BD _ BG . BD? _ BG?
In modern notation: — = —,i.e.,— = —.
DI GE DI GE
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3 5 7 9
Duhre can now easily find an expression for the area of the figure ARD; he just has to take the
area of the square of AQ, i.e., a?, and subtract the area of the figure AQR. Thus, the area of the
figure ARD will be

2 +2 2 +2&
aa 3aa 5aa 7aa 5 c.

According to the method presented in Chapter XXX (see Section 6), the area of the figure ARD
is twice the area of the segment ACE, and therefore it follows that the area of the segmet ACE
will be

1 1 1

Eaa—gaa+§aa—7aa +§aa &ec.

Now, adding the area of the triangle ADC to this expression and multiply with four will finally
give an expression for the area of the circle with radius a:

4 4 4 4

4aa—§aa+§aa—7aa+§aa &ec.

Duhre modifies this expression even further, in order to find an expression for the
circumference of the circle. Since the area of a circle equals the area of a triangle where the
base equals the circumference of the circle and the height equals the radius of the circle, he
concludes that he will find an expression of the circumference of the circle if he divides the

area of the circle with half of its radius, i.e., %a. Thus, he gets the following series expressing
the circumference of the circle:

8 2a-2ailas
a 361 561 761 961 C.

Duhre now lets the diameter of the circle, i.e., 2a, equal 1 and finds that the proportion between
the diameter of a circle and its circumference is as one to the following series:

gty 4 4
AR

He finally modifies this series by merging the terms pairwise:

8,8 8 8 8 8 8
3735799 195 " 3237283 " 675"

In modern notation we can interpret this result as
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8 Duhre’s calculation of

After finding the proportion of the diameter of the circle to its circumference, Duhre proceeds
with computing this proportion. He starts with constructing a table (see Figure 3) with the first

315 denominators of the series Z}}:lﬁ . This table is actually not completely correct,

possibly due to typesetting errors. For example, for k=100 it says 258.403 instead of 158.403
and for k=50 it says 39.204 instead of 39.203.

ué i3 7 o )
L B B O B m
e . ° £ ° 2 -
€n gaﬂa f-l)m .tttnei).a[ler namnare aﬂ) 315 brdf 7212831708963] 92§443]1170723|1444803
t)a{manbaatzuma_lgndgna tdljore af hvilfasfumma 5270551 745715f 933157 1179395{ 1454435
cirkelns omfre befidr DA fammacirkels diameter dr 1, \;;?’?? ::;g?? 99::29? ”8§°99 1464099
7Y|119633¢f147 ¥
3]14883| 18763] 131043]232323 302403 744642[736163| 976433 1105633 1483323
365 15875} 6051§11339771236197)367235 7
9516895 62499|136895]2§0095| 373099 ;;2;?? G Woseodd o) BT
1951179551 645151 1398751244035|376995 §62 7429” Himh b bl B )
323]|19043| 66563|142883)248003|381923 ;63??? ;ésg;? 3323?? fiié??” oLt
| 5105229
483):0163] 63643f147923]252003]386883 774563]770883| 996003 |1249923 f:ﬁ‘ﬁ»;
67)1213151 707751148997129603¢ (39187 80643777
899 |22495| 72895|152099|260099]396899 ) KELCecd babpond] bl i LT ETED)
155123715 75077{£572351264197(4019%7 6867.” 794997] 1012081  F26787 | rfasny
1443 (24963| 77283{258402268323]407043 i L g d L b RS
g 1990771799237 102819512859 I§7251¢
1763 26243] 79723|161603|272483]412:163 6072821306403 103632
3| 26243 7 3 3632311297043 | (782563
211502775y 817971164837)2766751417315
2499| 28859| 840991163399|2580899] 422299 S11723]813603]1044483) 1304163
291, 1 3027} 864351171395 |285455 427715 617797820835 1052675 | 1313315
3363| 31653| 88803) 74725 (289443 |432963 §;g°§? §;§°3? JoS0k99)1322409
¥ I 1 i ¢
3833} 33123] 91203{178083]/293763 438243 636803 342323‘,107794;; ,-§3°§é§ [
437v134797] 936371814711298115144355§
4895136099 0609911848991302499 448899 643203[850083] 1085763 [ 1350243
5475137635 | 9859%|188355[306085 174275 6496351877475 | 1094117 (1359557
6083 39204|101i23]151843311363] 179683 £16099]864899| (102499 1368859
— - y §97187239y ) L1109171137827F
6725|4080 103683 |195363(315843]465123 . 5 363| 1387633
739<1 32435 | 106277 [198917 1320355 | 470595 SCotag 8198451 L1A5563) 1387693
8099 | 14095 108899 202499( 324899] 476099 6756831887363 1127843]1397123
883115795 1enysy[206105}32047+v]48 1635 682277{894917|1136377|1406595
1 9603] 4527] 114243 209763334083 487203 288899 902499|1144899(14£6099
1040:] 49283 | 116963 | 213443338723 |49280 L9\.Yf:‘ QIOLifjIL5347711425637
1;313:- T;r(&y? 157151217155 ;43’;9? :984-3? §70% 41917700} LR50R4 | At 03
120591 52899 122496220899 348095 503099
12995154775 1253171224675 352837709795
13923|56643|128663{228483}357603]y15¢23

Figure 3: The table containing the first 315 denominators in Duhre’s infinite series of r (Duhre, 1721,
pp. 116-117).

Duhre proceeds with constructing a second table, containing the first 315 terms and partial sums
of the series (see Figure 4). However, he does not want to consider decimals and therefore he
considers a circle with diameter 100.000.000 instead of 1, i.e., the general numerator in the
series will be 800.000.000 instead of 8. In modern notation this new series can be written as

100.000.0007 = Ii - 800.000.000



In this way the partial sums, after approximations, will be natural numbers. In the table in Figure
4 we can see that the proportion of the diameter of a circle to its circumference will be
approximately as 100.000.000 to 314.000.528, or as 100 to 314.

313604219|313777588)323848706|313897483]
4873 2891 1917 1363
4719 2848 1893 1349
4613 2807 1870 1335
4579 2764 1848 1322
4492 2723 1825 1308
'ffgéf;“ﬁ 31“3?322 31,12889§|>1;$0é=r9 313687570]313791619]313878075|313904160} [313933017|31395608(313974757(313990335
§7143 7 8872 CYiH_ 4408 2684 1804 1295 1019 823 678 569
8080808 66121 13041 8325 4327 2645 1782 1282 1010 816 673 56§
4102564 61562 174691 §114 4247 2607 1761 1265 1001 810 663 561
2476780 57459 16834 79L1 4170 2569 1740 1256 992 §o3 664 §57
1656317 73753 16233 ] 7786 4095 2§33 1720 1244 983 797 659 554
3098402771312546467 313266427 (313541989 313708817] 313804657 [313866866|313910506] [313938022|313960057]313978099(31399314F
1185185 59394 15663 7728 4022 2497 1700 1231 97§ 790 654 550
839878 47340 x5123| 7346 3951 2462 1680 1219 966 784 649 546
692641 44576 14511 7171 3881 2428 1661 1207 958 27 645 543
574400 42010 14124 7003 3814 239§ 1642 1196 549 772 840 §39
453772 39677 13661 | 6540 3748 2362 1623 1184 941 766 635 §36
3096:6(}3 31277Gﬁ+‘3i5539657l515)77877 313728233| 313816801[303875172[363916543] |313942811(313963047{313981322]31399§859
378250 37732 13220 6682 3684 2330 1605 173 933 760 631 §32
320128 35757 12800 G531 3622 2298 1587 1161 025 754 627 §29
| 274442 33734 124c0 6334 3561 2267 1§69 1170 317 748 622 §25
237383 32047 12019 6242 370 2237 (552 1139 909 742 618 §22
208171 30484 11657 61cy 3443 2207 153 112§ 9oz 757 613 519
311035027/312939798 313401701 | 313609821 35746044 313828140|313883020(313922294] [313947397]313967688(313984433[313998486
133697 29033 11397 §972 3387 2178 1518 1118 894 731 609 JIf
163299 27683 10974 §844 3332 1250 1fo1 1107 836 726 605 §12
146119 26424 10656 5719 3278 2212 1485 1097 879 720 601 509
131714 2§20 10352 §599 3226 209§ 1469 1087 872 715 597 §06
118994 24152 10060 7482 3175 2068 1413 109 864 709 §92
311778650|313072340|3134¢505C| 313638437 313762432 | 313838753] 313890447 313927780 §313951792]313971289]313987437|3 1400052
108181 23125 9780 5369 et ?ﬁ‘ ) az.ohu 1338 i 1067 i és‘? L ‘;gi " 3981?@; Sl
58778 22161 9513 §260 3076 2016 1322 1077 350 699 784
90§45 21257 925§ F173 3023 £950 1407 1047 843 694 §80
83307 20407 9009 JO50 2981 1965 1392 103§ 836 638 §77
=6901 19606 8772 4950 i 2036 1941 1378 102§ 830 683 §73
1312230366]313178896131370137913136642198 [ 35377-583] 3138387061 3138974831 3139330171 [313956008]3135747771313950359 I

Figure 4: Duhre’s table showing the first 315 approximated terms and partial sums in the series

800.000.000
Z£=1m (Duhre, 1721, PpP. 119—121)

Duhre concludes Chapter XXX by noting that in practice, when minor computations have to be
made, the proportion 100 to 314 or the Archimedean proportion 7 to 22 can be used, the
requested proportion being smaller than the former and bigger than the latter. If larger
computations have to be performed, however, he suggests that the proportion 100.000 to
314.159 should be used. Nevertheless, he does not perform the computations needed to find

this proportion.

9 Concluding remarks

The series 4 — % + % - % + g&c. which Duhre received before he merged the terms pairwise,

we recognize as a Maclaurin series for 4tan~!x for x = 1. Since 4tan™11 = m, we can
conclude that Duhre’s series is correct. However, it converges very slowly. This series is known
as the Gregory—Leibniz’ series after James Gregory (1638-1675) and Gottfried Wilhelm
Leibniz (1646-1716). Leibniz was concerned with the quadrature and when he applied his

method to the circle he received the series % =1- % + % - % + ---. Leibniz found this result in

1673, but already in 1671 Gregory, who was concerned with infinite series representations of
transcendental functions, had found the corresponding Taylor series. Also, an Indian
mathematician, whose identity is not definitely known, found the series for tan™! x during the
15" century (Roy, 1990). This series, written in Sanskrit verse, is usually ascribed to Kerala
Gargya Nilakantha (c.1450—c.1550) and can be found in the book Tantrasangraha composed
around 1500.



Since Duhre follows Wallis’ method of induction when he considers the infinite series, it
may be surprising that he in his book on geometry does not proceed with studying Wallis’
interpolation method to find the area of a circle in order to find an expression for . However,
Duhre’s method, where he from the circle constructs a corresponding curve where he can use
the previously found infinite sums to find the enclosed area, is indeed ingenious. In his search
for m Duhre also uses modern algebra that cannot be found in Wallis” Arithmetica infinitorum.
Duhre considers algebra to be helpful, since it enables complicated expressions to be
transformed into simpler ones, and thus convenience in calculations is obtained.

While Duhre primarily was an educator, his main pioneering achievement was that he
brought knowledge of modern mathematics into the Swedish mathematical community. Of
particular value is his choice to write in Swedish in order to find a greater audience. Twice
he applied for a position as professor at Uppsala University, without success, but he still
succeeded in inspiring several among the next generation of Swedish mathematicians.
Certainly, also his students at Bergskollegium and the Royal Fortification Office had the
opportunity to be introduced into modern mathematics thanks to Duhre.
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