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Abstract 30 

Antibiotic resistance is a global health concern declared by the WHO as one of the largest threats 31 

to modern healthcare. In recent years, metagenomic DNA sequencing has started to be applied as 32 

a tool to study antibiotic resistance in different environments, including in human microbiota. 33 

However, a multitude of methods exists for metagenomic data analysis, and not all methods are 34 

suitable for the investigation of resistance genes, particularly if the desired outcome is an 35 

assessment of risks to human health. In this review, we outline the current state of methods for 36 

sequence handling, mapping to databases of resistance genes, statistical analysis and metagenomic 37 

assembly. In addition, we provide an overview of important considerations related to the analysis 38 

of resistance genes, and recommend some of the currently used tools and methods that are best 39 

equipped to inform research and clinical practice related to antibiotic resistance. 40 
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Introduction 42 

Antibiotic resistance is a rapidly growing healthcare problem globally, and has been recognized by 43 

the WHO as one of the greatest threats to the fundamental achievements of medicine.1 A key 44 

component for understanding the risks for resistance development is the ability to detect and 45 

quantify antibiotic resistance in various settings – the so-called resistome – including in bacterial 46 

communities dwelling in and on our bodies. This can, for example, aid in understanding 47 

transmission of resistance in the hospital environment. Furthermore, there is substantial evidence 48 

that a large portion of the resistance genes circulating among human pathogens today originate 49 

from bacteria that thrive in the external environment.2-4 Contaminated water and food also serve 50 

as transmission routes for many bacterial pathogens, particularly fecal bacteria. Moreover, the 51 

consequences of antibiotics use in animals have become a great concern for human health as well.5 52 

Hence a one-health approach including human, animal and environmental aspects of the resistance 53 

problem is needed.6,7 This, in turn, makes it important to also understand risks associated with 54 

resistance genes encountered in different external environments, including in animals.8-10 This 55 

paper will overview approaches to study resistomes using high-throughput DNA sequencing and 56 

outlines some pitfalls that can influence the evaluation of risks associated with resistance gene 57 

findings. 58 

Studying the resistome 59 

Resistance patterns among bacteria have traditionally been studied using culturing on media 60 

selecting for resistant colonies. However, when we move away from the most well-studied 61 

pathogens, the vast majority of microorganisms cannot be cultivated, at least not by standard 62 

methods.11 This limits the possible scope of this method and thereby veils much of the diversity of 63 

species and resistance factors, particularly in environmental communities. For this reason, culture-64 



 

 

independent methods to study resistance genes have been developed, enhanced by rapidly declining 65 

costs of DNA sequencing throughout the last decade. A common approach is to randomly 66 

fragment the total DNA of a complete community and sequence it by high-throughput sequencing, 67 

a procedure referred to as shotgun metagenomics.12 The resulting DNA fragments can be analyzed 68 

using similarity searches to sequence databases, or assembled into longer stretches of DNA, 69 

allowing for the reconstruction of complete genes from the relatively short read fragments. 70 

However, shotgun metagenomics still requires that the obtained genes, or close variants of them, 71 

are present in a reference database to enable assignment of them to a (predicted) resistance 72 

phenotype. That said, since sequence data can be stored and re-used later, shotgun metagenomics 73 

allows for retrospective analysis of resistance genes identified after the initial study has been 74 

completed.13,14 Shotgun metagenomics has been applied to quantify the abundances of many 75 

resistance genes in parallel, for example in environments subjected to pharmaceutical pollution,15,16 76 

sewage treatment plants,17-19 sea water,20 tap water,21 and the human gut.13,22 However, in terms of 77 

measuring specific gene abundances, metagenomics is less sensitive (i.e. has higher detection limit) 78 

than quantitative real-time PCR (qPCR), particularly when only a few million reads are generated 79 

per sample. In this respect, Illumina sequencing was a major step forward compared to 80 

pyrosequencing, simply due to the lower costs associated with each read. Limited sequencing depth 81 

affects the sensitivity to estimate both the abundances and diversity of resistance genes in the 82 

sample, which will be discussed in a later section of this paper. 83 

Thousands of antibiotic resistance gene variants are known. A major advantage of shotgun 84 

metagenomics compared to qPCR is the ability to investigate all of these variants – including 85 

variants not detected by the PCR primers – in a single experiment. Moreover, using the same data, 86 

it is also possible to detect changes in taxonomic composition and other functional genes, for 87 

example those involved in horizontal gene transfer. This can provide clues about whether the 88 



 

 

resistance genes detected have potential to move between bacterial cells or not. Furthermore, 89 

through metagenomic assembly it is sometimes possible to uncover co-resistance patterns, or even 90 

completely novel resistance plasmids.15,19  91 

Obtaining sequence data from microbial communities 92 

As a first step of any metagenomics analysis, DNA must be extracted from the community. This 93 

is usually done using standard DNA extraction kits. However, as most microbial communities 94 

comprise a large diversity of different bacteria and also may contain contaminants of different 95 

kinds, this process is not always straightforward. It is important to understand that extraction 96 

protocols can bias gene frequencies, as not all bacterial species are affected equally by the reagents 97 

used. Bias has been shown to result from differences between DNA extraction kits,23,24 storage of 98 

samples,24,25 DNA amplification kits,26 as well as due to biological variation of, for example, GC-99 

content.27 All these factors contribute noise to the samples already before the sequencing takes 100 

place.28 However, different sequencing techniques also produce different results, partially because 101 

of differences in sequence length for each fragment, but also due to the different methodologies 102 

used to determine the nucleotides.29 Before any other analyses are performed, it is advisable to filter 103 

the sequence data with respect to sequencing adapters and low-quality reads.30 Since paired-end 104 

sequencing is becoming the norm, filtering software that can consider both reads in a pair 105 

simultaneously is desirable. This can be done using a variety of software, for example Trim Galore!, 106 

31 Trimmomatic,32 Sickle,33 or Prinseq.34 107 

Detecting and quantifying resistance genes in metagenomes 108 

Gaining insights into the resistance gene content of a microbial community from sequence data 109 

requires the ability to detect resistance genes among sequence fragments derived from a multitude 110 



 

 

of different genes. This is achieved through similarity searches, employing the principle that genes 111 

sharing homology often perform similar functions. This principle is at the heart of bioinformatic 112 

methods, but depending on the questions asked, its usefulness differs. Often, changes of only a 113 

few amino acid residues in a protein can alter its substrate preferences,35,36 binding sites37,38 or 114 

overall functions.39,40 Therefore, the validity of the assumption that a read matching to a protein in 115 

a reference database comes from a gene encoding a protein with the same function is dependent 116 

on how similar the read is to the reference sequence.41 This means that the choice of method for 117 

assigning function to metagenomic reads depends on which stringency one aims for. In the case 118 

of mobilized genes, their sequences show limited variation once they have appeared on mobile 119 

genetic elements (MGEs).42 Because of the inherent dependency on sequence similarity, selecting 120 

an appropriate sequence identity cutoff for calling a matching read a resistance gene becomes 121 

crucial.8 At the same time, reads come with a certain degree of sequencing errors, and there might 122 

be slight differences between resistance genes that do have the same function. Therefore, one 123 

wants to allow to a certain degree of mismatches between the read and the reference sequence – 124 

the question is: how large can this difference be if stringency is to be maintained? The answer to 125 

that question depends on how similar resistance genes known to carry out the same function are. 126 

However, the percent identity of functionally verified resistance genes within the same group varies 127 

substantially (Figure 1). In Resqu43 – a database containing only resistance genes with 128 

experimentally verified function, the average sequence identity between sequences associated with 129 

the same gene name and function differs between 68% and completely identical (median 97.9%), 130 

while the median lowest identity between two sequences with the same gene name is 95.3%, but 131 

can be as low as 52.8% (the vanSG vancomycin resistance gene). However, applying a universal 132 

cutoff of 50% sequence identity would produce an immense number of false positive hits. Using 133 

the IMP beta-lactamase as an example, performing a BLAST search44 against the NCBI protein 134 



 

 

database45 with the IMP sequences as queries yields more than 200 matches at a 50% identity cutoff 135 

(requiring 30 matching amino acids, corresponding to the length of a typical Illumina read). These 136 

matches include several major facilitator superfamily (MFS) transporters and sulfurtransferases, 137 

indicating that this cutoff would not be feasible. 138 

Indeed, there is no foolproof approach to make sure that a read comes from a functional resistance 139 

gene. Even if 100% identical to a resistance gene, the read only represents a part of the gene 140 

sequence, and the gene the read is derived from may, for example, be truncated and thus non-141 

functional. However, as seen in the example with IMP, it is important that the cutoffs are not set 142 

too low to retain stringency. Thus, requiring sequence identity of 80-95% is probably warranted. 143 

Furthermore, the larger the datasets grow, the more computing resources will be required to 144 

process them. Read mapping of short read data from high-throughput sequencing allowing for a 145 

large number of mismatches is typically computationally much more expensive than searching for 146 

high-identity matches. Thus, the choice of cutoff value becomes a tradeoff between speed, 147 

sensitivity and stringency. For example, employing a cutoff of two amino acid mismatches per read 148 

will correspond to a percent identity of 90-94%, depending on the read length. Many software tools 149 

exist to efficiently map reads to protein reference databases, employing different computational 150 

approaches, including Vmatch,46 Usearch47 and Diamond.48 151 

Databases for resistance genes 152 

The choice of reference databases also has important implications for the quality of the information 153 

derived. Since annotation based on bioinformatic analysis of sequence similarity never will be more 154 

accurate than that of the reference sequences, selecting a reference database with high-quality 155 

annotation is crucial.41 Simply put, if the database only contains resistance genes against beta-156 

lactams, you will likely grossly underestimate the number of resistance genes present. On the other 157 



 

 

hand, if the database contains genes incorrectly predicted to have resistance functions, the 158 

abundance and diversity of resistance genes in the sample will be overestimated. A number of 159 

databases containing antibiotic resistance gene information exist. An often used resource, 160 

particularly in the early papers using metagenomics to investigate antibiotic resistance, is the 161 

Antibiotic Resistance Genes Database (ARDB), established in 2008.49 However, a few problems 162 

exist with ARDB. Most prominently, its last update was in July 2009, meaning that any resistance 163 

gene discovered after that date is not included in the database (this includes e.g. the clinically very 164 

important carbapenemase NDM-150 and the newly discovered mcr-151). In addition, ARDB does 165 

not make any difference between resistance genes with a confirmed resistance function and those 166 

predicted to confer resistance based on homology. Thus, the database may very well contain 167 

sequences that in fact are not functional resistance genes. ARDB has subsequently been structured 168 

by resistance types and had some obviously erroneous sequences removed,17 and this version of 169 

the database remains in use.52 However, the basic problems of the database being outdated and 170 

that the majority of sequences do not have their functionality demonstrated prevail also in this 171 

version. The developers of ARDB instead recommend the use of the Comprehensive Antibiotic 172 

Resistance Database (CARD).53 This database is still in active curation and is possibly the most 173 

comprehensive resource for antibiotic resistance gene information available. However, although 174 

CARD is based on thorough curation, it does not clearly separate experimentally verified and 175 

predicted entries. Furthermore, it is unclear if the genes in the database have been found on MGEs 176 

or only have been detected on chromosomes. That said, the use of a single reference sequence for 177 

every resistance gene in CARD increases the likelihood that each sequence has been confirmed to 178 

confer resistance in at least some species. Similar problems also haunt the ARG-ANNOT 179 

database,54 although to a much larger extent. The ARG-ANNOT database employs what they refer 180 

to as “relaxed search criteria” to identify resistance genes, which in reality means that the database 181 



 

 

contains a multitude of sequences with poor annotation information, and that many entries are 182 

unlikely to be functional resistance genes. This limits the value of ARG-ANNOT for identifying 183 

true resistance genes. A more stringent approach to this has been taken by the ResFinder55 and 184 

Resqu43 databases. Both these databases only contain sequences of acquired antibiotic resistance 185 

genes present on MGEs. However, a drawback associated with Resqu is that it has not been 186 

updated since 2013, while ResFinder remains actively curated. 187 

How the database content affects results 188 

Depending on the database used, reported resistance gene abundances may differ, despite that the 189 

same bioinformatics protocols are applied. For example, ARDB, CARD and Resqu report radically 190 

different numbers of resistance genes in the human gut and sediment from a Swedish lake (Figure 191 

2; data from Bengtsson-Palme et al. 2014 and 201516,56). Resqu consistently reports the lowest 192 

numbers, likely since it only contains resistance genes with a verified resistance function that have 193 

been shown to be present on MGEs and thus excludes many generic efflux pumps that may confer 194 

low-level antibiotic resistance. From a risk perspective, mobile resistance genes are probably the 195 

most relevant to detect and quantify.8,10 Furthermore, many multidrug efflux pumps are relatively 196 

well conserved between variants with and without capacity to export antibiotics.8 Using the full 197 

CARD database (2015 version) consistently reports resistance gene counts two to three times 198 

higher than ARDB. In a newer version of CARD,53 chromosomal genes where point mutations 199 

provide resistance have been removed, and this version generates roughly the same results as 200 

ARDB (although not for the lake sediments). Genes containing such point mutations may indeed 201 

provide resistance, but are rarely transferrable between bacteria and are – importantly – very similar 202 

to the susceptible variants of the target genes. The latter means that even reads stemming from 203 

susceptible (“wild-type”) bacteria in a metagenome would map to these “resistance genes”, 204 



 

 

particularly if, e.g., a 90% identity threshold were used. Diluting the database with such genes means 205 

that the total resistance gene content will undoubtedly be overestimated, as many of these target 206 

genes are ubiquitously occurring essential genes, highly conserved between bacterial species. For 207 

example, the rpoB gene (the target gene of rifampicin; mutated variants are present in the full CARD 208 

database) is present in a single copy in most bacterial species57 and has thus been proposed as a 209 

possible per-genome normalization gene for metagenomics.58 The presence of around one such 210 

“resistance gene” per 16S rRNA in the Swedish lake sediment, as reported when using the full 2015 211 

version of CARD (Figure 2) therefore seems reasonable. However, the vast majority of the reads 212 

associated with these “resistance genes” actually derive from antibiotic-sensitive variants of 213 

essential target genes. 214 

It is important to realize that this is not a problem related to the CARD database per se. The database 215 

website clearly states that target genes are present among its sequences, and also provides a separate 216 

dataset with the target genes removed for use in metagenomic studies. Recently, CARD was also 217 

updated to fully separate target sequences and functional resistance genes in different files.53 Still, 218 

if care is not taken in examining the content of the database used, this may lead to partially 219 

misleading conclusions, which may explain the surprising results of some studies.59 220 

A similar problem is the use of general annotation pipelines, such as the commonly used MG-221 

RAST,60 that are not curated with regards to antibiotic resistance. The use of MG-RAST to 222 

annotate resistance genes has led to some peculiar reports suggesting that almost one in 25 genes 223 

found in human feces would confer antibiotic resistance.61 The non-stringent identity cutoffs used 224 

by default in MG-RAST are likely to be a major cause of these results. Similar use of low identity 225 

thresholds in other studies has led to unexpectedly high estimates of resistance gene abundances 226 

in other human feces samples.62 This emphasizes the importance of accounting for technical factors 227 



 

 

that could explain unexpected results in metagenomic studies. Overall, there is a clear need for 228 

improved stringency with regards to database usage and parameter choices in metagenomics studies 229 

aiming to quantify resistance gene abundances. 230 

Unsolved statistical problems for metagenomics 231 

Once gene counts have been established, the next aim is usually to identify differences in resistance 232 

gene abundances between samples. Although this sounds straightforward, a number of technical 233 

obstacles remain.28 The most fundamental problem affecting the statistics of metagenomic data is 234 

that the data is high dimensional in the sense that there are generally many more observed genes 235 

than biological replicates. Furthermore, the variation between samples in the same group can be 236 

fairly large, meaning that higher numbers of replicates are required to detect statistically significant 237 

differences.63 However, because sequencing is relatively expensive, a tradeoff exists between 238 

obtaining sufficient sequencing depth for quantification of genes in each individual sample and the 239 

number of replicate samples sequenced. Finally, since metagenomics generates counts, the resulting 240 

data is discrete, and many existing statistical tests assume continuous, normally distributed data. 241 

The last few years have seen tremendous development of statistical methods for metagenomic 242 

analysis,64 somewhat reminiscent of the early method advances in microarray analysis.65 However, 243 

many of those methods provide a descriptive picture of the studied community rather than 244 

highlighting statistically significant differences.66 Interestingly, it took about ten years of microarray 245 

usage for statistical methods to “catch up” and become standardized,67 and it is reasonable to 246 

assume that shotgun metagenomics faces a similar development towards robust standardization 247 

within the next few years. 248 

Normalization of data to make samples comparable 249 



 

 

Another problem with metagenomic sequence data is that the generated libraries may be of vastly 250 

different size, which influences the number of counts from different samples. Furthermore, the 251 

composition of the samples may be different, and technical factors can bias the sample processing. 252 

To make libraries from different samples comparable, normalization is applied. However, 253 

depending on the research question, different means of normalization can be appropriate. If one 254 

is merely interested in compensating for the different size of the sequence libraries, simply dividing 255 

each count by the total number of reads of each library generating, for example, a count-per-million 256 

value may be sufficient. However, when investigating antibiotic resistance it is often more relevant 257 

to determine the counts relative to the bacterial fraction of the sample (trying to exclude 258 

contributions from e.g. eukaryotes and viruses). For this purpose, a bacterial marker gene is often 259 

used for normalization, most commonly the SSU 16S rRNA, yielding gene counts per 16S rRNA. 260 

However, although the rRNA genes are well studied and often applied for normalization purposes, 261 

they can occur in multiple copies within the same genome,68,69 and thus other, single-copy, bacterial 262 

marker genes have been suggested for normalization,70,71 such as the ribosomal protein rpoB 263 

gene.57,58 That said, since these normalization methods have not yet gained traction, and because 264 

of the legacy of qPCR studies, the 16S rRNA remains the most common normalization gene for 265 

studies of bacterial communities. One can imagine other relevant normalization strategies, such as 266 

comparing each gene count to the total content of resistance genes. Importantly, the choice of 267 

normalization method should be based upon the questions asked, and how these questions are best 268 

answered. It is also important to consider whether there are variations between samples that will 269 

not be compensated for under the normalization method chosen. Such variation may for example 270 

be the result of differing 16S rRNA copy numbers, or that not all variants of the marker gene of 271 

choice are detected by the methods used, which is a common problem, particularly when read 272 

lengths are short.72 There are also completely different approaches to normalization used in 273 



 

 

RNAseq, based on minimizing the overall fold-change between experiments, thereby attempting 274 

to reduce technical noise.73 Similar thoughts have been carried over into recent metagenomic 275 

analysis packages,74 although the task of identifying a subset of genes that can be assumed to be 276 

stable between samples is not as straightforward in data from communities comprised of mixtures 277 

of species. 278 

An additional factor that also may influence gene abundance estimates based on reads mapped to 279 

a reference database, is the length of the reference genes. If this is not compensated for, longer 280 

genes may recruit more reads simply by chance. This effect is not relevant to compensate for if 281 

one only compares data between samples, but if the abundance levels between genes are compared, 282 

taking gene length into account becomes necessary. This type of normalization makes sense, but 283 

whether or not it is meaningful to compensate for it in real situations is debated.75,76 Some authors 284 

have suggested that compensating for gene lengths may even be detrimental to differential analyses 285 

of RNAseq data,77 although if the same argument is valid also for metagenomic data is unclear. 286 

Data transformation approaches 287 

Currently, the statistics for handling metagenomic count data are centered on three fundamentally 288 

different approaches: standard tests on transformed counts, tests assuming distributions that 289 

account for the features of count data, and non-parametric tests. Data transformations are often 290 

used to change the distribution of the data so that it better fits the normal assumptions of standard 291 

tests, such as t-tests and ANOVA. For count data, the variance is always dependent on the mean, 292 

and proper data transformations remove this relationship. Such variance-stabilizing transforms 293 

include the square-root transform and various logarithm transforms. Note that logarithm 294 

transforms “penalize” very large values harder than the square-root transform, and thus analysis of 295 

logarithm-transformed data is less influenced by the most abundant genes. Transformation 296 



 

 

methods allow the use of standard microarray analysis tools on count data, as implemented in e.g. 297 

the Voom package, which estimates and weights the mean-variance relationships of each 298 

observation and subsequently analyze the transformed counts using Limma.78,79 One problem that 299 

becomes apparent when applying a logarithm transform to metagenomic count data is the large 300 

number of zeros present. Zeros lead to two problems. The first is practical – zeros cannot be 301 

logarithm transformed, and the second is that a zero can either represent that a gene is not present 302 

at all, or that it is so rare that the sequencing depth was not sufficient to detect it. The 303 

transformation problem can be solved by adding a pseudocount to all observations in the dataset, 304 

usually simply a count of one. However, the pseudocounts may influence effect sizes (and thus 305 

statistical significances), particularly when overall gene counts are low, which have led some authors 306 

to advise against the use of transformation methods for count data in those cases.80 The latter 307 

problem associated with zeros is harder to deal with, and is particularly troublesome when 308 

estimating the richness and diversity of taxa or genes, a problem we will return to later. Efforts to 309 

handle zero-inflation have been made in, for example, the metagenomeSeq package, which uses a 310 

zero-inflated Gaussian model to correct for undersampling-related bias.81 311 

Non-parametric and count-adapted tests 312 

As an alternative to data transformation, statistical tests that do not make as specific assumptions 313 

on the distribution of the data can be used. These are referred to as non-parametric tests,82 and 314 

include e.g. tests based on the ranks of the observation rather than their actual values. These 315 

methods – for better and worse – do not depend on distributional assumptions and are therefore 316 

more robust to outliers in the data. Other non-parametric tests include permutation tests that 317 

resample the data instead of assuming that it follows any particular distribution.83-85 Finally, there 318 

are also statistical tests designed to better handle count data, usually based on assumptions of 319 



 

 

Poisson or negative binomial distributed data, such as ShotgunFunctionalizeR,86 which allows 320 

fitting of generalized linear models to metagenomic count data. Such models are also implemented 321 

in the RNAseq analysis packages edgeR87 and DESeq,88 which couple the variance and mean either 322 

naïvely (edgeR) or by determining the optimal coupling for each individual gene (DESeq). Both 323 

these tools are developed for RNAseq data, and although this technique generates similar count 324 

data, their assumptions may not be entirely valid for metagenomic analysis. A recent evaluation of 325 

different statistical approaches to identify significantly differing genes between metagenomes 326 

concluded that the number of replicates, the effect sizes and the gene abundances greatly affected 327 

the outcomes of each method, and that no single method is suitable for all metagenomic datasets 328 

and questions.64 That said, the methods based on Poisson or negative binomial distributions used 329 

for RNAseq overall performed better, particularly with small group sizes, with DESeq and 330 

overdispersed Poisson linear models coming out on top. Surprisingly, ordinary square-root 331 

transformed t-tests performed relatively robustly also at small group sizes. However, the evaluation 332 

also showed that several methods (non-transformed t-tests, Fisher’s exact test and the binomial 333 

test) perform poorly and should be avoided. Furthermore, non-parametric methods also perform 334 

subpar and should in most cases be replaced by methods based on transformation or appropriate 335 

modeling of counts. 336 

Correction for multiple testing 337 

Regardless of which method that is used to determine which genes that are significantly enriched 338 

in a group of samples, one p-value will be obtained for each gene tested. This means that with a 339 

large reference database, hundreds or thousands of tests will be performed. Since the p-value 340 

represents the probability of obtaining a particular result by chance, under the null hypothesis given 341 

certain model assumptions,89 performing multiple tests will increase the probability of obtaining 342 



 

 

false positive observations tremendously.90 Therefore, large experiments with many measurements, 343 

such as using metagenomics to detect resistance genes, require some form of correction for 344 

multiple testing. One way of doing this is to simply multiply each p-value with the number of tests 345 

performed (i.e. the number of genes investigated), referred to as the Bonferroni correction.91,92 346 

However, in many explorative studies the Bonferroni correction is regarded to be too conservative, 347 

and therefore more relaxed approaches, such as the Benjamini-Hochberg false discovery rate, are 348 

commonly used in large-scale experiments to control the number of false positive observations.93 349 

Measuring abundance and diversity of resistance genes 350 

Not only the abundance of resistance genes in certain settings may be of importance for 351 

determining risks, but also the diversity of such genes found. However, it is debated how to best 352 

establish the diversity of resistance genes, for example whether or not the relative abundances of 353 

different genes should be taken into account. Similar difficulties with estimating species richness 354 

in different communities have haunted ecology for more than half a century.94 A plethora of 355 

diversity indices designed for community ecology exist and are currently in use, each with its own 356 

advantages and shortcomings. The most basic such measurement would be to simply count the 357 

number of different resistance gene types encountered, establishing what is called the richness of 358 

the sample. This, however, is not without problems.95 First of all, the richness is intimately 359 

connected with sampling effort (in the metagenomics case the size of the sequencing library). One 360 

could account for this by normalizing the abundances of each gene in all samples to the size of 361 

each sample, thereby making them comparable, and then only count entries with a normalized 362 

abundance corresponding to finding at least one copy of the gene in the smallest sample. However, 363 

while this reduces the dependency on library size, it instead introduces a bias towards the most 364 

abundant entities. For this reason, rarefaction methods, in which the number of different resistance 365 



 

 

gene types encountered are plotted against the sampling effort required to detect them, have instead 366 

been suggested to deal with this problem in community ecology.96,97 367 

Furthermore, the studied sample of resistance genes only comprises a subset of the total resistance 368 

gene types likely present in a community. Thus, the true richness of the sample is unknown, and 369 

information on the abundances associated with lowly abundant genes is either poorly estimated or 370 

lacking. This means that it might be informative to account for the unseen resistance genes in some 371 

way. Measures for extrapolating richness could be borrowed from ecology, for example the Chao198 372 

and ACE99 estimators. In addition, resampling methods have been suggested to estimate the true 373 

richness of samples.100 However, these estimators have been shown to fluctuate substantially with 374 

changing sample size.101 As ecologists and statisticians still struggle with the problem of estimating 375 

the number of rare species in a community, we can conclude that accounting for those is hard, and 376 

that for the time being we are probably best off comparing the richness of detected resistance genes 377 

in different samples and hope that those numbers reflect the true richness reasonably well. In 378 

addition, the methods for finding resistance genes using shotgun metagenomics only allow 379 

detection of known genes present in a reference database. The yet undiscovered resistance genes, 380 

of which there seem to be a multitude both in the environment and in the human microbiome,2,102-381 

107 and which avoid detection regardless of being abundant or rare, are incredibly hard to account 382 

for using richness estimators. Once again, one could assume that a large diversity of known 383 

resistance genes implies a broad range of unknown resistance factors as well, but to which degree 384 

this is true remains unknown. 385 

What are the benefits of assembling metagenomes? 386 

Depending on where an antibiotic resistance gene is located, its ability to confer resistance, as well 387 

as its potency to spread to other bacteria, varies considerably.8,10,108 A central limitation of using 388 



 

 

short-read metagenomic data to study antibiotic resistance is thus that it is not possible to associate 389 

a read mapped to an identified resistance gene to a specific species or strain with certainty, 390 

hampering the evaluation of risks associated with resistance gene findings. In addition, different 391 

promoter regions may enhance or reduce the expression of a gene, and interactions with other 392 

gene products may influence the resistance function of the gene. Furthermore, a gene that is 393 

present on a plasmid or other mobile genetic element is vastly more likely to spread between 394 

bacteria than one firmly located on the bacterial chromosome.8,109 Also, the compatibility of a 395 

mobile resistance gene with its host influences whether the gene encodes an efficient resistance 396 

mechanism in that specific context. Finally, genes mobilized by integrases or transposases may have 397 

modified 3’ and/or 5’ ends, which may also alter their expression in the new context. The latter is 398 

thought to have contributed to the efficiency of the NDM-1 carbapenemase gene in a variety of 399 

hosts.110,111 Because of the complex interplay between the host, its resistance genes and their genetic 400 

environment, it is important to consider the genetic context around resistance genes, as well as the 401 

taxonomy of their carriers. To fully understand the genetic context of resistance genes, functional 402 

selection of resistant strains or resistance plasmids followed by analysis of their complete sequences 403 

is in principle required.112-116 This is, however, a rather labor-intensive approach, and it is also 404 

restricted to isolates that can be cultured and/or plasmids that can be captured by cultivable 405 

bacteria. Another approach to gain insights into the contexts of resistance genes is through the use 406 

of metagenomic shotgun sequencing followed by computational assembly of the reads.16,52 While 407 

this method is limited to resistance regions abundant in the sample, due to the requirement of large 408 

sequencing depth, it circumvents the need for cultivation and phenotypic resistance selection. 409 



 

 

The current state of assemblers for metagenomic sequence data 410 

Early metagenomics projects, which generated longer and fewer reads, generally utilized the same 411 

assemblers as genome projects, such as the Celera assembler,117 Newbler118 or MIRA119. The 412 

assemblers used on long-read data are most often based on the overlap-layout-consensus 413 

algorithm,120 which works well on smaller data sets, but quickly becomes vastly time and memory 414 

consuming, as its complexity scales roughly quadratic with the number of reads due to the all-to-415 

all comparisons of reads required.121,122 For the massive amount of short-reads generated by e.g. 416 

the Illumina platform, such algorithms are unsuitable because of the dramatically increased 417 

complexity. The first widely used assemblers for short-read data – e.g. SSAKE123 – solved this by 418 

greedy approaches, which are less computationally expensive, but produce sub-optimal solutions 419 

to the assembly problem.122 Instead, methods that reduce the complexity of the assembly graph by 420 

converting it into a de Brujin graph124,125 quickly gained traction and remain the most used assembly 421 

methods for Illumina data. The de Brujin graph is less complex to build and traverse than the 422 

overlap-layout-consensus graph, making the assembly problem easier to solve.126 This has resulted 423 

in a plethora of assembly algorithms based on de Brujin graphs, of which some popular examples 424 

are Velvet,127 ABySS128 and SOAPdenovo.129 With increasing popularity of metagenomics, 425 

specialized software for metagenomic de novo assembly has also been developed. These programs 426 

are often modified versions of genomic assemblers, such as Meta-Velvet,130 Meta-IDBA,131 427 

metaSPAdes132 and Ray Meta.133 Although these adaptions in theory can improve assembly quality, 428 

the discernible difference between assemblies produced by e.g. Velvet and Meta-Velvet is minute,134 429 

which is also consistent with our own observations (Bengtsson-Palme J., unpublished data). 430 

Benchmarking of different assemblers on data where the true result is known has shown that the 431 

N50 metric, which is often used to assess assembly quality, is generally useless since an assembler 432 

that merges too many reads together will get high N50 values (generally interpreted as good), but 433 



 

 

does so at the cost of generating chimeric contigs.135,136 This problem may be relatively minor for 434 

single genome assembly, since the possibilities for manual inspection and correction are larger. 435 

However, for metagenomic samples where many species are mixed, assessing which contigs that 436 

may be chimeric is almost impossible, which makes the numbers of errors a central metric in 437 

selecting an assembler software. In this context, it is worrying to note that particularly 438 

SOAPdenovo, but also Velvet, produce relatively high number of errors compared to other 439 

assemblers,135 such as ABySS and ALLPATHS-LG.137 However, ALLPATHS-LG requires a very 440 

specific set of sequence libraries to operate, making it unsuitable as a general-purpose assembly 441 

tool. Furthermore, other comparisons indicate that ABySS and Velvet perform similarly (and 442 

produce comparatively few errors) on short-read data from bacterial genomes.138 443 

Aside of avoiding assembly errors, another important consideration as metagenomic datasets 444 

continue to grow is the issue of scalability. An efficient assembler must not only be able to deliver 445 

mostly correct contigs, but must also do so within a reasonable timeframe and within attainable 446 

memory limits. Even though metagenomic assembly generally is carried out on large computer 447 

clusters with hundreds of gigabytes of RAM, assembly of some metagenomic datasets is still not 448 

feasible with current methods.139,140 This leads to compromises between the most accurate and most 449 

efficient assembly algorithms. One key parameter of large-scale assembly is that the software 450 

should be scalable across multiple processor cores and nodes (individual machines) in a computer 451 

cluster. Two assemblers have struck a reasonable balance between accuracy and scalability for 452 

metagenomic assembly: ABySS and Ray. Both are highly scalable, while still producing results 453 

comparable to those of Velvet.56,138 However, for really large metagenomes neither of these 454 

assemblers are sufficiently memory efficient, which has spurred the development of alternative 455 

assembly strategies. For example, reads can be binned based on k-mer content prior to assembly, 456 

reducing the need to assemble all the reads at once.141 Furthermore, reads from low-coverage 457 



 

 

regions can be filtered out prior to assembly,142,143 or reads from high coverage regions can be set 458 

aside, a strategy referred to as digital normalization.140 Finally, merging of sub-samples of reads 459 

assembled individually has been proposed as a possible, albeit sub-optimal, assembly strategy.144 A 460 

completely different approach to metagenomic assembly is to target only regions of interest in the 461 

metagenome, which also reduces the complexity of assembly. Such approaches have been 462 

implemented in assemblers such as TriMetAss,16 and the SAT-Assembler.145 463 

Assembly of genes existing in multiple genomic contexts 464 

The greatest obstacle to enable assessment of the context of mobile resistance genes identified in 465 

metagenomic data is the nature of the resistance genes themselves. We are often interested in 466 

investigating whether a resistance gene is present on a MGE or not, as this property is strongly 467 

related to the relative risk associated with the gene.8,10 However, resistance genes present on MGEs 468 

are often better conserved between species (since they can be transferred directly) than 469 

chromosomal resistance genes. In addition, if they are mobilized in integrative elements they can 470 

exist in multiple similar, but not identical, genetic contexts.16,146,147 This presents a problem for 471 

assembly software working with short reads. Many times, there can be multiple possible branches 472 

out from a highly conserved part of a resistance gene or resistance gene cassette (Figure S1a). 473 

Almost all assembler software handle this by splitting the contigs at the branching points, although 474 

some use coverage information or other external data (such as read-pair information) to avoid 475 

unnecessary splits and handle splits more intelligently. Regardless, the result is a fragmented 476 

assembly that does not contain much information about the genetic context of the resistance gene 477 

of interest. In the example presented in Figure S1a, no contextual information is retrieved for 478 

resistance gene A, since it ends up on a single contig without any flanking regions. This not only 479 

obscures the information about whether a resistance gene is transferrable between bacteria, but 480 



 

 

also severely limits our ability to detect resistance genes that are co-localized. In addition, closely 481 

related resistance genes are often not identical across their entire length, but rather contain identical 482 

regions. In those cases, the individual resistance genes may also be split up on multiple shorter 483 

contigs, further complicating the assembly (Figure S1b). 484 

The problems related to multiple contexts usually get worse the more common a resistance gene 485 

is, since common resistance genes are more likely to be detected in multiple contexts. In addition 486 

to these examples where true biological variation causes assembly problems, sequencing errors may 487 

also break the assembly up in a similar fashion as in Figure S1b, although assemblers are generally 488 

better at handling such problems than true biological variation. Similarly to resistance genes existing 489 

in multiple contexts, integrases and transposases are prone to the same types of problems, and 490 

break assemblies up in an analogous way, resulting in contigs containing, e.g., one or two resistance 491 

genes and a (sometimes partial) ISCR or integrase sequence. 492 

Clinical resistome analysis using metagenomics 493 

A variety of studies have investigated the abundance and diversity of resistance genes in the human 494 

microbiome, revealing overall trends related to body compartments,14 antibiotics usage,13,148 early 495 

development in infants,149 and travel.56 These studies have together contributed a baseline 496 

knowledge of how the human resistome is composed and how it varies across different countries. 497 

As a broad-encompassing research tool to characterize the overall resistance gene composition of 498 

the human microbiota, metagenomic sequencing has proven to provide reliable and reproducible 499 

results. However, implementation of metagenomic approaches for clinical purposes is not without 500 

problems. First of all, for most sample types from humans except feces, the vast majority of the 501 

reads will be derived from the human genome, unless some depletion strategy for human material 502 

is employed. Furthermore, even in feces it has been shown to be hard to detect clinically important 503 



 

 

pathogens and resistance genes that could be isolated through selective culturing.56 That said, with 504 

appropriate purification protocols, it is possible to reliably detect resistant pathogens in e.g. urine 505 

samples using metagenomic sequencing.150,151 The use of sequencing technology for this purpose 506 

may not yet be sufficiently fast and reliable for clinical diagnostics, but is likely to mature in the 507 

very near future.152,153 It is at present unclear if the benefits of shotgun metagenomics justify the 508 

costs of implementing it as a clinical diagnostic tool,5 particularly as PCR and culturing-based 509 

approaches remain vastly more sensitive.56,154 However, metagenomic approaches could be used in 510 

epidemiology to track transmission, although this would at present be a costly practice. However, 511 

sequence data can be re-investigated when novel resistance factors are discovered,155 which enables 512 

probing of if a new resistance gene is already widely spread in the human microbiome.  513 

The influence of environmental fecal contamination 514 

Detecting relatively larger numbers of antibiotic resistance genes in a metagenome than expected 515 

in the studied environment is often interpreted as a product of selection for antibiotic resistance. 516 

However, this is not necessarily the case. In the environment, the abundance of resistance genes 517 

often is tied to the relative proportion of fecal bacteria (Figure 3; data from Pal et al.14). This makes 518 

it difficult to infer whether an enrichment of resistance genes in a particular sample is due to 519 

selection for the resistance factor, or merely the by-product of contamination with feces. Thus the 520 

detection of resistance gene enrichments in certain sample types will not tell much about selection 521 

unless placed into a taxonomic context, or if the levels detected are substantially above those in 522 

human feces, which would also indicate selection for resistance. Because of the relationship 523 

between resistance genes and fecal pollution, it becomes important to estimate the proportion of 524 

bacteria derived from feces in different environments. Since metagenomics enables detection of a 525 

wide diversity of taxa, it has been proposed to use the bacteria present in the human gut 526 



 

 

microbiome genome catalog156 as reference for tracking human feces contamination in the 527 

environment.157 Still, this approach will only provide an upper bound for the human-associated 528 

bacterial content, as many of the species present in that genome catalog can exist also in the gut 529 

microbiome of other species, or in the external environment. Finding appropriate fecal markers 530 

remains an unsolved problem for using metagenomics in environmental resistance gene research, 531 

and a perfect solution may not even exist. 532 

Conclusions 533 

As should be evident from this overview, a multitude of approaches exist for resistance gene 534 

quantification and investigation in metagenomes. While the choice of methods should ultimately 535 

be made with respect to the questions asked and the samples investigated, some methods are clearly 536 

better suited for resistance gene studies than others. A suggested workflow for resistance gene 537 

analysis with the currently best-suited tools is given in Figure 4 We would like particularly to 538 

emphasize the importance of choosing appropriate normalization strategies, and sufficiently 539 

stringent sequence identity cutoffs to avoid over-classification of resistance genes. Furthermore, 540 

the choice of database is also of utter importance to avoid misleading conclusions. Finally, 541 

appropriate statistical methodologies for metagenomic analysis is just starting to emerge64 and we 542 

would like to encourage the reader to stay updated on those to make the most possible use of their 543 

metagenomic sequencing data. Nevertheless, the need for proper replication of samples will not 544 

disappear by the introduction of more sophisticated statistical methods. Although still costly, 545 

metagenomic sequencing is on the verge of finding clinical use in specific diagnostics situations, 546 

such as in rapid characterization of urine and blood samples. Most likely, progress in sequencing 547 

technology will facilitate this development by driving prices down further, but will also yield longer 548 

reads and reads with lower error rates. This would be beneficial to get substantial insights into the 549 



 

 

genetic contexts of resistance genes, which is fundamental to differentiate risks associated with 550 

resistance gene findings in different cohorts and environments.8,158 551 
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Figure legends 903 

Figure 1. Sequence identity between variants assigned to the same resistance gene group in the 904 

Resqu database. Sequences were aligned using MAFFT and pairwise identities were calculated as 905 

the number of identical amino acids in corresponding positions, discarding gaps in one or both of 906 

the sequences. The x-axis represents the numbers of sequences corresponding to each group of 907 

resistance genes (gene name). The x-axis is log-transformed for viewing purposes. 908 

Figure 2. Differences in total resistance abundance reported by the same bioinformatic method 909 

using four different reference databases: ARDB, the full 2015 version of the CARD database, the 910 

metagenomics-adapted version of CARD, and Resqu. 911 

Figure 3. Relationship between the abundances of human-associated bacteria (classified as being 912 

present in the Human Microbiome Project genome catalog) and antibiotic resistance genes in the 913 

864 metagenomes investigated by Pal et al.14 914 

Figure 4. A suggested workflow for resistance gene analysis in metagenomes. Specific 915 

recommended tools and databases are indicated by white boxes, while conceptual approaches are 916 

given in black boxes. Methodological steps are marked in grey boxes. 917 

Figure S1. Identical resistance genes may exist in (a) multiple genetic contexts or have certain 918 

regions that are identical between variants even if they encode slightly different proteins (b). This 919 

presents assembly software with serious problems, as the reads that originated from which context 920 

cannot be identified (center). Almost all assemblers solve this by splitting the contigs at the 921 

ambiguous positions, resulting in a fragmented assembly (bottom). Notice how the repetition of 922 

resistance gene A in (a) cause a loop in the assembly graph, resulting in two short contigs containing 923 



 

 

no genes. In (b), most resistance regions are not assigned to any context, and no full-length variant 924 

of the resistance gene could be assembled. 925 
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