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 38 
Summary 39 

Soils harbour some of Earth’s most diverse microbiomes and are essential for both nutrient 40 

cycling and carbon storage. To understand soil functioning, it is necessary to model the 41 

global distribution patterns, biotic and environmental associations of the diversity and 42 

structure of both bacterial and fungal communities, and their functional gene repertoires1-43 
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4. By leveraging metagenomics and metabarcoding of global topsoil samples (189 sites, 7560 44 

subsamples), we show that bacterial, but not fungal, genetic diversity is highest in 45 

temperate habitats and that microbial gene composition varies more strongly with 46 

environmental variables than geographic distance. We demonstrate that fungi and bacteria 47 

show global niche differentiation associated with contrasting diversity responses to 48 

precipitation and soil pH. Furthermore, we provide evidence for strong bacterial-fungal 49 

antagonism, inferred from antibiotics resistance genes, in topsoil and ocean habitats, 50 

indicating a substantial role of biotic interactions in shaping microbial communities. Our 51 

results suggest that both competition and environmental filtering affect bacterial and 52 

fungal abundance, composition and their encoded gene functions, implying spatially 53 

different relative contributions of these microbes to global nutrient cycling.  54 

 55 

Bacteria and fungi dominate terrestrial soil habitats in terms of biodiversity, biomass, and their 56 

influence over essential soil processes5. Specific roles of microbial communities in 57 

biogeochemical processes are reflected by their taxonomic composition, biotic interactions and 58 

gene- functional potential1-4. While microbial biogeography studies have focused largely on 59 

single taxonomic groups, and on how their diversity and composition respond to local abiotic 60 

soil factors (e.g. pH6,7), both global patterns and the impact of biotic interactions on microbial 61 

biogeography remain relatively unexplored. In addition to constraints imposed by environmental 62 

factors, biotic interactions may strongly influence bacterial communities. For example, to 63 

outcompete bacteria, many fungal taxa secrete substantial amounts of antimicrobial compounds8, 64 

which select for antibiotic resistant (AR) bacteria and effectively increase relative antibiotic 65 

resistance gene (ARG) abundance. Here we employed metagenomics and DNA metabarcoding 66 

(16S, 18S, ITS rRNA gene markers), soil chemistry and biomass assessments (phospholipid fatty 67 

acids analyses, PLFAs) to determine the relationships among genetic (functional potential), 68 

phylogenetic, and taxonomic diversity and abundance in response to biotic and abiotic factors in 69 

189 topsoil samples, covering all terrestrial regions and biomes of the world9 (Extended Data 70 

Figure 1a; Supplementary Table 1). Altogether 58,000 topsoil subsamples were collected from 71 

0.25-ha plots from 1450 sites (40 subsamples per site), harbouring homogeneous vegetation that 72 

were minimally affected by humans. We minimized biases and shortcomings in sampling10 as 73 

well as technical variation including batch effects11 by using highly standardized collection and 74 
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processing protocols. From the total collection, 189 representative sites were selected for this 75 

analysis. We validated our main findings in external datasets, including an independent soil 76 

dataset (145 topsoil samples; Supplementary Table 1) that followed the same sampling and 77 

sequencing protocol. 78 

 79 

Using metagenomics, we constructed a gene catalogue for soils, by combining our newly 80 

generated data with published soil metagenomes (n=859, Supplementary Table 1) and identified 81 

159,907,547 unique genes (or fragments thereof). Only 0.51% of these 160 million genes 82 

overlapped with those from published genomes and large gut12 and ocean13 gene catalogues that 83 

are much closer to saturation (Supplementary Table 2), indicating that the functional potential of 84 

soil microbiomes is enormously vast and undersampled. For functional analysis, we annotated 85 

genes and functional modules via Orthologous Groups (OGs) using the eggNOG database14. For 86 

each sample, we also constructed taxonomic profiles at the class and phylum levels for both 87 

bacteria and fungi from relative abundance of rRNA genes in metagenomic datasets (miTags15), 88 

complemented by operational taxonomic units (OTUs) based on clustering 18S rRNA and 89 

internal transcribed spacer (ITS)16 genes for soil fungi and 16S rRNA genes for soil bacteria at 90 

97% similarity threshold (see Methods). In total, 34,522 16S-based bacterial, 2,086 18S-based 91 

and 33,476 ITS-based fungal OTUs were analysed in the context of geographic space and 16 92 

edaphic and climatic parameters determined for each sampling site (see Methods). Archaea were 93 

poorly represented in our metabarcoding (<1% of OTUs) and metagenomics data (<1% miTags) 94 

and hence are excluded from most analyses. 95 

 96 

We examined whether the latitudinal diversity gradient (LDG), a trend of increasing diversity 97 

from the poles to the tropics seen in many macroscopic organisms, especially plants17, applies to 98 

microbial global distribution patterns10. We found that contrary to the typical LDG, both 99 

taxonomic and gene functional diversity of bacteria peaked at mid-latitudes and declined towards 100 

the poles and the equator, as is also seen in the global ocean13, although the pattern was relatively 101 

weak for taxonomic diversity herein (Figure 1a, c; Extended Data Figure 1b,2). The deviation of 102 

several bacterial phyla (5 of 20) from the general trends may be explained by responses to 103 

edaphic and climate factors weakly related to latitude (Extended Data Figure 1b) or contrasting 104 

effects at lower taxonomic levels (Supplementary discussion). In contrast, the LDG does apply to 105 
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overall fungal taxonomic diversity, and to 3 of 5 fungal phyla when examined separately, but not 106 

to fungal functional diversity, which was lowest in temperate biomes and exhibited an inverse 107 

unimodal relationship with latitude (Figure 1b,d; Extended Data Figure 2c). The LDG was 108 

negligible for oceanic fungi (p>0.05)13, possibly due to their lower dispersal limitation and 109 

paucity of plant associations. While fungal taxonomic diversity decreased poleward, the total 110 

fungal biomass (inferred from PLFA markers) and the fungi-to-bacteria biomass ratio increased 111 

poleward, partly due to decline of bacterial biomass decreased with latitude (Extended Data 112 

Figure 3a-c). 113 

 114 

We tested the extent to which deterministic processes (such as competition and environmental 115 

filtering; i.e. the niche theory) versus neutral processes (dispersal and drift; the neutral theory) 116 

explain distributions of fungal and bacterial taxa and functions18. In bacteria, environmental 117 

variation correlated strongly with taxonomic composition (partial Mantel test accounting for 118 

geographic distance between samples: rEnv|Geo=0.729, p=0.001) and moderately with gene 119 

functional composition (rEnv|Geo=0.100, p=0.001), whereas the overall effect of geographic 120 

distance among samples was negligible (p>0.05). The weak correlation between geographic and 121 

taxonomic as well as functional composition suggests that environmental variables are more 122 

important than dispersal capacity in determining global distributions of soil bacteria and their 123 

encoded functions, as suggested by Baas Becking19 and observed for oceanic prokaryotes13. 124 

 125 

For fungi, both geographic distance and environmental parameters were correlated with 126 

taxonomic composition (ITS data: rGeo|Env=0.307, p=0.001; rEnv|Geo=0.208, p=0.001; 18S data: 127 

rGeo|Env=0.193, p=0.001; rEnv|Geo=0.333, p=0.001). Environmental distance (but not geographic 128 

distance) correlated with composition of fungal functional genes (rEnv|Geo=0.197, p=0.001), as 129 

also observed for bacteria. The relatively weaker correlation of fungi with environmental 130 

variation is consistent with results from local scales7. Thus, at both global and local scales, 131 

different processes appear to underlie community assembly of fungi and bacteria. 132 

 133 

To more specifically investigate the association of environmental parameters with the 134 

distribution of taxa and gene functions on a global scale, we used multiple regression modelling 135 

(see Methods). We found that bacterial taxonomic diversity, composition, richness and biomass 136 
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as well as relative abundance of major bacterial phyla can be explained by soil pH and nutrient 137 

concentration, and to a lesser extent by climatic variables (Extended Data Figures 4,5; 138 

Supplementary Table 4). Bacterial community composition responded most strongly to soil pH, 139 

followed by climatic variables, particularly mean annual precipitation (MAP; Extended Data 140 

Figures 4,5). This predominant role of pH agrees with studies from local to continental scales6, 141 

and may be ascribed to the direct effect of pH or confounded variables such as concentration of 142 

calcium and other cations6. The relative abundance of genes encoding several metabolic and 143 

transport pathways were strongly increased with pH (Extended Data Figure 4c), suggesting that 144 

there may be greater metabolic demand for these functions for bacteria in high-nutrient and 145 

alkaline conditions. 146 

 147 

Compared to temperate biomes, tropical and boreal habitats contained more closely related taxa 148 

at the tip of phylogenetic trees, but from more distantly related clades (Extended Data Figure 149 

2d), indicating a deeper evolutionary niche specialization in bacteria20. Together with global 150 

biomass patterns (Extended Data Figure 2a), these results suggest that soil bacterial communities 151 

in the tropics and at high latitudes are subjected to stronger environmental filtering and include a 152 

relatively greater proportion of edaphic niche specialists, possibly rendering these communities 153 

more vulnerable to global change. In contrast, phylogenetic overdispersion in temperate bacterial 154 

communities, may result from greater competitive pressure20 or nutrient availability as predicted 155 

by the niche theory21. 156 

 157 

In contrast to the strong association between bacterial taxonomic diversity and soil pH, diversity 158 

of bacterial gene functions was more strongly correlated with MAP (Extended Data Figure 5a-h). 159 

The steeper LDG in gene functions than in taxa (Figure 1a,c) may thus relate to the stronger 160 

association of specific metabolic functions to climate than to local soil conditions. While soil and 161 

climate variables exhibited comparable correlations with fungal taxa, soil carbon-to-nitrogen 162 

(C/N) ratio was the major predictor for fungal biomass and relative abundance and composition 163 

of gene functions (Extended Data Figures 3g,4b,d; Supplementary Table 4). We hypothesize that 164 

compared to bacteria, global distribution of fungi is more limited by resource availability due to 165 

specialization for the use of specific compounds as substrates and greater energy demand. 166 

 167 
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We interpret opposing biogeographic trends for bacteria and fungi as niche segregation, driven 168 

by differential responses of bacteria and fungi to environmental factors7 and their direct 169 

competition. Gene functional diversity of both bacteria and fungi responded to MAP and soil pH, 170 

albeit in opposite directions (Extended Data Figure 5c,d,g,h; Supplementary Table 3). This may 171 

partly explain the observed inverse pattern of gene functional diversity across the latitudinal 172 

gradient, i.e. niche differentiation, between bacteria and fungi (Figure 1; Extended Data Figure 173 

2). While increasing precipitation seems to favour higher fungal diversity, it is associated with 174 

higher B/F biomass and abundance ratios (Extended Data Figure 3d,g; Extended Data Figure 175 

5f,h). The increasing proportion of fungi towards higher latitudes may be explained by 176 

competitive advantages perhaps due to a greater tolerance to nutrient and water limitation 177 

associated with potential long-distance transport by hyphae. 178 

 179 

A role of inter-kingdom biotic interactions in determining the distributions of functional diversity 180 

and biomass in fungi and bacteria has been suggested previously22. As competition for resources 181 

affect the biomass of fungi and bacteria22,23, we hypothesized that B/F biomass ratio is related to 182 

the prevalence of fungi and bacterial AR capacity because of broader activities of fungi than 183 

bacteria in utilizing complex carbon substrates24 as well as increased antibiotic production of 184 

fungi in high C/N environments25. Consistent with this hypothesis, we found that both fungal 185 

biomass and the B/F biomass ratio correlated with ARG relative abundance (Extended Data 186 

Figure 6) and that most fungal OG subcategories, particularly those involved in biosynthesis of 187 

antibiotic and reactive oxygen species, increased with soil C/N ratio (Supplementary Table 4; 188 

Supplementary results). We also found that ARG relative abundance in topsoil is more strongly 189 

related to fungal relative abundance (r=0.435, p<10-9) and B/F abundance ratio (r=-0.445, p<10-190 
12; Figure 2b) than to bacterial relative abundance (r=0.232, p=0.002, based on miTags), which is 191 

supported by our external validation dataset (fungal relative abundance r=0.637, p<10-15; B/F 192 

abundance ratio r=-0.621, p<10-15; bacterial relative abundance r=0.174, p=0.036). Also, topsoil 193 

ARG relative abundance was significantly negatively correlated with bacterial phylogenetic 194 

diversity and OTU richness based on 16S rRNA gene (Extended Data Figures 7a,c,8a), further 195 

supporting a role for biotic interactions in shaping microbial communities. 196 

 197 

We also tested possible direct and indirect relationships between ARGs and 16 environmental 198 
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predictors using structural equation modelling (SEM; Supplementary Table 5). The optimized 199 

model suggests that soil C/N ratio and moisture, rather than pH – the predominant driver of 200 

bacterial diversity (Extended Data Figure 3g, Supplementary results) – affect B/F abundance 201 

ratio that in turn affects ARG relative abundance at the global scale (Figure 2c). In line increased 202 

antibiotics production in high competition environments, soil C/N ratio was the best predictor for 203 

richness of fungal functional genes (r2=0.331, p<10-15; Supplementary Table 3) and bacterial 204 

CAZyme genes involved in degrading fungal carbohydrates (r=0.501, p<10-12). ARG relative 205 

abundance was also strongly correlated with C/N ratio in the external validation dataset (r=0.505, 206 

p<10-10). 207 

 208 

While the concomitant increase in AR potential and relative abundance of bacteria (as potential 209 

ARG carriers) was expected, the strong correlation of fungal relative abundance with ARG 210 

relative abundance and in turn bacterial phylogenetic diversity may be explained by selection 211 

against bacteria that lack ARGs, such that bacteria surviving fungal antagonism are enriched for 212 

ARGs. Among all studied phyla, the relative abundance of Chloroflexi, Nitrospirae, and 213 

Gemmatimonadetes bacteria (based on miTags), taxa with relatively low genomic ARG content 214 

(Supplementary Table 6) were most strongly negatively correlated with ARG relative abundance 215 

(Figure 3a). In contrast, ARGs were strongly positively correlated with the relative abundance of 216 

Proteobacteria, which have the greatest average number of ARGs per genome26 among bacteria 217 

(Supplementary Table 6), and the fungal phyla Ascomycota and Zygomycota s.lat. (including 218 

Zoopagomycota and Mucoromycota) in both the global soil and the external validation sets 219 

(Figure 3a,b; Extended Data Figure 9a,c; Supplementary Table 7). More specifically, ITS 220 

metabarcoding revealed increasing relative abundances of ARGs with numerous fungal OTUs 221 

(Supplementary Table 8), particularly those belonging to Oidiodendron (Myxotrichaceae, 222 

Ascomycota) and Penicillium (Aspergillaceae, Ascomycota), which are known antibiotic 223 

producers27,28 (Supplementary Results). Among bacterial ARGs, the relative abundance of efflux 224 

pumps and beta-lactamases, which act specifically on fungal-derived antibiotics, were 225 

significantly correlated to the relative abundance of Ascomycota (Extended Data Figure 10a; 226 

Supplementary Table 7). Actinobacteria, encompassing antibiotics-producing Streptomyces, also 227 

significantly correlated to ARG diversity in topsoil (Supplementary Table 6). Together these 228 

results suggest that relationships between organismal and ARG abundances are likely the result 229 
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of selective and/or suppressive actions of antibiotics on bacteria. 230 

 231 

Consistent with our observations in topsoil, we found evidence for antagonism between fungi 232 

and bacteria in oceans by reanalysing ARG distribution in 139 water samples from the global 233 

Tara Oceans project13 (see Methods; Supplementary Table 1; Extended Data Figure 8a): the 234 

fungi-like stramenopile class Oomycetes (water moulds) and the fungal phylum Chytridiomycota 235 

constituted the groups most strongly associated with bacterial ARG relative abundance (Figure 236 

3a,c, Extended Data Figures 9b,d,10b,d). Although there is little direct evidence that oomycetes 237 

produce antibiotics, their high antagonistic activity can trigger bacteria29 and other organisms 238 

including fungi30 to produce antibiotics (Supplementary Discussion). As in topsoil, bacterial 239 

phylogenetic diversity was significantly negatively correlated with ARG relative abundance in 240 

ocean samples (Extended Data Figure 7b,c). In addition, the ARG relative abundance declined 241 

with increasing distance from the nearest coast in ocean samples (Extended Data Figure 8b), 242 

which may reflect the effect of a decreasing nutrient gradient along distance from the coast on 243 

the pattern of bacteria and fungi abundance and in turn ARG abundance. The agreement of 244 

results from these disparate habitats suggests that competition for resources related to nutrient 245 

availability and climate factors drive a eukaryotic-bacterial antagonism in both terrestrial and 246 

oceanic ecosystems. 247 

 248 

Our results indicate that both environmental filtering and niche differentiation determine global 249 

soil microbial composition, with a minor role of dispersal limitation at this scale (for limitations, 250 

see Methods). In particular, global distribution of soil bacteria and fungi was most strongly 251 

associated with soil pH and precipitation, respectively. Our data further indicate that inter-252 

kingdom antagonism, as reflected in the association of bacterial ARGs with fungal relative 253 

abundance, is also important in structuring microbial communities. Although further studies are 254 

needed to explicitly address the interplay of B/F abundance ratio and ARG abundance, our data 255 

suggest that environmental variables that impact B/F abundance ratio may have consequences for 256 

microbial interactions and favouring fungi- or bacteria-driven soil nutrient cycling. This 257 

unprecedented view of global patterns of microbial distributions implies that global climate 258 

change may differentially affect bacterial and fungal composition and their functional potential, 259 

because acidification, nitrogen pollution and shifts in precipitation all have contrasting effects on 260 
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topsoil bacterial and fungal abundance, diversity and functioning. 261 
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 363 
 364 
Figure Legends 365 
 366 
Figure 1 | Fungal and bacterial diversity exhibit contrasting patterns across the latitudinal 367 
gradient. Latitudinal distributions of bacterial (left columns) and fungal (right columns) 368 
taxonomic (a and b; n=188 biologically independent samples) and gene functional (c and d; 369 
n=189 biologically independent samples) diversity in the global soil samples. The order of 370 
polynomial fit was chosen based on the corrected Akaike Information Criterion (AICc; see 371 
Methods) of first and second order polynomial models (ANOVA: a: F= 34.28; p<10-7; b: 372 
F=3.84, p=0.052; c: F= 50.48, p<10-10; d: F= 18.55, p= p<10-4). Grey dashed and black solid 373 
lines are the first and second order polynomial regression lines, respectively. Diversity was 374 
measured using Inverse Simpson Index (these trends were robust to choice of index, see 375 
Extended Data Figure 2b, c). The latitudinal distribution of the high-level biome (tropical, 376 
temperate and boreal-arctic) is given at the top of a) and b).  377 
 378 
Figure 2 | Global relative abundance of antibiotic resistance genes (ARGs) can be explained 379 
by a combination of biotic and abiotic factors. a, Pairwise Spearman correlation matrix of 380 
main biotic and abiotic determinants of ARG relative abundance. b, B/F abundance ratio 381 
significantly correlated with ARG relative abundance on a global scale. c, Structural equation 382 
modelling (SEM) of ARG relative abundance of soil (green) and ocean (blue) datasets 383 
(explaining 44% and 51% of variation, respectively; Supplementary Table 5). The goodness of 384 
fit was acceptable (Soil: RMSEA=0.00, PCLOSE=0.989, n=189 biologically independent 385 
samples; Ocean: RMSEA=0.059, PCLOSE=0.302, n=139 biologically independent samples). 386 
Abbreviations: C/N, carbon to nitrogen ratio; N, nitrates; Bacteria/Fungi (B/F), the ratio of 387 
bacterial to fungal abundance/biomass; Bacterial richness, bacterial OTU (>97% similarity) 388 
richness based on metabarcoding dataset; Abundance, relative abundance of miTags determined 389 
as fungi or bacteria; Biomass (nmol/g), absolute biomass based on PLFA analysis; MAP: mean 390 
annual precipitation; MAT: mean annual temperature; n.a.: not applicable; n.s.: not significant 391 
(p>0.05, q>0.1).  392 
 393 
Figure 3 | Fungi are the main determinants of antibiotic resistance gene (ARG) relative 394 
abundance in soils and oceans. a, The association between ARG relative abundance and major 395 
bacterial and fungal (incl. fungal-like protist) phyla in metagenomic samples from soil and 396 
ocean. Outer circle colour corresponds to the Pearson correlation coefficient. Circle fill colour 397 
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corresponds to significance after adjustment for multiple testing (q-value), as indicated in the 398 
legend. b-c, Relationships (non-parametric correlations) between the relative abundances of most 399 
correlated fungal groups with ARGs in soil metagenomes from this study (b) and ocean 400 
metagenomes (c). For statistical details and significance, see Supplementary Table 8. Asterisks 401 
denote significance after Benjamini-Hochberg correction for multiple testing (*, q<0.1). See also 402 
supplementary analysis and Supplementary Table 8 for analogous results as in (a) but at the class 403 
level and in other habitats besides soil and ocean including published non-forest and agricultural 404 
soil as well as human skin and gut samples.  405 
 406 

 407 
METHODS 408 

Soil sample preparation 409 
Composite soil samples from 1450 sites worldwide were collected using highly standardized 410 
protocols16. The sampling was conducted broadly across the most influential known 411 
environmental gradient – the latitude - taking advantage of a global “natural laboratory” to study 412 
the impact of climate on diversity across vegetation, biome and soil types and to enable testing 413 
the effects of environmental parameters, spatial distance, and biotic interactions in structuring 414 
microbial communities. We carefully selected representative sites for different vegetation types 415 
separated by spatial distances sufficient to minimize spatial autocorrelation and to cover most 416 
areas of the globe. Total DNA was extracted from 2.0 g of soil from each sample using the 417 
PowerMax Soil DNA Isolation kit (MoBio, Carlsbad, CA, USA). A subset of 189 high-quality 418 
DNA samples representing different ecoregions spanning multiple forest, grassland and tundra 419 
biomes (Supplementary Table 1) were chosen for prokaryote and eukaryote metabarcoding 420 
(ribosomal rRNA genes) and whole metagenome analysis. Samples from desert (n=8; G4010, 421 
G4034, S357, S359, S411, S414, S418 and S421) and mangrove (n=1: G4023) biomes yielded 422 
sufficient DNA for metabarcoding, but not for metagenomics sequencing, thus these samples 423 
were used for global mapping of taxonomic diversity but excluded from all comparisons between 424 
functional and taxonomic diversity. One sample (S017) contained no 16S sequences; thus, 425 
altogether 189 and 197 samples were used for metagenomics and metabarcoding analyses, 426 
respectively.  427 
 428 
To determine the functional gene composition of each sample, 5 μg total soil DNA (300-400 bp 429 
fragments) was ligated to Illumina adaptors using the TruSeq Nano DNA HT Library Prep Kit 430 
(Illumina Inc., San Diego, CA, USA) and shotgun-sequenced in three runs of the Illumina HiSeq 431 
2500 platform (2 × 250 bp paired-end chemistry, rapid run mode)31 in the Estonian Genomics 432 
Center (Tartu, Estonia). Taxonomic composition was estimated from the same DNA samples 433 
using ribosomal DNA metabarcoding for bacteria (16S V4 subregion) and eukaryotes (18S V9 434 
subregion). For amplification of prokaryotes and eukaryotes, universal prokaryote primers 515F 435 
and 806RB32 (although this pair may discriminate against certain groups of Archaea and Bacteria 436 
such as Crenarchaeota/Thaumarchaeota (and SAR11, see ref. 33) and eukaryote primers 1389f 437 
and 1510r34 were used. While the resolution of 16s rRNA sequencing is limited to genus (and 438 
higher) -level assignments, it is currently a standard approach in profiling bacterial communities 439 
and thus enabled us at least to explore patterns at coarse phylogenetic resolution. 440 
 441 
Each primer was tagged with a 10-12-base identifier barcode16. DNA samples were amplified 442 
using the following PCR conditions: 95 ˚C for 15 min, followed by 30 cycles of 95 ˚C for 30 s, 443 
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50 ˚C 45 s and 72 ˚C for 1 min with a final extension step at 72 ˚C for 10 min. The 25 µl PCR 444 
mix consisted of 16 µl sterilized H2O, 5 µl 5× HOT FIREPol Blend MasterMix (Solis Biodyne, 445 
Tartu, Estonia), 0.5 µl each primer (200nM) and 3 µl template DNA. PCR products from three 446 
technical replicates were pooled and their relative quantity was evaluated after electrophoresis on 447 
an agarose gel. DNA samples producing no visible band or an overly strong band were amplified 448 
using 35 and 25 cycles, respectively. The amplicons were purified (FavorPrep™ Gel/PCR 449 
Purification Kit; Favorgen), checked for quality (ND 1000 spectrophotometer; NanoDrop 450 
Technologies), and quantified (Qubit dsDNA HS Assay Kit; Life Technologies). Quality and 451 
concentration of 16S amplicon pools were verified using Bioanalyzer HS DNA Analysis Kit 452 
(Agilent) and Qubit 2.0 Fluorometer with dsDNA HS Assay Kit (Thermo Fisher Scientific), 453 
respectively. Sequencing was performed on an Illumina MiSeq at the EMBL GeneCore facility 454 
(Heidelberg, Germany) using a v2 500 cycle kit, adjusting the read length to 300 and 200 bp for 455 
read1 and read2, respectively. 18S amplicon pools were quality checked using Bioanalyzer HS 456 
DNA Analysis Kit (Agilent), quantified using Qubit 2.0 Fluorometer with dsDNA HS Assay Kit 457 
(Thermo Fisher Scientific) and sequenced on an Illumina HiSeq at Estonian Genomics Center 458 
(Tartu, Estonia). Sequences resulting from potential contamination and tag-switching were 459 
identified and discarded based on two negative and positive control samples per sequencing run.  460 
 461 
Soil chemical analysis and biomass analysis 462 
All topsoil samples were subjected to chemical analysis of pHKCl, Ptotal, K, Ca and Mg; the 463 
content of 12C, 13C, 14N and 15N were determined using an elemental analyzer (Eurovector, 464 
Milan, Italy) coupled with an isotope ratio mass spectrometer55.  465 
 466 
To calculate the absolute abundance of bacteria and fungi using an independent approach, 467 
bacterial and fungal biomass were estimated from Phospholipid Fatty Acids (PLFAs)35 in nmol/g 468 
as follows. Lipids were extracted from 2 g freeze dried soil in a one-phase solution of 469 
chloroform, methanol and citrate buffer36. Chloroform and citrate buffer was added to split the 470 
collected extract into one lipophilic phase, and one hydrophilic phase. The lipid phase was 471 
collected and applied on a pre-packed silica column36. The lipids were separated into neutral 472 
lipids, intermediate lipids and polar lipids (containing the phospholipids) by subsequent elution 473 
with chloroform, acetone and methanol. The neutral and phospholipids were dried using a speed 474 
vac. Methyl nonadecanoic acid (Me19:0) was added as an internal standard. The lipids were 475 
subjected to a mild alkaline methanolysis, in which fatty acids were derivatised to fatty acid 476 
methyl esters (FAMEs). The FAMEs from neutral (NLFAs) and phospholipids (PLFAs) were 477 
dried, using speed vac, and then dissolved in hexane before analysis on a gas-chromatograph as 478 
described by ref.37. Fungal biomass was estimated as the concentration of PLFA 18:2ω6,9 and 479 
bacterial biomass from the sum of nine PLFAs (i15:0, i16:0, i17:0, a15:0, a17:0, cy17:0, cy19:0, 480 
10Me17:0 and 10Me18:0)36. The nomenclature of fatty acids follows Frostegård et al.37. 481 
 482 
Acquisition of metadata from public databases 483 
Climate data including monthly temperature and precipitation were obtained from the 484 
WorldClim database (www.worldclim.org). In addition, estimates of soil carbon, moisture, pH, 485 
potential evapotranspiration (PET) and net primary productivity (NPP) at 30 arc minute 486 
resolution were obtained from the Atlas of the Biosphere (www.sage.wisc.edu/atlas/maps.php). 487 
Samples were categorized into 11 biomes9, with all grassland biomes being categorized as 488 
“grasslands”. Thus, the following biomes were considered and summarized to three global 489 
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levels: moist tropical forests, tropical montane forests and dry tropical forests, savannas as 490 
tropical; Mediterranean, grasslands and shrublands, southern temperate forests, coniferous 491 
temperate forests and deciduous temperate forests as temperate; and boreal forests and arctic 492 
tundra as boreal-arctic. The time from the last fire disturbance was estimated based on inquiry 493 
from local authorities or collaborators and evidence from the field. 494 
 495 

Metagenome analysis  496 
Most soil microbes are uncultured, making their identification difficult. Metagenomics analysis 497 
has emerged as a way around this to capture both genetic and phylogenetic diversity. As such it 498 
can only directly reveal the potential for functions through determining and tracing gene family 499 
abundances (as opposed to realized protein activity), which may be involved in various 500 
functional pathways38, but we can safely assume a strong correspondence between gene 501 
functional potential and the resulting ecosystem functioning39 or enzyme activities40.  502 
 503 
Reads obtained from the shotgun metagenome sequencing of topsoil samples were quality-504 
filtered, if the estimated accumulated error exceeded 2.5 with a probability of ≥0.0141, or >1 505 
ambiguous position. Reads were trimmed if base quality dropped below 20 in a window of 15 506 
bases at the 3’ end, or if the accumulated error exceeded 2 using the sdm read filtering 507 
software42. After this, all reads shorter than 70% of the maximum expected read length (250 bp 508 
unless noted otherwise for external datasets) were removed. This resulted in retention of 509 
894,017,558 out of 1,307,037,136 reads in total (Supplementary Table 1). We implemented a 510 
direct mapping approach to estimate the functional gene composition of each sample. First, the 511 
quality-filtered read pairs were merged using FLASH43. The merged and unmerged reads were 512 
mapped against functional reference sequence databases (see below) using DIAMOND 0.8.10 in 513 
blastx mode44 using “-k 5 -e 1e-4 --sensitive” options. The mapping scores of two unmerged 514 
query reads that mapped to the same target were combined to avoid double counting. In this case, 515 
the hit scores were combined by selecting the lower of the two e-values and the sum of the bit 516 
scores from the two hits. The best hit for a given query was based on the highest bit score, 517 
longest alignment length and highest percent identity to the subject sequence. Finally, aligned 518 
reads were filtered to those, having an alignment %identity >50% and matching with an e-value 519 
<1e-9 (see below for parameter choice). 520 
 521 
The functional databases to which metagenomic reads were mapped included gene categories 522 
related to ROS sources (peroxidases genes databases45,46, KEGG47 (Kyoto Encyclopedia of 523 
Genes and Genomes) and CAZyme genes (www.cazy.org, accessed 22.11.2015)48. To facilitate 524 
interpretation of the results, the relative abundance of CAZyme genes were summed based on the 525 
substrates for each gene family. Substrate utilization information for CAZyme families was 526 
obtained from ref. 49,50 as well as CAZypedia 527 
(http://www.cazypedia.org/index.php?title=Carbohydrate-binding_modules&oldid=9411). Based 528 
on the KEGG Ortholog (KO) abundance matrices we calculated SEED functional module 529 
abundances. For functional annotations of metagenomic reads, we used in silico annotation based 530 
on a curated database of the orthologous gene family resource eggNOG 4.514. 531 
 532 
For all databases that included taxonomic information (eggNOG, KEGG, CAZy), reads were 533 
mapped competitively against all kingdoms and assigned into prokaryotic and eukaryotic groups, 534 
based on the best bit score in the alignment and the taxonomic annotation provided with the 535 
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database at kingdom level. All functional abundance matrices were normalized by the total 536 
number of reads used for mapping in the statistical analysis, unless mentioned otherwise (e.g. 537 
rarefied in the case of diversity analysis, see below). This normalization better takes into account 538 
differences in library size as it has the advantage of including the fraction of unmapped (that is 539 
functionally unclassified) reads. Although there are limitations in using relative abundance of 540 
genes, our analysis shows, which potential functions are relatively more important. Without any 541 
normalisation, such analyses cannot be performed. It is currently difficult to test the absolute 542 
numbers, due to limitations to reliably quantify soil DNA resulting from differences in extraction 543 
efficiency and level of degradation. 544 
 545 
To identify ARGs in our metagenome samples, the merged and unmerged reads were mapped to 546 
a homology expansion (see ref. 51) of the Antibiotic Resistance gene Data Base (ARDB). Only 547 
hits surpassing the minimum sequence identity values as listed in the ARDB for each family 548 
were taken further into account. While there exist newer ARG databases, only the ARDB 549 
presently have curated family inclusion thresholds that directly allow application to our topsoil 550 
dataset: as soil microbial diversity is so large, unlike for gut datasets, high-fidelity gene 551 
catalogue construction will not be possible until many more samples are available. Therefore, 552 
direct mapping of reads to the gene family databases becomes necessary for our analysis, in turn 553 
necessitating ARG inclusion thresholds that are well-defined also for single reads, not merely for 554 
full-length genes. Thus, the cut-offs curated for e.g. ResFams52 or CARD53 are inappropriate, 555 
since they are defined in the length-dependent bit score space. The ARDB cut-offs, however, are 556 
defined as sequence identities, thus in principle applicable also to shorter than full-length 557 
sequences. Because of these technical limitations, we used a soil gene catalogue to determine 558 
CARD based ARG abundance matrices (see further on). 559 
 560 
It is important to note that functional gene including ARG measurements represent relative 561 
proportions of different gene families, because the absolute amount of DNA differs among 562 
samples. This necessitates, as we have done, to choose statistical tests that do not assume 563 
absolute measurements, and centres analysis of this type on comparisons across the set of 564 
samples. 565 

 566 
miTag taxa abundance estimation 567 
We used a miTag approach15 to determine bacterial and fungal community composition from 568 
metagenome sequence data. First, SortMeRNA54 was used to extract and blast search rRNA 569 
genes against the SILVA LSU/SSU database. Reads approximately matching these databases 570 
with e-values <10-1 were further filtered with custom Perl and C++ scripts, using FLASH to 571 
attempt merging all matched read pairs. In case read pairs could not be merged, as happens if the 572 
overlap between them is too small, the reads were interleaved such that the second read pair was 573 
reverse complemented and then sequentially added to the first read. To fine-match candidate 574 
interleaved or merged reads to Silva LSU/SSU databases, lambda55 was used. Using the lowest 575 
common ancestor (LCA) algorithm adapted from LotuS (version 1.462)42, we determined the 576 
identity of filtered reads based on lambda hits. This included a filtering step, where queries were 577 
only assigned to phyla and classes if they had at least 88% and 91% similarity to the best 578 
database hit, respectively. The taxon by sample matrices were normalized by the total number of 579 
reads per sample to minimize the effects of uneven sequencing depth. The average of SSU and 580 
LSU matrices was used for calculating the relative abundance of phyla/classes. The abundance of 581 
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miTag sequences matching bacteria and fungi was used to determine B/F abundance ratio. While 582 
LSU/SSU assessments refer to number of fungal cells rather than number of discrete 583 
multicellular fungi, since this can apply to all samples equally, it is not systematically biased for 584 
comparing the trends of bacterial to fungal abundance across samples.  585 
  586 
External metagenomic datasets 587 
We validate and compare the global trends with those on a smaller scale, we used a regional 588 
scale dataset of 145 topsoil generated and processed using the same protocol as our global 589 
dataset (Supplementary Table 1).  590 
 591 
In addition, to compare patterns of ARG diversity in soils and oceans on a global scale, we re-592 
analysed the metagenomics datasets of the Tara Oceans13, including all size fractions 593 
(Supplementary Table 1). After quality filtering, 41,790,928,650 out of 43,076,016,494 reads 594 
were retained from the Tara Oceans dataset. 595 
 596 
The quality-filtered reads from all datasets were mapped to the corresponding databases using 597 
Diamond, with the exception that no merging of read pairs was attempted, because the chances 598 
of finding overlapping reads were too low (with a read length of 100 bp and insert size of 300 bp 599 
(Tara Oceans). Sequences for SSU/LSU miTags were extracted from these metagenomics 600 
datasets as described above. ARG abundance matrices were also obtained from the Tara Oceans 601 
project based on the published gene catalogues annotated using a similar approach as in the 602 
current study. 603 
 604 
Gene catalogue construction 605 
To create a gene catalogue, we first searched for complete reference genes that matched to read 606 
pairs in our collection using bowtie256 with the options “--no-unal --end-to-end”. The resulting 607 
bam files were sorted and indexed using samtools 1.3.157 and the 608 
jgi_summarize_bam_contig_depths provided with MetaBat58 was used to create a depth profile 609 
of genes from the reference databases that were covered with ≥95% nucleotide identity. This cut-610 
off is commonly used in constructing gene catalogues13,59 and chosen to delineate genes 611 
belonging to the same species. Using the coverage information, we extracted all genes that had at 612 
least 200bp with ≥1× coverage by reads from our topsoil metagenomes. The reference databases 613 
included an ocean microbial gene catalogue13, a gut microbial gene catalogue12, as well as all 614 
genes extracted from 25,038 published bacterial genomes26. Altogether 273,723 and 2,376 and 615 
8,642 genes from proGenomes, IGC and Tara database, respectively, could be matched to soil 616 
reads and were used in the gene catalogue.  617 
 618 
The majority of genes in our catalogue were assembled from the topsoil samples presented here. 619 
To reduce the likelihood of chimeric reads, each sample was assembled separately using Spades 620 
3.7-0 (development version obtained from the authors)60 in metagenomic mode with the 621 
parameters “--only-assembler -m 500 --meta -k 21,33,67,111,127”. Only sdm42 filtered paired 622 
reads were used in the assembly, with the same read filtering parameters as described above. 623 
Resulting assemblies had an average N50 of 469 bases (total of all assemblies 21,538 MBp). The 624 
low N50 reflects difficulties in the assembly of soil metagenomes, most likely reflecting the vast 625 
microbial genetic diversity of these ecosystems. We further de novo assembled reads from two 626 
other deep sequencing soil61 and sediment studies62, using the same procedure and parameters, 627 
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except that the Spades parameter “-k 21,33,67,77” was adjusted to a shorter read length. 628 
Furthermore, we included publicly available data from the European Nucleotide Archive (ENA). 629 
ENA was queried to identify all projects with publicly available metagenomes and whose 630 
metadata contained the keyword "soil". The initial set of hits was then manually curated to select 631 
relevant project/samples that were assembled as described above. Additionally, we integrated 632 
gene predictions from soil metagenomes downloaded from MG-RAST63 (Supplementary Table 633 
1). Assembly was not attempted for these samples due to the absence of paired end reads, and 634 
relatively low read depth; rather, only long reads or assemblies directly uploaded to MG-RAST 635 
with ≥400bp length were retained. Therefore, only scaffolds and long reads, with at least 400 bp 636 
length, were used for analysis. On these filtered sequences genes were de novo predicted using 637 
prodigal 2.6.164 in metagenomic mode. Finally, we merged the predicted genes from assemblies, 638 
long reads, gene catalogues and references genomes to construct a comprehensive soil gene 639 
catalogue. 640 
 641 
Thus, 53,294,555,100 reads were processed, of which 31,015,827,636 (58.20%) passed our 642 
stringent quality control. The initial gene set predicted on the soil assemblies and long reads was 643 
separated into 17,114,295 complete genes and 111,875,596 incomplete genes. A non-redundant 644 
gene catalogue was built by comparing all genes to each other. This operation was performed 645 
initially in amino-acid space using DIAMOND44. Subsequently, any reported hits were checked 646 
in nucleotide space. Any gene that covered at least 90% of another one (with at least 95% 647 
identity over the covered area) was considered to be a potential representative of it (genes are 648 
also potential representatives of themselves). The final set was chosen by greedily picking the 649 
genes which are representative of the highest number of input genes until all genes in the original 650 
input have at least one representative in the output. This resulted in a gene catalogue with a total 651 
of 159,907,547 non-redundant genes at 95% nucleotide identity cut-off. We mapped reads from 652 
our experiment on the gene catalogue with bwa65, requiring >45 nt overlap and >95% identity. 653 
The average mapping rate was 26.2 ± 7.4%. Although the gene catalogue is an invaluable 654 
resource for future explorations of the soil microbiome, we decided to rely on using the direct 655 
mapping approach to gene functional composition, due to the low overall mapping rate. Further, 656 
using minimap266 to find genes at 95% similarity threshold, we compared the soil gene catalogue 657 
with the Tara Oceans gene catalogue13, human gut gene catalogue12 and the proGenomes 658 
prokaryotic database26. The gene catalogue nucleotide and amino acid sequences and abundance 659 
matrix estimates from rtk67 have been deposited at http://vm-660 
lux.embl.de/~hildebra/Soil_gene_cat/. 661 

 662 
CARD ARG abundance estimation 663 
CARD abundances in topsoil samples were estimated by annotating the soil gene catalogue using 664 
a DIAMOND search of the predicted amino acid sequences against the CARD database and 665 
filtering hits to the specified bit-score cut-offs in the CARD database. Based on the gene 666 
abundances in each sample, we estimated the abundance of different CARD categories per 667 
metagenomic sample. Despite qualitative similarities in overall trends of ARDB and CARD 668 
abundance matrices, CARD abundance estimation is limited by being based on the gene 669 
catalogue (only a 26.2±7.4% of all metagenomic reads could be mapped to the gene catalogue). 670 
  671 
Processing of metabarcoding sequence data  672 
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The LotuS pipeline42 was used for bacterial 16S rRNA amplicon sequence processing. Reads 673 
were demultiplexed with modified quality-filtering settings for MiSeq reads, increasing strictness 674 
to avoid false positive OTUs. These modified options were the requirement of correctly detected 675 
forward 16S primer, trimming of reads after an accumulated error of 1 and rejecting reads below 676 
28 average quality or, exceeding an estimated accumulated error >2.5 with a probability of 677 
≥0.0141. Further, we required each unique read (reads preclustered at 100% identity) to be 678 
present 8 or more times in at least one sample, 4 or more times in at least two samples, or three 679 
or more times in at least three samples. In total 27,883,607 read pairs were quality-filtered and 680 
clustered with uparse68 at 97% identity. Chimeric OTUs were detected and removed based on 681 
both reference-based and de novo chimera checking algorithms, using the RDP reference 682 
database (http://drive5.com/uchime/rdp_gold.fa) in uchime68, resulting in 13,070,436 high-683 
quality read pairs to generate and estimate the abundance of bacterial OTUs The seed sequence 684 
for each OTU cluster was selected from all read pairs assigned to that OTU, selecting the read 685 
pair with the highest overall quality and closest to the OTU centroid. Selected OTU seed read 686 
pairs were merged with FLASH43 and a taxonomic identity was assigned to each OTU by 687 
aligning full-length sequences with lambda55 to the SILVA v123 database69 and the LotuS least 688 
common ancestor (LCA) algorithm. This was performed using the following LotuS command 689 
line options: "-p miSeq -derepMin 8:1,4:2,3:3 –simBasedTaxo 2 –refDB SLV -thr 8”. OTU 690 
abundances per sample were summed to class and phylum level per sample, according to their 691 
taxonomic classification, to obtain taxa abundance matrices. However, the choice of clustering 692 
method (e.g. Swarm) and identity threshold had little effect on retrieved OTU richness 693 
(comparison with 99% threshold: r=0.977, p<10-15; comparison with Swarm clustering: r=0.979 694 
p<10-15).  695 
 696 
For eukaryotic 18S rRNA genes, we used the same options in LotuS, except that reads were 697 
rejected if they did not occur at least six times each in a minimum of two samples or at least four 698 
times each in a minimum of three samples. This was done to account for lower sequencing depth 699 
in 18S rRNA compared to 16S rRNA dataset. Further, the database to annotate fungal taxonomy 700 
was extended to include general annotations of SILVA and information from unicellular 701 
eukaryotes (PR2 database70). Of 7,462,813 reads, 2,890,093 passed quality filtering. The fungal 702 
ITS metabarcoding dataset16 was downloaded and used in addition to 18S data in specific 703 
analyses, such as finding associated fungal OTUs with ARG relative abundance. The resulting 704 
taxon abundance matrix was further filtered to remove sequences of chloroplast origin for all 705 
three metabarcoding experiments. 706 
 707 
Full-length sequences representing OTUs were aligned using the SILVA reference alignment as 708 
a template in mothur71. A phylogenetic tree was constructed using FastTree272 with the 709 
maximum-likelihood method using default settings. This program uses the Jukes-Cantor models 710 
to correct for multiple substitutions.  711 

 712 
Parametrization and validation of metagenomics approach 713 
Although we used state-of-art molecular approaches, there are several potential limitations 714 
regarding our analyses related to the used technologies. All metagenomics and amplicon-based 715 
analysis are affected by taxonomic biases in sequence databases, while (PCR-free) miTag as well 716 
as amplicon sequencing are biased due to differential ribosomal gene copy number across 717 
taxonomic groups. Amplicon-based metabarcoding, specifically, is affected by both primer PCR 718 
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artefacts and PCR biases that may affect estimates of absolute organism abundance. These biases 719 
are inherent to all metagenomics and metabarcoding studies. However, all these biases affect 720 
different samples equally (same rRNA gene copy numbers, same PCR biases per species, same 721 
database bias per taxa) and thus we estimate that our results are robust to these methodological 722 
shortcomings. Shotgun-based metagenomics is affected by reference bias, in which human 723 
pathogens or Proteobacteria are overrepresented. The necessity for lenient thresholds becomes 724 
obvious from annotating phylogenetic profiles with MetaPhlAn273 using standard parameters: 725 
while we observed that most fungal phyla are present abundantly in our samples, MetaPhlAn2 726 
detected Ascomycota only in 2 out of 189 samples. In 48 out of 189 samples, no organism 727 
(bacteria/archaea/eukaryotes) was detected, and the most abundant phylum was Proteobacteria 728 
(55%). Since these results are clearly deviating from our miTag, 16S, 18S and ITS based 729 
analysis, specific database cut-off thresholds were required for this project. 730 
 731 
To optimize the analysis pipeline and identify suitable e-values for filtering blastx results, we 732 
used metagenomic simulations of four reference genomes where CAZy assignments in the CAZy 733 
database were available. Simulated reads were created as 250 bp paired reads with 400 bp insert 734 
at differing sequence abundances from the four reference genomes in each simulated 735 
metagenome, using iMessi74. For this simulated dataset, we used the pipeline described above to 736 
derive CAZy functional profiles. We found that querying short reads processed as above against 737 
databases results in the retrieval of most genes at relative abundances consistent with 738 
expectations based on the reference genomes at e-value < 1e-9 (r=0.95±0.01, p<0.001). Further, 739 
we simulated 200 metagenomes from 18 bacterial genomes, five bacterial plasmids, one fungal 740 
mitochondrion and two fungal genomes at differing relative proportions in each of these 741 
simulated metagenomes (Supplementary Table 11). We subsequently simulated 1,000,000 reads 742 
of 250 bp and 400 bp insert size using iMessi, and mapped these against reference databases and 743 
retained hits that fulfilled the following arbitrary criteria (used in all subsequent analyses): e-744 
value cut-off of e-9, alignment length ≥20 amino acids, and similarity≥50% amino acids to the 745 
target sequence. From these, we generated functional profiles and found a strong correlation of 746 
simulated to expected functional metagenomic composition based on mixed fungal and bacterial 747 
genomes (r=0.94±0.05, p<0.001).  748 

 749 
Estimating fungal antibiotics production  750 
We also specifically screened for fungal gene clusters directly associated with antibiotic activity, 751 
based on a compiled database of MIBiG (Minimum Information about a Biosynthetic Gene 752 
cluster, https://mibig.secondarymetabolites.org) repository entries that describe gene clusters for 753 
which the products have been shown experimentally to display antimicrobial activities 754 
(Supplementary Table 12). To extend the range of genes that can be associated with the 755 
validated, antibiotics producing, MiBIG protein domains, we downloaded all published non-756 
redundant fungal genomes deposited in JGI (Supplementary Table 13) as well as all non-757 
redundant fungal genes deposited in NCBI. The set of MiBIG, and fungal derived genes was 758 
screened with custom HMMs for domains from secondary metabolite production (specifically 759 
these were dmat, AMP-binding, Condensation, PKS_KS and Terpene synthesis domains). All 760 
identified domains were aligned together with the MiBIG domains using Clustal Omega75 and a 761 
tree was constructed with FastTree2. Phylogenetic trees were rooted to midpoint and 762 
automatically scanned to identify highly supported clades (aLRT branch support >= 0.99) where 763 
antibiotic producing MiBIG domains were monophyletically grouped. The average nucleotide 764 
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identity within each such group was subsequently used as identity cut-off in the mapping step. 765 
All metagenomic reads were mapped with diamond in blastx mode to the newly created 766 
database, using before-mentioned sequence identity cut-offs and rejecting domains of reads that 767 
were mapping to bacterial NOGs. 768 
 769 
Statistical analyses  770 
Data normalization and diversity estimates 771 
All statistical analyses were performed using specific packages in R (version 3.3.2) unless 772 
otherwise noted. Diversity parameters were estimated from OTU and functional gene matrices 773 
that were rarefied to an equal number per sample to reduce the effect of variation in sequencing 774 
depth using the function rrarefy in vegan (version 2.2.1)76. ARG matrices were normalized by 775 
the total number of merged and singleton reads. Total abundance of ARGs per sample was 776 
estimated by summing the abundance of all individual ARGs per sample. ARG diversity 777 
measures indicate the variety and their proportions produced. 778 
 779 
From the rarefied matrices we calculated OTU, OG and CAZyme gene richness (function 780 
specnumber) and diversity (function diversity, based on the Inverse Simpson index). The latter 781 
measure accounts for both richness and evenness, and it gives more weight to abundant groups 782 
compared to Shannon Index. Our results were robust to choice of index, and the various diversity 783 
indices highly correlated in the present dataset (e.g. bacterial taxonomic diversities calculated 784 
using Inverse Simpson versus using Shannon diversity were highly correlated: r=0.888, p<10-15; 785 
for a comparison of richness and diversity trends, see Extended Data Figure 2b,c). Since 786 
evenness and richness were highly correlated in all datasets, we report the results based on 787 
diversity index that represent both richness and evenness. The rarefaction process was repeated 788 
for calculating taxonomic and gene functional diversity and richness based on the average of 100 789 
rarefied datasets.  790 
 791 
Phylogenetic diversity was calculated based on Faith’s Phylogenetic Diversity (PD) metric in 792 
Picante package of R77. In addition, to assess phylogenetic clustering and overdispersion, Nearest 793 
Relative Index (NRI) and Nearest Taxon Index (NTI) were calculated in Picante. Although both 794 
measures are closely related, NRI is more sensitive to phylogenetic diversity at deep nodes, 795 
whereas NTI is more sensitive to phylogenetic clustering towards tips. A null model of shuffling 796 
taxon labels (100 times) was used to randomize phylogenetic relationships among OTUs.  797 
 798 
Correlating environmental parameters to taxa and functions 799 
To identify the main determinants of taxonomic and gene functional composition or diversity 800 
and relative abundance of phyla/classes, we used a series of statistical tests. We included all 801 
prominent environmental variables that we expected to have a significant effect on microbial 802 
diversity based on previous studies, and which were feasible to collect. These included soil pH, 803 
carbon and nutrient levels and factors that can affect these, such as fire, assuming soil as the 804 
major resource for microbial nutrition. We also included isotope ratios of nitrogen (∂15N) and 805 
carbon (∂13C) as these provide principal components for carbon and nitrogen cycling. To avoid 806 
overfitting and to ensure model simplicity, we excluded the variables that had no significant 807 
impact on fungal or bacterial diversity, such as altitude, age of vegetation, plant diversity and 808 
community (the first two PCA axes of Plant community variation at both genus and family level) 809 
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and basal areas of trees. Thus, for univariate regression modelling, 16 variables (Supplementary 810 
Table 14) were included. 811 
 812 
To understand, which factors explain the OG- and OTU-based community composition, variable 813 
selection was performed in the Forward.sel function of Packfor (version 0.0-8/r109)78 according 814 
to the coefficient of determination (threshold, r2=0.01). All functional and taxonomic 815 
compositional matrices were transformed using Hellinger transformation prior to statistical 816 
analysis. Further, Mantel tests and partial Mantel tests were used to test the effects of 817 
geographical vs. environmental distances on OTU and OG compositional similarity as 818 
implemented in vegan. Mantel tests allow testing the correlation of two distance matrices, 819 
whereas partial Mantel tests are similar but also control for variation in a third distance matrix. In 820 
our analysis, we controlled for the effect of geographic distance while testing the correlation of 821 
environmental variation and functional or taxonomic composition variation. The importance of 822 
biome type in explaining functional gene and taxonomic composition was tested in 823 
Permutational Multivariate Analysis of Variance (PERMANOVA) using the Adonis function of 824 
vegan (using 103 permutation for calculating pseudo-F test statistic and its statistical 825 
significance). For constructing OG and OTU distance matrices, the Bray-Curtis dissimilarity was 826 
calculated between each pair of samples. Great-circle distance was used to calculate a geographic 827 
distance matrix between samples based on geographical coordinates. This test compares the 828 
intragroup distances to intergroup distances in a permutation scheme and from this assesses 829 
significance. PERMANOVA post-hoc p-values were corrected for multiple testing using the 830 
Benjamini–Hochberg correction. We visualized taxonomic (OTU) and functional (OG) 831 
composition of bacteria using global nonmetric multidimensional scaling (GNMDS) in vegan 832 
with the following options: two dimensions, initial configurations = 100, maximum iterations = 833 
200, and minimum stress improvement in each iteration =10-7. The main environmental drivers 834 
of the relative abundance of major taxonomic groups and main functional categories were 835 
recovered by random forest (RF) analysis79 using the R-package randomForest (version 4.6-10).  836 
 837 
To examine latitudinal gradients of diversity at phylum level (Figure 2), the diversity of OTUs 838 
assigned to each phylum was calculated based on Inverse Simpson index. Diversity values were 839 
modelled in response to environmental variables and predicted values were extracted, which 840 
were used in a clustering and bootstrapping analysis to depict the similarities of phyla 841 
environmental associations using pvclust (version 1.3-2)80 with 1000 iterations. To model 842 
latitudinal gradients and environmental associations of diversity and biomass (Figure 1, 843 
Extended Data Figure 3), we compared the goodness of fit estimates between first and second 844 
order polynomial models based on the corrected Akaike information criterion (AICc) using 845 
analysis of variance (ANOVA). AICc reflects both goodness of fit and parsimony of the models.  846 
 847 
For univariate regression modelling of diversity and biomass measures, ordinary least squares 848 
(OLS) or generalized least squares (GLS) regression models were employed depending on the 849 
importance of the spatial component. The model variance structure (Gaussian, exponential, 850 
spherical and linear) was evaluated based on AICc. Following selection of variance structure, 851 
variables were combined in a set of models with specified variance structure (i.e. number of 852 
tested models: 2number of variables). The resulting models were sorted according to AICc values to 853 
reveal the best model. Lists of the 5 best-fitting models for each response variable are given in 854 
Supplementary Table 4. Prior to model selection, all variables were evaluated for linearity, 855 
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normality, and multicollinearity (excluded if the variance inflation factor was >5). The degree of 856 
polynomial functions (linear, quadratic, cubic) was chosen based on the lowest AIC values. 857 
Because of non-linear relationships with response variables, a quadratic term for pH was also 858 
included in the model selection procedure. The accuracy of the final models was evaluated using 859 
10-fold 'leave-one-out' cross-validation. For this, we used 1000 randomly sampled 90%-data 860 
subsets for model training and predicting the withheld data. To minimize biases due to the 861 
partitioning of the data and potential overfitting, the average of 1000 resulting determination 862 
coefficients are reported as cross-validated r2 (r2cv) for each regression model.  863 

 864 
Correlating biotic interactions to taxa and functions 865 
To test the associations of biotic variables on ARG relative abundance, we used a sparse partial 866 
least squares (sPLS) analysis, which reduces dimensionality by projecting predictor variables 867 
onto latent components to identify the 16S/18S lineages (phyla/classes) and the ITS OTUs most 868 
strongly associated with ARG relative abundance, as implemented in the mixOmics (version 5.0-869 
4)81 package. ARG composition and taxonomic community matrices (miTags classes/phyla and 870 
ITS OTUs) were normalized by library size using Hellinger transformation. Significance of 871 
associations was examined by bootstrap tests of subsets of each dataset. We subsequently used 872 
partial least squares (PLS) analysis to predict ARG relative abundance based on significantly 873 
correlated lineages, which allows the dimensionality of multivariate data to be reduced into PLS 874 
components. Optimal numbers of PLS components for prediction of the relative ARG abundance 875 
were selected based on leave-one-out cross-validation. To confirm the results of PLS analysis, 876 
we further used a cross-validated LASSO model to simultaneously perform variable selection 877 
and model fitting, as implemented in glmnet (version 2.0-2)82. First the lambda shrinkage 878 
parameter was determined from a cross-validated lasso-penalized logistic regression classifier. 879 
Using this shrinkage parameter, a new logistic regression classifier was fit to the data to predict 880 
ARG relative abundance.  881 
 882 
To further test direct and indirect effects of geographic and environmental variables on microbial 883 
distributions, we built SEM models in the AMOS software (SPSS, Chicago, IL) by including 884 
predictors of the best GLS model. In a priori models, all indirect and direct links between 885 
variables were established based on their pairwise correlations. We subsequently removed non-886 
significant links and variables or created new links between error terms until a significant model 887 
fit was achieved. Goodness of fit was assessed based on Chi-square test to evaluate the 888 
difference between observed and estimated by model covariance matrices (non-significant value 889 
indicates that the model fits the observed data). We also used Root Mean Square Error of 890 
Approximation (RMSEA) and PCLOSE (p-value for test of close fit) to assess the discrepancy 891 
between the observed data and model per degree of freedom, which is less sensitive to sample 892 
size compared to chi-square test (RMSEA < 0.08 and PCLOSE > 0.05 show a good fit). 893 
Observed correlations between diversity and environmental values can serve as the first step 894 
towards understanding the structure and function of global topsoil microbiome; however, they 895 
are not proof of causations and mechanism. Despite the fact that we used SEM modelling to infer 896 
indirect links, we cannot preclude the possibility of other biotic or soil variables confounded with 897 
climate variables that we did not include in our models. Further laboratory experiments may 898 
enable to address causality of relationships reported in this study.  899 
 900 
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Differences between univariate variables such as taxonomic and functional richness were tested 901 
using a non-parametric Wilcoxon rank-sum test, with Benjamini-Hochberg multiple testing 902 
correction. Post-hoc statistical testing for significant differences between all combinations of two 903 
groups was conducted only for taxa with p<0.2 in the Kruskal-Wallis test. For this, wilcoxon 904 
rank-sum tests were calculated for all possible group combinations and corrected for multiple 905 
testing using Benjamini-Hochberg multiple testing correction.  906 
 907 
Geographic coordinates were plotted on a world map transformed to a Winkler2 projection, 908 
using the maptools (version 0.8-36) package83. 909 

 910 
Limitations of statistical modelling on a global scale 911 
Although we performed cross-validations to test the accuracy of most of our statistical models, 912 
predictions might be limited by the vast diversity in soil microbiomes. For example, strong local 913 
variation in soil pH may lead to deviation from general patterns, which is a common limitation in 914 
environmental sciences. Given the large spatial scale and strong environmental gradient in our 915 
sampling design, and long-term persistence of DNA in soil84, seasonal variation in soils is 916 
expected to have a minor impact85 (in contrast to ocean). In addition, the vast majority of our 917 
samples were collected during growing season, further reducing possible seasonal biases. We 918 
nevertheless tested the effect of sampling month and seasons and found no significant effect of 919 
seasonality on diversity indices (P>0.05). We also compared the effect of seasons and years in a 920 
time series study in two of our sites, which revealed no seasonal effects on richness and 921 
composition (unpublished data). In particular, the relationship between bacterial phylogenetic 922 
diversity and pH, are strongly consistent with studies performed at the local to continental scales 923 
and within a single season6,7,86, which indicates the robustness of our results. Nonetheless, 924 
validation of the proposed models needs to be performed by other researchers with extended data 925 
or an independent dataset, particularly by including samples from under-sampled regions 926 
(Extended Data Figure 1a) and from different seasons (to account for seasonality). For example, 927 
there were some under-sampled regions in our dataset (e.g. North Asia) lowering precision of our 928 
models for those regions. Unfortunately, there are no published global datasets with comparable 929 
sampling protocols used that could be directly compared and used for model validation, and we 930 
encourage future studies that will make this possible.  931 
 932 
 933 
Data availability All metagenomics and metabarcoding sequences have been deposited in the 934 
European Bioinformatics Institute-Sequence Read Archive database, under accession number 935 
PRJEB24121 (ERP105926): Estonian forest and grassland topsoil samples; PRJEB19856 936 
(ERP021922): 16S metabarcoding data of global soil samples; PRJEB19855 (ERP021921): 18S 937 
metabarcoding data of global soil samples; PRJEB18701 (ERP020652): Global analysis of soil 938 
microbiomes. The soil gene catalogue and dataset are available at http://vm-939 
lux.embl.de/~hildebra/Soil_gene_cat/. The Tara Oceans data are available at http://ocean-940 
microbiome.embl.de/companion.html. All other data that support the findings of this study are 941 
available from the corresponding authors upon request. 942 
 943 
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Code availability The pipeline to process metabarcoding samples is available under 944 
http://psbweb05.psb.ugent.be/lotus/. The pipeline to process shotgun metagenomic samples is 945 
available under https://github.com/hildebra/MATAFILER and 946 
https://github.com/hildebra/Rarefaction. 947 
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 1072 
 1073 
Extended Data legends 1074 
 1075 
Extended Data Figure 1 | Distribution of topsoil samples and diversity patterns of phyla. a, 1076 
A map of samples used for metagenomic and metabarcoding analysis. Colours indicate biomes 1077 
as indicated in the legend. Desert samples were only used in metabarcoding analysis and were 1078 
excluded in comparative analysis of functional and taxonomic patterns. Black symbols refer to 1079 
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samples from an independent soil dataset (145 topsoil samples; Supplementary Table 1) that 1080 
were used for validation our results. b, Scatterplots showing the relationship between the 1081 
diversity of major microbial phyla (classes for Proteobacteria) and environmental variables 1082 
across the global soil samples (n=197 biologically independent samples). Only regression lines 1083 
for significant relationships after Bonferroni correction are shown. Diversity was measured using 1084 
Hellinger-transformed matrices based on Inverse Simpson Index. Latitude: absolute latitude; 1085 
MAP: mean annual precipitation; MAT: mean annual temperature; C/N: carbon to nitrogen ratio. 1086 
 1087 
Extended Data Figure 2 | Contrasting microbial structure and function in major terrestrial 1088 
biomes. a-d, The average total biomass (n=152 biologically independent samples) as well as 1089 
richness, diversity and relative abundance (n=188 biologically independent samples) of fungi and 1090 
bacteria across samples categorized into major terrestrial biomes, including tropical (moist and 1091 
dry tropical forests and savannas), temperate (coniferous and deciduous forests, grasslands and 1092 
shrublands, and Mediterranean biomes) and boreal-arctic ecosystems: total biomass (a); richness 1093 
(b); diversity (c); phylogenetic structure including Nearest relative index (NRI) and Nearest 1094 
taxon index (NTI) (see Methods) (d). e-i, Relative abundance of major phyla (n=188 biologically 1095 
independent samples) and functional categories (n=189 biologically independent samples) across 1096 
biomes: bacterial phyla (classes for Proteobacteria) and archaea (e); fungal classes (f); functional 1097 
categories of bacteria (g); functional categories of fungi (h); bacterial KEGG metabolic pathways 1098 
(i). Biomass was measured based on phospholipid-derived fatty acids (PLFA) analysis (see 1099 
Methods). Different letters denote significant differences between groups (shown in the legend) 1100 
at the 0.05 probability level based on Kruskal–Wallis test corrected for multiple testing. 1101 
Additional details for these comparisons are presented in Supplementary Table 14. Taxonomic 1102 
and gene functional diversity indices were calculated based on Inverse Simpson Index. The 1103 
centre values and error bars represent mean and SD, respectively. 1104 
 1105 
Extended Data Figure 3 | Significant decline of bacterial to fungal biomass ratio with 1106 
increasing latitude due to the joint effect of climate and soil fertility. a, The second order 1107 
polynomial relationship of absolute latitude and the total biomass of bacteria (n=152 biologically 1108 
independent samples). b, The relationship of absolute latitude and the total biomass of fungi. c, 1109 
The relationship of absolute latitude and the ratio of bacterial to fungal (B/F) biomass. d-f, The 1110 
relationship of B/F biomass ratio and mean annual precipitation (MAP), mean annual 1111 
temperature (MAT) and carbon to nitrogen ratio (C/N), as the main correlated environmental 1112 
variables with B/F biomass ratio. Linear regression analysis (Pearson correlation) was used in b-f 1113 
(n=152 biologically independent samples). g, Pairwise Spearman correlation matrix of biotic and 1114 
abiotic variables in soil. h, Direct and indirect relationships and directionality between variables 1115 
determined from Best-fitting Structural Equation Model. Determination coefficients (R2) are 1116 
given for biomass and diversity factors (see Supplementary Table 5 for more details). Goodness 1117 
of fit (see Methods): bacteria, Chi square=15.37, df=11, P=0.166; RMSEA=0.041, 1118 
PCLOSE=0.573, n=189; fungi, Chi square=7.74, df=12, P=0.805; RMSEA=0.00, 1119 
PCLOSE=0.970, n=189). Biomass (nmol/g) was measured based on phospholipid-derived fatty 1120 
acids (PLFA) analysis. pH, soil pH representing soil pH and its quadratic term; Ca, calcium; Mg, 1121 
magnesium; P, phosphorous; K, potassium; C, carbon; N, nitrogen; d15N, nitrogen stable isotope 1122 
signature; d13C, carbon stable isotope signature; PET, potential of evapotranspiration; Fire, time 1123 
from the last fire disturbance; NPP, net primary productivity.  1124 
 1125 
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Extended Data Figure 4 | Environment has stronger effect on bacterial taxa and functions 1126 
than those of fungi. Correlation and best random forest model for major taxonomic (a and b; 1127 
n=188 biologically independent samples) and functional (c and d; n=189 biologically 1128 
independent samples) categories of bacteria (left column) and fungi (right column) in the global 1129 
soil samples (n=189 biologically independent samples). a, Relative abundance of major 16S-1130 
based bacterial phyla (class for Proteobacteria). b, Relative abundance of ITS-based fungal 1131 
classes. c-d, Major orthologous genes (OG) categories of bacteria (c) and fungi (d). For variable 1132 
selection and estimating predictability, the random forest machine-learning algorithm was used. 1133 
Circle size represents the variable importance, i.e. decrease in the prediction accuracy (estimated 1134 
with out-of-bag cross-validation) as a result of permutation of a given variable. Colours represent 1135 
Spearman correlations. pH, soil pH; Ca, calcium; Mg, magnesium; P, phosphorous; K, 1136 
potassium; C, carbon; N, nitrogen; d15N, nitrogen stable isotope signature; d13C, carbon stable 1137 
isotope signature; C/N, carbon to nitrogen ratio; Latitude, absolute latitude; MAP, mean annual 1138 
precipitation; MAT, mean annual temperature; PET, potential of evapotranspiration; Fire, time 1139 
from the last fire disturbance. 1140 
 1141 
Extended Data Figure 5 | Niche differentiation between bacteria and fungi is likely related 1142 
to precipitation and soil pH. Contrasting effect of pH and mean annual precipitation (MAP) on 1143 
bacterial (16S; left columns) and fungal (18S; right columns) taxonomic (n=188 biologically 1144 
independent samples) and gene functional (n=189 biologically independent samples) diversity in 1145 
the global soil samples: a, b, Relationship of soil pH and taxonomic diversity of bacteria (a) and 1146 
fungi (b); c, d, Relationship of soil pH and gene functional diversity of bacteria (c) and fungi (d); 1147 
e, f, Relationship of MAP and taxonomic diversity of bacteria (e) and fungi (f); g, h, 1148 
Relationship of MAP and gene functional diversity of bacteria (g) and fungi (h). Lines represent 1149 
regression lines of best fit. The choice of degree of polynomial was determined by a goodness of 1150 
fit (see Methods). Colours denote biomes as indicated in the legend. MAP: mean annual 1151 
precipitation. Taxonomic and gene functional diversity indices were calculated based on Inverse 1152 
Simpson Index. i-l, Non-metric multidimensional scaling (NMDS) plots of trends in taxonomic 1153 
(16S and 18S-based datasets) and gene functional composition (OGs from metagenomes) of 1154 
bacteria (left column) and fungi (right column) based on Bray-Curtis dissimilarity. Taxonomic 1155 
composition of bacteria (16S). j, Taxonomic composition of fungi (18S). k, Gene functional 1156 
composition of bacteria. l, Gene functional composition of fungi. i, Colours denote biomes as 1157 
indicated in the legend. Vectors are the prominent environmental drivers fitted onto ordination.  1158 
 1159 
Extended Data Figure 6 | Fungal biomass is significantly related to the relative abundance 1160 
of antibiotic resistance genes (ARG). a, Increase in fungal biomass is related to ARG relative 1161 
abundance. b, Bacterial biomass is unrelated to ARG relative abundance. c, ARG relative 1162 
abundance is inversely correlated with Bacteria-to-Fungi biomass ratio. Biomass (nmol/g) was 1163 
measured based on Phospholipid Fatty Acids (PLFA) analysis (see Methods). Spearman 1164 
correlation was used (n=152 biologically independent samples).  1165 
 1166 
Extended Data Figure 7 | Topsoil and ocean bacterial phylogenetic diversity is negatively 1167 
correlated with the abundance of antibiotic resistance genes. a, b, Spearman correlations 1168 
between ARG relative abundance and bacterial phylogenetic diversity (Faith’s index; see 1169 
Methods) in soil (n=188 biologically independent samples). (a) and ocean (n=139 biologically 1170 
independent samples). (b) at the global scale. Similar trends were observed for richness (r=-1171 
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0.219, p=0.007 and r=-0.659, p<10-15) in soil and ocean, respectively). c, Global map of 1172 
observed bacterial phylogenetic diversity (Faith’s index; see Methods) at the sampled sites. Note 1173 
that hotspots of bacterial diversity do not correspond to hotspots of ARG relative abundance (See 1174 
Extended Data Figure 8). 1175 
 1176 
Extended Data Figure 8 | Antibiotic resistance gene (ARG) relative abundance within and 1177 
between terrestrial and oceanic ecosystems. a, Heat map of observed antibiotic resistance gene 1178 
(ARG) relative abundance at the global scale. Squares and circles correspond to soil and to ocean 1179 
samples, respectively. ARG abundance is given on three relative scales for these three datasets. 1180 
b, ARG relative abundance in ocean samples (across depths) declines with distance from land 1181 
(n=139 biologically independent samples), a pattern which was significant at two water depths, 1182 
including surface (red) and deep chlorophyll maximum (DCM; green), but not at mesopelagic 1183 
(blue). Spearman correlation statistics for specified comparisons are given in the legends. Dotted 1184 
lines display Spearman correlations across the whole dataset and within the three depth 1185 
categories, respectively. n: number of biologically independent samples. 1186 
 1187 
Extended Data Figure 9 | Antibiotic resistance gene (ARG) relative abundance in both 1188 
ocean and topsoil samples can be modelled by the relative abundance of fungi and fungi-1189 
like protists. a, b, Correlation circle indicating the relationships among fungal classes and ARG 1190 
relative abundance as well as the first two partial least squares regression (PLS) components. 1191 
Length and direction of vectors indicate the strength and direction of correlations. Percentages 1192 
show the variation explained by each PLS component. c, d, Linear (Pearson) correlations 1193 
between observed and modelled ARG relative abundance based on the relative abundance of 1194 
fungal taxa in soil (c) and ocean (d). The two principal axes were chosen based on leave-one-out 1195 
cross-validation (LOOCV) and explained 42% (LOOCV: R2=0.401) and 71% (LOOCV: 1196 
r2=0.684) of the variation of ARG relative abundance in soil and ocean, respectively. Only taxa 1197 
significantly associated with ARG relative abundance are shown. Cross validation and Lasso 1198 
regression confirmed this result: soil dataset: r=0.619, RMSE=10-9; n=189 biologically 1199 
independent samples; Ocean dataset, r=0.832, RMSE=10-9; n=139 biologically independent 1200 
samples.  1201 
 1202 
Extended Data Figure 10 | Fungal classes are among the main taxa associated with 1203 
antibiotic resistance gene (ARG) relative abundance, diversity and richness in different 1204 
habitats. a, b, Heat map derived from sPLS analysis showing correlation of total ARG relative 1205 
abundance, richness and diversity to that of the main taxonomic classes in soil (a) and ocean (b) 1206 
metagenomes (see also the supplementary results for analogous results in previously published 1207 
soil (from grasslands, deserts agricultural soils) as well as human skin and gut samples). For 1208 
statistical details and significance, see Supplementary Table 8. c, d, Heat maps showing 1209 
correlation of total ARG relative abundance to that of the main eukaryotic and prokaryotic taxa 1210 
in soil (c) and ocean (d) based on sparse partial least square (sPLS) regression analysis. All 1211 
matrices were normalized by library size and Hellinger transformation. Fungal and fungal-like 1212 
classes are shown in bold text. See Supplementary Table 15 for ARG gene letter abbreviations. 1213 
 1214 
 1215 
 1216 
 1217 
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