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Abstract

We propose a process calculus, named AbC , to study the behavioural theory of interactions in collective-
adaptive systems by relying on attribute-based communication. An AbC system consists of a set of parallel
components each of which is equipped with a set of attributes. Communication takes place in an implicit
multicast fashion, and interaction among components is dynamically established by taking into account
“connections” as determined by predicates over their attributes. The structural operational semantics of AbC
is based on Labeled Transition Systems that are also used to define bisimilarity between components. Labeled
bisimilarity is in full agreement with a barbed congruence, defined by relying on simple basic observables
and context closure. The introduced equivalence is used to study the expressiveness of AbC in terms of
encoding aspects of broadcast channel-based interactions and to establish formal relationships between system
descriptions at different levels of abstraction.

Keywords: Collective-adaptive systems, Attribute-Based Communication, Process calculus, Operational
semantics, Behavioural theory

1. Introduction

Collective-adaptive systems (CAS) [1] are new emerging computational systems, consisting of a large
number of components, featuring complex interaction mechanisms. These systems are usually distributed,
heterogeneous, decentralised and interdependent, and are operating in dynamic and often unpredictable
environments. CAS components combine their behaviours, by forming collectives, to achieve specific5

goals depending on their attributes, objectives, and functionalities. CAS are inherently scalable and their
boundaries are fluid in the sense that components may enter or leave the collective at any time; so they need
to dynamically adapt to their environmental conditions and contextual data. New engineering techniques to
address the challenges of developing, integrating, and deploying such systems are needed [2].

Most of the current communication models cannot naturally model highly adaptive and loosely-coupled10

systems with fluid boundaries like CAS. They actually suffer from limitations due to: their lack of knowledge
representation, e.g., π-calculus [3], rigid communication interfaces, e.g., CBS [4]; and/or due to their lack
of scalability to coordinate large number of agents in distributed settings, e.g., Psi-calculus [5], the fusion
calculus [6], and the concurrent constraint programming [7, 8, 9].

For instance in π-calculus and Actors [10] communication links are established among distributed15

components by relying on channel-names or unique identities that are totally independent of the run-time
properties, status, and capabilities of components. This makes it hard to program, coordinate, and adapt
complex behaviours that highly depend on the actual status of components. Furthermore, CBS-like calculi
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with fixed communication structures cannot deal with reconfiguration and dynamic creation of communication
links. A way to mitigate the previous shortcomings is to rely on Psi, fusion or concurrent constraint calculi20

that can easily deal with adaptation by using a sort of channel-equivalence which dynamically establishes
communication links based on the combined knowledge of the communicating agents. However, these models
are based on point-to-point communication and this leads to a critical problem of how to discover and
coordinate a large number of agents or services in a flexible manner during their lifecycle. Point-to-point
communication does not scale well when large number of agents need to coordinate their behaviour frequently.25

The problem gets more serious when considering open systems where agents may join or leave at any time
without disrupting the overall system behaviour.

In this article, we address the challenge of finding a novel approach that naturally accommodates the
above mentioned concepts of CAS systems, while simplifying the meta-theory. We introduce a calculus,
named AbC that concentrates on primitives and interaction mechanisms that are crucial for dealing with30

CAS. AbC provides an explicit notion of knowledge representation, termed attribute environment ; supports
dynamic and run-time reconfigurable communication links by means of interaction predicates; and relies on
a notion of implicit and non-blocking multicast communication. These ingredients constitute what we call
attribute-based communication, a novel paradigm that enables groups of partners to interact by considering
the predicates over the (dynamic) values of the attributes they expose. An AbC system is rendered as a set35

of parallel components, each equipped with a set of attributes, termed as attribute environment, and with a
behaviour, termed as a process. The attribute values can be modified by internal actions and the behaviour
of a component is parametrised to these values. AbC components communicate anonymously in an implicit
multicast fashion without any prior agreement.

Interaction in AbC relies on two prefixing actions:40

• (Ẽ)@Π is the attribute-based send that is used to send the values of the sequence of expressions Ẽ to
those components whose attributes satisfy predicate Π;

• Π(x̃) is the attribute-based receive that binds to the sequence x̃ the values received from any component
whose attributes (and possibly transmitted values) satisfy the predicate Π.

Receiving operations are blocking while sending operations are not. This breaks synchronisation dependencies45

between interacting partners, and permits modelling systems where interacting partners can enter or leave a
group at any time without disturbing its overall behaviour. Groups are dynamically formed at the time of
interaction by means of available and interested receiving components that satisfy sender’s predicates. In
this way, run-time changes of attributes introduce opportunistic interactions between components.

We demonstrate the expressive power of AbC by showing how it can be used to encode different50

communication paradigms and we also provide a uniform encoding of a broadcast channel-based process
calculus into AbC . We conjecture that the converse is not possible.

The operational semantics of AbC is given in terms of a labelled transition system (LTS) that is also used
as the basis for defining a notion of bisimulation-based equivalence over AbC components. We first introduce
a context-based reduction barbed congruence by using very simple observables only testing predicates and55

then we provide the corresponding extensional labelled bisimilarity. We show how to use the introduced
bisimilarity to establish formal relationships between systems at different level of abstractions. We also prove
the correctness of encoding a process calculus (inspired by CBS [4] and based on broadcast channels [11])
into AbC up to our proposed equivalences.

This article is an extended and revised version of the conference paper presented in [12]. Here, we extend60

the calculus with operators for controlling visibility of actions, extend the behavioural theory and provide
equational laws for it. Moreover, we add explanatory examples and provide full proofs of all results. The
scope of this paper is focused on the theoretical aspects of our calculus while those aspects concerned with
programming methodologies are reported in a companion paper [13]; there we show how to program complex
and challenging scenarios, featuring collaboration, adaptation and reconfiguration in an intuitive way.65

The rest of the paper is organised as follows. In Section 2 we formally present the syntax of AbC , while
in Section 3 we introduce its operational semantics. In Section 4 we define a behavioural theory for AbC
by introducing a barbed congruence and then an equivalent definition of a labelled bisimulation. Section 5
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is used to introduce a number of equational laws. In Section 6, we illustrate the expressive power of AbC ;
we discuss how the calculus can be used to model other communication paradigms and prove correctness70

and completeness of an encoding of a channel-passing process calculus into AbC . Finally, in Section 7 and
Section 8, we sum up our main contributions, relate our work to closely related state of arts and list research
directions that deserve further investigation.

2. Syntax of the AbC Calculus

In this section we formally present the syntax of AbC and discuss the intuition behind the different75

operators we introduce. We make use of a running example to show how to use AbC primitives to model a
collective scenario of a flock of drones, a slight variant and multiparty version of the one presented in [14].

In the rest of this article, we will use V to denote the set of values that can be used in an AbC system.
Elements in V are denoted by b, v or n (sometime with indexes). Moreover, we will also use the notation ·̃ to
denote a sequence of elements and {̃·} to indicate the set of elements in the sequence ·̃.80

The syntax of the AbC calculus is reported in Table 1. The top-level entities of the calculus are components
(C). A component, Γ:I P , is a process P associated with an attribute environment Γ, and an interface I. An
attribute environment Γ :A 7→ V is a partial map from attribute identifiers1 a ∈ A to values v ∈ V where
A ∩ V = ∅. A value could be a number, a name (string), a tuple, etc. We will use Env to denote a set of
attribute environments Γ.85

An interface I ⊆ A consists of a finite set of attributes that are exposed by a component to control the
interactions with other components. We will refer to the attributes in I as public attributes, and to those in
dom(Γ)− I as private attributes.

Components are composed using the parallel operator ‖, e.g., C1‖C2.

Example 2.1 (A flock of drones (Step 1/5)). We assume that each drone in a particular flock is equipped with90

a sensor that determines whether its battery-level is low or not, and each drone must trigger an adaptation
mechanism (i.e., terminate the mission and return to the base station) when there exists at least five drones
in the flock with low battery-level. Such decision cannot be determined locally based on one or on a subset of
drones but rather globally. Thus, drones need to coordinate and combine their behaviour to take a decision.
This is a typical example of CAS where a component infers a global knowledge of the system by means of95

interactions. We can use AbC to define a simple and distributed protocol ensuring that once drones start
communicating, the adaptation mechanism of each drone may eventually be triggered.

We assume that drones have unique identities id and a limited memory that contains the following
attributes: input i, indicating drones’ battery-level 1 (if low) and 0 (otherwise); and a counter c to count the
number of drones with low battery-level. We model each drone as an AbC component Γ:I P where I = {id, i}.
Initially, drones are not aware of the identities of each others and only learn them at run-time through
interactions to possibly establish dedicated links dynamically. Also the initial values of attributes in Γ are
assigned as follows: i is provided by the sensor and c = i (the counter is initially set to the value provided by
the sensor). The flock of drones is the parallel composition of many drones:

Γ1 :I P ‖ Γ2 :I P ‖ . . . ‖ Γn :I P

Note that drones execute the same code (i.e., P ) and collaborate to answer a global question. Since P is
parametric with respect to Γi, different drones could exhibit different behaviours based on the values of their
attributes.100

To control the interactions of a component C, the restriction operators [ C ]/f and [ C ].f can be used.
There f is a function associating a predicate Π to each tuple of values ṽ ∈ V∗ and attribute environment
Γ. The operators [ C ]/f and [ C ].f can be used to restrict the messages that component C can receive
and send, respectively. For instance, consider a set of parallel components C one of which has a public

1In the rest of this article, we shall occasionally use the term “attribute” instead of “attribute identifier”.
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(Components) C ::= Γ:I P | C1‖C2 | [ C ]/f | [ C ].f

(Processes) P ::= 0 | Π(x̃).U | (Ẽ)@Π.U | 〈Π〉P | P1 + P2 | P1|P2 | K(x1, . . . , xn)

(Updates) U ::= [a := E]U | P

(Predicates) Π ::= tt | ff | pk(E1, . . . , Ek) | Π1 ∧Π2 | Π1 ∨Π2 | ¬Π

(Expressions) E ::= v | x | a | this.a | ok(E1, . . . , Ek)

Table 1: The syntax of the AbC calculus

attribute environment Γ and sends ṽ to components satisfying Π. When the message outgoes [ C ].f , the105

target predicate is updated to consider also predicate Π′ = f(Γ, ṽ), thus the components satisfying Π ∧Π′

will receive the message. To prevent a secret s from being spread outside C, the following function can
be used: fs(Γ, ṽ) = tt if s 6∈ ṽ and ff otherwise. Similarly, [ C ]/f can be used to limit the ability of C to
receive messages. In particular, if a component with public attribute environment Γ sends a message ṽ to
components C satisfying Π, only components in C satisfying Π ∧ f(Γ, ṽ) are eligible to receive the message.110

A process P can be the inactive process 0, an action-prefixed process, act.U , where act is a communication
action and U is a process possibly preceded by an attribute update, a self-aware process 〈Π〉P , a nodeterministic
choice between two processes P1 + P2, an interleaving composition of two processes P1|P2, or a parametrised
process call with a unique identifier K and a sequence of formal parameters (x1, . . . , xn) used in the process
definition K(x1, . . . , xn) , P . We require that xi be pairwise distinct, i.e., i 6= j =⇒ xi 6= xj .115

The self-awareness construct, 〈Π〉P , is used to trigger local behaviours (i.e., P ) when the environment
of the executing component is changed (i.e., Γ |= Π). It blocks the execution of P until predicate Π is
satisfied given the attribute environment where the process 〈Π〉P is executing. This construct is used to
coordinate co-located processes where an attribute update of one process might influence the behaviour of
another co-located one. Thus enabling modelling a notion of interdependence among co-located processes.120

The parallel operator, P |Q, models the interleaving between co-located processes, i.e., processes executing in
the same component. Those processes can only communicate indirectly through inspecting the attribute
environment they share.

We now explain what we mean by expressions and predicates, then we continue by describing the
communication actions and their (possible) side-effects, i.e., attribute updates.125

An expression E is built from constant values v ∈ V, variables x, attribute identifiers a, a reference
to the value of a (this.a) in the component that is executing the code, or through a standard operators
ok(E1, . . . , Ek). The latter indicates a generic operator with k-arity over values in V. For the sake of
simplicity, we omit the specific syntax of operators used to build expressions, we will only assume for each ok
a (possibly partial) function Eok : Vk → V describing the semantics of ok. We will use o(Ẽ) when the value k130

does not play any role or it is clear from the context. The evaluation of expression E under Γ is denoted by
JEKΓ. The definition of J·KΓ is standard, the only interesting cases are JaKΓ = Jthis.aKΓ = Γ(a).

A predicate Π is built from boolean constants, tt and ff, from an atomic predicate pk(E1, . . . , Ek) and
also by using standard boolean operators (¬, ∧ and ∨). The precise set of atomic predicates is not detailed
here; we only assume that each pk denotes a decidable predicates in Vk, i.e. pk ⊆ Vk. Examples of basic135

predicates are the standard binary relations like =, >, <, ≤, ≥.
The satisfaction relation Γ |= Π is formally defined in Table 2 and shows when an attribute environment Γ

satisfies a predicate Π. In the rest of this paper we will useM(Π) to denote the set of attribute environments
that satisfies Π, i.e., {Γ | Γ |= Π}. We also shall use the relation l to denote a semantic equivalence for
predicates as defined below.140

Definition 2.1 (Predicate Equivalences). Let Π1 and Π2 be two predicates, we have that:

• Π1 ⇒ Π2 if and only if M(Π1) ⊆M(Π2);

• Π1 l Π2 if and only if Π1 ⇒ Π2 and Π2 ⇒ Π1.
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Γ |= tt for all Γ

Γ 6|= ff for all Γ

Γ |= pk(E1, . . . , Ek) iff (JE1KΓ, . . . , JEkKΓ) ∈ pk
Γ |= Π1 ∧Π2 iff Γ |= Π1 and Γ |= Π2

Γ |= Π1 ∨Π2 iff Γ |= Π1 or Γ |= Π2

Γ |= ¬Π iff not Γ |= Π

Table 2: The predicate satisfaction

In what follows, we shall use the notation {Π}Γ to indicate the closure of predicate Π under the attribute
environment Γ; it yields a new predicate Π′ obtained from Π after replacing each occurrence of this.a with145

its value Γ(a). Note that, attribute identifiers occurring in an equality operator will also occur in its closure,
e.g., for an attribute identifier a, we have that {a = v}Γ is equivalent to (a = v) while {a = this.a}Γ is
equivalent to (a = v) given that Γ(a) = v.

Example 2.2 (A flock of drones (Step 2/5)). If we further specify the structure of process P in Example 2.1,
we have that P is defined as the interleaving of three processes: R, A, and T :

P , R | A | T where R , b.0, A , 〈this.c ≥ 5〉M, T , (r1.T1 + r2.T2 + r3.T3 + r4.T4) | T

We use b to denote a broadcast action and ri to denote an input action. We will further specify b and ri
in the next step. Process R broadcasts a request b to drones with low battery-level and terminates; process150

A blocks until the counter is “ ≥ 5” and then activates the adaptation process M ; and process T handles
message reception and non-deterministically selects a branch depending on the received message. Note that T
replicates itself each time a message is received to guarantee that drones do not lose messages.

The attribute-based output (Ẽ)@Π is used to send the evaluation of the sequence of expressions Ẽ to the
components whose attributes satisfy the predicate Π.155

The attribute-based input Π(x̃) is used to receive messages from any component whose attributes (and
possibly transmitted values) satisfy the predicate Π; the sequence x̃ acts as a placeholder for received values.
Note that the receiving predicates, used in attribute-based input actions, can also refer to variables in x̃ and
the received values can be used to check whether specific conditions are satisfied. For instance, the action

((x = “Req”) ∧ (y + this.c ≥ 5) ∧ (id 6= −1))(x, y, z)

can be used to receive a message like (“Req”, 2, 3) where the sum of the value received on y (i.e, 2) and
this.c is greater or equal 5 and the value of the attribute id of the sending component is different from −1.
Thus, the predicate can be used to check both the received values and the exposed values of the sender
attributes. Note that while the values of exposed attributes are used by the receiver to select a sender,
message values are used to distinguish different incoming messages from the same sender. This also suggests160

that the interface is redundant and can be encoded using a structured message where the values of the
attributes in the interface are considered as additional values similar to our early version [12]. Although the
two approaches are equivalent, we prefer to cleanly separate values from public attributes. This also suggests
that there is no need to have dynamic interfaces because structured messages serve the purpose.

A predicate can also refer to local attributes of components. Thus, an action like

(“Req”, 1, 3)@(i ≥ this.i)

can be used to send the message (“Req”, 1, 3) to all components whose attribute i is not less than this.i.165

An attribute update, [a := E], is used to assign the result of the evaluation of E to the attribute identifier
a. The syntax is devised in such a way that sequences of updates are only possible after communication
actions. Actually, updates can be viewed as side effects of interactions. It should be noted that the execution
of a communication action and the following update(s) is atomic. This possibility allows components to
modify their attribute values and thus triggering new behaviours in response to collected contextual data.170
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Free and bound variables. Input action Π(x̃) acts as binder x̃ in Π(x̃).U . We use bv(P ) and fv(P ) to denote
the set of bound and free variables of P , respectively.

Now everything is precisely defined and we can fully specify the running example:

Example 2.3 (A flock of drones (Step 3/5)). Processes R, A, and T in Example 2.2 can be specified as
follows:

R , (“Req”, this.i, this.id)@(i 6= 0).0

A , 〈this.c ≥ 5〉M

T , ( ((x = “Req”) ∧ (y + this.c ≥ 5))(x, y, z).
(“Ack”, this.i,−1)@(id = z).[this.c := 5]0

+ ((x = “Req”) ∧ (y + this.c < 5))(x, y, z).
(“Ack”, this.i,−1)@(id = z).[this.c := this.c + y]0

+ ((x = “Ack”) ∧ (y + this.c ≥ 5))(x, y, z).[this.c := 5]0

+ ((x = “Ack”) ∧ (y + this.c < 5))(x, y, z).[this.c := this.c + y]0

)| T
Process R broadcasts a request for all drones with low battery-level, i.e., such that i = 1 and terminates.

The request contains the drone battery-level this.i and its identity this.id. Process A blocks the adaptation175

process M until the value of the counter is greater or equal 5 in which case M is triggered.
The first two branches in T are selected when a request is received and the other two are for acknowledge-

ment. If a request is received where the sum of the drone’s counter and the value received on y is greater
or equal to 5, the counter is set to 5 otherwise the counter is incremented by the value received on y and in
both cases an acknowledgement is sent to the requester. If an acknowledgement is received, where the sum180

of the drone’s counter and the value received on y is greater or equal to 5, the counter is set to 5 otherwise
the counter is incremented by the value received on y. Note that T replicates itself every time a message is
received. Note that process T controls A through the value of the counter attribute.

3. AbC Operational Semantics

The operational semantics of AbC is based on two relations. The transition relation 7−→ that describes the185

behaviour of individual components and the transition relation −→ that relies on 7−→ and describes system
behaviour.

3.1. Operational semantics of components

We use the transition relation 7−→ ⊆ Comp × CLAB × Comp to define the local behaviour of a
component where Comp denotes the set of components and CLAB is the set of transition labels, α, generated
by the following grammar:

α ::= λ | ˜Γ .Π(ṽ) λ ::= Γ .Π(ṽ) | Γ .Π(ṽ)

The λ-labels are used to denote AbC output Γ .Π(ṽ) and input Γ .Π(ṽ) actions. The former contains the
sender’s predicate Π, that specifies the expected interacting partners, the transmitted values ṽ, and the190

portion of the sender attribute environment Γ that can be perceived by receivers. The latter label is just the
complementary label selected among all the possible ones that the receiver may accept.

The α-labels include an additional label ˜Γ .Π(ṽ) to model the case where a component is not able to
receive a message. As it will be seen later, this kind of negative label is crucial to appropriately handle
dynamic operators like choice and awareness.195

The transition relation 7−→ is defined in Table 3 and Table 4 inductively on the syntax of Table 1. For
each process operator we have two types of rules: one describing the actions a term can perform, the other
one showing how a component discards undesired input messages.
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JẼKΓ = ṽ {Π1}Γ = Π

Γ:I (Ẽ)@Π1.U
Γ↓I.Π(ṽ)7−−−−−−→⦃Γ:I U ⦄

Brd

Γ:I (Ẽ)@Π.U
˜Γ′.Π′(ṽ)7−−−−−→Γ:I (Ẽ)@Π.U

FBrd

Γ′ |= {Π1[ṽ/x̃]}Γ1 Γ1 ↓ I |= Π

Γ1 :I Π1(x̃).U
Γ′.Π(ṽ)7−−−−−→⦃Γ1 :I U [ṽ/x̃]⦄

Rcv
Γ′ 6|= {Π[ṽ/x̃]}Γ ∨ Γ1 ↓ I 6|= Π′

Γ1 :I Π(x̃).U
˜Γ′.Π′(ṽ)7−−−−−→Γ1 :I Π(x̃).U

FRcv

Γ |= Π Γ:I P
λ7−→Γ′ :I P

′

Γ:I 〈Π〉P
λ7−→Γ′ :I P

′
Aware

Γ 6|= Π

Γ:I 〈Π〉P
˜Γ′.Π′(ṽ)7−−−−−→Γ:I 〈Π〉P

FAware1

Γ |= Π Γ:I P
˜Γ′.Π′(ṽ)7−−−−−→Γ:I P

Γ:I 〈Π〉P
˜Γ′.Π′(ṽ)7−−−−−→Γ:I 〈Π〉P

FAware2

Table 3: Operational Semantics of Components (Part 1)

Γ:I P1
λ7−→Γ′ :I P

′
1

Γ:I P1 + P2
λ7−→Γ′ :I P

′
1

SumL
Γ:I P2

λ7−→Γ′ :I P
′
2

Γ:I P1 + P2
λ7−→Γ′ :I P

′
2

SumR

Γ:I P1

˜Γ′.Π′(ṽ)7−−−−−→Γ:I P1 Γ:I P2

˜Γ′.Π′(ṽ)7−−−−−→Γ:I P2

Γ:I P1 + P2

˜Γ′.Π′(ṽ)7−−−−−→Γ:I P1 + P2

FSum

Γ:I P1
λ7−→Γ′ :I P

′

Γ:I P1 | P2
λ7−→Γ′ :I P

′ | P2

IntL
Γ:I P2

λ7−→Γ′ :I P
′

Γ:I P1 | P2
λ7−→Γ′ :I P1 | P ′

IntR

Γ:I P1

˜Γ′.Π′(ṽ)7−−−−−→Γ:I P1 Γ:I P2

˜Γ′.Π′(ṽ)7−−−−−→Γ:I P2

Γ:I P1 | P2

˜Γ′.Π′(ṽ)7−−−−−→Γ:I P1 | P2

FInt

Γ:I P [ṽ/x̃]
λ7−→Γ′ :I P

′ K(x̃) , P

Γ:IK(ṽ)
λ7−→Γ′ :I P

′
Rec

Γ:I P [ṽ1/x̃]
˜Γ′.Π′(ṽ)7−−−−−→Γ:I P

′ K(x̃) , P

Γ:IK(ṽ1)
˜Γ′.Π′(ṽ)7−−−−−→Γ:IK(ṽ1)

FRec

Γ:I 0
˜Γ′.Π′(ṽ)7−−−−−→Γ:I 0

FZero

Table 4: Operational Semantics of Components (Part 2)
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The behaviour of an attribute-based output is defined by rule Brd in Table 3. This rule states that when
an output is executed, the sequence of expressions Ẽ is evaluated, say to ṽ, and the closure Π of predicate Π1

under Γ is computed. Hence, these values are sent to other components together with Γ ↓ I. This represents
the portion of the attribute environment that can be perceived by the context and it is obtained from the
local Γ by limiting its domain to the attributes in the interface I as defined below:

(Γ ↓ I)(a) =

{
Γ(a) a ∈ I
⊥ otherwise

As the usual treatment of partial functions in denotational semantics, the element ⊥ is returned when
Γ(a) is undefined.200

Possible updates U , following the action, are applied. This is expressed in terms of a recursive function
⦃C⦄ defined below:

⦃C⦄ =

{
⦃ Γ[a 7→ JEKΓ] :I U ⦄ C = Γ:I [a := E]U

Γ:I P C = Γ:I P

where Γ[a 7→ v] denotes an attribute update such that Γ[a 7→ v](a′) = Γ(a′) if a 6= a′ and v otherwise.
Rule Brd is not sufficient to fully describe the behaviour of an output prefix; we need another rule (FBrd)
to model the fact that all incoming messages are discarded in case only output actions are possible.205

Rule Rcv governs the execution of input actions. It states that a message can be received when two
communication constraints are satisfied: the local attribute environment restricted to interface I (Γ1 ↓ I)
satisfies Π, the predicate used by the sender to identify potential receivers; the sender environment Γ′ satisfies
the receiving predicate {Π1[ṽ/x̃]}Γ1

. When these two constraints are satisfied the input action is performed
and the update U is applied under the substitution [ṽ/x̃].210

Rule FRcv states that an input is discarded when the local attribute environment does not satisfy the
sender’s predicate, or the receiving predicate is not satisfied by the sender’s environment.

Example 3.1 (A flock of drones (Step 4/5)). Let us consider three components from Example 2.3 where
Γ1(i) = Γ2(i) = 1, Γ2(c) = 1, and Γ3(i) = 0 The following transition can be generated by the first component
using rule Brd:

Γ1 :{id,I}R | A | T
{id=1,i=1}.i 6=0(“Req”,1,1)7−−−−−−−−−−−−−−−−−→ Γ1 :{id,i} 0 | A | T

While the following transition can be generated by the second component using rule Rcv:

Γ2 :{id,I}R | A | T
{id=1,i=1}.i6=0(“Req”,1,1)7−−−−−−−−−−−−−−−−−→ Γ2 :{id,I}R | A | T ′[Req/x, 1/y, 1/z] | T

Instead, the following transition can be generated by third component using FRcv

Γ3 :{id,I}R | A | T
˜{id=1,i=1}.i 6=0(“Req”,1,1)7−−−−−−−−−−−−−−−−−→ Γ3 :{id,I}R | A | T

The third component discards the message because sender’s Γ3 ↓ I 6|= (i 6= 0), i.e., because Γ3(i) = 0.

The behaviour of a component Γ:I 〈Π〉P is the same as of Γ:I P only when Γ |= Π, while the component
is inactive when Γ 6|= Π. This is rendered by rules Aware, FAware1 and FAware2.215

Rules SumL, SumR, and FSum describe behaviour of Γ:I P1 + P2. Rules SumL and SumR are standard
and just say that Γ :I P1 + P2 behaves nondeterministically either like Γ :I P1 or like Γ :I P2. A message is
discarded by Γ:I P1 + P2 if and only if both P1 and P2 are not able to receive it. We can observe here that the
presence of discarding rules is fundamental to prevent processes that cannot receive messages from evolving
without performing actions. Thus dynamic operators, that are the ones disappearing after a transition like220

awareness and choice, persist after a message refusal.
The behaviour of the interleaving operator is described by rules IntL, IntR and FInt. The first two

are standard process algebraic rules for parallel composition while the discarding rule FInt has a similar
interpretation as of rule FSum: a message can be discarded only if both the parallel processes can discard it.

Finally, rules Rec, FRec and FZero are the standard rules for handling process definition and the225

inactive process. The latter states that process 0 always discards messages.
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Γ:I P
λ7−→Γ′ :I P

′

Γ:I P
λ−→ Γ′ :I P

′
Comp

Γ:I P
˜Γ′.Π′(ṽ)7−−−−−→Γ:I P

Γ:I P
Γ′.Π′(ṽ)−−−−−→ Γ:I P

FComp

C1
Γ.Π(ṽ)−−−−→ C ′1 C2

Γ.Π(ṽ)−−−−→ C ′2

C1 ‖ C2
Γ.Π(ṽ)−−−−→ C ′1 ‖ C ′2

Sync

C1
Γ.Π(ṽ)−−−−→ C ′1 C2

Γ.Π(ṽ)−−−−→ C ′2

C1 ‖ C2
Γ.Π(ṽ)−−−−→ C ′1 ‖ C ′2

ComL
C1

Γ.Π(ṽ)−−−−→ C ′1 C2
Γ.Π(ṽ)−−−−→ C ′2

C1 ‖ C2
Γ.Π(ṽ)−−−−→ C ′1 ‖ C ′2

ComR

C
Γ.Π(ṽ)−−−−→ C ′ f(Γ, ṽ) = Π′

[ C ].f
Γ.Π∧Π′(ṽ)−−−−−−−→ [ C ′ ].f

ResO
C

Γ.Π∧Π′(ṽ)−−−−−−−→ C ′ f(Γ, ṽ) = Π′

[ C ]/f
Γ.Π(ṽ)−−−−→ [ C ′ ]/f

ResI

C
Γ.Π(ṽ)−−−−→ C ′

[ C ].f
Γ.Π(ṽ)−−−−→ [ C ′ ].f

ResOPass
C

Γ.Π(ṽ)−−−−→ C ′

[ C ]/f
Γ.Π(ṽ)−−−−→ [ C ′ ]/f

ResIPass

Table 5: Operational Semantics of Systems

3.2. Operational semantics of systems

The behaviour of an AbC system is described by means of the transition relation −→ ⊆ Comp × SLAB ×
Comp, where Comp denotes the set of components and SLAB is the set of transition labels, λ, generated by
the following grammar:

λ ::= Γ .Π(ṽ) | Γ .Π(ṽ)

The definition of the transition relation −→ is provided in Table 5.
Rules Comp and FComp depends on relation 7−→ and they are used to lift the effect of local behaviour

to the system level. The former rule states that the relations 7−→ and −→ coincide when performing either230

an input or an output actions, while rule FComp states that a component Γ:I P can discard a message and
remain unchanged. However, we would like to stress that the system level label of FComp coincides with
that of Comp in case of input actions, which means that externally it cannot be observed whether a message
has been accepted or discarded.

Rule Sync states that two parallel components C1 and C2 can receive the same message. Rule ComL235

and its symmetric variant ComR govern communication between two parallel components C1 and C2.
Rules ResO and ResI show how restriction operators [ C ].f and [ C ]/f limit output and input capabilities

of C under function f .
Rule ResO states that if C evolves to C ′ with label Γ .Π(ṽ) and f(Γ, ṽ) = Π′ then [ C ].f evolves with

label Γ .Π ∧Π′(ṽ) to [ C ′ ].f . This means that when C sends messages to all the components satisfying Π,240

the restriction operator limits the interaction to only those that also satisfy Π′.
Rule ResI is similar. However, in this case, the restriction operator limits the input capabilities of

C. Indeed, [ C ]/f will receive the message ṽ and evolve to [ C ′ ]/f with a label Γ . Π(ṽ) only when

C
Γ.Π∧Π′(ṽ)−−−−−−−→ C ′ where f(Γ, ṽ) = Π′. Thus, message ṽ is delivered only to those components that satisfy

both Π and Π′. Note that, both [ C ].f and [ C ]/f completely hide input/output capabilities whenever245

f(Γ, ṽ) ∧Π l ff.
Rule ResOPass (resp. ResIPass) states any input transition (resp. output transition) performed by C

is also done by [ C ].f (resp. [ C ]/f ).
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Example 3.2 (A flock of drones (Step 5/5)). The system level evolution of Example 3.1 can be derived using
rule ComL:

C1‖C2‖C3
{id=1,i=1}.i6=0(“Req”,1,1)−−−−−−−−−−−−−−−−−→ Γ1 :{id,i} (0 | A | T )‖Γ2 :{id,i} (R | A | T ′[Req/x, 1/y, 1/z] | T )‖C3

where T ′ , (“Ack”, this.i,−1)@(id = z).[this.c := this.c + y]0

In what follows, we shall use the following notations:250

• C τ−→ C ′ iff ∃ṽ,Γand Π s.t. C
Γ.Π(ṽ)−−−−→ C ′ and Π l ff. In this case, we say that the transition is silent.

• =⇒ denotes (
τ−→)∗.

• λ
=⇒ denotes =⇒ λ−→=⇒ if (λ 6= τ).

• λ̂
=⇒ denotes =⇒ if (λ = τ) and

λ
=⇒ otherwise.

• C Π
↪−→ C ′ if and only if ∃ṽ,Γ, and Π′ such that Π l Π′ and C

Γ.Π′(ṽ)−−−−−→ C ′.255

• C Π
↪−→τ C ′ if and only if ∃ṽ,Γ, and Π′ such that Π l Π′ and C

̂Γ.Π′(ṽ)
=====⇒ C ′.

Lemma 3.1. For any AbC component, the following properties hold:

1. For any λ such that λ = Γ′ .Π(ṽ) and Π l ff, then C
λ−→ C;

2. if C1
τ−→ C ′1 then C1‖C

τ−→ C ′1‖C and C‖C1
τ−→ C‖C ′1;

3. if C1 =⇒ C ′1 then C1‖C =⇒ C ′1‖C and C‖C1 =⇒ C‖C ′1;260

4. if C1
Γ.Π1(ṽ)
=====⇒ C ′1 and Π1 l Π2 then C1

Γ.Π2(ṽ)
=====⇒ C ′1;

5. if C1
τ−→ C ′1, then for any f : [ C1 ].f

τ−→ [ C ′1 ].f and [ C1 ]/f
τ−→ [ C ′1 ]/f ;

6. if C1 =⇒ C ′1, then for any f : [ C1 ].f =⇒ [ C ′1 ].f and [ C1 ]/f =⇒ [ C ′1 ]/f .

The full proof is reported in Appendix A.

4. Behavioural Theory for AbC265

In this section, we define a behavioural theory for AbC . We start by introducing a reduction barbed
congruence, then we present an equivalent definition of a labelled bisimulation and provide a number of
equational laws for it. We also show how bisimulation can be used to prove relationships between systems at
different level of abstractions.

4.1. Reduction barbed congruence270

In the behavioural theory, two terms are considered as equivalent if they cannot be distinguished by any
external observer. The choice of observables is important to assess models of concurrent systems and their
equivalences. For instance, in the π-calculus both message transmission and reception are considered to be
observable. However, this is not the case in AbC because message transmission is non-blocking and thus we
cannot externally observe the actual reception of a message. It is important to notice that the transition275

C
Γ.Π(ṽ)−−−−→ C ′ does not necessarily mean that C has performed an input action but rather it means that C

might have performed it.
Indeed, this transition might happen due to one of two different rules in Table 5, namely Comp which

guarantees reception and FComp which models non-reception. Hence, input actions cannot be observed by
an external observer and only output actions are observable in AbC . This notion is actually borrowed from280

the corresponding notion in bπ-calculus [11] and it is a natural notion for broadcast calculi in general.
The minimal piece of information we can consider as observable from an AbC component is the predicate

attached to the sent message. We will use the term “barb” as synonymous with observable, following the
works in [15, 16]. From now onwards, we will assume that predicate Π denotes its meaning, not its syntax.
In other words, we consider predicates up to semantic equivalence l.285
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Definition 4.1 (Barb). Let C↓Π mean that component C can send a message with some exposed environment

Γ and a predicate Π′ where Π′ l Π and Π′ 6l ff (i.e., C
Γ.Π′(ṽ)−−−−−→). We write C ⇓Π if C =⇒ C ′ ↓Π for some C ′.

To define reduction barbed congruence we need to define a notion of execution context for a component C.

Definition 4.2 (External context). An external context C[•] is a component term with a hole, denoted by
[•]. The external contexts of the AbC calculus are generated by the following grammar:

C[•] ::= • | C[•]‖C | C‖C[•] | [ C[•] ]/f | [ C[•] ].f

We define notions of strong and weak barbed congruence to reason about AbC components following
the definition of maximal sound theory by Honda and Yoshida [17]. This definition is a slight variant of290

Milner and Sangiorgi’s barbed congruence [16] and it is also known as open barbed bisimilarity [18]. To
define reduction barbed congruence we have to limit our attention to relations that preserve observation and
that are preserved in any context and after any reduction.

Definition 4.3 (Closures). Let R be a binary relation over AbC-components:

Barb Preservation R is barb-preserving iff for every (C1, C2) ∈ R, C1↓Π implies C2 ⇓Π295

Reduction Closure R is reduction-closed iff for every (C1, C2) ∈ R and predicate Π, C1
Π
↪−→ C ′1 implies

C2
Π
↪−→τ C ′2 for some C ′2 such that (C ′1, C

′
2) ∈ R

Context Closure R is context-closed iff for every (C1, C2) ∈ R and for all contexts C[•], (C[C1], C[C2]) ∈ R

Now, everything is in place to define reduction barbed congruence.

Definition 4.4 (Weak Reduction Barbed Congruence). A weak reduction barbed congruence is a symmetric300

relation R over the set of AbC-components which is barb-preserving, reduction closed, and context-closed.

Two components are weak barbed congruent, written C1
∼= C2, if (C1, C2) ∈ R for some weak reduction

barbed congruence relation R. The strong reduction congruence “'” is obtained in a similar way by replacing
⇓ with ↓ and ↪−→τ with ↪−→.

Remark 4.1. Note that, while in [17, 16, 18] reduction closure only takes into account invisible actions τ ,305

here we also consider output actions but in this case reductions must also preserve the output predicates. In
fact we have a family of reductions, one for each kind of interaction driven by a predicate Π. This because any
interaction over a predicate Π is somehow hidden to any component that does not satisfy Π. The definition
is in fact similar to the one of the bπ-calculus [11] except that in bπ it is not required that reductions preserve
the output observations. To clarify the importance of this choice consider the following example:310

C1 , {(c, 0)} :{}P

C2 , {(c, 0)} :{}Q

where processes P and Q are defined as follow:

P , (tt)@(a ≥ 0).(tt)@(b = tt).0

+(tt)@(a ≥ 0 ∧ a ≤ this.c).0

+()@ff.[c := c+ 1]P

Q , (tt)@(a ≥ 0).0

+(tt)@(a ≥ 0 ∧ a ≤ this.c).(tt)@(b = tt).0

+()@ff.[c := c+ 1]Q
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Process P can either send a message to all the components satisfying a ≥ 0 and then execute (tt)@(b = tt)
for any integer i (a value of c), send a message to all the components satisfying a ≥ 0 ∧ a ≤ i and then
terminates or increment c silently and continue as P . Process Q is similar, however it can either send a
message to all the components satisfying (a ≥ 0) and then terminates, send a message to all the components315

satisfying a ≥ 0 ∧ a ≤ i and then execute (tt)@(b = tt), or update c silently and continuous as Q.
Clearly, components C1 and C2 are behaviourally different and one would not wish to equate them.

Actually, they are distinguished by our definition of reduction barbed congruence only because of the way we
define reduction closure. The reader should be convinced that if we relax the definition of reduction closure
(by omitting predicates and allowing the reduction to range over silent and output actions) these components320

would be deemed weak reduction-barbed congruent. Indeed, there does not exist any finite context that is able
to distinguish C1 and C2.

Note that, if we only limit our attention to systems with finite interaction capabilities, namely with all C

such that {Π | C Γ.Π(ṽ)−−−−→ C ′} is finite, reduction closures like those in [11, 17, 16, 18] can be considered.

Lemma 4.1. If C1
∼= C2 then325

• C1 =⇒ C ′1 implies C2 =⇒ C∼=C′1 where C∼=C′1 denotes a component that is weakly barbed congruent to C ′1

• C1 ⇓Π iff C2 ⇓Π.

Proof. (We prove each statement separately)

• The proof of first item proceeds by induction on w by showing that if C1 =⇒w C ′1 then C2 =⇒ C∼=C′1 ,
where w is the number of τ steps needed to move from C1 to C ′1.330

– Base case, w = 0: For all C1 we have that C1 =⇒0 C1. We also have that C2 =⇒ C2. The statement
follows directly from the fact that C1

∼= C2.

– Inductive Hypothesis: We assume that for all C1 and ∀k ≤ w if C1 =⇒k C ′1 then C2 =⇒ C∼=C′1 .

– Inductive Step: Let C1 =⇒w+1 C ′1. By definition of =⇒w+1 we have that there exists C ′′1 such that

C1
τ−→ C ′′1 and C ′′1 =⇒w C ′1. Since C1

∼= C2, and ∼= is reduction closed (see Definition 4.3 and335

Definition 4.4) we have that there exists C ′′2 such that C2 =⇒ C ′′2 and C ′′1
∼= C ′′2 . Moreover, by

inductive hypothesis we have that C ′′2 =⇒ C∼=C′1 . Hence, C2 =⇒ C∼=C′1 as required.

• The proof of second item follows by observing that C1 ⇓Π if and only if C1 =⇒ C ′1 ↓Π. Directly from
the previous point we have that there exists C ′2 such that C2 =⇒ C ′2 and C ′1

∼= C ′2. Hence, since ∼= is
barb preserving (see Definition 4.3 and Definition 4.4), we have that C ′2 ⇓Π and, in turn, C2 ⇓Π.340

4.2. Bisimulation Proof Methods

In this section, we first define a notion of labelled bisimilarity of AbC components, then we prove that
it coincides with the reduction barbed congruence, introduced in the previous section. This “alternative”
characterisation is useful to prove actual properties of AbC systems. In fact, barbed congruence could hardly345

serve the scope, since it requires testing components in every possible context.
First we need to introduce a notion of semantic equivalence among transition labels. The reason is that

in standard process algebras, labelled bisimilarities can be defined in terms of a syntactic equivalence among
labels while in AbC different labels may have the same meaning and impact on the context. One can consider
the following two output labels Γ . (a 6= 10)(ṽ) and Γ . ¬(a = 10)(ṽ). Even if these two labels are different,350

their impact on the context is the same. Since this equivalence is based on the semantic equivalence among
predicates of Definition 2.1, we use the same symbol l to denote this relation.

Definition 4.5. We let l⊆ SLAB× SLAB be the smallest relation such that for any Γ, Γ′, ṽ, w̃:
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• Γ .Π1(ṽ) l Γ .Π2(ṽ), for any Π1 l Π2;

• Γ .Π1(ṽ) l Γ′ .Π2(w̃), for any Π1 l Π2 l ff;355

• Γ .Π1(ṽ) l Γ .Π2(ṽ), for any Π1 l Π2.

Definition 4.6 (Weak Bisimulation). A symmetric binary relation R over the set of AbC-components is a
weak bisimulation if and only if for any (C1, C2) ∈ R and for any λ1

C1
λ1−→ C ′1 implies ∃λ2 : λ1 l λ2 such that C2

λ̂2=⇒ C ′2 and (C ′1, C
′
2) ∈ R

Two components C1 and C2 are weakly bisimilar, written C1 ≈ C2 if there exists a weak bisimulation R360

relating them.

It is worth noting that strong bisimulation and strong bisimilarity (∼) can be defined similarly, only
λ̂2=⇒

is replaced by
λ2−→. It is easy to prove that ∼ and ≈ are equivalence relations by relying on the classical

arguments of [19]. However, our bisimilarities enjoy a much more interesting property: closure under any
external context.365

The following lemmas state that our weak labelled bisimilarities is preserved by parallel composition, and
restriction. Similar lemmas do hold also for the strong variant. The proofs of these lemmas are reported in
Appendix A.

Lemma 4.2 (≈ is preserved by parallel composition). If C1 and C2 are two components, we have that
C1 ≈ C2 implies C1‖C ≈ C2‖C for all components C.370

Lemma 4.3 (≈ is preserved by restriction). If C1 and C2 are two components, we have that C1 ≈ C2 implies
[ C1 ]/f ≈ [ C2 ]/f and [ C1 ].f ≈ [ C2 ].f for any f .

As an immediate consequence of Lemma 4.2 and Lemma 4.3, we have that ≈ is a congruence relation (i.e.,
closed under any external AbC context). Notably, similar lemmas do hold also for ∼.

We are now ready to show how weak bisimilarity can be used as a proof technique for reduction barbed375

congruence.

Theorem 4.1 (Soundness). C1 ≈ C2 implies C1
∼= C2, for any two components C1 and C2.

Proof. It is sufficient to prove that bisimilarity is barb-preserving, reduction-closed, and context-closed.

• (Barb-preservation): By the definition of the barb C1↓Π if C1
Γ.Π(ṽ)−−−−→ for an output label Γ . Π(ṽ)

with Π 6l ff. As (C1 ≈ C2), we have that also C2
Γ.Π(ṽ)
====⇒ and C2 ⇓Π.380

• (Reduction-closure): Let C1
Π
↪−→ C ′1. This means that there exist Γ, ṽ and Π′ such that C1

Γ.Π′(ṽ)−−−−−→ C ′1

and Π l Π′. As (C1 ≈ C2), then there exists C ′2 such that C2

̂Γ.Π′′(ṽ)
=====⇒ C ′2 with Π′ l Π′′ and (C ′1 ≈ C ′2).

Hence, C2
Π
↪−→ C ′2 and (C ′1 ≈ C ′2).

• (Context-closure): Let (C1 ≈ C2) and let C[•] be an arbitrary AbC -context. By induction on the
structure of C[•] and using Lemma 4.2 and Lemma 4.3, we have that C[C1] ≈ C[C2].385

In conclusion, we have that C1
∼= C2 as required.

This soundness theorem allow us to use bisimilarity when we have to prove that two AbC components are
barbed equivalent. We want now to study completeness in order to show that bisimilarity is more than a
proof technique, it rather represents an alternative characterisation of reduction barbed congruence.

Theorem 4.2 (Completeness). C1
∼= C2 implies C1 ≈ C2, for any two components C1 and C2.390
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Proof. It is sufficient to prove that the relation R = {(C1, C2) | such that (C1
∼= C2)} is a bisimulation. For

this reason we have to show that:

• R is symmetric;

• for each (C1, C2) ∈ R and for any λ1

C1
λ1−→ C ′1 implies ∃λ2 : λ1 l λ2 such that C2

λ̂2=⇒ C ′2 and (C ′1, C
′
2) ∈ R395

The first item derives directly from the fact that ∼= is symmetric. To prove the second item we have to
consider three cases:

Case 1: λ1 = Γ .Π(ṽ) and Π l ff. From Definition 4.4, we have that C1
∼= C2 is reduction preserving. This

means that if C1
ff
↪−→ C ′1 then there exists C ′2 such that C2

ff
↪−→τ C ′2, that is there exists λ2 = Γ′ .Π′′(ṽ′) l λ1

such that C2
λ̂2=⇒ C ′2 and C ′1

∼= C ′2.400

Case 2: λ1 = Γ . Π(ṽ) and Π 6l ff. We have to prove that if C1
λ1−→ C ′1 there exists λ2 l λ1 such that

C2
λ2=⇒ C ′2 where λ2 = Γ′ .Π′(ṽ′), Π l Π′, and C ′1

∼= C ′2.
Let us consider the following context C[•]:

C[•] = • ‖ ΓΠ : (ΠΓ ∧ (x̃ = ṽ))(x̃).((tt)@(b = tt).0 + (tt)@ff.0)

where ΓΠ ∈ M(Π), ΠΓ is a predicate uniquely identifying Γ, i.e. M(ΠΓ) = {Γ}, while b is an attribute
occurring neither in C1 nor in C2. Let A be the (finite) set of attribute identifiers occurring in C1 and C2,405

predicate ΠΓ can be defined as tt if A is empty and otherwise as follows:

ΠΓ =
∧

a∈A
(a = Γ(a))

Note that because A is finite and contains all attribute identifiers in both C1 and C2, we ensure that ΠΓ

uniquely identifies Γ.
Since ∼= is context closed, we have that C[C1] ∼= C[C2]. Moreover, by applying rules of Table 5, we have

that:410

C[C1]
λ1−→ C ′1 ‖ ΓΠ : (tt)@(b = tt).0 + (tt)@ff.0

This implies that

C[C1]
Π
↪−→ C ′1 ‖ ΓΠ : (tt)@(b = tt).0 + (tt)@ff.0

Since ∼= is reduction closed we have that

C[C2]
Π
↪−→τ C ′ and C ′1 ‖ ΓΠ : (tt)@(b = tt).0 + (tt)@ff.0 ∼= C ′

Since b does not occur in C2, and C ′ ⇓(b=tt), we can infer that there exists λ2 = Γ′ . Π′(ṽ′) such that
Π l Π′:

C[C2]
λ2=⇒ C ′2 ‖ ΓΠ : (tt)@(b = tt).0 + (tt)@ff.0

where Γ′ |= ΠΓ and ṽ′ = ṽ. This implies that Γ′ ∈M(ΠΓ) = {Γ} and λ1 l λ2.415

We now observe that:

C ′1 ‖ ΓΠ : (tt)@(b = tt).0 + (tt)@ff.0
ff
↪−→ C ′1 ‖ ΓΠ : 0

We can use again the fact that ∼= is reduction closed to conclude that:
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C ′2 ‖ ΓΠ : (tt)@(b = tt).0 + (tt)@ff.0
ff
↪−→τ C ′′2 ‖ ΓΠ : 0

where C ′2 =⇒ C ′′2 and C ′1 ‖ ΓΠ : 0 ∼= C ′′2 ‖ ΓΠ : 0. We can observe that C ′1 ‖ ΓΠ : 0 ∼= C ′′2 ‖ ΓΠ : 0 if and only if
C ′1
∼= C ′′2 .

Finally, we have that C2
λ2=⇒ C ′′2 and C ′1

∼= C ′′2 .420

Case 3: λ1 = Γ . Π(ṽ). In this case the proof proceeds like for the previous one by considering the following
context C[•]:

C[•] = • ‖ Γ: (Π)@ṽ.((tt)@(b = tt).0 + (tt)@ff.0)

Theorem 4.3 (Characterisation). Bisimilarity and reduction barbed congruence coincide.

Proof. As a direct consequence of Theorem 4.1 and Theorem 4.2, we have that weak bisimilarity and weak425

reduction barbed congruence coincide.

The proof for the strong variant of equivalence (i.e., C1 ' C2 coincides with C1 ∼ C2) follows in a similar
way and it is omitted for the sake of brevity.

5. Bisimulations at work

In the previous section we proved that bisimilarity is a congruence relation for all external AbC contexts,430

i.e., system level contexts as described in Definition 4.2. In this section we show that, due to the dependencies
of processes on the attribute environment, almost all process-level operators do not preserve bisimilarity, the
only exception being the awareness operator. However, this problem can be solved by closing bisimilarity
under any possible substitution as we will see later. Notice that our bisimilarity is still a congruence because
it is defined at the level of system components and thus only external contexts matter. The rest of the section435

concentrates on other properties and equational laws exhibited by bisimilarity. Unless stated otherwise, the
properties hold for both strong and weak bisimilarity.

5.1. Equational Laws for AbC Bisimulation

As mentioned above, weak bisimilarity is not preserved by most process level operators.

Remark 5.1. For some attribute environment Γ, an interface I, and two processes P and Q where440

Γ:I P ≈ Γ:IQ, we have that

1. Γ:I Pσ 6≈ Γ:IQσ for some substitution σ

2. Γ:I α.P 6≈ Γ:I α.Q for some action α

3. Γ:I P |R 6≈ Γ:IQ|R for some process R

4. Γ:I 〈Π〉P ≈ Γ:I 〈Π〉Q for every predicate Π445

5. Γ:I α.[a := E]P 6≈ Γ:I α.[a := E]Q for some update [a := E]

Proof. Let C1 = Γ:I

P︷ ︸︸ ︷
〈this.a = w〉(v′)@Π.0 where Γ(a) = v , C2 = Γ:I

Q︷︸︸︷
0 , and R= ()@ff.[a := w]0. It is

easy to see that C1 ≈ C2, because both components are not able to progress. Notice that Γ 6|= (this.a = w).

1. If we apply the substitution [v/w] to both processes P and Q, we have that Γ:I P [v/w]
Γ↓I.Π(v′)−−−−−−→ and

Γ:IQ[v/w] 6 Γ↓I.Π(v′)−−−−−−→ and Γ:I Pσ 6≈ Γ:IQσ as required.450

2. The statement, Γ :I α.P 6≈ Γ:I α.Q for some action α, is a direct consequence of the first statement.
For instance, consider an input prefix of the following form (tt)(w).
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3. The statement, Γ:I P |R 6≈ Γ:IQ|R for some process R, can be easily observed from our example when
we put the process R in parallel of the processes P and Q.

4. The statement, Γ :I 〈Π〉P ≈ Γ :I 〈Π〉Q for every predicate Π, is a direct consequence of operational455

rules for the awareness operator.

5. The last statement can be observed from the following update [a := w].

It should be noted that if we close bisimilarity under substitutions by definition, all of the statements in
Remark 5.1 can be proved to preserve bisimilarity. The definition would be a slight variant of the notion of460

full bisimilarity proposed by Sangiorgi and Walker in [18]. In this way, the components C1 and C2 in the
proof above are no longer bisimilar since they are not equivalent after substitution [v/w]. However, the new
notion of bisimilarity induced by the closure is finer than the one proposed in this article.

The following remark shows that, as expected, non-deterministic choice does not preserve weak bisimilarity.
Below we explain the issue with concrete examples.465

Remark 5.2. For some attribute environment Γ, an interface I, and two processes P and Q where
Γ:I P ≈ Γ:IQ, we have that Γ:I P +R 6≈ Γ:IQ+R for some process R

Proof. Let C1 = Γ :I Π1(x).0 , C2 = Γ :I Π2(x).0 , and R = (v)@Π.0. Though the receiving predicates
for both components are different we still have that C1 ≈ C2 and this is because that input actions are not
perceived. When a message Γ′ .Π3(w) arrives, where Γ ↓ I |= Π3, Γ′ |= JΠ1[w/x]KΓ and Γ′ 6|= JΠ2[w/x]KΓ,470

component C1 applies rule Comp and evolves to Γ:I 0 while component C2 applies rule FComp and stays
unchanged. Both transitions carry the same label and again Γ:I 0 and Γ:I Π2(x).0 are equivalent for a similar
reason. An external observer cannot distinguish them.

If we allow mixed choice within a single component, then one can distinguish between Π1(x) and Π2(x).

Γ:I Π1(x).0 + R 6≈ Γ:I Π2(x).0 + R

Assume that the message Γ′ .Π3(w) is arrived, we have that:

Γ:I Π1(x).0 + R
Γ′.Π3(w)−−−−−−→ Γ:I 0 6 Γ↓I.Π(v)−−−−−−→

while

Γ:I Π2(x).0 + R
Γ′.Π3(w)−−−−−−→ Γ:I Π2(x).0 + R

Γ↓I.Π(v)−−−−−−→ Γ:I 0

However, this is obvious since our relation is defined at the system-level. So it abstracts from internal
behaviour and characterises the behaviour of AbC systems from an external observer point of view. Another475

reason why + does not preserve weak bisimilarity is due to the equivalence of processes 0 and ()@ff.0.
The latter reason cannot be avoided while the former can be mitigated by prohibiting mixed choice, i.e.,
nondeterministic choice between input and output actions. In practice this would not be a problem since
mixed choice is very hard to implement.

The following lemmas prove useful properties about AbC operators (i.e., parallel composition is commu-480

tative, associative, . . . ). We omit their proofs; they follow directly from the operational semantics of AbC
that we presented in Section 3.

Lemma 5.1 (Parallel composition).

• C1‖C2 ≈ C2‖C1

• (C1‖C2)‖C3 ≈ C1‖(C2‖C3)485

• Γ:I 0 ‖ C ≈ C
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Lemma 5.2 (Non-deterministic choice).

• Γ:I P1 + P2 ≈ Γ:I P2 + P1

• Γ:I (P1 + P2) + P3 ≈ Γ:I P1 + (P2 + P3)

• Γ:I P + 0 ≈ Γ:I P490

• Γ:I P + P ≈ Γ:I P

• Γ:I 〈Π〉(P +Q) ≈ Γ:I 〈Π〉P + 〈Π〉Q

Lemma 5.3 (Interleaving).

• Γ:I P1|P2 ≈ Γ:I P2|P1

• Γ:I (P1|P2)|P3 ≈ Γ:I P1|(P2|P3)495

• Γ:I P |0 ≈ Γ:I P

Lemma 5.4 (Awareness).

• Γ:I 〈ff〉P ≈ Γ:I 0

• Γ:I 〈tt〉P ≈ Γ:I P

• Γ:I 〈Π1〉〈Π2〉P ≈ Γ:I 〈Π1 ∧Π2〉P500

Lemma 5.5 (Silent components cannot be observed). Let Act(P ) denote the set of actions in process P . If
Act(P ) does not contain any output action, then:

Γ:I P ≈ Γ:I 0

Proof. The proof follows from the fact that components with no external side-effects (i.e., do not exhibit
barbs) cannot be observed. When Act(P ) does not contain output actions, component Γ :I P can either
make silent moves, which component Γ:I 0 can mimic by simply doing nothing, or input a message, which
component Γ:I 0 can mimic by discarding the message.

5.2. Proving equivalence of AbC systems505

Now we proceed with a few examples to provide evidence of interesting features of the AbC calculus.

Example 5.1. We have that C1 ≈ C2 when C1 = Γ:I Π(x).P , C2 = Γ:I Π1(x).P + Π2(x).P and Π l Π1∨Π2.

Clearly, components C1 and C2 are bisimilar because any message, accepted by C2, can also be accepted
by C1 and vice versa. After a successful input both components proceed with the same continuation process
P [v/x]. For instance, consider the message Γ′ .Π1(v) in which Γ′ is only satisfied by predicate Π2, it is still510

satisfied by predicate Π. The overlapping between the input and the non-deterministic choice constructs is
clear in this scenario. For this special case we can replace the non-deterministic choice with an “or” predicate
while preserving the observable behaviour. The intuition is illustrated in Figure 1.

It is worth noting that as a corollary of the above equivalence we have:

Γ:I Π1(x̃).P + · · ·+ Πn(x̃).P ≈ Γ:I (Π1 ∨Π2 ∨ · · · ∨Πn)(x̃).P

Example 5.2. Γ1 :I (E1)@Π.P ≈ Γ2 :I (E2)@Π.P if and only if Γ1 ↓ I = Γ2 ↓ I, JE1KΓ1 = JE2KΓ2 , and515

{Π}Γ1 l {Π}Γ2 .
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Γ:I Π(x).P

Γ ′.Π ′(v)

��
Γ ′.Π ′(w)

��

Γ↓I|=Π′ Γ′|=Π2

Γ:I Π1(x).P + Π2(x).P

Γ ′.Π ′(w)

��
Γ ′.Π ′(v)

��
Γ:I P [v/x] Γ :I P [w/x] Γ :I P [w/x] Γ :I P [v/x]

Figure 1: The relationship between the “or” predicate and the non-deterministic choice

It is clear that even if Γ1 6= Γ2, these components are still bisimilar since their interfaces and exposed
messages are equivalent. This is an important property which ensures that components need not to have
isomorphic attribute environments to be equivalent. The intuition is that components can control what520

attribute values to be exposed to the interacting partners. In some sense the component has the power of
selecting the criteria in which its communicated messages can be filtered.

Now we show some interesting properties about the restriction mechanism in AbC . The restriction
mechanism in AbC where a predicate can be partially exposed is very useful in describing collective behaviour
from a global point of view. This means that local interactions are hidden from an external observer which525

can only observe system level behaviour (collective-behaviour). The following lemma shows properties of our
restriction operators. These properties follow directly from the operational semantics, presented in Section 3.

Lemma 5.6 (Restriction).

• [ [ C ].f1 ].f2 ≈ [ C ].f1∧f2 .

• [ [ C ]/f1 ]/f2 ≈ [ C ]/f1∧f2 .530

• [ [ C ]/f1 ].f2 ≈ [ [ C ].f2 ]/f1 .

• [ 0 ].f1 ≈ 0

• [ 0 ]/f1 ≈ 0

Note that scope extrusion does not work for our output restriction operator. To see this, consider the
constant function f(Γ, ṽ) = ff for any Γ and ṽ. This function has a preemptive power to hide any message535

regardless of Γ and ṽ and thus prevents any possible interaction outside the scope.
In the next example we show the expressive power of name restriction in a more elaborated scenario.

Example 5.3. We consider two types of forwarding components, a source component CP = Γp :I P and an
intermediate component CF = Γi :I F where the behaviour of processes P and F is defined below.

P , (this.id, ṽ)@(Π1 ∨ (role = fwd)).0

F , (x ∈ this.nbr)(x, ỹ).(x, ỹ)@(role = fwd).(x, ỹ)@Π1.0

Process P sends an advertisement message to all components that either satisfy predicate Π1 where
Π1 = (role = client) or have a forwarder role (i.e., (role = fwd)). Process F may receive an advertisement
from a neighbour, after that it first sends it to nearby forwarders and then sends the advertisement to nearby540

clients. The scenario is simplified to allow at most two hops from the source component.
The goal of the source component is to ensure that its advertisement message reaches all clients across

the network. To prove if the above specification guarantees this property2, we first need to fix the topology
of the network as reported in Figure 2. For the sake of simplicity we will only consider a network of one

2The results in this scenario only hold for weak bisimulation.
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CF1

id role nbr

f1 fwd p, f2, f3

CP1

id role nbr

p fwd f1, f4

CF2

id role nbr

f2 fwd f1

Figure 2: The system with assumptions about the network topology

source CP1 = Γp :{role} P and two forwarders CF1 = Γ1 :{role} F and CF2 = Γ2 :{role} F . Notice that the
interface of these components contains the role attribute. We assume short-range communication where CP1

messages can reach to CF1 and CF2 can only receive the messages when CF1 forwards them. Assume that
initially the attribute environments Γp, Γ1 and Γ2 are defined as follows:

Γp = {(role, fwd), (id, p), (nbr, {f1, f4})}, Γ1 = {(id, f1), (role, fwd), (nbr, {p, f2, f3})}
Γ2 = {(id, f2), (role, fwd), (nbr, {f1})}

To avoid interference with other components running in parallel we can use restriction operators to
guarantee that interactions between the source and the forwarders are private. The full system is represented
by the component N as defined below:

N = [ CP1 ‖ CF1 ‖ CF2 ].ffwd

where ffwd(Γ, ṽ) yields (role 6= fwd) and guarantees that only non-forwarders can receive a message outside545

the boundaries of the restriction.
The behaviour of N without any interventions from other source components is reported on the right

side of Figure 3. The source component CP1 initiates the interaction by sending an advertisement to nearby
clients and forwarders and evolves to Γp :{role} 0. Forwarder CF1 receives the message and evolves to CF ′1.

The overall system N applies rule ResO and evolves to [ Γp :{role} 0 ‖ CF ′1 ‖ CF2 ].ffwd with the label550

Γ . (Π1 ∨ (role = fwd)) ∧ ((role 6= fwd))(p, ṽ) which is equivalent to Γ .Π1(p, ṽ). Notice that Γ is equivalent
to Γp ↓ I. The forwarder CF ′1 forwards its message to nearby forwarders, in our case this is CF2. The
overall system applies again rule ResO and evolves to [ Γp :{role} 0 ‖ CF ′′1 ‖ CF ′2 ].ffwd with the label

Γ . (role = fwd) ∧ (role 6= fwd)(p, ṽ). This message is private and is perceived externally as a silent move. The
overall system terminates after another internal action (performed by the second forwarder) and by emitting555

the message, Γ .Π1(p, ṽ)3, two more times, one from each forwarder. By applying the rule ResO twice, the
system evolves to [ Γp :{role} 0 ‖ Γ1 :{role} 0 ‖ Γ2 :{role} 0 ].ffwd .

To prove that the advertising message is propagated to all clients in the network it is sufficient to show
that each forwarder takes its turn in spreading the message. Formally it is sufficient to prove that the
behaviour of the overall system is bisimilar to the behaviour of a test component T with Γt(role) = fwd,
defined below, which is able to send the same message three times sequentially and then terminates.

T = Γt :{role} (p, ṽ)@Π1.(p, ṽ)@Π1.(p, ṽ)@Π1.0

3Since role can only assume the values client and fwd, we have that (role = client) ∧ (role 6= fwd) l role = client) = Π1
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T

6≈

Γ.Π1 (p,ṽ)

��

N = [ CP1 ‖ CF1 ‖ CF2 ].ffwd

Γ.Π1 (p,ṽ)

��
�

Γ.Π1 (p,ṽ)

��

[ Γp :{role} 0 ‖ CF ′1 ‖ CF2 ].ffwd

τ

��
�Γ.Π1 (p,ṽ)

}}

τ

!!
�

Γ.Π1 (p,ṽ)

��

�

τ

  

�

Γ.Π1 (p,ṽ)

~~

Γ.Π1 (p,ṽ)

zz
� Γ.Π1 (p,ṽ)

  

�Γ.Π1 (p,ṽ)

~~
Γt :{role} 0 �

Figure 3: System N simulates the test component T , but initial interference is possible, Hence N 6≈ T

Figure 3 shows that system N weakly simulates component T , but they are not bisimilar, i.e., T 6≈ N . This
is because a forwarder is initially prepared to accept any message (a, ṽ) such that a coincides with the id of
one of its neighbours. For instance if we put another component, say CP2 = Γh :{} (f3, w̃)@(tt).0, there is a
possibility that CF1 first receives a message from CP2 and the system can evolve as follows:

N‖CP2
{}.tt(f3,w̃)−−−−−−−→ Γ.Π1(p,ṽ)−−−−−−→ Γ.ff()−−−→ Γ.ff()−−−→ Γ.Π1(f3,w̃)−−−−−−−→ Γ.Π1(f3,w̃)−−−−−−−→

while

T‖CP2
{}.tt(f3,w̃)−−−−−−−→ Γ.Π1(p,ṽ)−−−−−−→ Γ.Π1(p,ṽ)−−−−−−→ Γ.Π1(p,ṽ)−−−−−−→

and it is easy to see that N‖CP2 6≈ T‖CP2. One way to avoid interference and ensure that the property
holds is to limit input capabilities of N :

N = [ [ CP1 ‖ CF1 ‖ CF2 ].ffwd ]/g∗

where g∗(Γ, ṽ) = ff for any Γ and ṽ. Under this restriction N is not able to receive any message and N ≈ T .560

Remark 5.3 (AbC restriction versus name restriction). AbC restriction operators are different from the
name restriction operators in CCS-style [20] and π-style [3, 21] and here we outline the main differences.

The restriction operators in AbC are static and do not facilitate scope extrusion as mentioned before. On
one hand, our style of restriction is more general than the CCS-style in that predicates can either be exposed
(e.g., f(Γ, ṽ) = tt), constrained (e.g., f(Γ, ṽ) = Π), or completely hidden (e.g., f(Γ, ṽ) = ff). Actually, the565

CCS-style operator can be encoded as follows: f(∅, α) = tt if α ∈ L for some action α and set L. On the
other hand, AbC restriction and π-style restriction are actually different. It should be clear that further
constraining of a channel in π-like restriction can be complicated, i.e., a channel can either be available to all
components listening to it or only within a specific scope. In other words, two components cannot receive the
same message because of different reasons as the case in the AbC-style, i.e., consider f(Γ, ṽ) = (a 6= 1) and570

a sender inside the scope of f sends a message with predicate (c = 2 ∨ a = 1), thus components inside the
scope of f can receive because they satisfy either (c = 2) or (a = 1) while components outside the scope can
only receive when they satisfy (c = 2).
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Due to the interplay between names and predicates, considering name restriction in AbC would introduce
technical difficulties that outweigh its benefits. Actually, both local and scoped interaction are naturally575

supported in AbC either through local interaction between processes inside a component or through external
interaction within static scopes. However, studying the benefits of using name restriction in AbC would be
an interesting topic for future work.

6. Encoding channel-based interaction

In this section, we briefly discuss the expressiveness of AbC and its relationships to other existing580

approaches. The main purpose is to give an intuition on applications where AbC might be simpler and more
natural to use. Formal separation results between AbC and other related approaches are beyond the scope of
this article; but they certainly deserve further investigations. First, we discuss how group-based [22, 23, 24] and
publish/subscribe-based [25, 26] interaction patterns can be naturally rendered in AbC 4, then we concentrate
on the encoding of a simple process calculus, featuring broadcast and channel-passing. Finally, we prove the585

correctness of the encoding using the behavioural theory presented in Section 4.
In the group-based model, when an agent wants to send a message, it attaches the group name/id in

the message and only members of that group can receive the message when it is propagated. To model this
interaction pattern in AbC , group names can be rendered as attributes and the constructs for joining or
leaving a given group can be modelled as attribute updates. It is worth mentioning that a possible encoding590

of group communication into bπ-calculus has been introduced in [11]. The encoding is relatively complicated
and does not guarantee the causal order of message reception. “Locality” is neither a first class construct in
bπ-calculus nor in AbC . However, “locality” (the group name, in this case) can be naturally modelled as an
attribute in AbC ; in bπ-calculus, more effort is needed.

In the publish/subscribe model, there are two types of agents: publishers and subscribers and there is an595

exchange server that mediates the interaction between them. Publishers produce messages tagged with topics
and send them to the exchange server which is responsible for filtering and forwarding these messages to
interested subscribers. Subscribers simply register their interests to the exchange server and based on their
interests they receive messages. A natural modelling of the topic-based publish/subscribe model [26] with
AbC can be accomplished by allowing publishers to broadcast messages with “tt” predicates (i.e., satisfied by600

all subscribers) and only subscribers can check the compatibility of the exposed publishers attributes with
their subscriptions. The distinguishing features of such an AbC model with respect to others are due to the
ease of specifying the discovery of the right place to subscribe and that the selective and implicit multicast
interaction is cleaner than the point-to-point one.

In the next subsection we will show in full details how it is possible to model broadcast communication605

with channel-passing in AbC , but first we would like to spend some words about the difficulties that other
calculi have in mimicking situations that are naturally expressed in AbC .

Clearly, classical calculi (that rely on fixed channels [3]) may not be able to express behaviours arising
from AbC specifications while others with sort of channel-equivalence [5, 6, 9] may have potential. However,
such an encoding (if it exists) would be much more complicated and less intuitive.610

Here, we would like to argue that encoding the combination of (1) knowledge representation and (2)
multiparty predicate-based interaction might prove to be rather complicated with existing calculi. The former
facilities modelling a notion of interdependence between co-located processes while the latter facilitates
modelling a notion of selective multicast where receivers engage in interactions because they satisfy the
sender predicate. Consider the following simple AbC system:

Γ1 :{b,c} (m)@(Π1 ∨Π2).P1 ‖
C2︷ ︸︸ ︷

Γ2 :{b,c} (tt)(x).P2 ‖
C3︷ ︸︸ ︷

Γ3 :{b,c} (()@ff.[this.a := 5]P3 | (b ≤ this.a)(x).Q)

4Further details about the way these two communication paradigms are modelled in AbC can be found in [13].
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If we assume that Γ2 ↓ {b, c} |= Π1, Γ3 ↓ {b, c} |= Π2, Γ1(b) = 3 and Γ2(a) = 2, we have that when the
first process in C3 changes the value of attribute a to “5”, the second process in C3 gains the opportunity
of receiving message “m” from the first component. One could argue that using name-restriction to hide
local communication and relying on bound input/output actions would be sufficient to encode such kind
of behaviour in “fixed” channel-based process calculi like π-calculus. However, this is not the case because615

bound input/output actions can engage in interaction only when they are instantiated with concrete channel
names. In the example above, the input action of the second process C3 is always enabled. This means that
before the update, an input is available on the predicate b ≤ 2 and after the update it is available on the
predicate b ≤ 5. The difficulty of encoding this behaviour in classical process calculi is due to their lack
of knowledge representation and rigidity of interfaces, i.e., a process does not have a dedicated knowledge620

and cannot communicate based on its local knowledge. The reason is because that all actions (internal or
external) are treated similarly, i.e., they all have representation in the underlying LTS; τ for internal actions
and names for external ones. Thus, due to interleaving there is always a chance for a process to miss an
incoming message because it cannot inspect its local knowledge and adjust its interface instantaneously.

We can use the same example to argue that this behaviour might not be easily expressed in process625

calculi that support knowledge representation, e.g., [5, 21, 6, 9]. Actually, it is easy to see that when the
message m is sent from the first component, component C2 receives it because its attribute environment
satisfies Π1 while C3 receives it because it satisfies Π2, i.e., the same message can be received because of
different conditions. This is due to the flexibility of the interaction predicates and their evaluation with
respect to the local states of targeted components.630

Of course there is room to argue that this example could be mimicked by relying on a combination of
channel-equivalence [5], fusion [6], or constraints [9] and name restriction to limit the scope of interaction.
However, such an encoding (if it exists) must be hard-coded in the structure of the specifications by relying
on the extensive use of name restriction. This does not only affect readability but also complicates reasoning
about the evolution of scopes boundaries as side-effects of interactions. AbC provides a clear separation635

between the concept of a scope (or locality) and the logic of the program while compositionally managing
external interactions by message-passing. Thus each component has a clear external interface to offer to
the others. Furthermore, these models in general do not support broadcast and thus it would be difficult to
model its precise effects with them. Note that a special form of indirect group interaction through shared
knowledge arising from fusions, frames, etc., can be expressed. However, it would not provide a fine-grained640

control to coordinate the behaviour of the interacting components the way broadcast would.
Broadcast Psi [21], on the other hand, can express adaptation arising either from the flexible connectivity

of its broadcast channels or from evolving local state, but it has trouble doing both at the same time as the
above example suggests. This will be made clear in Section 7 where we will provide additional details.

6.1. Encoding of broadcasting channels into AbC645

We consider now the issue of encoding of broadcast channel-passing into AbC . Our main purpose is to
find a common ground that relates AbC to standard process calculi rather than claiming superiority or
separability. The reason is that some design choices in AbC are completely different from those of standard
calculi. For instance, the notion of restricting the interaction in AbC is different from the standard notion of
name-restrictions or fresh names. It is actually not obvious how π-like name-restriction would be beneficial650

in AbC . Furthermore, AbC has a structured syntax that forbids action-prefixing and nondeterminism to
occur top-level and thus it does not make sense to compare it with a calculus with a flat syntax. From our
point of view it is natural to use a structured syntax because usually we describe distributed systems as a set
of components executing in parallel and influence each other through message-passing.

It may seem tempting to model a channel name as an AbC attribute, however this turns out not to655

be the right approach. To clarify this point we propose an encoding where each process is rendered as
an AbC component. The attributes of a component are boolean and they represent the set of all possible
channel names plus an additional attribute CH to be used to coordinate channels allocation among co-located
processes. The interface I of a component has exactly the set of channel names in Γ, i.e., I = dom(Γ).
Initially CH is enabled and other attributes are disabled. A possible encoding of broadcast receive and send660

actions are reported below:
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(Component Level)

LGMc , [LGMp] LP1‖P2Mc , LP1Mc ‖ LP2Mc

(Process Level)

LnilMp , 0 Lτ.GMp , ()@ff.LGMp

La(x̃).GMp , Π(y, x̃).LGMp
with Π = (y = a) and y 6∈ n(LGMp)

Lāx̃.GMp , (a, x̃)@(tt).LGMp

L(rec A〈x̃〉.G)〈ỹ〉Mp , A(x̃)

where A(x̃) , LGMp and fn(LGMp) ⊆ {x̃}
LG1 +G2Mp , LG1Mp + LG2Mp

(Labels)

Laz̃M , {} . tt(a, z̃) La(z̃)M , {} . tt(a, z̃)

LτM , {} . ff()

Lāz̃:M , {} . tt(a, z̃) La(z̃):M , {} . tt(a, z̃)

Lτ :M , {} . ff()

Table 6: Encoding PA-calculus into AbC

a(x̃).P , Γ:I (a = tt)(x̃).LP M

a(ṽ).P , Γ:I 〈CH = tt〉()@ff.[a := tt, CH = ff](ṽ)@tt.[a := ff, CH = tt]LP M

Intuitively, to receive on channel a, a process checks if the exposed attribute a of the sender is enabled and
only then accepts the message and evolves to LP M. To send on channel a, a process first checks if attribute
CH is enabled, i.e., last message-sending is completed. Only then the process sets a to tt and turns off CH
silently with a message on a false predicate. Afterwards the process sends the values of the message on a665

true predicate and as side effects it resets a and CH to their initial values.
The problem with the above encoding is that it does not support channel-passing, i.e., one cannot use a

received channel name for a future broadcast. To overcome this problem, we would need to extend AbC with
a construct to dynamically add/remove attributes to/from the attribute environment of a component. We
can avoid such modification by exploiting the fact that the receiving predicates in AbC can also check the670

values contained in the received message. The key idea is to use structured messages to select interacting
partners where the name of the channel is the first element of any messages; receivers only accept those
messages that have attached channels that match their receiving channels. Actually, attributes do not play
any role in such interaction so we can consider components with empty environments and empty interfaces
i.e., ∅ :∅P . This encoding is similar to the one proposed in [27] which naturally models channel-matching of675

the transitions in the rewriting rules as pattern-matching of structured messages.
To show feasibility of the approach just outlined, we encoded in AbC a process algebra, we call PA-calculus,

(inspired by CBS [4] and bπ [11]). We consider the set of processes P as shown below.

P ::= G | P1‖P2

G ::= nil | a(x̃).G | āx̃.G | G1 +G2 | (rec A〈x̃〉.G)〈ỹ〉680

Unlike CBS [4] and bπ [11], the syntax of PA consists of two-levels where the parallel composition occurs
top-level like in AbC . This is important to make a fair comparison with AbC and to focus on comparing the
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distinguishing features between AbC and classical channel-passing calculi. Name restriction is not considered
because name restriction and AbC restriction are of different nature as explained in Remark 5.3. Furthermore,
the two-level syntax discards the capability of dynamic process creation where parallel composition appears685

in the scope of a recursive process. Indeed AbC does not support dynamic creation of components in its
current version. However, dynamic creation of components can be supported in a straightforward way.
We can introduce another action, say fork, that can be used to create a component at run-time. Thus, a
component can send, receive, and also create a component. Note that dynamic process creation inside a
single component is already supported in AbC . The semantics of PA-calculus is the same of bπ [11] but the690

name restriction rules are removed.
Now, we may proceed describing the encoding as reported in Table 6. The encoding of a process P is

rendered as an AbC component LP Mc with Γ = I = ∅. In what follows, we use [G] to denote a component
with empty Γ and I, i.e., ∅ :∅ G. Note that LGMc encodes a sequential process, LP Mc encodes the parallel
composition of sequential processes while LαM encodes an interaction label. The discard action label α: of695

PA-calculus is encoded as an input label in AbC because discarding is handled in AbC at process level.
The channel is rendered as the first element in the sequence of values. For instance, in the output action
(a, x̃)@(tt), a represents a channel name, so the input action (y = a)(y, x̃) will always check the first element
of the received values to decide whether to accept or discard the message. Send predicates do not play any
role in the encoding and for this reason send predicates are always true.700

6.2. Correctness of the encoding

In this section, we provide the correctness proof of the encoding presented in Section 6.1. The criteria we
use to assess our encoding are inspired by the work in [28]. Before we proceed with the proof, we first fix
some notations and we define the properties that our encoding preserves.

Definition 6.1 (Divergence). P diverges, written P ⇑, iff P →ω where ω denotes an infinite number of705

reductions.

Definition 6.2 (Uniform Encoding). An encoding L � M : PA → AbC is uniform if it enjoys the following
properties:

1. (Homomorphic w.r.t. parallel composition): LP‖QM , LP M‖LQM

2. (Name invariance): LPσM , LP Mσ, for any permutation of names σ.710

3. (Faithfulness): P ⇑ iff LP M ⇑

4. Operational correspondence

1. (Operational completeness): if P
α−→ P ′ then LP M

LαM−−→ ' LP ′M where ' is the strong barbed
equivalence of AbC.

2. (Operational soundness): if LP M
LαM−−→ Q then there exists a P ′ such that P

α−→ P ′ and Q ' LP ′M,715

where ' is the strong barbed equivalence of AbC.

Basically, when translating a term from PA-calculus into AbC , we expect that the translation is com-
positional and independent from contexts; is independent from the names of the source term (i.e., name
invariance); preserves parallel composition (i.e., homomorphic w.r.t. ‘‖’); is faithful in the sense that it
preserves divergence. Moreover, the encoding has to translate output (input) actions of PA-terms into720

corresponding output (input) AbC actions, and has to preserve the operational correspondence between the
source and target calculus. This includes that the translation has to be complete (i.e., every computation of
the source term can be mimicked by its translation) and sound (i.e., every computation of a translated term
corresponds to some computation of its source term).

The main distinguishing features of our encoding with respect to the one in [28] is that: our encoding is725

stronger in the sense that every transition of the source calculus is mimicked by exactly one transition in the
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destination. It also preserves labelled transitions as stated in the operational correspondence, Definition 6.2,
4. This will be crucial to prove that the encoding is sound and complete with respect to labelled bisimilarity
as stated in Corollary 6.1 and Corollary 6.2 later. However, our encoding does not preserve the barb of the
source term, i.e., P ⇓a iff LP M ⇓LaM does not hold. This is due to the fact that we encode channels as special730

values in the message and basically the only barb observed in any translated term is tt. This means that this
encoding preserves the labelled transitions, but not the barbs. It is worth mentioning that the absence of
this condition does not weaken the encoding because labels are preserved.

Now we provide a sketch of the proof of the operational correspondence and we report a detailed one in
the Appendix B.735

Lemma 6.1 (Operational Completeness). If P
α−→ P ′ then LP Mc

LαM−−→ ' LP ′Mc.

Proof. (Sketch) The proof proceeds by induction on the structure of the derivation
α−→ . We have several cases

depending on the last applied rule. We only consider one case of parallel composition when communication

happens: P1‖P2
āz̃−→ P ′1‖P ′2. By applying the induction hypothesis on the premises P1

āz̃−→ P ′1 and P2
a(z̃)−−→ P ′2,

we have that LP1Mc
Laz̃M−−−→ ' LP ′1Mc and LP2Mc

La(z̃)M−−−−→ ' LP ′2Mc. We can apply rule ComL.740

LP1Mc
{}.tt(a,z̃)−−−−−−→ LP ′1Mc LP ′2Mc

{}.tt(a,z̃)−−−−−−→ LP ′2Mc

LP1Mc ‖ LP2Mc
{}.tt(a,z̃)−−−−−−→ LP ′1Mc ‖ LP ′2Mc

Now, it is easy to see that: LP ′1‖P ′2Mc ' LP ′1Mc‖ LP ′2Mc.

Lemma 6.2 (Operational Soundness). If LP Mc
LαM−−→ Q then ∃P ′ such that

P
α−→ P ′ and Q ' LP ′Mc.

Proof. (Sketch) The proof proceeds by induction on the structure of the derivation
LαM−−→ . We have several cases

depending on the last applied rule. We only consider one case of parallel composition when communication745

takes place: LP1‖P2Mc
{}.tt(a,z̃)−−−−−−→ LP ′1Mc‖LP ′2Mc where LP1Mc

Lāz̃M−−−→ LP ′1Mc and LP2Mc
La(z̃)M−−−−→ LP ′2Mc. By the induction

hypothesis on the transitions LP1Mc
Lāz̃M−−−→ LP ′1Mc and LP2Mc

La(z̃)M−−−−→ LP ′2Mc we have that there exist P ′ and P ′′

such that P1
āz̃−→ P ′ , P2

a(z̃)−−→ P ′′ , LP ′1Mc ' LP ′Mc and LP ′2Mc ' LP ′′Mc. We can apply rule (11) Table 4 [11]:

P1
āz̃−→ P ′ P2

a(z̃)−−→ P ′′

P1‖P2
āz̃−→ P ′‖P ′′

Because LP ′1Mc ' LP ′Mc and LP ′2Mc ' LP ′′Mc we have that LP ′‖P ′′Mc ' LP ′1Mc‖LP ′2Mc as required.

Theorem 6.1. The encoding L � M : PA→ AbC is uniform.750

Proof. Definition 6.2(1) and 6.2(2) hold by construction. Definition 6.2(4) holds by Lemma 6.1 and
Lemma 6.2. Definition 6.2(3) holds easily and as a result of the strong formulation of operational correspon-
dence in Lemma 6.1, Lemma 6.2, this encoding cannot introduce divergence.

As a result of Theorem 4.3, Theorem 6.1 and of the strong formulations of Lemma 6.1, Lemma 6.2, this
encoding is sound and complete with respect to bisimilarity as stated in the following corollaries.755

Corollary 6.1 (Soundness w.r.t bisimilarity).

• LP Mc ≈ LQMc implies P ≈ Q

Corollary 6.2 (Completeness w.r.t bisimilarity).

• P ≈ Q implies LP Mc ≈ LQMc
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7. Related Work760

In this section, we report on related works concerning calculi with primitives that either model multiparty
interaction or provide interesting ways to establish interaction. Many calculi have been proposed to model
interactions in distributed systems. However, the interaction mechanisms used in the Psi-calculus [5], the
fusion calculus [6] and the cc-pi calculus [9] are the closest ones to AbC . Below, we concentrate on the
relationships between AbC and these calculi and only briefly discuss its relationships with others.765

Psi-calculus is an extension of the π-calculus with the aim to serve as a meta-theory for process calculi in
general. Once the Ψ-parameters are instantiated to obtain a new calculus, the behavioural theory of the
new instance is fully-defined and there is no need to redo all of the proofs from scratch and develop a new
theory. The Psi-calculus is heavily influenced by the π-calculus and its main extensions like the Applied
π-calculus [29], the fusion calculus [6], and the cc-pi-calculus [9]. However, the Psi-calculus is more expressive770

in some aspects and provides a compositional and carefully developed operational semantics. This is not the
case for the Applied π-calculus, the fusion calculus, and the cc-pi calculus which heavily rely on structural
congruence to postulate a lot of properties about the semantics. In Psi, AbC , and π these properties are
derived and proved based on the labelled semantics. This makes the proofs much simpler as there is only one
inductive definition of transitions.775

In Psi-calculus the subjects of communication actions are generalised to data terms and interaction is based
on a dynamic notion of channel-equivalence rather than on name-matching. The environment/knowledge
is encoded as a special process, named assertion, which influences the behaviour of the process within its
scope. The assertion, denoted by LΨM, can be made local to a specific process by means of name restriction,
e.g., (νb̃)(P | LΨM) where b̃ is a sequence of names that are bound in Ψ and possibly in P . A local assertion780

(assertion with local names) is called a frame F and represents the information that a process make available
to other processes operating in parallel.

As mentioned before, Psi-calculus has been heavily influenced by the design choices of π-calculus as evident
from the extensive use of name-restriction to hard-code different notions. Everything floats in the structure
of processes and a restriction operator (in the π-calculus style) is used to create a local knowledge, to share785

knowledge, etc. For instance, the environment/knowledge is hard-coded in Psi by relying on name-restriction:
The term (νb̃)(P | LΨM) represents a process P with environment LΨM and with name-restriction used to
localise LΨM to P . This choice does not distinguish between knowledge and behaviour and thus affects
readability and maintainability. Actually the scope νb̃ might fully or partially localise LΨM and this makes the
notion of local knowledge a fluid concept. In AbC , this can be modelled as ΓΨ :I P and by simple syntactic790

checks, one could easily infer that ΓΨ is a local environment for process P and ΓΨ ↓ I is the part that is
exposed to possible partners (only) at the time of interaction. This clean separation between knowledge
and behaviour in AbC avoids dependencies between components and enhances readability, compositional
reasoning, and maintainability.

The evolution of knowledge is complicated in Psi. For instance, the process MN.P does not contribute795

any knowledge to the environment at this stage while after executing the output action MN the process P
might do. For technical reasons, the process !P does not add any knowledge to the environment while a
finite number of the same P, running in parallel, adds the knowledge obtained as the composition of frames
of P | . . . |P . In AbC , knowledge evolution is cleanly defined through attribute updates, taking place as
side-effects of interactions.800

Furthermore, Psi-calculus is based on a point-to-point communication model that, unlike AbC ’s implicit
multicast model, does not scale when multiparty coordination is needed. And this is particularly important for
open systems where agents may join or leave at any time while systems continue their execution. In [30], we
laid the basis for an efficient, correct, and distributed communication infrastructure to manage the interaction
of the attribute-based paradigm. There we enable multiple components to coordinate asynchronously while805

preserving the semantics of AbC .
Broadcast Psi [21] is an extension of Psi with broadcast primitives to generally facilitate both point-

to-point and broadcast interactions in a single framework. Unlike Broadcast Psi, AbC is mainly designed
to tackle systems which interact based on novel and dynamic group-based approaches. For this reason,
AbC primitives provide natural support to modelling applications in the CAS domain. The meta-theory810
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of AbC is also much simpler in that it avoids the usual technical difficulties when dealing name-restriction,
which is made possible without compromising the expressive power of AbC . Note that name-restriction is
a core primitive in Psi-like calculi because it is the only way to model knowledge, local interaction, and
dynamic communication links. Furthermore, broadcast Psi relies on a notion of connectivity predicates, it
uses M

.
≺ K to denote that an output prefix MN is out-connected to channel K while it uses K

.
�M to815

denote that an input prefix M(λx̃)N is in-connected to channel K. This way a process may either adapt
by choosing to connect/disconnect from a broadcast channel through these predicates (and thus provides
an adaptable connectivity of broadcast channels) or adapt by considering its local state. However, it is not
easy to program processes that consider both possibilities at the same time. The reason is that if a term M
representing a broadcast endpoint adapts based on a local name x, M must contain x in its support, i.e.,820

x ∈ n(M). M can be connected to other endpoints via the broadcast connectivity relation, but only through
a broadcast channel with strictly greater support than both endpoints; that is, only through channels that
mention x. Hence this channel cannot be used for communication across the scope boundary of x.

Also modelling reconfiguration in broadcast Psi is not easy; a proposal is put forward in [21] but its
scalability is an issue. The proposal models different connectivity configurations using assertions, and relies825

on generation of assertions tagged by a fresh generation number; only the most recent generation is used. A
generation becomes obsolete when composed with an assertion from later generation.

For an example of reconfiguration that should also clarify the different levels of abstraction of Psi-calculi
and AbC , consider a topology controller T = Ld ← [ 〈1, ∅〉M | τ.(Ld ←[ 〈2, {K

.
�M,K

.
� N}〉M | τ.(Ld ← [

〈3, {K
.
�M}〉M). In process P | T , the process P broadcasts on K while T manages the topology. Initially830

F(T ) = 〈1, ∅〉 and sending/reception on K is not possible, if T evolves with T
τ−→ T ′ then F(T ′) =

〈2, {K
.
�M,K

.
� N}〉 and a broadcast on K can be received on both M and N and after T ′

τ−→ T ′′, a
broadcast can be received only on M , since F(T ′′) = 〈3, {K

.
�M}〉. Note that the interpretation of F(T )

considers only the latest generation of assertions. To make T local to P , one needs to restrict channel d and
thus (νd)(P | T ) can send, receive, and discard messages based on the influence of T . At this point, the835

reader should be convinced that all of this hard-coding of knowledge can be modelled simply in AbC by a
component Γ :I Q where all send and receive operations in Q are guarded by the value of attribute d that
can be changed locally with an attribute update; the behaviour of Q is thus parametric to Γ.

The fusion calculus [6] is introduced to simplify the π-calculus and to provide a canonical calculus of
concurrency. Interestingly, as fusion simplifies π it gains more expressiveness. It changes the concepts of840

sending and receiving in the π-calculus to what is called fusion. Fusions can be thought of as bubbles that when

collide create larger ones. Thus when the transition uvw.P | uxy.Q {v=x,w=y}−−−−−−−→ P | Q is executed, a fusion
(or a bubble) is created that includes both P and Q and both share the facts that v = x, w = y. Furthermore
as result of interaction a new persistent shared knowledge that relates input to output variables is introduced.
This knowledge can be used for further interactions, it evolves at run-time and influences interacting processes.845

It is easy to see that this is somehow similar to the concept of frame in the Psi-calculus and it is not surprisimng
that these two calculi are strongly related. As in Psi, name restriction is used to localise the knowledge to a

specific scope. For instance, the transition νx(uvw.P | νy(uxy.Q | R) | S)
{}−→ (P | (Q | R) [w/y] | S)[v/x]

clearly shows the complicated evolution of knowledge. Initially x is shared between all running processes
while y is limited to a specific scope. However, when specific parts of the system interact they may produce850

global side effects, thus we have that S is not involved in the interaction but it gets to know that x becomes
equivalent to v and has no choice but to accept the new modifications. It is clear that the notions of
compositionality and knowledge are fluid in such settings, i.e., there is no clear separation between knowledge
and behaviour. The above described behaviour cannot be expressed in AbC and it would be interesting to
find out how to accommodate fusions in a cleaner way. It is worth mentioning that fusions (also frames of Psi)855

facilitate some kind of group communication through shared stores but these stores should be hard-coded
in the structure of the specifications using name restriction. Furthermore, group communication through
shared memory is not as clean and controlled as the one of message-passing. Clearly AbC only allows
shared memory inside a single component and different components may only influence each other by explicit
message-passing. This is natural for a distributed system where a single components is programmed by a860

single person while different components might be programmed by different people. While a fine-grained

27



control on shared variables can be enforced inside a single component through a “lock-based” mechanism,
it is more challenging when considering independent components with dynamic and evolving set of shared
variables as in the above mentioned calculi. Thus, it is highly recommended to rely on clear interfaces for
interacting with the external world.865

The cc-pi calculus [9] generalises fusions like x = v to named constraints and adds some of concurrent
constraint programming primitives [7, 8] to hande such constraints. In named constraints, variables are
regarded as ordinary names in the π-calculus style. Constraints are put in parallel as a special form of a
passive process and they can be manipulated by blocking actions like ask, tell, etc. Two processes interact
by performing an output x〈y〉 and an input x′〈y′〉 only if the constraint x = x′ is entailed by the store870

(i.e., the constraints in parallel). The result of synchronisation is a new constraint y = y′ which is added
to the store. Note that the store is based on constraints and is different from the attribute environment
in AbC . Furthermore constraints are different from the interaction predicates in AbC where predicates
select interaction partners. In fact, constraints may not be directly used to select partners but rather other
interactions might be enabled as a result of the changes in the shared store. Like Psi and fusion, cc-pi heavily875

relies on name restriction to localise constraints and its flexibility come from a sort of shared “memory”.
Psi, fusion, and cc-pi gain in expressivity by exploiting a sort of shared memory and adequate scoping

mechanisms but this complicates reasoning about their models. In AbC we understand the importance of
message-passing and shared memory paradigms. We strongly believe that their combined effects are crucial
to model distributed systems more accurately. However, we are more conservative in this direction and limit880

sharing to local behaviours while keeping message-passing for external communication. Thus AbC components
have clear communication interfaces with the external world, this simplifies systems decomposition and
reasoning about individual components separately.

Let us now consider in turn some of the other calculi, namely CBS [31], bπ [11], CPC [32], attribute
π-calculus [33], imperative π-calculus [34], Set-Pi [35] and Broadcast Quality Calculus of [36].885

The CBS calculus [31] captures the essential features of broadcast communication in a simple and natural
way. Whenever a process transmits a value, all processes running in parallel, and ready to perform an input,
do catch the broadcast. In [37], an LTS for CBS was proposed where notions of strong and weak labelled
bisimilarity relying on a discard relation were defined. Unlike AbC , the communication links in CBS are
static and cannot change at run-time.890

The bπ−calculus [11] equips π−calculus [3] with broadcast primitives where only agents listening on a
specific channel can receive the broadcast. The authors also proposed an LTS relying on a discard relation
and a labelled bisimilarity which is proved to coincide with the reduction barbed congruence when closed
under substitutions. Channel mobility in bπ permits creating dynamic communication links at run-time,
but this dynamicity is still limited because it requires processes to agree on a specific channel name to895

establish the interactions. bπ has no notion of knowledge representation, this can only be hard-coded as
another parallel process, closed under name-restriction. For instance, a term (νã)(K1‖ . . . ‖Kn‖P ) represents
a process P with knowledge K1‖ . . . ‖Kn and the scope (νã) ensures that the knowledge is local to P . The
main weakness of this approach, other than being low-level, is the fact that, like in π, every interaction is an
LTS transition and there is no distinction between local or global transitions. This implies that a process has900

to expose a local interaction as a silent transition. Because of interleaving there is always a chance that a
process misses an external message because it could not adjust its communication interface instantaneously
based on a local interaction, e.g., between P and some Ki. Psi-calculus [5] mitigates this by introducing a
notion of assertion.

The CPC calculus [32] uses a point-to-point pattern-matching to select partners. This is not just matching905

equivalence of names, but it also extends to the structure of terms and thus enables a notion of unification that
permits a two-way, or symmetric, flow of information. This differentiates CPC from AbC and other standard
process calculi which instead rely on complimentary actions (i.e., input/output) to exchange information in
one direction at a time.

The attribute π-calculus [33] aims at constraining point-to-point interaction by considering values of910

communication attributes. A λ-function is associated to each receiving action and communication takes
place only if the evaluation of the function with the provided input falls within a predefined set of values.

The imperative π-calculus [34] is a recent extension of the attribute π-calculus with a global store and
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with imperative programs used to specify constraints.
The Set-Pi [35] extends the applied π-calculus by a notion of sets of messages and thus allows processes915

to specify how to store, lookup and manipulate information. While this calculus is convenient to deal with
databases of objects, it is as expressive as the applied π because sets can be simulated using private channels.

The broadcast Quality Calculus of [36] deals with the problem of denial-of-service by means of selective
input actions. It inspects the structure of messages by associating specific contracts to inputs, but does not
provide any means to change the input contracts during execution.920

AbC combines the lessons learnt from the above mentioned languages and calculi in the sense that AbC
strives for expressivity while preserving minimality and simplicity. The dynamic settings of attributes and
the possibility of inspecting/modifying the environment gives AbC greater flexibility and expressivity while
keeping models as much natural as possible.

8. Concluding Remarks and Future Works925

We have introduced a foundational process calculus, named AbC , for modelling interactions in CAS
systems by relying on attribute-based communication. We tested the expressive power of AbC by discussing
how other interaction paradigms, such as group based communication and publish-subscribe, could be
modelled in our calculus. Moreover, we used AbC as the target of the encoding of a process algebra (inspired
by CBS [4] and [11]) and proved the correctness of the encoding up to our equivalence.930

For future work, we want to formally study the relation between AbC and other closely-related calculi,
i.e., Psi calculus [5], Fusion calculus [6], and cc-pi calculus [9]. We would also like to understand the impact
of having a π-like restriction operator in AbC . We conjecture that this extension will require the introduction
of an operator to modify the exposed environment Γ ↓ I of a component at run-time.

We plan to investigate the impact of alternative behavioural relations like testing preorders in terms of935

equational laws, proof techniques, etc. We also want to consider the challenging problem of verifying collective
properties of AbC code. As a step in this direction, we developed the ReCiPe framework [38] (an extension
and symbolic representation of AbC specifications) and we extended LTL to be able to specify collective
properties. Another line of research worth investigating is anonymity at the level of attribute identifiers.
Clearly, AbC achieves dynamicity and openness in the distributed settings, which is an advantage compared to940

channel-based models. In our model, components are anonymous; however the “name-dependency” challenge
arises at another level, that is, the level of attribute environments. In other words, the sender’s predicate
should be aware of the identifiers of receiver’s attributes in order to explicitly use them. For instance, the
sending predicate (loc = (1, 4)) targets the components at location (1, 4). However, different components
might use different identifiers names (i.e., “location”) to denote their locations; this requires that there945

should be an agreement about the attribute identifiers used by the components. For this reason, appropriate
mechanisms for handling attribute directories together with identifiers matching/correspondence will be
considered. These mechanisms will be particularly useful when integrating heterogeneous applications.

Another research direction is introducing a static semantics for AbC as a way to discipline the interaction
between components. This way we can answer questions regarding deadlock freedom and the fact that950

messages have the type the receiver expects.

Appendix A. Proofs

Appendix A.1. Proof of Lemma 3.1

We prove each statement separately.

1. We need to prove that for any λ such that λ = Γ′ .Π(ṽ) and Π l ff, then C
λ−→ C. We proceed955

by induction on the syntax of C.
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Base of Induction: C = Γ:I P . It is sufficient to prove that Γ :I P
˜Γ′.Π(ṽ)7−−−−−→Γ:I P where Π l ff. This

can be done by induction on the transition Γ:I P
˜Γ′.Π(ṽ)7−−−−−→Ĉ where Π l ff. We have the following cases.

Case 1: P = 0. We can only apply rule FZero regardless of Π and we have that Γ:I 0
˜Γ′.Π(ṽ)7−−−−−→Γ:I 0

as required.960

Case 2: P = Π1(x̃).U . We can only apply rule FRcv because Γ ↓ I 6|= Π (Notice that Π l ff) and

we have that Γ:I Π1(x̃).U
˜Γ′.Π(ṽ)7−−−−−→Γ:I Π1(x̃).U as required.

Case 3: P = (Ẽ)@Π1.U . We can only apply rule FBrd regardless of Π and we have that Γ :I

(Ẽ)@Π1.U
˜Γ′.Π(ṽ)7−−−−−→Γ:I (Ẽ)@Π1.U as required.

Case 4: P = 〈Π1〉P . We can either apply rule FAware1 if Γ 6|= Π1 or rule FAware2 otherwise by965

the induction hypothesis on the premise Γ:I P
˜Γ′.Π(ṽ)7−−−−−→Γ:I P of rule FAware2 and in both cases

we have that Γ:I 〈Π1〉P
˜Γ′.Π(ṽ)7−−−−−→Γ:I 〈Π1〉P as required.

Case 5: P = P1 + P2. We can only apply rule FSum by the induction hypothesis on its premises

Γ:I P1

˜Γ′.Π(ṽ)7−−−−−→Γ:I P1 and Γ:I P2

˜Γ′.Π(ṽ)7−−−−−→Γ:I P2 and we have that Γ:I P1 + P2

˜Γ′.Π(ṽ)7−−−−−→Γ:I P1 + P2

as required.970

Case 6: P1|P2. It is proved in a similar case of Case 5 by applying rule FInt instead.

Case 7: P = K(ỹ). It is proved by applying rule FRec and by the induction hypothesis on the

premise Γ:I P [ỹ/x̃]
˜Γ′.Π(ṽ)7−−−−−→Γ:I P [ỹ/x̃] of FRec.

Hence, we have that Γ :I P
˜Γ′.Π(ṽ)7−−−−−→Γ :I P where Π l ff. By applying rule FComp, we have that

Γ:I P
Γ′.Π(ṽ)−−−−−→ Γ:I P when Π l ff.975

Inductive Hypothesis:. Let us assume that for any C1 and C2, and for any λ such that λ = Γ′ .Π(ṽ)

and Π l ff, then Ci
λ−→ Ci

Inductive Step:. We have to consider three cases: C = C1‖C2, C = [ Ci ].f and C = [ Ci ]/f .

Case 1: C = C1‖C2. The statement follows directly from the inductive hypothesis by applying rule
Sync:

C1
λ−→ C1 C2

λ−→ C2

C1‖C2
λ−→ C1‖C2

Case 2: C = [ Ci ].f . This case follows from the inductive hypothesis (Ci
λ−→ Ci) by applying rule

ResO and by observing that if Π l ff then for any Π′, Π ∧Π′ l ff.980

Case 3: C = [ Ci ]/f . Exactly in the previous case by considering rule ResI.

2. We need to prove that if C1
λ−→ C ′1 and λ = τ , then C1‖C

τ−→ C ′1‖C and C‖C1
τ−→ C‖C ′1. The state-

ment follows directly from the previous point by applying rules ComL and ComR.

3. We need to prove that if C1 =⇒ C ′1 then C1‖C =⇒ C ′1‖C and C‖C1 =⇒ C‖C ′1. We prove the statement
(C1 =⇒ C ′1 then C1‖C =⇒ C ′1‖C) and the statement (C1 =⇒ C ′1 then C‖C1 =⇒ C‖C ′1) can be proved in a985

symmetric way. The proof proceeds by induction on the length of the derivation =⇒w.

Base case, w = 0: We have that C1 =⇒0 C1 and C1‖C =⇒0 C1‖C as required.
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Inductive Hypothesis: we assume that ∀k ≤ w : C1 =⇒k C
′
1 then C1‖C =⇒k C

′
1‖C.

Inductive Step: Let C1 =⇒w+1 C
′
1. By definition of =⇒w+1, we have that there exists C ′′1 such that

C1
τ−→ C ′′1 and C ′′1 =⇒w C

′
1. By the second statement of this lemma, we have that if C1

τ−→ C ′′1 then990

C1‖C
τ−→ C ′′1 ‖C. Moreover, by the induction hypothesis C ′′1 ‖C =⇒w C

′
1‖C. Hence, we have that

C1 =⇒ C ′1 then C1‖C =⇒ C ′1‖C as required.

4. We need to prove that if C1
Γ.Π1(ṽ)
=====⇒ C ′1 and Π1 l Π2 then C1

Γ.Π2(ṽ)
=====⇒ C ′1 We first need to prove

the single-step version of this statement: if C1
Γ.Π1(ṽ)−−−−−→ C ′1 and Π1 l Π2 then C1

Γ.Π2(ṽ)−−−−−→ C ′1. The
proof proceeds by induction on C1.995

Case 1: C1 = Γ:I P . We have to proceed by induction on the length of the derivation of the transitions

Γ:I P
Γ′.Π1(ṽ)7−−−−−−→Γ′ :I P

′ and Γ:I P
˜Γ′.Π1(ṽ)7−−−−−−→Γ:I P .

• We start by the transition Γ :I P
˜Γ′.Π1(ṽ)7−−−−−−→Γ :I P . The cases when rules FBrd, FAware1,

FZero are trivial since they refuse regardless of the sender predicate. The other discard
rules can be proved by the induction hypothesis on their premises. The interesting case is1000

when rule FRcv is applied. In this case P = Π(x̃).U and we have that Γ:I Π(x̃).U
˜Γ′.Π1(ṽ)7−−−−−−→

Γ :I Π(x̃).U only if Γ′ 6|= {Π[ṽ/x̃]}Γ or Γ ↓ I 6|= Π1. Now we need to show that Γ ↓ I 6|= Π2,
but this is immediate from Definition 2.1 and the fact that Π1 l Π2 and we have that

Γ :I Π(x̃).U
˜Γ′.Π2(ṽ)7−−−−−−→ Γ :I Π(x̃).U . By applying rule FComp, we have that we have that

Γ:I P
Γ′.Π1(ṽ)−−−−−−→ Γ:I P implies Γ:I P

Γ′.Π2(ṽ)−−−−−−→ Γ:I P such that Π1 l Π2 as required.1005

• Now we prove the transition Γ:I P
Γ′.Π1(ṽ)7−−−−−−→Γ′ :I P

′. The interesting case is when rule Rcv is
applied and other cases are proved by the induction hypothesis on their premises. In this case

P = Π(x̃).U and we have that Γ :I Π(x̃).U
Γ′.Π1(ṽ)7−−−−−−→⦃Γ:I U [ṽ/x̃]⦄ only if Γ′ |= {Π[ṽ/x̃]}Γ or

Γ ↓ I |= Π1. Now we need to show that Γ ↓ I |= Π2, but this is immediate from Definition 2.1

and the fact that Π1 l Π2 and we have that Γ:I Π(x̃).U
Γ′.Π2(ṽ)7−−−−−−→⦃Γ:I U [ṽ/x̃]⦄. By applying1010

rule Comp, we have that we have that Γ:I P
Γ′.Π1(ṽ)−−−−−−→ Γ′ :I P

′ implies Γ:I P
Γ′.Π2(ṽ)−−−−−−→ Γ′ :I P

′

such that Π1 l Π2 as required.

Hence, we have that if Γ:I P
Γ.Π1(ṽ)−−−−−→ Γ′ :I P

′ and Π1 l Π2 then Γ:I P
Γ.Π2(ṽ)−−−−−→ Γ′ :I P

′ as required.

Case 2: C = C3‖C4. We can only use rule Sync and by the induction hypothesis on the premises of
Sync to prove this case.1015

Case 3: C = [ C3 ]/f or C = [ C3 ].f . The statement follows directly from the inductive hypothesis
by applying rules ResO and ResI and from the fact that Π1 l Π2 implies that Π1 ∧ Π l Π2 ∧ Π
for any predicate Π.

Let C1
Γ.Π1(ṽ)
=====⇒ C ′1. This means that there exits C2 and C ′2 such that:

C1 =⇒ C2
Γ.Π1(ṽ)−−−−−→ C ′2 =⇒ C ′1

We have already proved that C2
Γ.Π2(ṽ)−−−−−→ C ′2 for any Π2 l Π1. Hence:1020

C1 =⇒ C2
Γ.Π2(ṽ)−−−−−→ C ′2 =⇒ C ′1

from which we can finally infer that C1
Γ.Π2(ṽ)
=====⇒ C ′1.
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5. We prove that if C1
τ−→ C ′1, then for any f : [ C1 ].f

τ−→ [ C ′1 ].f and [ C1 ]/f
τ−→ [ C ′1 ]/f . If C1

τ−→

C ′1 then there exists Γ, ṽ and Π l ff such that C1
Γ.Π(ṽ)−−−−→ C ′1.

By applying rule ResO we have that for any f , [ C1 ].f
Γ.Π∧Π′(ṽ)−−−−−−−→ [ C ′1 ].f where f(Γ, ṽ) = Π′. Since,

Π l ff we have that Π ∧Π′ l ff ∧Π′ l ff. Hence, [ C1 ].f
τ−→ [ C ′1 ].f1025

We can also apply rule ResIPass to prove that [ C1 ]/f
Γ.Π(ṽ)−−−−→ [ C ′1 ]/f . That is [ C1 ]/f

τ−→ [ C ′1 ]/f

6. We prove that if C1 =⇒ C ′1, then for any f : [ C1 ].f =⇒ [ C ′1 ].f and [ C1 ]/f =⇒ [ C ′1 ]/f . We prove
the statement by induction on C1 =⇒w C

′
1.

Base case, w = 0: We have that C1 =⇒0 C1 while both [ C1 ].f =⇒0 [ C1 ].f and [ C1 ]/f =⇒0 [ C1 ]/f

as required.1030

Inductive Hypothesis: we assume that ∀k ≤ w : C1 =⇒k C ′1 then: [ C1 ].f =⇒k [ C ′1 ].f and
[ C1 ]/f =⇒k [ C ′1 ]/f .

Inductive Step: Let C1 =⇒w+1 C
′
1. By definition of =⇒w+1, we have that there exists C ′′1 such that

C1
τ−→ C ′′1 and C ′′1 =⇒w C

′
1. By item 5 of this Lemma, and by Inductive Hypothesis we have that

for any f :1035

• [ C1 ].f
τ−→ [ C ′′1 ].f and [ C ′′1 ].f =⇒w [ C ′1 ].f ;

• [ C1 ]/f
τ−→ [ C ′′1 ]/f and [ C ′′1 ]/f =⇒w [ C ′1 ]/f .

From the two above we have that [ C1 ].f =⇒w+1 [ C ′1 ].f and [ C1 ]/f =⇒w+1 [ C ′1 ]/f .

Appendix A.2. Proof of Lemma 4.2

It is sufficient to prove that the relation R = {(C1‖C,C2‖C)|∀C1, C2, C ∈ Comp : C1 ≈ C2}1040

is a weak bisimulation. First of all we can observe thatR is symmetric. It is easy to see that if (C1‖C,C2‖C) ∈
R then (C2‖C,C1‖C) ∈ R. We have now to prove that for each (C1‖C,C2‖C) ∈ R and for each λ1 such
that bn(λ1) ∩ fn(C1, C2) = ∅:

C1‖C
λ1−→ C3 implies ∃λ2 : λ1 l λ2 such that C2‖C

λ̂2=⇒ C4 and (C3, C4) ∈ R.

We can observe that the transition C1‖C
λ1−→ C3 can be derived by using one of rule among Sync, ComL,1045

and ComR. The following cases can be distinguished:

Case 1: rule Sync is applied. In this case λ1 = Γ.Π1(ṽ), C1
Γ.Π1(ṽ)−−−−−→ C ′1, C

Γ.Π1(ṽ)−−−−−→ C ′ and C3 = C ′1‖C ′.
Since C1 ≈ C2, we have that C2

λ2=⇒ C ′2, with λ1 l λ2 = Γ.Π2(ṽ) and C ′1 ≈ C ′2. This implies that there

exists C ′′2 and C ′′′3 such that C2 =⇒ C ′′2
λ2−→ C ′′′2 =⇒ C ′2. Moreover, since λ1 l λ2, by Lemma 3.1, we have

that C
λ2−→ C ′. By using again Lemma 3.1, we have that C2‖C =⇒ C ′′2 ‖C. We can apply rule Sync1050

to prove that C ′′2 ‖C
λ2−→ C ′′′2 ‖C ′. Finally, as before, we have that C ′′′2 ‖C ′ =⇒ C ′2‖C ′. The statement

follows by observing that (C ′1‖C ′, C ′2‖C ′) ∈ R.

Case 2: rule ComL is applied. We can distinguish two cases: λ1 = τ , λ1 6= τ . If λ1 is a silent transition

(λ1 = τ), we have that λ1 = Γ . Π1(ṽ) with Π1 l ff. Moreover, C1
λ1−→ C ′1 and C3 = C ′1‖C (since

Π1 l ff, C
Γ.Π1(ṽ)−−−−−→ C). From the fact that C1 ≈ C2, we have that C2 =⇒ C ′2 and C ′1 ≈ C ′2. Moreover,1055

by Lemma 3.1, we have that C2‖C =⇒ C ′2‖C. It is easy to observe that (C ′1‖C,C ′2‖C) ∈ R.

If λ1 6= τ , then λ1 = Γ .Π1(ṽ). We have that C1
Γ.Π1(ṽ)−−−−−→ C ′1, C

Γ.Π1(ṽ)−−−−−→ C ′ and C3 = C ′1‖C ′. In this

case the statement follows similarly to Case 1. Indeed, C2
Γ.Π2(ṽ)
=====⇒ C ′2, with Γ .Π1(ṽ) l Γ .Π2(ṽ) and

C ′1 ≈ C ′2. Moreover, by Lemma 3.1, C
Γ.Π2(ṽ)−−−−−→ C ′. Hence, C2‖C

Γ.Π2(ṽ)
=====⇒ C ′2‖C ′ and (C ′1‖C ′, C ′2‖C ′) ∈

R.1060
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Case 3: rule ComR is applied. We can distinguish two cases: λ1 = τ , λ1 6= τ . By Lemma 3.1 we have

that C
λ1−→ C ′ and C3 = C1‖C ′. Similarly, C2‖C

λ1=⇒ C2‖C ′ and (C1‖C ′, C2‖C ′) ∈ R. If λ1 6= τ we

have that λ1 = Γ .Π1(ṽ), C1
Γ.Π1(ṽ)−−−−−→ C ′1, C

Γ.Π1(ṽ)−−−−−→ C ′, and C3 = C ′1‖C ′. Like in the previous cases,

by using the fact that C1 ≈ C2 and by Lemma 3.1, we have that C2
Γ.Π1(ṽ)
=====⇒ C ′2 and C ′1 ≈ C ′2, and that

C2‖C ′
λ1=⇒ C ′2‖C ′. The statement follows by observing that also in this case (C ′1‖C ′, C ′2‖C ′) ∈ R.1065

The strong case of bisimulation (∼) follows in a similar way.

Proof of Lemma 4.3. We prove the lemma case by case. We start by the output restriction operator and we
follow up with the input restriction one. For the first case, It is sufficient to prove that the relation

R = {([ C1 ].f , [ C2 ].f )| for all functions f and all C1, C2 ∈ Comp : C1 ≈ C2}

is a weak bisimulation. First of all we can observe that R is symmetric. We have now to prove that for each
([ C1 ].f , [ C2 ].f ) ∈ R and for each λ1:1070

[ C1 ].f
λ1−→ C3 implies ∃λ2 : λ1 l λ2 such that [ C2 ].f

λ̂2=⇒ C4 and (C3, C4) ∈ R.

We can observe that the transition [ C1 ].f
λ1−→ C3 can be derived either by using rule ResO or by using

ResOPass.

When rule ResO is used, λ1 = Γ . Π1 ∧Π(ṽ) where f(Γ, ṽ) = Π and C1
Γ.Π1(ṽ)−−−−−→ C ′1. Since C1 ≈ C2,

we have that C2
Γ.Π2(ṽ)
=====⇒ C ′2, with Γ . Π1(ṽ) l Γ . Π2(ṽ) and C ′1 ≈ C ′2. From the latter we have that, by1075

definition of R, ([ C ′1 ].f , [ C ′2 ].f ) ∈ R.
We can now proceed by considering two cases: Π1 l ff, Π1 6l ff.
If Π1 l ff, we have that C2 =⇒ C ′2. Directly from Item 6 of Lemma 3.1 we have that [ C2 ].f =⇒ [ C ′2 ].f .

If Π1 6l ff, we have that there exists C ′′2 and C ′′′3 such that C2 =⇒ C ′′2
Γ.Π2(ṽ)−−−−−→ C ′′′2 =⇒ C ′2. We have that:

• From Item 6 of Lemma 3.1, [ C2 ].f =⇒ [ C ′′2 ].f ;1080

• By applying rule ResO, [ C ′′2 ].f
λ2−→ [ C ′′′2 ].f where λ1 l λ2 = Γ .Π2 ∧Π(ṽ);

• From Item 6 of Lemma 3.1, [ C ′′′2 ].f =⇒ [ C ′2 ].f .

That is, [ C2 ].f
λ2=⇒ [ C ′2 ].f .

When rule ResOPass is used, we have that λ1 = Γ .Π1(ṽ), C1
λ1−→ C ′1 and C3 = [ C ′1 ].f . Since C1 ≈ C2,

we have that C2
Γ.Π2(ṽ)
=====⇒ C ′2 and C ′1 ≈ C ′2 (and ([ C ′1 ]/f , [ C ′2 ]/f ) ∈ R).1085

Hence we have that, C2 =⇒ C ′′2
Γ.Π2(ṽ)−−−−−→ C ′′′2 =⇒ C ′2

By using Lemma 3.1, and by applying rule RuleOPass, we have that [ C2 ].f
Γ.Π2(ṽ)
=====⇒ [ C ′2 ].f , and the

statement follows.
For the second case, It is sufficient to prove that the relation

R = {([ C1 ]/f , [ C2 ]/f )| for all functions f and all C1, C2 ∈ Comp : C1 ≈ C2}

is a weak bisimulation. First of all we can observe that R is symmetric. We have now to prove that for each
([ C1 ]/f , [ C2 ]/f ) ∈ R and for each λ1:1090

[ C1 ]/f
λ1−→ C3 implies ∃λ2 : λ1 l λ2 such that [ C2 ]/f

λ̂2=⇒ C4 and (C3, C4) ∈ R.
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We can observe that the transition [ C1 ]/f
λ1−→ C3 can be derived by using either rule ResI or ResIPass.

If rule ResI is used, we have that λ1 = Γ . Π1(ṽ) where f(Γ, ṽ) = Π and C1
Γ.(Π1∧Π)(ṽ)−−−−−−−−→ C ′1. Since

C1 ≈ C2, we have that C2
Γ.(Π2∧Π)(ṽ)
========⇒ C ′2, with Π1 l Π2 and C ′1 ≈ C ′2. This implies that there exists C ′′2 and

C ′′′3 such that C2 =⇒ C ′′2
Γ.(Π2∧Π)(ṽ)−−−−−−−−→ C ′′′2 =⇒ C ′2. By using again Lemma 3.1, we have that [ C2 ]/f =⇒ [ C ′′2 ]/f .1095

We can apply rule ResI to prove that [ C ′′2 ]/f
λ2−→ [ C ′′′2 ]/f with λ2 = Γ .Π2(ṽ). Finally, as before, we have

that [ C ′′′2 ]/f =⇒ [ C ′2 ]/f . The statement follows by observing that ([ C ′1 ]/f , [ C ′2 ]/f ) ∈ R.

When rule ResIPass is used, we have that λ1 = Γ.Π1(ṽ), C1
λ1−→ C ′1 and C3 = [ C ′1 ]/f . Since C1 ≈ C2, we

have that C2
Γ.Π2(ṽ)
=====⇒ C ′2 and C ′1 ≈ C ′2. By using Lemma 3.1, and by applying rule RuleIPass, we have that

[ C2 ]/f
Γ.Π2(ṽ)
=====⇒ [ C ′2 ]/f . This case follows directly from the fact that C ′1 ≈ C ′2 and ([ C ′1 ]/f , [ C ′2 ]/f ) ∈ R).1100

The strong case of bisimulation (∼) follows in a similar way.

Appendix B. Detailed proofs about the encoding

Proof of Lemma 6.1. We have the following cases:

• if P , nil: This case is immediate LnilMc , [0]

• if P , τ.G: We have that τ.G
τ→ G and it is translated to Lτ.GMc , [()@ff.LGMp]. We can only apply

rule Comp to mimic this transition.

[()@ff.LGMp]
{}.ff()7−−−−→ [LGMp]

[()@ff.LGMp]
{}.ff()−−−−→ [LGMp]

From Table 6, we have that LGMc = [LGMp] as required. Notice that sending on a false predicate is not1105

observable (i.e., a silent move).

• if P , a(x̃).G: We have that a(x̃).G
a(z̃)→ G[z̃/x̃] and it is translated to

La(x̃).QMc , [Π(y, x̃).LGMp]] where Π = (y = a). We can only apply rule Comp to mimic this transition.

[Π(y, x̃).LGMp]
{}.tt(a, z̃)7−−−−−−−→ [LGMp[a/y, z̃/x̃]]

[Π(y, x̃).LGMp]
{}.tt(a, z̃)−−−−−−−→ [LGMp[a/y, z̃/x̃]]

From Table 6, It is not hard to see that: LG[z̃/x̃]Mc ' [LGMp[a/y, z̃/x̃]] ' [LGMp[z̃/x̃]] since y 6∈ n(LGMp]).

• if P , āx̃.G: The proof is similar to the previous case but by applying an output transition instead.1110

• The fail rules for nil, τ , input and output are proved in a similar way but with applying FComp
instead.

• if P , ((rec A〈x̃〉).P )〈ỹ〉): This case is trivial.

• if P , G1 + G2: We have that either G1 + G2
α−→ G′1 or G1 + G2

α−→ G′2. We only consider the

first case with G1
α−→ G′1 and the other case follows in a similar way. This process is translated

to LG1 + G2Mc , [LG1Mp + LG2Mp]. By applying the induction hypothesis on the premise G1
α−→ G′1,

we have that LG1Mc
LαM−−→ ' LG′1Mc. By rule Comp or FComp we have that LG1Mc

LαM−−→ ' LG′1Mc if

LG1Mc
LαM7−−→ ' LG′1Mc. We can apply either rule Comp or rule FComp (i.e., when discarding) to mimic
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this transition depending on the performed action. We consider the case of Comp only and the other
case follows in a similar way.

[LG1Mp]
LαM7−−→ [LG′1Mp]

[LG1Mp + LG2Mp]
LαM7−−→ [LG′1Mp]

[LG1Mp + LG2Mp]
LαM−−→ [LG′1Mp]

Again LG′1Mc ' [ LG′1Mp]

• if P , P1‖P2: This process is translated to L P1‖P2 Mc , LP1Mc‖LP2Mc. We have different cases depending1115

on the performed action in deriving the transition P1‖P2
α−→ P̂ .

– P1‖P2
āz̃−→ P ′1‖P ′2: We have two cases, either P1

āz̃−→ P ′1 and P2
a(z̃)−−→ P ′2 or P2

āz̃−→ P ′2 and

P1
a(z̃)−−→ P ′1. We only consider the first case and the other case follows in the same way. By

applying the induction hypothesis on the premises P1
āz̃−→ P ′1 and P2

a(z̃)−−→ P ′2, we have that

LP1Mc
Laz̃M−−−→ ' LP ′1Mc and LP2Mc

La(z̃)M−−−−→ ' LP ′2Mc. We can apply rule ComL.1120

LP1Mc
{}.tt(a, z̃)−−−−−−−→ LP ′1Mc LP ′2Mc

{}.tt(a, z̃)−−−−−−−→ LP ′2Mc

LP1Mc ‖ LP2Mc
{}.tt(a, z̃)−−−−−−−→ LP ′1Mc ‖ LP ′2Mc

Again we have that: LP ′1‖P ′2Mc ' LP ′1Mc‖ LP ′2Mc.

– P1‖P2
a(z̃)−−→ P ′1‖P ′2: By applying the induction hypothesis on the premises P1

a(z̃)−−→ P ′1 and

P2
a(z̃)−−→ P ′2, we have that LP1Mc

La(z̃)M−−−−→ ' LP ′1Mc and LP2Mc
La(z̃)M−−−−→ ' LP ′2Mc. We only can apply

Sync to mimic this transition.

LP1Mc
{}.tt(a, z̃)−−−−−−−→ LP ′1Mc LP ′2Mc

{}.tt(a, z̃)−−−−−−−→ LP ′2Mc

LP1Mc ‖ LP2Mc
{}.tt(a, z̃)−−−−−−−→ LP ′1Mc ‖ LP ′2Mc

Again we have that: LP ′1‖P ′2Mc ' LP ′1Mc‖ LP ′2Mc.

– P1‖P2
α−→ P ′1‖P2 if P1

α−→ P ′1 and P2
α:−→ or P1‖P2

α−→ P1‖P ′2 if P2
α−→ P ′2 and P1

α:−→. We consider

only the first case and by applying the induction hypothesis on the premises P1
α−→ P ′1 and P2

α:−→,

we have that LP1Mc
LαM−−→ ' LP ′1Mc and LP2Mc

Lα:M−−→ ' LP2Mc. We have many cases depending on the1125

performed action:

1. if α = τ then P1‖P2
τ−→ P ′1‖P2 with P1

τ−→ P ′1 and P2
τ :−→ . We can apply ComL and FComp

to mimic this transition. Note that role FComp can only be applied if LP2Mc can discard which is
the case by the induction hypothesis.

LP1Mc
{}.ff()−−−−→ LP ′1Mc

LP2Mc
{̃}.ff()7−−−−→ LP2Mc

LP2Mc
{}.ff()−−−−→ LP2Mc

LP1Mc ‖ LP2Mc
{}.ff()−−−−→ LP ′1Mc ‖ LP2Mc

and again we have that: LP ′1‖P2Mc ' LP ′1Mc‖ LP2Mc.1130

2. if α = a(z̃) then P1‖P2
a(z̃)−−→ P ′1‖P2 with P1

a(z̃)−−→ P ′1 and P2
a(z̃):−−−→ . We can apply Sync and

FComp to mimic this transition.
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LP1Mc
{}.tt(a, z̃)−−−−−−−→ LP ′1Mc

LP2Mc
˜{}.tt(a, z̃)7−−−−−−−→ LP2Mc

LP2Mc
{}.tt(a, z̃)−−−−−−−→ LP2Mc

LP1Mc ‖ LP2Mc
{}.tt(a, z̃)−−−−−−−→ LP ′1Mc ‖ LP2Mc

Again we have that: LP ′1‖P2Mc ' LP ′1Mc‖ LP2Mc.

3. if α = āz̃ then P1‖P2
āz̃−→ P ′1‖P2 with P1

āz̃−→ P ′1 and P2
āz̃:−−→. We can apply ComL and FComp.

There is also the symmetric case for rule ComL.1135

[LP1Mc
{}.tt(a, z̃)−−−−−−−→ LP ′1Mc

LP2Mc
˜{}.tt(a, z̃)7−−−−−−−→ LP2Mc

LP2Mc
{}.tt(a, z̃)−−−−−−−→ LP2Mc

LP1Mc ‖ LP2Mc
{}.tt(a, z̃)−−−−−−−→ LP ′1Mc ‖ LP2Mc

Proof of Lemma 6.2. We prove the important cases:

• if LP Mc , LnilMc: This case is immediate [0] ' LnilMc

• if LP Mc , Lτ.GMc: We have that Lτ.GMc
{}.(ff)−−−−→ LGMc. We can apply rule (1) of Table 4 [11] and we have

that τ.G
τ−→ G as required.1140

• if LP Mc , La(x̃).GMc: We have that La(x̃).GMc
{}.tt(a,z̃)−−−−−−→ LGMc[z̃/x̃]. We can apply rule (2) of Table 4 [11]

and we have that a(x̃).G
a(z̃)−−→ G[z̃/x̃] where {}.tt(a, z̃) = La(z̃)M and LG[z̃/x̃]Mc ' LGMc[z̃/x̃] as required.

• if LP Mc , Lāz̃.GMc: We have that Lāz̃.GMc
{}.tt(a,z̃)−−−−−−→ LGMc. We can apply rule (3) of Table 4 [11] and we

have that ā(z̃).G
a(z̃)−−→ G where {} . tt(a, z̃) = Lāz̃M as required.

• if LP Mc , LG1 +G2Mc: We have that LG1 +G2Mc
LαM−−→ LG′1Mc ∨ LG′2Mc . This can be proved rule (7)1145

Table 4 [11] and by the induction hypothesis on its premises.

• if LP Mc , LP1‖P2Mc: We have that different cases depending on the performed action LαM when

LP1‖P2Mc
LαM−−→ LP ′1‖P ′2Mc is executed.

– if LαM = {} . tt(a, z̃). We have different cases depending on whether the message is received or
discarded1150

∗ We have two cases with actual reception where either LP1Mc
Lāz̃M−−−→ LP ′1Mc and LP2Mc

La(z̃)M−−−−→ LP ′2Mc
or LP1Mc

La(z̃)M−−−−→ LP ′1Mc and LP2Mc
Lāz̃M−−−→ LP ′2Mc. We consider the first case and the other

one is symmetrical. By the induction hypothesis on the transitions LP1Mc
Lāz̃M−−−→ LP ′1Mc and

LP2Mc
La(z̃)M−−−−→ LP ′2Mc we have that there exist P ′ and P ′′ such that P1

āz̃−→ P ′ and P2
a(z̃)−−→ P ′′

where LP ′1Mc ' LP ′Mc and LP ′2Mc ' LP ′′Mc. We can apply rule (11) Table 4 [11]:1155

P1
āz̃−→ P ′ P2

a(z̃)−−→ P ′′

P1‖P2
āz̃−→ P ′‖P ′′

Because LP ′1Mc ' LP ′Mc and LP ′2Mc ' LP ′′Mc we have that LP ′‖P ′′Mc ' LP ′1‖P ′2Mc as required.
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∗ We have two cases with discarding where either LP1Mc
Lāz̃M−−−→ LP ′1Mc and LP2Mc

Lāz̃:M−−−→ LP2Mc or

LP1Mc
Lāz̃:M−−−→ LP1Mc and LP2Mc

Lāz̃M−−−→ LP ′2Mc. We consider the first case and the other one is

symmetrical. By the induction hypothesis on the transitions LP1Mc
Lāz̃M−−−→ LP ′1Mc and LP2Mc

Lāz̃:M−−−→
LP2Mc we have that there exist P ′ and P ′′ such that P1

āz̃−→ P ′ and P2
āz̃:−−→ P ′′ where1160

LP ′1Mc ' LP ′Mc and LP2Mc ' LP ′′Mc. We can apply rule (12) Table 4 [11]:

P1
āz̃−→ P ′ P2

āz̃:−−→ P ′′

P1‖P2
āz̃−→ P ′‖P ′′

Because LP ′1Mc ' LP ′Mc and LP2Mc ' LP ′′Mc we have that LP ′‖P ′′Mc ' LP ′1‖P2Mc as required.

– if LαM = {} . tt(a, z̃). We have different cases depending on whether the message is received or
discarded.

∗ We have that LP1Mc
{}.tt(a,z̃)−−−−−−→ LP ′1Mc and LP2Mc

{}.tt(a,z̃)−−−−−−→ LP ′2Mc. By the induction hypothesis1165

on the transitions LP1Mc
{}.tt(a,z̃)−−−−−−→ LP ′1Mc and LP2Mc

{}.tt(a,z̃)−−−−−−→ LP ′2Mc we have that there exist

P ′ and P ′′ such that P1
a(z̃)−−→ P ′ and P2

a(z̃)−−→ P ′′ where LP ′1Mc ' LP ′Mc and LP ′2Mc ' LP ′′Mc.
We can apply rule (10) Table 4 [11]:

P1
a(z̃)−−→ P ′ P2

a(z̃)−−→ P ′′

P1‖P2
a(z̃)−−→ P ′‖P ′′

Because LP ′1Mc ' LP ′Mc and LP ′2Mc ' LP ′′Mc we have that LP ′‖P ′′Mc ' LP ′1‖P ′2Mc as required.

∗ We have three cases with discarding where either LP1Mc
La(z̃)M−−−−→ LP ′1Mc and LP2Mc

La(z̃):M−−−−→ LP2Mc1170

or LP1Mc
La(z̃):M−−−−→ LP1Mc and LP2Mc

La(z̃)M−−−−→ LP ′2Mc or LP1Mc
La(z̃):M−−−−→ LP1Mc and LP2Mc

La(z̃):M−−−−→ LP2Mc.
We consider the first case and the other ones are symmetrical. By the induction hypothesis

on the transitions LP1Mc
La(z̃)M−−−−→ LP ′1Mc and LP2Mc

La(z̃):M−−−−→ LP2Mc we have that there exist P ′ and

P ′′ such that P1
a(z̃)−−→ P ′ and P2

a(z̃):−−−→ P ′′ where LP ′1Mc ' LP ′Mc and LP2Mc ' LP ′′Mc. We can
apply rule (12) Table 4 [11]:1175

P1
a(z̃)−−→ P ′ P2

a(z̃):−−−→ P ′′

P1‖P2
āz̃−→ P ′‖P ′′

Because LP ′1Mc ' LP ′Mc and LP2Mc ' LP ′′Mc we have that LP ′‖P ′′Mc ' LP ′1‖P2Mc as required.

– if LαM = {} . ff(). We have two cases where either LP1Mc
LτM−−→ LP ′1Mc and LP2Mc

Lτ :M−−→ LP2Mc or

LP1Mc
Lτ :M−−→ LP1Mc and LP2Mc

LτM−−→ LP ′2Mc. We consider the first case and the other one is symmetrical.

By the induction hypothesis on the transitions LP1Mc
LτM−−→ LP ′1Mc and LP2Mc

Lτ :M−−→ LP2Mc we have that

there exist P ′ and P ′′ such that P1
τ−→ P ′ and P2

τ :−→ P ′′ where LP ′1Mc ' LP ′Mc and LP2Mc ' LP ′′Mc.1180

We can apply rule (12) Table 4 [11]:

P1
τ−→ P ′ P2

τ :−→ P ′′

P1‖P2
τ−→ P ′‖P ′′

Because LP ′1Mc ' LP ′Mc and LP ′2Mc ' LP ′′Mc we have that LP ′‖P ′′Mc ' LP ′1‖P ′2Mc as required.
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