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Abstract Many problems in reactive synthesis are stated using two for-
mulas —an environment assumption and a system guarantee— and ask
for an implementation that satisfies the guarantee in environments that
satisfy their assumption. Reactive synthesis tools often produce strate-
gies that formally satisfy such specifications by actively preventing an en-
vironment assumption from holding. While formally correct, such strate-
gies do not capture the intention of the designer. We introduce an addi-
tional requirement in reactive synthesis, non-conflictingness, which asks
that a system strategy should always allow the environment to fulfill its
liveness requirements. We give an algorithm for solving GR(1) synthe-
sis that produces non-conflicting strategies. Our algorithm is given by a
4-nested fixed point in the µ-calculus, in contrast to the usual 3-nested
fixed point for GR(1). Our algorithm ensures that, in every environment
that satisfies its assumptions on its own, traces of the resulting imple-
mentation satisfy both the assumptions and the guarantees. In addition,
the asymptotic complexity of our algorithm is the same as that of the
usual GR(1) solution. We have implemented our algorithm and show
how its performance compares to the usual GR(1) synthesis algorithm.

1 Introduction

Reactive synthesis from temporal logic specifications provides a methodology to
automatically construct a system implementation from a declarative specifica-
tion of correctness. Typically, reactive synthesis starts with a set of requirements
on the system and a set of assumptions about the environment. The objective of
the synthesis tool is to construct an implementation that ensures all guarantees
are met in every environment that satisfies all the assumptions; formally, the
synthesis objective is an implication A ⇒ G. In many synthesis problems, the
system can actively influence whether an environment satisfies its assumptions.
In such cases, an implementation that prevents the environment from satisfying
its assumptions is considered correct for the specification: since the antecedent
of the implication A⇒ G does not hold, the property is satisfied.

? Supported by project “d-SynMA” that is funded by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No 772459).
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Figure 1. Pictorial representation of a desired strategy for a robot (square) moving in
a maze in presence of a moving obstacle (circle). Obstacle and robot start in the lower
left and right corner, can move at most one step at a time (to non-occupied cells) and
cells that they should visit infinitely often are indicated in light and dark gray (see q0),
respectively. Nodes with self-loops (q{1,3,6,8}) can be repeated finitely often with the
obstacle located at one of the dotted positions.

Such implementations satisfy the letter of the specification but not its intent.
Moreover, assumption-violating implementations are not a theoretical curios-
ity but are regularly produced by synthesis tools such as slugs [14]. In recent
years, a lot of research has thus focused on how to model environment assump-
tions [19,11,2,5,4], so that assumption-violating implementations are ruled out.
Existing research either removes the “zero sum” assumption on the game by in-
troducing different levels of co-operation [5], by introducing equilibrium notions
inspired by non-zero sum games [7,21,16], or by introducing richer quantitative
objectives on top of the temporal specifications [3,1].

Contribution In this paper, we take an alternative approach. We consider the
setting of GR(1) specifications, where assumptions and guarantees are both con-
junctions of safety and Büchi properties [6]. GR(1) has emerged as an expressive
specification formalism [25,29,18] and, unlike full linear temporal logic, synthesis
for GR(1) can be implemented in time quadratic in the state/transition space.
In our approach, the environment is assumed to satisfy its assumptions provided
the system does not prevent this. Conversely, the system is required to pick a
strategy that ensures the guarantees whenever the assumptions are satisfied, but
additionally ensures non-conflictingness: along each finite prefix of a play accord-
ing to the strategy, there exists the persistent possibility for the environment to
play such that its liveness assumptions will be met.

Our main contribution is to show a µ-calculus characterization of winning
states (and winning strategies) that rules out system strategies that are winning
by preventing the environment from fulfilling its assumptions. Specifically, we
provide a 4-nested fixed point that characterizes winning states and strategies
that are non-conflicting and ensure all guarantees are met if all the assump-
tions are satisfied. Thus, if the environment promises to satisfy its assumption if
allowed, the resulting strategy ensures both the assumption and the guarantee.

Our algorithm does not introduce new notions of winning, or new logics or
winning conditions. Moreover, since µ-calculus formulas with d alternations can
be computed in O(ndd/2e) time [27,8], the O(n2) asymptotic complexity for the
new symbolic algorithm is the same as the standard GR(1) algorithm.

Motivating Example Consider a small two-dimensional maze with 3x2 cells
as depicted in Figure 1, state q0. A robot (square) and an obstacle (circle) are
located in this maze and can move at most one step at a time to non-occupied
cells. There is a wall between the lower and upper left cell and the lower and
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q4 q0 q1 q2 q3
Figure 2. Pictorial representation of the GR(1) winning strategy synthesized by slugs

for the robot (square) in the game described in Figure 1.

upper right cell. The interaction between the robot and the object is as follows:
first the environment chooses where to move the obstacle to, and, after observing
the new location of the obstacle, the robot chooses where to move.

Our objective is to synthesize a strategy for the robot s.t. it visits both the
upper left and the lower right corner of the maze (indicated in dark gray in
Figure 1, state q0) infinitely often. Due to the walls in the maze the robot needs
to cross the two white middle cells infinitely often to fulfill this task. If we assume
an arbitrary, adversarial behavior of the environment (e.g., placing the obstacle
in one white cell and never moving it again) this desired robot behavior cannot be
enforced. We therefore assume that the obstacle is actually another robot that is
required to visit the lower left and the upper right corner of the maze (indicated
in light gray in Figure 1, state q0) infinitely often. While we do not know the
precise strategy of the other robot (i.e., the obstacle), its liveness assumption
is enough to infer that the obstacle will always eventually free the white cells.
Under this assumption the considered synthesis problem has a solution.

Let us first discuss one intuitive strategy for the robot in this scenario, as
depicted in Figure 1. We start in q0 with the obstacle (circle) located in the lower
left corner and the robot (square) located in the lower right corner. Recall that
the obstacle will eventually move towards the upper right corner. The robot can
therefore wait until it does so, indicated by q1. Here, the dotted circles denote
possible locations of the obstacle during the (finitely many) repetitions of q1 by
following its self loop. Whenever the obstacle moves to the upper part of the
maze, the robot moves into the middle part (q2). Now it waits until the obstacle
reaches its goal in the upper right, which is ensured to happen after a finite
number of visits to q3. When the obstacle reaches the upper right, the robot
moves up as well (q4). Now the robot can freely move to its goal in the upper
left (q5). This process symmetrically repeats for moving back to the respective
goals in the lower part of the maze (q6 to q9 and then back to q0). With this
strategy, the interaction between environment and system goes on for infinitely
many cycles and the robot fulfills its specification.

The outlined synthesis problem can be formalized as a two player game with
GR(1) winning condition. When solving this synthesis problem using the tool
slugs [14], we obtain the strategy depicted in Figure 2 (not the desired one in
Figure 1). The initial state, denoted by q0 is the same as in Figure 1 and if the
environment moves the obstacle into the middle passage (q1) the robot reacts
as before; it waits until the object eventually proceeds to the upper part of the
maze (q2). However, after this happens the robot takes the chance to simply
move to the lower left cell of the maze and stays there forever (q3). By this,
the robot prevents the environment from fulfilling its objective. Similarly, if the
obstacle does not immediately start moving in q0, the robot takes the chance to
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place itself in the middle passage and stays there forever (q4). This obviously
prevents the environment from fulfilling its liveness properties.

In contrast, when using our new algorithm to solve the given synthesis prob-
lem, we obtain the strategy given in Figure 1, which satisfies the guarantees
while allowing the environment assumptions to be satisfied.

Related Work Our algorithm is inspired by supervisory controller synthesis
for non-terminating processes [24,28], resulting in a fixed-point algorithm over a
Rabin-Büchi automaton. This algorithm has been simplified for two interacting
Büchi automata in [23] without proof. We adapt this algorithm to GR(1) games
and provide a new, self-contained proof in the framework of two-player games,
which is distinct from the supervisory controller synthesis setting (see [13,26] for
a recent comparison of both frameworks).

The problem of correctly handling assumptions in synthesis has recently
gained attention in the reactive synthesis community [4]. As our work does
not assume precise knowledge about the environment strategy (or the ability
to impose the latter), it is distinct from cooperative approaches such as assume-
guarantee [9] or rational synthesis [17]. It is closest related to obliging games [10],
cooperative reactive synthesis [5], and assume-admissible synthesis [7]. Obliging
games [10] incorporate a similar notion of non-conflictingness as our work, but
do not condition winning of the system on the environment fulfilling the assump-
tions. This makes obliging games harder to win. Cooperative reactive synthesis
[5] tries to find a winning strategy enforcing A ∩ G. If this specification is not
realizable, it is relaxed and the obtained system strategy enforces the guarantees
if the environment cooperates “in the right way”. Instead, our work always as-
sumes the same form of cooperation; coinciding with just one cooperation lever
in [5]. Assume-admissible synthesis [7] for two players results in two individ-
ual synthesis problems. Given that both have a solution, only implementing the
system strategy ensures that the game will be won if the environment plays
admissible. This is comparable to the view taken in this paper, however, assum-
ing that the environment plays admissible is stronger then our assumption on
an environment attaining its liveness properties if not prevented from doing so.
Moreover, we only need so solve one synthesis problem, instead of two. However,
it should be noted that [10,5,7] handle ω-regular assumptions and guarantees.
We focus on the practically important GR(1) fragment and our method better
leverages the computational benefits for this fragment.

All proofs of our results and additional examples can be found in the extended
version [22]. We further acknowledge that the same problem was independently
solved in the context of reactive robot mission plans [12] which was brought to
our attention only shortly before the final submission of this paper.

2 Two Player Games and the Synthesis Problem

2.1 Two Player Games

Formal Languages Let Σ be a finite alphabet. We write Σ∗, Σ+, and Σω for
the sets of finite words, non-empty finite words, and infinite words over Σ. We
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write w ≤ v (resp., w < v) if w is a prefix of v (resp., a strict prefix of v). The
set of all prefixes of a word w ∈ Σω is denoted pfx(w) ⊆ Σ∗. For L ⊆ Σ∗, we
have L ⊆ pfx(L). For L ⊆ Σω we denote by L its complement Σω \ L.

Game Graphs and Strategies A two player game graph H = (Q0, Q1, δ0, δ1, q0)
consists of two finite disjoint state sets Q0 and Q1, two transition functions
δ0 : Q0 → 2Q

1

and δ1 : Q1 → 2Q
0

, and an initial state q0 ∈ Q0. We write
Q = Q0 ∪Q1. Given a game graph H, a strategy for player 0 is a function f0 :
(Q0Q1)∗Q0 → Q1; it is memoryless if f0(νq0) = f1(q0) for all ν ∈ (Q0Q1)∗ and
all q0 ∈ Q0. A strategy f1 : (Q0Q1)+ → Q0 for player 1 is defined analogously.
The infinite sequence π ∈ (Q0Q1)ω is called a play over H if π(0) = q0 and for all
k ∈ N holds that π(2k+1) ∈ δ0(π(2k)) and π(2k+2) ∈ δ1(π(2k+1)); π is compli-
ant with f0 and/or f1 if additionally holds that f0(π|[0,2k]) = π(2k+ 1) and/or
f1(π|[0,2k+1]) = π(2k + 2). We denote by L(H, f0), L(H, f1) and L(H, f0, f1)
the set of plays over H compliant with f0, f1, and both f0 and f1, respectively.

Winning Conditions We consider winning conditions defined over sets of
states of a given game graph H. Given F ⊆ Q, we say a play π satisfies
the Büchi condition F if Inf(π)∩F 6= ∅, where Inf(π) = {q ∈ Q | π(k) =
q for infinitely many k ∈ N}. Given a set F = {F1, . . ., Fm}, where each Fi ⊆ Q,
we say a play π satisfies the generalized Büchi condition F if Inf(π)∩Fi 6= ∅
for each i ∈ [1;m]. We additionally consider generalized reactivity winning con-
ditions with rank 1 (GR(1) winning conditions in short). Given two general-
ized Büchi conditions F0 = {F 0

1 , . . ., F
0
m} and F1 = {F 1

1 , . . ., F
1
n}, a play π

satisfies the GR(1) condition if either Inf(π)∩F 0
i = ∅ for some i ∈ [1;m] or

Inf(π)∩F 1
j 6= ∅ for each j ∈ [1;m]. That is, whenever the play satisfies F0, it

also satisfies F1. We use the tuples (H,F ), (H,F) and (H,F0,F1) to denote a
Büchi, generalized Büchi and GR(1) game over H, respectively, and collect all
winning plays in these games in the sets L(H,F ), L(H,F) and L(H,F0,F1). A
strategy f l is winning for player l in a Büchi, generalized Büchi, or GR(1) game,
if L(H, f l) is contained in the respective set of winning plays.

Set Transformers on Games Given a game graph H, we define the existential,
universal, and player 0-, and player 1-controllable pre-operators. Let P ⊆ Q.

Pre∃(P ) =
{
q0 ∈ Q0

∣∣δ0(q0) ∩ P 6= ∅
}
∪
{
q1 ∈ Q1

∣∣δ1(q1) ∩ P 6= ∅
}
, and (1)

Pre∀(P ) =
{
q0 ∈ Q0

∣∣δ0(q0) ⊆ P
}
∪
{
q1 ∈ Q1

∣∣δ1(q1) ⊆ P
}
, (2)

Pre0(P ) =
{
q0 ∈ Q0

∣∣δ0(q0) ∩ P 6= ∅
}
∪
{
q1 ∈ Q1

∣∣δ1(q1) ⊆ P
}
, and (3)

Pre1(P ) =
{
q0 ∈ Q0

∣∣δ0(q0) ⊆ P
}
∪
{
q1 ∈ Q1

∣∣δ1(q1) ∩ P 6= ∅
}
. (4)

Observe that Q \ Pre∃(P ) = Pre∀(Q \ P ) and Q \ Pre1(P ) = Pre0(Q \ P ).
We combine the operators in (1)-(4) to define a conditional predecessor CondPre

and its dual CondPre for sets P, P ′ ⊆ Q by

CondPre(P, P ′) :=Pre∃(P ) ∩ Pre1(P ∪ P ′), and (5)

CondPre(P, P ′) :=Pre∀(P ) ∪ Pre0(P ∩ P ′). (6)

We see that Q \ CondPre(P, P ′) = CondPre(Q \ P, Q \ P ′).
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µ-Calculus We use the µ-calculus as a convenient logical notation used to define
a symbolic algorithm (i.e., an algorithm that manipulates sets of states rather
then individual states) for computing a set of states with a particular property
over a given game graph H. The formulas of the µ-calculus, interpreted over a
two-player game graph H, are given by the grammar

ϕ ::= p | X | ϕ ∪ ϕ | ϕ1 ∩ ϕ2 | pre(ϕ) | µX.ϕ | νX.ϕ

where p ranges over subsets of Q, X ranges over a set of formal variables,
pre ∈ {Pre∃,Pre∀,Pre0,Pre1,CondPre,CondPre} ranges over set transformers,
and µ and ν denote, respectively, the least and greatest fixpoint of the functional
defined as X 7→ ϕ(X). Since the operations ∪, ∩, and the set transformers pre
are all monotonic, the fixpoints are guaranteed to exist. A µ-calculus formula
evaluates to a set of states over H, and the set can be computed by induction
over the structure of the formula, where the fixpoints are evaluated by iteration.
We omit the (standard) semantics of formulas [20].

2.2 The Considered Synthesis Problem

The GR(1) synthesis problem asks to synthesize a winning strategy for the sys-
tem player (player 1) for a given GR(1) game (H,FA,FG) or determine that
no such strategy exists. This can be equivalently represented in terms of ω-
languages, by asking for a system strategy f1 over H s.t.

∅ 6= L(H, f1) ⊆ L(H,FA) ∪ L(H,FG).

That is, the system wins on plays π ∈ L(H, f1) if either π /∈ L(H,FA) or
π ∈ L(H,FA)∩L(H,FG). The only mechanism to ensure that sufficiently many
computations will result from f1 is the usage of the environment input, which
enforces a minimal branching structure. However, the system could still win this
game by falsifying the assumptions; i.e., by generating plays π /∈ L(H,FA) that
prevent the environment from fulfilling its liveness properties.

We suggest an alternative view to the usage of the assumptions on the envi-
ronment FA in a GR(1) game. The condition FA can be interpreted abstractly
as modeling an underlying mechanism that ensures that the environment player
(player 0) generates only inputs (possibly in response to observed outputs) that
conform with the given assumption. In this context, we would like to ensure
that the system (player 1) allows the environment, as much as possible, to ful-
fill its liveness and only restricts the environment behavior if needed to enforce
the guarantees. We achieve this by forcing the system player to ensure that the
environment is always able to play such that it fulfills its liveness, i.e.

pfx(L(H, f1)) = pfx(L(H, f1) ∩ L(H,FA)) .

As the ⊇-inclusion trivially holds, the constraint is given by the ⊆-inclusion.
Intuitively, the latter holds if every finite play α compliant with f1 over H can
be extended (by a suitable environment strategy) to an infinite play π compliant
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with f1 that fulfills the environment liveness assumptions. It is easy to see that
not every solution to the GR(1) game (H,FA,FG) (in the classical sense) supplies
this additional requirement. We therefore propose to synthesize a system strategy
f1 with the above properties, as summarized in the following problem statement.

Problem 1. Given a GR(1) game (H,FA,FG) synthesize a system strategy f1

s.t. ∅ 6= L(H, f1) ⊆ L(H,FA) ∪ L(H,FG), (7a)

and pfx(L(H, f1)) = pfx(L(H, f1) ∩ L(H,FA)) (7b)

both hold, or verify that no such system strategy exists. �

Problem 1 asks for a strategy f1 s.t. every play π compliant with f1 over
H fulfills the system guarantees, i.e., π ∈ L(H,FG), if the environment ful-
fills its liveness properties, i.e., if π ∈ L(H,FA) (from (7a)), while the latter
always remains possible (by a suitably playing environment) due to (7b). In-
spired by algorithms solving the supervisory controller synthesis problem for
non-terminating processes [24,28], we propose a solution to Problem 1 in terms
of a vectorized 4-nested fixed-point in the remaining part of this paper. We show
that Problem 1 can be solved by a finite-memory strategy, if a solution exists.

We note that (7b) is not a linear time but a branching time property and
can therefore not be “compiled away” into a different GR(1) or even ω-regular
objective. Satisfaction of (7b) requires checking whether the set FA remains
reachable from any reachable state in the game graph realizing L(H, f1)3.

3 Algorithmic Solution for Singleton Winning Conditions

We first consider the GR(1) game (H,FA,FG) with singleton winning conditions
FA = {FA} and FG = {FG}, i.e., n = m = 1. It is well known that a system
winning strategy f1 for this game can be synthesized by solving a three color
parity game over H. This can be expressed by the µ-calculus formula (see [15])

ϕ3 := νZ . µY . νX . (FG ∩ Pre1(Z)) ∪ Pre1(Y ) ∪ (Q \ FA ∩ Pre1(X)). (8)

It follows that q0 ∈ [[ϕ3]] if and only if the synthesis problem has a solution
and the winning strategy f1 is obtained from a ranking argument over the sets
computed during the evaluation of (8).

To obtain a system strategy f1 solving Problem 1 instead, we propose to
extend (8) to a 4-nested fixed-point expressed by the µ-calculus formula

ϕ4 = νZ . µY . νX . µW .

(FG ∩ Pre1(Z)) ∪ Pre1(Y ) ∪ ((Q \ FA) ∩ CondPre(W,X \ FA)) .
(9)

Compared to (8) this adds an inner-most largest fixed-point and substitutes
the last controllable pre-operator by the conditional one. Intuitively, this distin-
guishes between states from which player 1 can force visiting FG and states from

3 It can indeed be expressed by the CTL∗ formula AGEFFA (see [13], Sec. 3.3.2).
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which player 1 can force avoiding FA. This is in contrast to (8) and allows to
exclude strategies that allow player 1 to win by falsifying the assumptions.

The remainder of this section shows that q0 ∈ [[ϕ4]] if and only if Problem 1
has a solution and the winning strategy f1 fulfilling (7) can be obtained from a
ranking argument over the sets computed during the evaluation of (9).

Soundness
We prove soundness of (9) by showing that every state q ∈ [[ϕ4]] is winning for

the system player. In view of Problem 1 this requires to show that there exists
a system strategy f1 s.t. all plays starting in a state q ∈ [[ϕ4]] and evolving in
accordance to f1 result in an infinite play that fulfills (7a) and (7b).

We start by defining f1 from a ranking argument over the iterations of (9).
Consider the last iteration of the fixed-point in (9) over Z. As (9) terminates
after this iteration we have Z = Z∞ = [[ϕ4]]. Assume that the fixed point over Y
is reached after k iterations. If Y i is the set obtained after the i-th iteration, we
have that Z∞ =

⋃k
i=0 Y

i with Y i ⊆ Y i+1, Y 0 = ∅ and Y k = Z∞. Furthermore,
let Xi = Y i denote the fixed-point of the iteration over X resulting in Y i and
denote by W i

j the set obtained in the jth iteration over W performed while using

the value Xi for X and Y i−1 for Y . Then it holds that Y i = Xi =
⋃li

j=0W
i
j

with W i
j ⊆W i

j+1, W i
0 = ∅ and W i

li
= Y i for all i ∈ [0; k].

Using these sets, we define a ranking for every state q ∈ Z∞ s.t.

rank(q) = (i, j) iff q ∈
(
Y i \ Y i−1) ∩ (W i

j \W i
j−1
)

for i, j > 0. (10)

We order ranks lexicographically. It further holds that (see [22])

q ∈ D ⇔ rank(q) = (1, 1) ⇔ q ∈ FG ∩ Z∞ (11a)

q ∈ Ei ⇔ rank(q) = (i, 1) ∧ i > 1 ⇔ q ∈ (FA \ FG) ∩ Z∞ (11b)

q ∈ Ri
j ⇔ rank(q) = (i, j) ∧ j > 1 ⇔ q ∈ (Z∞ \ (FA ∪ FG)), (11c)

where D, Ei and Ri
j denote the sets added to the winning state set by the first,

second and third term of (9), respectively, in the corresponding iteration.
Figure 3 (left) shows a schematic representation of this construction for an

example with k = 3, l1 = 4, l2 = 2 and l3 = 3. The set D = FG ∩ Z∞ is repre-
sented by the diamond at the top where the label (1, 1) denotes the associated
rank (see (11a)). The ellipses represent the sets Ei ⊆ (FA \FG)∩Z∞, where the
corresponding i > 1 is indicated by the associated rank (i, 1). Due to the use of
the controllable pre-operator in the first and second term of (9), it is ensured
that progress out of D and Ei can be enforced by the system, indicated by the
solid arrows. This is in contrast to all states in Ri

j ⊆ Z∞ \ FA \ FG , which are
represented by the rectangular shapes in Figure 3 (left). These states allow the
environment to increase the ranking (dashed lines) as long as Z∞\FA\FG is not
left and there exists a possible move to decrease the j-rank (dotted lines). While
this does not strictly enforce progress, we see that whenever the environment
plays such that states in FA (i.e., the ellipses) are visited infinitely often (i.e., the
environment fulfills its assumptions), the system can enforce progress w.r.t. the
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a, 3, 1, 2

a, 3, 3, 3

a, 3, 3, 2

a, 3, ·, 1

a, 2, 1, 3

a, 2, 1, 2

a, 2, 2, 3

a, 2, 2, 2

a, 2, 3, 3

a, 2, 3, 2

a, 2, ·, 1

a, 1, 2, 5

a, 1, 2, 4

a, 1, 2, 3

a, 1, 2, 2

a, 1, 3, 3

a, 1, 3, 2

a, 1, ·, 1

Figure 3. Schematic representation of the ranking defined in (10) (left) and in (16)
(right). Diamond, ellipses and rectangles represent the sets D, Ei and Ri

j , while blue,
green and red indicate the sets Y 1, Y 2 \ Y 1 and Y 3 \ Y 2 (annotated by a/ab for the
right figure). Labels (i, j) and (a, i, b, j) indicate that all states q associated with this
set fulfill rank(q) = (i, j) and abrank(q) = (i, j), respectively. Solid, colored arcs indicate
system-enforceable moves, dotted arcs indicate existence of environment or system
transitions and dashed arcs indicate possible existence of environment transitions.

defined ranking and states in FG (i.e., the diamond shape) is eventually visited.
The system is restricted to take the existing solid or dotted transitions in Fig-
ure 3 (left). With this, it is easy to see that the constructed strategy is winning
if the environment fulfills its assumptions, i.e., (7a) holds. However, to ensure
that (7b) also holds, we need an additional requirement. This is necessary as the
used construction also allows plays to cycle through the blue region of Figure 3
(left) only, and by this not surely visiting states in FA infinitely often. However,
if L(H,FG) ⊆ L(H,FA) we see that (7b) holds as well. It should be noted that
the latter is a sufficient condition which can be easily checked symbolically on
the problem instance but not a necessary one.

Based on the ranking in (10) we define a memory-less system strategy f1 :
Q1 ∩ Z∞ → Q0 ⊆ δ1 s.t. the rank is always decreased, i.e.,

q′ = f1(q)⇒

{
rank(q′) < rank(q), rank(q) > (1, 1)

q′ ∈ Z∞, otherwise
. (12)

The next theorem shows that this strategy indeed solves Problem 1.
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Theorem 1. Let (H,FA,FG) be a GR(1) game with singleton winning condi-
tions FA = {FA} and FG = {FG}. Suppose f1 is the system strategy in (12)
based on the ranking in (10). Then it holds for all q ∈ [[ϕ4]] that4

Lq(H, f1) ⊆ Lq(H,FA) ∪ Lq(H,FG), (13a)

Lq(H, f1) ∩ Lq(H,FG) 6= ∅, and (13b)

Lq(H,FG)⊆Lq(H,FA)⇒ pfx(Lq(H, f1))=pfx(Lq(H, f1)∩Lq(H,FA)). (13c)

Completeness
We show completeness of (9) by establishing that every state q ∈ Q\[[ϕ4]] = [[ϕ4]]
is losing for the system player. In view of Problem 1 this requires to show that for
all q ∈ [[ϕ4]] and all system strategies f1 either (7a) or (7b) does not hold. This is
formalized in [22] by first negating the fixed-point in (9) and deriving the induced
ranking of this negated fixed-point. Using this ranking, we first show that the
environment can (i) render the negated winning set Z

∞
invariant and (ii) can

always enforce the play to visit FG only finitely often, resulting in a violation
of the guarantees. Using these observations we finally show that whenever (7a)
holds for an arbitrary system strategy f1 starting in [[ϕ4]], then (7b) cannot hold.
With this, completeness, as formalized in the following theorem, directly follows.

Theorem 2. Let (H,FA,FG) be a GR(1) game with singleton winning condi-
tions FA = {FA} and FG = {FG}. Then it holds for all q ∈ [[ϕ4]] and all system
strategies f1 over H that either

∅ 6= Lq(H, f1) ⊆ Lq(H,FA) ∪ Lq(H,FG), or (14a)

pfx(Lq(H, f1)) = pfx(Lq(H, f1) ∩ Lq(H,FA)) does not hold. (14b)

A Solution for Problem 1
We note that the additional assumption in Theorem 1 is required only to ensure
that the resulting strategy fulfills (7b). Suppose that this assumption holds for
the initial state q0 of H. That is, consider a GR(1) game (H,FA,FG) with single-
ton winning conditions FA = {FA} and FG = {FG} s.t. L(H,FG) ⊆ L(H,FA).
Then it follows from Theorem 2 that Problem 1 has a solution iff q0 ∈ [[ϕ4]].
Furthermore, if q0 ∈ [[ϕ4]], based on the intermediate values maintained for the
computation of ϕ4 in (10) and the ranking defined in (12), we can construct f1

that wins the GR(1) condition in (7a) and is non-conflicting, as in (7b).
We can check symbolically whether L(H,FG) ⊆ L(H,FA). For this we con-

struct a game graph H ′ from H by removing all states in FA, and then check
whether L(H ′, FG) is empty. The latter is decidable in logarithmic space and
polynomial time. If this check fails, then L(H,FG) 6⊆ L(H,FA). Furthermore,
we can replace L(H,FG) in (7a) by L(H,FG) ∩ L(H,FA) without affecting the
restriction (7a) imposes on the choice of f1. Given singleton winning conditions
FG and FA, we see that L(H,FG) ∩ L(H,FA) = L(H, {FG , FA}) and it trivially

4 Given a state q ∈ Q = Q0 ∪Q1 we use the subscript q to denote that the respective
set of plays is defined by using q as the initial state of H.
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holds that L(H, {FG , FA}) ⊆ L(H,FA). That is, we fulfill the conditional by re-
placing the system guarantee L(H,FG) by L(H, {FG , FA}). However, this results
in a GR(1) synthesis problem with m = 1 and n = 2, which we discuss next.

4 Algorithmic Solution for GR(1) Winning Conditions

We now consider a general GR(1) game (H,FA,FG) with FA = {1FA, . . .,mFA}
and FG = {1FG , . . ., nFG} s.t. n,m > 1. The known fixed-point for solving GR(1)
games in [6] rewrites the three nested fixed-point in (8) in a vectorized version,
which induces an order on the guarantee sets in FG and adds a disjunction over
all assumption sets in FA to every line of this vectorized fixed-point. Adapting
the same idea to the 4-nested fixed-point algorithm (9) results in

ϕ4 = ν


1Z
2Z
...

nZ

 .

µ 1Y .

(∨m
b=1 ν 1bX . µ 1bW 1bΩ

)
µ 2Y .

(∨m
b=1 ν 2bX . µ 2bW 2bΩ

)
...

µ nY .
(∨m

b=1 ν nbX . µ nbW nbΩ
)
 , (15)

where, abΩ = (aFG ∩ Pre1(a
+

Z)) ∪ Pre1(aY ) ∪ (Q \ bFA ∩ CondPre(W,X \ bFA))
and a+ denotes (a mod n) + 1.

The remainder of this section shows how soundness and completeness carries
over from the 4-nested fixed-point algorithm (9) to its vectorized version in (15).

Soundness and Completeness
We refer to intermediate sets obtained during the computation of the fixpoints
by similar notations as in Section 3. For example, the set aY i is the i-th ap-
proximation of the fixpoint computing aY and abW i

j is the j-th approximation

of abW while computing the i-th approximation of aY , i.e., computing aY i and
using aY i−1. Similar to the above, we define a mode-based rank for every state
q ∈ aZ∞; we track the currently chased guarantee a ∈ [1;n] (similar to [6]) and
the currently avoided assumption set b ∈ [1,m] as an additional internal mode.
In analogy to (10) we define

abrank(q) = (i, j) iff q ∈
(
aY i \ aY i−1) ∩ (abW i

j \ abW i
j−1
)

for i, j > 0. (16)

Again, we order ranks lexicographically, and, in analogy to (11), we have

q ∈ aD ⇔ a·rank(q) = (1, 1) ⇒ q ∈ aFG , (17a)

q ∈ aEi ⇔ a·rank(q) = (i, 1) ∧ i>1, (17b)

q ∈ abRi
j ⇔ abrank(q) = (i, j) ∧ j > 1 ⇒ q /∈ bFA. (17c)

The sets aY i, abW i
j , aD, aEi and abRi

j are interpreted in direct analogy to Sec-
tion 3, where a and b annotate the used line and conjunct in (15).

Figure 3 (right) shows a schematic representation of the ranking for an ex-
ample with ak = 3, a1l1 = 0, a2l1 = 4, a3l1 = 2, a·l2 = 2, a1l3 = 3, a2l3 = 0,
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and a3l3 = 2. Again, the set aD ⊆ aFG is represented by the diamond at the
top of the figure. Similarly, all ellipses represent sets aEi added in the i-th iter-
ation over line a of (15). Again, progress out of ellipses can be enforced by the
system, indicated by the solid arrows leaving those shapes. However, this might
not preserve the current b mode. It might be the environment choosing which
assumption to avoid next. Further, the environment might choose to change the
b mode along with decreasing the i-rank, as indicated by the colored dashed
lines5. Finally, the interpretation of the sets represented by rectangular shapes
in Figure 3 (right), corresponding to (17c), is in direct analogy to the case with
singleton winning conditions. It should be noticed that this is the only place
where we preserve the current b-mode when constructing a strategy.

Using this intuition we define a system strategy that uses enforceable and
existing transitions to decrease the rank if possible and preserves the current a
mode until the diamond shape is reached. The b mode is only preserved within
rectangular sets. This is formalized by a strategy

f1 :
⋃

a∈[1;n]
(
(Q1 ∩ aZ∞)× a× [1;m]

)
→ Q0 × [1;n]× [1;m] (18a)

s.t. (q′, ·, ·) = f1(q, ·, ·) implies q′ ∈ δ1(q) and (q′, a′, b′) = f1(q, a, b) implies
q′ ∈ a+

Z∞ ∧ a′ = a+, abrank(q) = (1, 1)
a′b′rank(q′) ≤ (i− 1, ·) ∧ a′ = a, abrank(q) = (i, 1), i > 1
a′b′rank(q′) ≤ (i, j − 1) ∧ a′ = a ∧ b′ = b, abrank(q) = (i, j), j > 1

. (18b)

We say that a play π over H is compliant with f1 if there exist mode traces α ∈
[1;n]ω and β ∈ [1;m]ω s.t. for all k ∈ N holds (π(2k+ 2), α(2k+ 2), β(2k+ 2)) =
f1(π(2k+ 1), α(2k+ 1), β(2k+ 1)), and (i) α(2k+ 1) = α(2k)+ if abrank(π(2k+
1)) = (1, 1), (ii) α(2k + 1) = α(2k) if abrank(π(2k + 1)) = (i, 1), i > 1, and
(iii) α(2k+ 1) = α(2k) and β(2k+ 1) = β(2k) if abrank(π(2k+ 1)) = (i, j), j > 1.

With this it is easy to see that the intuition behind Theorem 1 directly carries
over to every line of (15). Additionally, using Pre1(a

+

Z) in aD allows to cycle
through all the lines of (15), which ensures that every set aFG ∈ FG is tried to
be attained by the constructed system strategy in a pre-defined order. See [22]
for a formalization of this intuition and a detailed proof.

To prove completeness, it is also shown in [22] that the negation of (15) can be
over-approximated by negating every line separately. Therefore, the reasoning for
every line of the negated fixed-point carries over from Section 3, resulting in the
analogous completeness result. With this we obtain soundness and completeness
in direct analogy to Theorem 1-2, formalized in Theorem 3.

Theorem 3. Let (H,FA,FG) be a GR(1) game with FA = {1FA, . . .,mFA} and
FG = {1FG , . . ., nFG}. Suppose f1 is the system strategy in (18) based on the
ranking in (16). Then it holds for all q ∈ [[ϕv

4]] that (13) holds. Furthermore, it
holds for all q /∈ [[ϕv

4]] and all system strategies f1 over H that either (14a) or
(14b) does not hold.

5 The strategy extraction in (18) prevents the system from choosing a different b mode.
The strategy choice could be optimized w.r.t. fast progress towards aFG in such cases.
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A Solution for Problem 1
Given that L(H,FG) ⊆ L(H,FA) it follows from Theorem 3 that Problem 1 has
a solution iff q0 ∈ [[ϕv

4]]. Furthermore, if q0 ∈ [[ϕv
4]] we can construct f1 that wins

the GR(1) condition in (7a) and is non-conflicting, as in (7b).
Using a similar construction as in Section 3, we can symbolically check

whether L(H,FG) ⊆ L(H,FA). For this, we construct a new game graph Hb

for every bFA, b ∈ [1;m] by removing the latter set from the state set of H and
checking whether L(Hb,FG) is empty. If some of these m checks fail, we have
L(H,FG) 6⊆ L(H,FA). Now observe that by checking every bFA separately, we
know which goals are not necessarily passed by infinite runs which visit all aFG
infinitely often and can collect them in the set F failed

A . Using the same reason-
ing as in Section 3, we can simply add the set F failed

A to the system guarantee
set to obtain an equivalent synthesis problem which is solvable by the given al-
gorithm, if it is realizable. More precisely, consider the new system guarantee
set F ′G = FG ∪ F failed

A and observe that L(H,F ′G) ⊆ L(H,FA) by definition,
and therefore substituting L(H,FG) by L(H,F ′G) in (7a) does not change the
satisfaction of the given inclusion.

5 Complexity Analysis

We show that the search for a more elaborate strategy does not affect the worst
case complexity. In Section 6 we show that this is also the case in practice. We
state this complexity formally below.

Theorem 4. Let (H,FA,FG) be a GR(1) game. We can check whether there
is a winning non-conflicting strategy f1 by a symbolic algorithm that performs
O(|Q|2|FG ||FA|) next step computations and by an enumerative algorithm that
works in time O(m|Q|2|FG ||FA|), where m is the number of transitions of the
game.

Proof. Each line of the fixed-point is iterated O(|Q|2) times [8]. As there are
|FG ||FA| lines the upper bound follows. As we have to compute |FG ||FA| different
ranks for each state, it follows that the complexity is O(m|Q|2|FG ||FA|).

We note that enumeratively our approach is theoretically worse than the
classical approach to GR(1). This follows from the straight forward reduction to
the rank computation in the rank lifting algorithm and the relative complexity
of the new rank when compared to the general GR(1) rank. We conjecture that
more complex approaches, e.g., through a reduction to a parity game and the
usage of other enumerative algorithms, could eliminate this gap.

6 Experiments

We have implemented the 4-nested fixed-point algorithm in (15) and the corre-
sponding strategy extraction in (18). It is available as an extension to the GR(1)
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synthesis tool slugs [14]. In this section we show how this algorithm (called
4FP) performs in comparison to the usual 3-nested fixed-point algorithm for
GR(1) synthesis (called 3FP) available in slugs. All experiments were run on a
computer with an Intel i5 processor running an x86 Linux at 2 GHz with 8 GB
of memory.

We first run both algorithms on a benchmark set obtained from the maze
example in the introduction by changing the number of rows and columns of the
maze. We first increased the number of lines in the maze and added a goal state
for both the obstacle and the robot per line. This results in a maze where in the
first and last column, system and environment goals alternate and all adjacent
cells are separated by a horizontal wall. Hence, both players need to cross the
one-cell wide white space in the middle infinitely often to visit all their goal
states infinitely often. The computation times and the number of states in the
resulting strategy are shown in Table 1, upper part, column 3-6. Interestingly,
we see that the 3FP always returns a strategy that blocks the environment.
In contrast, the non-conflicting strategies computed by the 4FP are relatively
larger (in state size) and computed about 10 times slower compared to the
3FP (compare column 3-4 and 5-6). When increasing the number of columns
instead (lower part of Table 1), the number of goals is unaffected. We made
the maze wider and left only a one-cell wide passage in the middle of the maze
to allow crossings between its upper and lower row. Still, the 3FP only returns
strategies that falsify the assumption, which have fewer states and are computed
much faster than the environment respecting strategy returned by the 4FP.
Unfortunately, the speed of computing a strategy or its size is immaterial if the
winning strategy so computed wins only by falsifying assumptions.

To rule out the discrepancy between the two algorithms w.r.t. the size of
strategies, we slightly modified the above maze benchmark s.t. the environment
assumptions are not falsifiable anymore. We increased the capabilities of the
obstacle by allowing it to move at most 2 steps in each round and to “jump
over” the robot. Under these assumptions we repeated the above experiments.
The computation times and the number of states in the resulting strategy are
shown in Table 1, column 9-12. We see, that in this case the size of the strategies
computed by the two algorithms are more similar. The larger number for the
4FP is due to the fact that we have to track both the a and the b mode, possibly

Table 1. Experimental results for the maze benchmark. The size of the maze is given
in columns/lines, the number of goals is given per player. The states are counted for the
returned winning strategies. Strategies preventing the environment from fulfilling its
goals are indicated by a ∗. Recorded computation times are rounded wall-clock times.

falsifiable assumptions non-falsifiable assumptions
3FP 4FP Heuristic 3FP 4FP Heuristic

size goals states time states time states time states time states time states time

3/2 2 10∗ < 1s 46 < 1s 12 < 1s 35 < 1s 50 < 1s 40 < 1s

3/10 10 34∗ < 1s 1401 8s 1307 3s 1119 1s 1513 13s 1533 5s
3/20 20 64∗ 21s 5799 201s 5732 337s 3926 37s 6000 163s 6378 105s

25/2 2 94∗ < 1s 2144 4s n.r. 6s 744 < 1s 2318 4s n.r. 5s
63/2 2 397∗ < 1s 14259 32s n.r. 101s 4938 2s 15465 54s n.r. 66s
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resulting in multiple copies of the same a-mode state. We see that the state
difference decreases with the number of goals (upper part of Table 1, column
9-12) and increases with the number of (non-goal) states (lower part of Table 1,
column 9-12). In both cases, the 3FP still computes faster, but the difference
decreases with the number of goals.

In addition to the 3FP and the 4FP we have also tested a sound but incom-
plete heuristic, which avoids the disjunction over all b’s in every line of (15) by
only investigating a = b. The state count and computation times for this heuris-
tic are shown in Table 1, column 7-8 for the original maze benchmark, and in
column 13-14 for the modified one. We see that in both cases the heuristic only
returns a winning strategy if the maze is not wider then 3 cells. This is due to the
fact that in all other cases the robot cannot prevent the obstacle from attaining
a particular assumption state until the robot has moved from one goal to the
next. The 4FP handles this problem by changing between avoided assumptions
in between visits to different goals. Intuitively, the computation times and state
counts for the heuristic should be smaller then for the 4FP, as the exploration
of the disjunction over b’s is avoided, which is true for many scenarios of the
considered benchmark. It should however be noted that this is not always the
case (compare e.g. line 3, column 6 and 8). This stems from the fact that re-
stricting the synthesis to avoiding one particular assumption might require more
iterations over W and Y within the fixed-point computation.

7 Discussion

We believe the requirement that a winning strategy be non-conflicting is a sim-
ple way to disallow strategies that win by actively preventing the environment
from satisfying its assumptions, without significantly changing the theoretical
formulation of reactive synthesis (e.g., by adding different winning conditions or
new notions of equilibria). It is not a trace property, but our main results show
that adding this requirement retains the algorithmic niceties of GR(1) synthesis:
in particular, symbolic algorithms have the same asymptotic complexity.

However, non-conflictingness makes the implicit assumption of a “maximally
flexible” environment: it is possible that because of unmodeled aspects of the
environment strategy, it is not possible for the environment to satisfy its spec-
ifications in the precise way allowed by a non-conflicting strategy. In the maze
example discussed in Section 1, the environment needs to move the obstacle to
precisely the goal cell which is currently rendered reachable by the system. If the
underlying dynamics of the obstacle require it to go back to the lower left from
state q3 before proceeding to the upper right (e.g., due to a required battery
recharge), the synthesized robot strategy prevents the obstacle from doing so.

Finally, if there is no non-conflicting winning strategy, one could look for a
“minimally violating” strategy. We leave this for future work. Additionally, we
leave for future work the consideration of non-conflictingness for general LTL
specifications or (efficient) fragments thereof.
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