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1 Aims

•Visual grounding of objects descriptions.
• Learning to recognise objects in interaction

(Skočaj et al., 2010):
– human tutor;
– situated dialogue system.

•Few-shot learning with neural networks: ob-
ject categories from few samples.

•Transfer learning: pre-trained knowledge on
large offline dataset.

2 Robot setup

•Based on the Kille framework (Dobnik and
de Graaf, 2017).

•Microsoft Kinect v1 RGB-D sensor using
Freenect drivers.

•Robot Operating System (ROS) framework
(Quigley et al., 2009).

•Python scripts implemented as nodes within the
ROS community take care of
– object recognition;
– dialogue management.

3 Visual classification

•The goal is to train neural network models for
image classification which are suitable for on-
line interaction with a robot.

•Therefore, we need:
– very fast training;
– learning from few observations.

•A neural network which consists of two mod-
ules.

• Image encoder with VGG16 CNN layers (Si-
monyan and Zisserman, 2014).
– Pre-trained on ImageNet (Russakovsky et al.,

2015).
– Test transfer learning from a large dataset.

•Matching Networks (Vinyals et al., 2016) in a
robot scenario.
– Neural network algorithm designed for one-

shot learning.
– Fast learning from few examples.

•Each training instance consists of:
– Few (k ) images of each labelled class (n) that

make up the support set S.
– A target image t belonging to one of these

classes.
•The objective is to predict the class of t and

therefore learn how to discriminate images of
different classes.

4 Experiments

Baseline
•How well does the system manage to recognise

object categories of the miniImageNet corpus
(Vinyals et al., 2016)?
– 5 or 20 labels are presented in each round,

each with 1, 5 or 10 images.
– Evaluate the accuracy of the object recogni-

tion on the rest of the images of each label.
– The time that the system takes to encode the

images and to train the matching network.

5 labels 1-shot 5-shot 10-shot
Accuracy 75.8% 89.8% 98.8%
Encode time 1.12s 1.63s 2.15s
Training time 1.43s 3.57s 7.27s
20 labels 1-shot 5-shot 10-shot
Accuracy 52.5% 74.2% 82.6%
Encode time 1.41s 1.93s 2.39s
Training time 3.26 12.15s 25.99s

Figure 1: Baseline results on miniImageNet. Encode time
is the number of seconds to encode the support set (S) im-
ages with VGG16. Training time is the number of seconds
to train the matching network.

•The system achieves very good results for 5-
shots or more and it is fast to encode images
and train a new model.

•However, training time increases significantly
when adding more categories and images per
category.

Learning a new class of objects
•How many examples are required to learn a

new label?
– Images collected from our robot domain: 20

categories with 20 images per category.
– Each round has 19 categories already

learned (5-shot) and one new label with 1 to 5
images in each round.

– Evaluate the performance on the new label:
the rest of the images of this label.

Figure 2: Results on learning new labels. The k-shot
learned label is specified on the y axis and each of the bars
represent the accuracy of the classification from 1-shot to
5-shot.

• 4-5 images are necessary for most of the labels
to recognised reliably.

•Some labels are clearly easier to learn than oth-
ers.

5 Dialogue interaction strategies

•Present an object and teach it

User: This is an apple
System: [Observes the object and checks how
many images of "apple" has in its database.]
– More than 5 images.
S: I am updating my systems on apple.
– Exactly 5 images.
S: I am learning apple.
– Less than 5 images.
S: Please, show me more examples of apple.

•Confident object recognition

U: What is this?
S: [Observes the object and recognises it with
high confidence.]
S: This is a rubber duck. Am I right?
U: Yes.
S: Great!

•Wrong recognition

U: What is this?
S: [Observes the object and recognises it, but it
is not sure.]
S: I think this is a boot. Am I right?
U: No.
S: What is this, then? Write only the name of
the object.
U: Shoe.
S: [Checks how many images of "shoe" has in
its database.]

•Very low confidence recognition

U: What is this?
S: [Observes the object and fails to assign it a
category: the confidence score is very low.]
S: I don’t know what this is. Please, tell me.

6 Conclusions

•The observed results are promising.

•The system could be extended in several ways.

– Using offline pre-trained knowledge also for
the matching networks.

– New interactive strategies with the robot.
– Attention over the visual regions of the objects

to avoid the influence of the background.
– Trying different techniques for selecting the

images in the support set.
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